2,298 research outputs found

    AI Modelling and Time-series Forecasting Systems for Trading Energy Flexibility in Distribution Grids

    Full text link
    We demonstrate progress on the deployment of two sets of technologies to support distribution grid operators integrating high shares of renewable energy sources, based on a market for trading local energy flexibilities. An artificial-intelligence (AI) grid modelling tool, based on probabilistic graphs, predicts congestions and estimates the amount and location of energy flexibility required to avoid such events. A scalable time-series forecasting system delivers large numbers of short-term predictions of distributed energy demand and generation. We discuss the deployment of the technologies at three trial demonstration sites across Europe, in the context of a research project carried out in a consortium with energy utilities, technology providers and research institutions

    A novel soft computing approach based on FIR to model and predict energy dynamic systems

    Get PDF
    Tesi en modalitat compendi de publicacionsWe are facing a global climate crisis that is demanding a change in the status quo of how we produce, distribute and consume energy. In the last decades, this is being redefined through Smart Grids(SG), an intelligent electrical network more observable, controllable, automated, fully integrated with energy services and the end-users. Most of the features and proposed SG scenarios are based on reliable, robust and fast energy predictions. For instance, for proper planning activities, such as generation, purchasing, maintenance and investment; for demand side management, like demand response programs; for energy trading, especially at local level, where productions and consumptions are more stochastics and dynamic; better forecasts also increase grid stability and thus supply security. A large variety of Artificial Intelligence(AI) techniques have been applied in the field of Short-term electricity Load Forecasting(SLF) at consumer level in low-voltage system, showing a better performance than classical techniques. Inaccuracy or failure in the SLF process may be translated not just in a non-optimal (low prediction accuracy) solution but also in frustration of end-users, especially in new services and functionalities that empower citizens. In this regard, some limitations have been observed in energy forecasting models based on AI such as robustness, reliability, accuracy and computation in the edge. This research proposes and develops a new version of Fuzzy Inductive Reasoning(FIR), called Flexible FIR, to model and predict the electricity consumption of an entity in the low-voltage grid with high uncertainties, and information missing, as well as the capacity to be deployed either in the cloud or locally in a new version of Smart Meters(SMs) based on Edge Computing(EC). FIR has been proved to be a powerful approach for model identification and system ’s prediction over dynamic and complex processes in different real world domains but not yet in the energy domain. Thus, the main goal of this thesis is to demonstrate that a new version of FIR, more robust, reliable and accurate can be a referent Soft Computing(SC) methodology to model and predict dynamic systems in the energy domain and that it is scalable to an EC integration. The core developments of Flexible FIR have been an algorithm that can cope with missing information in the input values, as well as learn from instances with Missing Values(MVs) in the knowledge-based, without compromising significantly the accuracy of the predictions. Moreover, Flexible FIR comes with new forecasting strategies that can cope better with loss of causality of a variable and dispersion of output classes than classical k nearest neighbours, making the FIR forecasting process more reliable and robust. Furthermore, Flexible FIR addresses another major challenge modelling with SC techniques, which is to select best model parameters. One of the most important parameters in FIR is the number k of nearest neighbours to be used in the forecast process. The challenge to select the optimal k, dynamically, is addressed through an algorithm, called KOS(K nearest neighbour Optimal Selection), which has been developed and tested also with real world data. It computes a membership aggregation function of all the neighbours with respect their belonging to the output classes.While with KOS the optimal parameter k is found online, with other approaches such as genetic algorithms or reinforcement learning is not, which increases the computational time.Ens trobem davant una crisis climàtica global que exigeix un canvi al status quo de la manera que produïm, distribuïm i consumim energia. En les darreres dècades, està sent redefinit gràcies a les xarxa elèctriques intel·ligents(SG: Smart Grid) amb millor observabilitat, control, automatització, integrades amb nous serveis energètics i usuaris finals. La majoria de les funcionalitats i escenaris de les SG es basen en prediccions de la càrrega elèctrica confiables, robustes i ràpides. Per les prediccions de càrregues elèctriques a curt termini(SLF: Short-term electricity Load Forecasting), a nivell de consumidors al baix voltatge, s’han aplicat una gran varietat de tècniques intel·ligència Artificial(IA) mostrant millor rendiment que tècniques estadístiques tradicionals. Un baix rendiment en SLF, pot traduir-se no només en una solució no-òptima (baixa precisió de predicció) sinó també en la frustració dels usuaris finals, especialment en nous serveis i funcionalitats que empoderarien als ciutadans. En el marc d’aquesta investigació es proposa i desenvolupa una nova versió de la metodologia del Raonament Inductiu Difús(FIR: Fuzzy Inductive Reasoning), anomenat Flexible FIR, capaç de modelar i predir el consum d’electricitat d’una entitat amb un grau d’incertesa molt elevat, inclús amb importants carències d’informació (missing values). A més, Flexible FIR té la capacitat de desplegar-se al núvol, així como localment, en el que podria ser una nova versió de Smart Meters (SM) basada en tecnologia d’Edge Computing (EC). FIR ja ha demostrat ser una metodologia molt potent per la generació de models i prediccions en processos dinàmics en diferents àmbits, però encara no en el de l’energia. Per tant, l’objectiu principal d’aquesta tesis és demostrar que una versió millorada de FIR, més robusta, fiable i precisa pot consolidar-se com una metodologia Soft Computing SC) de referencia per modelar i predir sistemes dinàmics en aplicacions per al sector de l’energia i que és escalable a una integració d’EC. Les principals millores de Flexible FIR han estat, en primer lloc, el desenvolupament i test d’un algorisme capaç de processar els valors d’entrada d’un model FIR tot i que continguin Missing Values (MV). Addicionalment, aquest algorisme també permet aprendre d’instàncies amb MV en la matriu de coneixement d’un model FIR, sense comprometre de manera significativa la precisió de les prediccions. En segon lloc, s’han desenvolupat i testat noves estratègies per a la fase de predicció, comportant-se millor que els clàssics k veïns més propers quan ens trobem amb pèrdua de causalitat d’una variable i dispersió en les classes de sortida, aconseguint un procés d’aprenentatge i predicció més confiable i robust. En tercer lloc, Flexible FIR aborda un repte molt comú en tècniques de SC: l’òptima parametrització del model. En FIR, un dels paràmetres més determinants és el número k de veïns més propers que s’utilitzaran durant la fase de predicció. La selecció del millor valor de k es planteja de manera dinàmica a través de l’algorisme KOS (K nearest neighbour Optimal Selection) que s’ha desenvolupat i testat també amb dades reals. Mentre que amb KOS el paràmetre òptim de k es calcula online, altres enfocaments mitjançant algoritmes genètics o aprenentatge per reforç el càlcul és offline, incrementant significativament el temps de resposta, sent a més a més difícil la implantació en escenaris d’EC. Aquestes millores fan que Flexible FIR es pugui adaptar molt bé en aplicacions d’EC. En aquest sentit es proposa el concepte d’un SM de segona generació basat en EC, que integra Flexible FIR com mòdul de predicció d’electricitat executant-se en el propi dispositiu i un agent EC amb capacitat per el trading d'energia produïda localment. Aquest agent executa un innovador mecanisme basat en incentius, anomenat NRG-X-Change que utilitza una nova moneda digital descentralitzada per l’intercanvi d’energia, que s’anomena NRGcoin.Estamos ante una crisis climática global que exige un cambio del status quo de la manera que producimos, distribuimos y consumimos energía. En las últimas décadas, este status quo está siendo redefinido debido a: la penetración de las energías renovables y la generación distribuida; nuevas tecnologías como baterías y paneles solares con altos rendimientos; y la forma en que se consume la energía, por ejemplo, a través de vehículos eléctricos o con la electrificación de los hogares. Estas palancas requieren una red eléctrica inteligente (SG: Smart Grid) con mayor observabilidad, control, automatización y que esté totalmente integrada con nuevos servicios energéticos, así como con sus usuarios finales. La mayoría de las funcionalidades y escenarios de las redes eléctricas inteligentes se basan en predicciones de la energía confiables, robustas y rápidas. Por ejemplo, para actividades de planificación como la generación, compra, mantenimiento e inversión; para la gestión de la demanda, como los programas de demand response; en el trading de electricidad, especialmente a nivel local, donde las producciones y los consumos son más estocásticos y dinámicos; una mejor predicción eléctrica también aumenta la estabilidad de la red y, por lo tanto, mejora la seguridad. Para las predicciones eléctricas a corto plazo (SLF: Short-term electricity Load Forecasting), a nivel de consumidores en el bajo voltaje, se han aplicado una gran variedad de técnicas de Inteligencia Artificial (IA) mostrando mejor rendimiento que técnicas estadísticas convencionales. Un bajo rendimiento en los modelos predictivos, puede traducirse no solamente en una solución no-óptima (baja precisión de predicción) sino también en frustración de los usuarios finales, especialmente en nuevos servicios y funcionalidades que empoderan a los ciudadanos. En este sentido, se han identificado limitaciones en modelos de predicción de energía basados en IA, como la robustez, fiabilidad, precisión i computación en el borde. En el marco de esta investigación se propone y desarrolla una nueva versión de la metodología de Razonamiento Inductivo Difuso (FIR: Fuzzy Inductive Reasoning), que hemos llamado Flexible FIR, capaz de modelar y predecir el consumo de electricidad de una entidad con altos grados de incertidumbre e incluso con importantes carencias de información (missing values). Además, Flexible FIR tiene la capacidad de desplegarse en la nube, así como localmente, en lo que podría ser una nueva versión de Smart Meters (SM) basada en tecnología de Edge Computing (EC). En el pasado, ya se ha demostrado que FIR es una metodología muy potente para la generación de modelos y predicciones en procesos dinámicos, sin embargo, todavía no ha sido demostrado en el campo de la energía. Por tanto, el objetivo principal de esta tesis es demostrar que una versión mejorada de FIR, más robusta, fiable y precisa puede consolidarse como metodología Soft Computing (SC) de referencia para modelar y predecir sistemas dinámicos en aplicaciones para el sector de la energía y que es escalable hacia una integración de EC. Las principales mejoras en Flexible FIR han sido, en primer lugar, el desarrollo y testeo de un algoritmo capaz de procesar los valores de entrada en un modelo FIR a pesar de que contengan Missing Values (MV). Además, dicho algoritmo también permite aprender de instancias con MV en la matriz de conocimiento de un modelo FIR, sin comprometer de manera significativa la precisión de las predicciones. En segundo lugar, se han desarrollado y testeado nuevas estrategias para la fase de predicción de un modelo FIR, comportándose mejor que los clásicos k vecinos más cercanos ante la pérdida de causalidad de una variable y dispersión de clases de salida, consiguiendo un proceso de aprendizaje y predicción más confiable y robusto. En tercer lugar, Flexible FIR aborda un desafío muy común en técnicas de SC: la óptima parametrización del modelo. En FIR, uno de los parámetros más determinantes es el número k de vecinos más cercanos que se utilizarán en la fase de predicción. La selección del mejor valor de k se plantea de manera dinámica a través del algoritmo KOS (K nearest neighbour Optimal Selection) que se ha desarrollado y probado también con datos reales. Dicho algoritmo calcula una función de membresía agregada, de todos los vecinos, con respecto a su pertenencia a las clases de salida. Mientras que con KOS el parámetro óptimo de k se calcula online, otros enfoques mediante algoritmos genéticos o aprendizaje por refuerzo, el cálculo es offline incrementando significativamente el tiempo de respuesta, siendo además difícil su implantación en escenarios de EC. Estas mejoras hacen que Flexible FIR se adapte muy bien en aplicaciones de EC, en las que la analítica de datos en streaming debe ser fiable, robusta y con un modelo suficientemente ligero para ser ejecutado en un IoT Gateway o dispositivos más pequeños. También, en escenarios con poca conectividad donde el uso de la computación en la nube es limitado y los parámetros del modelo se calculan localmente. Con estas premisas, en esta tesis, se propone el concepto de un SM de segunda generación basado en EC, que integra Flexible FIR como módulo de predicción de electricidad ejecutándose en el dispositivo y un agente EC con capacidad para el trading de energía producida localmente. Dicho agente ejecuta un novedoso mecanismo basado en incentivos, llamado NRG-X-Change que utiliza una nueva moneda digital descentralizada para el intercambio de energía, llamada NRGcoin.Postprint (published version

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Consensus Algorithms and Deep Reinforcement Learning in Energy Market: A Review

    Get PDF
    Blockchain (BC) and artificial intelligence (AI) are often utilised separately in energy trading systems (ETS). However, these technologies can complement each other and reinforce their capabilities when integrated. This paper provides a comprehensive review of consensus algorithms (CA) of BC and deep reinforcement learning (DRL) in ETS. While the distributed consensus underpins the immutability of transaction records of prosumers, the deluge of data generated paves the way to use AI algorithms for forecasting and address other data analytic related issues. Hence, the motivation to combine BC with AI to realise secure and intelligent ETS. This study explores the principles, potentials, models, active research efforts and unresolved challenges in the CA and DRL. The review shows that despite the current interest in each of these technologies, little effort has been made at jointly exploiting them in ETS due to some open issues. Therefore, new insights are actively required to harness the full potentials of CA and DRL in ETS. We propose a framework and offer some perspectives on effective BC-AI integration in ETS

    Improved Observability for State Estimation in Active Distribution Grid Management

    Get PDF

    Machine learning of power grid frequency dynamics and control: prediction, explanation and stochastic modelling

    Get PDF
    A reliable supply of electric power is not a matter of course. Power grids enable the transport of power from generators to consumers, but their stable operation constantly requires corrective measures and a careful supervision. In particular, power generation and demand have to be balanced at all times. A large power imbalance threatens the reliability of the power supply and can, in extreme cases, lead to a large-scale blackout. Therefore, the power imbalance is constantly corrected through distinct control schemes. The power grid frequency measures the balance of power generation and demand. To guarantee frequency stability, and thereby a balance of generation and demand, load-frequency control constantly counteracts large frequency deviations. However, the transition of the energy system to renewable energy sources challenges frequency stability and control. Wind and solar power do not provide intrinsic inertia, which leads to increasingly fast frequency dynamics. Different economic sectors become strongly coupled to the power system, as, for example, the adoption of electric vehicles will interconnect the transport sector and the power system. Finally, wind and solar power are weather-dependent, which increases the variability of power generation. All in all, this gives rise to diverse, interdependent and stochastic impact factors, that drive the balance of power demand and generation, and thus the grid frequency. How can we predict, explain and model frequency dynamics given its strong non-autonomous and stochastic character? In this thesis, I use machine learning to disentangle the effects of external drivers on grid frequency dynamics and control. First, I propose a prediction model that only uses historic frequency data, but fails in representing external impacts. Therefore, I include time series of techno-economic drivers and model their impact on grid frequency data using explainable machine learning methods. These methods reveal the dependencies between external drivers and frequency deviations, such as the important impact of forecast errors in the Scandinavian grid or the varying effects of different generation types. Finally, I integrate these drivers into a stochastic dynamical model of the grid frequency, which both represents short-term dynamics and long-term trends due to techno-economic impacts. My work complements traditional simulation-based approaches through validation and modelling inspiration. It offers flexible modelling and prediction tools for power system dynamics, which are profitable for systems with diverse impact factors but noisy and insufficient data

    Artificial Intelligence in Energy Demand Response: A Taxonomy of Input Data Requirements

    Get PDF
    The ongoing energy transition increases the share of renewable energy sources. To combat inherent intermittency of RES, increasing system flexibility forms a major opportunity. One way to provide flexibility is demand response (DR). Research already reflects several approaches of artificial intelligence (AI) for DR. However, these approaches often lack considerations concerning their applicability, i.e., necessary input data. To help putting these algorithms into practice, the objective of this paper is to analyze, how input data requirements of AI approaches in the field of DR can be systematized from a practice-oriented information systems perspective. Therefore, we develop a taxonomy consisting of eight dimensions encompassing 30 characteristics. Our taxonomy contributes to research by illustrating how future AI approaches in the field of DR should represent their input data requirements. For practitioners, our developed taxonomy adds value as a structuring tool, e.g., to verify applicability with respect to input data requirements
    corecore