
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

Wirtschaftsinformatik 2022 Proceedings Track 5: Sustainable Information Systems, 
Energy Informatics & Climate Protection 

Jan 17th, 12:00 AM 

Artificial Intelligence in Energy Demand Response: A Taxonomy of Artificial Intelligence in Energy Demand Response: A Taxonomy of 

Input Data Requirements Input Data Requirements 

Gilbert Fridgen 
SnT - Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, Luxembourg, 
gilbert.fridgen@uni.lu 

Stephanie Halbrügge 
FIM Research Center, University of Augsburg, Germany;Project Group Business & Information Systems 
Engineering of the Fraunhofer FIT, Germany, stephanie.halbruegge@fim-rc.de 

Marc-Fabian Körner 
Project Group Business & Information Systems Engineering of the Fraunhofer FIT, Germany;FIM Research 
Center, University of Bayreuth, Germany, marc-fabian.koerner@fit.fraunhofer.de 

Anne Michaelis 
Project Group Business & Information Systems Engineering of the Fraunhofer FIT, Germany, 
anne.michaelis@fim-rc.de 

Martin Weibelzahl 
Project Group Business & Information Systems Engineering of the Fraunhofer FIT, Germany;FIM Research 
Center, University of Bayreuth, Germany, martin.weibelzahl@uni-bayreuth.de 

Follow this and additional works at: https://aisel.aisnet.org/wi2022 

Recommended Citation Recommended Citation 
Fridgen, Gilbert; Halbrügge, Stephanie; Körner, Marc-Fabian; Michaelis, Anne; and Weibelzahl, Martin, 
"Artificial Intelligence in Energy Demand Response: A Taxonomy of Input Data Requirements" (2022). 
Wirtschaftsinformatik 2022 Proceedings. 4. 
https://aisel.aisnet.org/wi2022/sustainable_it/sustainable_it/4 

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted 
for inclusion in Wirtschaftsinformatik 2022 Proceedings by an authorized administrator of AIS Electronic Library 
(AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2022
https://aisel.aisnet.org/wi2022/sustainable_it
https://aisel.aisnet.org/wi2022/sustainable_it
https://aisel.aisnet.org/wi2022?utm_source=aisel.aisnet.org%2Fwi2022%2Fsustainable_it%2Fsustainable_it%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2022/sustainable_it/sustainable_it/4?utm_source=aisel.aisnet.org%2Fwi2022%2Fsustainable_it%2Fsustainable_it%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


 

17th International Conference on Wirtschaftsinformatik, 
February 2022, Nürnberg, Germany 

Artificial Intelligence in Energy Demand Response: 

A Taxonomy of Input Data Requirements 

Gilbert Fridgen1, Stephanie Halbrügge2,3, Marc-Fabian Körner3,4, Anne Michaelis3,4 

and Martin Weibelzahl3,4 

1 SnT - Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, 

Luxembourg 

{gilbert.fridgen}@uni.lu 
2 FIM Research Center, University of Augsburg, Germany 

{stephanie.halbruegge}@fim-rc.de 
3 Project Group Business & Information Systems Engineering of the Fraunhofer FIT, Germany 

{marc-fabian.koerner}@fit.fraunhofer.de 
4 FIM Research Center, University of Bayreuth, Germany 

{anne.michaelis, martin.weibelzahl}@fim-rc.de 

Abstract. The ongoing energy transition increases the share of renewable energy 

sources. To combat inherent intermittency of RES, increasing system flexibility 

forms a major opportunity. One way to provide flexibility is demand response 

(DR). Research already reflects several approaches of artificial intelligence (AI) 

for DR. However, these approaches often lack considerations concerning their 

applicability, i.e., necessary input data. To help putting these algorithms into 

practice, the objective of this paper is to analyze, how input data requirements of 

AI approaches in the field of DR can be systematized from a practice-oriented 

information systems perspective. Therefore, we develop a taxonomy consisting 

of eight dimensions encompassing 30 characteristics. Our taxonomy contributes 

to research by illustrating how future AI approaches in the field of DR should 

represent their input data requirements. For practitioners, our developed 

taxonomy adds value as a structuring tool, e.g., to verify applicability with respect 

to input data requirements.  

Keywords: Energy Informatics, Green IS, Demand Response, Artificial 

Intelligence, Input Data Requirements 

1 Introduction 

Due to the expansion of renewable energy sources (RES) and their inherent variability, 

ensuring security of supply and grid stability are becoming increasingly challenging 

[1]. A successful energy transition towards growing shares of RES largely depends on 

increasing energy system’s flexibility [2–4]. To achieve this, demand needs to be 

adapted to generation, instead of the other way around. In order to actually provide and 

foster energy system flexibility, research develops and reflects several approaches of 

Artificial Intelligence (AI) algorithms for Demand Response (DR) to enable flexibility 
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on the demand side. As subset of Demand Side Management (DSM), DR focuses on 

load shifting or shedding and reacting to external signals such as price signals from the 

energy market [40–42]. To enable a broad application of algorithms in the real world, 

in general data are the “key ingredients” [5]. It is especially important that requirements 

on input data match the actual data availability and accessibility. However, the 

approaches of AI algorithms for DR typically lack an analysis of their actual real-world 

applicability with respect to input data requirements of algorithms, e.g., data 

accessibility or data type. Hence, we aim to gain applicable knowledge by identifying 

gaps that need to be addressed in terms of input data requirements in order to 

successfully apply AI algorithms in the field of DR. 

As our paper is located at the interface of renewable energy systems and 

digitalization, the basis of our work is particularly formed by the following two research 

streams, which are growing and becoming increasingly important in Information 

Systems (IS) research: (1) AI and (2) the role of IS for a more sustainable world. 

Regarding (1), AI’s breakthrough within the last years emerged with the increasing 

availability of large amounts of data (Big Data) and growing computing capacity [6, 7]. 

This resulted in an increased interest in and relevance of AI and corresponding 

algorithms, which play a major role in many industries [8]. Also, research reflects that 

in the field of IS, AI is receiving greater attention and creates new information and 

knowledge at the intersection of business and technology [9]. Regarding (2), a growing 

number of IS researchers is increasingly getting aware of their responsibility for 

sustainability [10, 11], especially with respect to the energy transition, for more than a 

decade, constituting the fields of Green IS and Energy Informatics (EI) [10–13]. More 

recently, the research community calls for applicable solutions for a green energy 

system by reflecting IS’s role of transferring research into practice [14–17]. 

In order to cope with the intermittent feed-in of RES, research emphasizes the 

important role of flexibility for years [18–20], also with a focus on respective IS 

applications [21]. Therefore, incentives to actually increase flexibility of the energy 

system are gaining importance [22]. Several types of flexibility exist, such as supply-

side flexibility, storage flexibility, transmission flexibility, demand-side flexibility, and 

inter-sectoral flexibility [23]. In particular DSM and – more specific – its subset DR 

play a major role as DR is a key element to enable short-term changes in energy 

consumption behavior [22, 23]. [24] analyze various AI approaches in the field of DR 

by conducting a literature review. In analogy to [24], we use the term AI algorithms as 

we analyze algorithms in the areas of machine learning, nature-inspired intelligence, 

artificial neural networks, and multi-agent systems. The review by [24] underlines the 

high relevance of AI algorithms for DR while providing a comprehensive overview of 

different application areas of algorithms. However, the authors do not analyze the 

(practical) applicability of AI algorithms. Particularly apparent is the absence of an 

analysis concerning the input data required for the algorithms. The lack of such data 

would actually impede the applicability of the DR algorithms. Hence, the aim of our 

research is to provide the necessary foundation for moving AI in DR to application 

stage, and therefore, to promote applicable solutions in the context of the energy 

transition. Therefore, we consider AI approaches within DR from an IS-perspective and 

analyze, how to systemize required input data for AI approaches in the area of DR. Our 



 

 

objective is to demonstrate which input data requirements algorithm developers need 

to account for in order to achieve applicability. Hence, we pose the following research 

question: 

What are the main characteristics of input data requirements in the context of AI 

algorithms for DR? 

In line with [25], we aim to build theory for analyzing the DR algorithms’ 

applicability by developing a taxonomy as a systematization of input data requirements. 

Hence, future approaches related to AI algorithms for DR may describe their input data 

requirements in the form of our taxonomy, allowing for an easy comparison and 

applicability analysis. In addition to providing a theoretical conceptual basis for 

research, we enable practitioners with a tool for structuring and comparing to evaluate 

AI algorithms for DR in terms of required input data. 

To approach our research question, this paper is organized as follows: In the second 

section, we briefly introduce the research streams of Green IS and EI [20]. Further, we 

introduce the conceptual basis and related work concerning IS-enabled flexibility, input 

data requirements of AI approaches for DR and data taxonomies. In the third section, 

we then outline the paper’s research methodology, i.e., the taxonomy development 

method according to [26]. In the fourth section, we elaborate on the application of this 

research method for our research question. We then present our developed taxonomy, 

systematizing input data requirements of AI approaches in the DR area in the fifth 

section. Building on this, the sixth section contains the contribution of the paper. 

Finally, the seventh section draws main conclusions and summarizes the paper. 

2 Theoretical Background 

This section forms the theoretical background for our analysis and presents related 

work. We reflect the following relevant research areas step-by-step: (1) Green IS and 

EI, (2) data taxonomies, (3) IS-enabled flexibility, and (4) input data requirements of 

AI approaches for DR. 

Regarding (1), in academic literature, researchers increasingly emphasize the 

responsibility of IS for environmental sustainability [10, 11]. This has led to the 

development of a new core subfield of IS, called Green IS [27–29], which signifies the 

use of information and communication technology to foster the transition to sustainable 

economies [11]. EI is one research field of Green IS and according to [14], EI focuses 

on increasing energy efficiency and integrating RES effectively and “has evolved into 

a thriving research area within the IS community” [14]. [15] and [13] stress that EI aims 

to reduce energy consumption and associated greenhouse-gas (GHG) emissions. In 

order to develop a more sustainable energy system, also an increase in flexibility is 

particularly necessary [2, 30]. One approach to achieve increased flexibility is DR. 

Therefore, this paper aims to contribute to the EI and Green IS research streams in line 

with its approach of investigating the applicability of AI algorithms for DR. Since 

Green IS represents an “applied field that seeks to improve practice” [11], applicability 

is of highest importance to gain applicable knowledge. In the field of EI, [31] explicitly 

stress the aspect of lacking data, which also highlights the importance of our work for 



 

 

IS research, as we develop an approach to examine the input data requirements of the 

algorithms that are important for applicable solutions. Since this specific field of 

research is still quite new, a taxonomy from a methodological perspective lends itself 

to structuring the field.  

Regarding (2), taxonomies are already well established in the IS domain, especially 

since Nickerson et al. (2013) presented a taxonomy development method specifically 

for the IS domain [32]. IS researchers apply taxonomies in different IS areas, but 

generally all of them are used to classify and group objects and accordingly to structure, 

understand, and analyze complex domains [33]. Holistic taxonomies regarding data 

already exist in literature. [34], for example, present a general taxonomy of data, based 

on, e.g., the statistical approach and the source of data generation, while [35] develop 

a taxonomy of data sources including dimensions such as data source interface or data 

source pricing model. [36] evolve a taxonomy in the area of data-driven business 

models used by start-ups including dimensions such as data source, but also key activity 

or target customer. These examples illustrate the relevance of taxonomies for 

structuring data and data requirements for specific application areas. Yet these 

taxonomies cannot represent the input data requirements in the field of DR, because the 

taxonomies presented serve different purposes and accordingly exhibit other 

dimensions and characteristics. DR is a special area at the interface between energy 

systems and many other fields, such as industrial production planning or residential 

applications, e.g., electric vehicles. Thus, e.g., a more general and holistic view on data 

requirements of energy systems would not be sufficient for our purpose. Overall, 

already existing data taxonomies cannot be used for an accurate and applicable 

systematization of AI algorithms for DR.  

Regarding (3), as mentioned above, flexibility is crucial for a stable and efficient 

energy system [23, 37]. Against this background, one approach to increase flexibility 

is DSM, which includes all measures on the consumption side of the energy system, 

such as increasing efficiency as well as reducing energy consumption [38]. [39] 

emphasizes that DSM aims to influence energy consumption in order to achieve 

beneficial changes in the load profile. As a subset of DSM, DR is defined as load 

shifting or shedding and reacting to external signals such as price signals from the 

energy market on demand side [40–42]. Regarding DR in IS-literature, [41] summarize 

general IS research contributions on DR by conducting a systematic literature review. 

[21] use a real options analysis to quantify the value of IS-enabled flexibility on 

demand-side and illustrate this analysis with electric vehicles. [30] develop an approach 

for industrial consumers to evaluate DR measures by analyzing the risk transfer 

capability of flexibility performance contracts. So far, in the IS literature, DR 

researchers have not focused on AI to govern DR. Therefore, we build on and contribute 

to the research stream of DR in IS literature by systematizing input data requirements 

of AI approaches for DR to improve their applicability in practice, and thus increasing 

flexibility in the energy system. In this way, our paper serves as a foundation for further 

research by contributing to the interface of AI algorithms and DR. 

Regarding (4), with its plethora of application areas, AI opens up opportunities for 

the energy industry and the energy system [43]. In general, AI “attempts not just to 

understand but also to build intelligent entities” [44]. Hereby, AI encompasses a variety 



 

 

of different techniques such as machine learning [45], that enables agents to 

intelligently perform tasks. For the applicability of AI algorithms, required input data 

plays a major role, as IS literature clearly demonstrates: [46], for example, highlight 

that data availability, data quality, data accessibility, and data flow are main factors for 

organizational AI readiness and are therefore crucial for applicability. In addition to 

that, [5] emphasizes that “data are the key ingredients of all machine-learning systems” 

[5]. By analyzing and evaluating data sets, AI helps the energy system to become more 

efficient and secure. In the energy system, various AI application areas exist, ranging 

from energy trading and sector coupling to smart grids. In this context, [47] elaborate 

on the general use of AI in energy systems and energy markets, while [48] focus on AI 

applications that can support the achievement of RES future goals. For instance, 

regarding specific AI applications used for smart grids, [49] as well as [50] provide a 

detailed overview of AI applications for smart grids such as stability assessment, 

stability control, security assessment, and fault diagnosis. Our paper focuses on the 

applications of AI in the DR area. In this context, AI is especially used for load and 

price forecasting, scheduling and control of loads, design of pricing and incentive 

schemes, as well as load and customer segmentation [24]. However, the basis for a real-

world application of these AI approaches, i.e., appropriate input data, remains 

unstructured, so far. 

To put it in a nutshell, general AI literature is concerned about data requirements of 

respective algorithms, while researchers in the field of AI for DR have not yet paid 

particular attention to the analysis of necessary input data. However, in order to be able 

to truly apply AI algorithms in the field of DR in practice, an analysis of these input 

data is essential. Against this background and to the best of our knowledge, we are the 

first taking a more in-depth view of the input data required by AI algorithms for DR. 

3 Methodological Approach 

To answer our research question, we develop a taxonomy as a systematization for input 

data requirements of AI algorithms for DR. According to [26], such classification of 

objects is particularly helpful for researchers and practitioners to understand and 

analyze complex domains. A further objective of taxonomy developments is to lay the 

foundation for future research and simultaneously provide new and highly relevant 

impulses [51]. 

The guidelines of [26] are based on the approach of [52] and are well known in the 

IS discipline [53–56]. According to [26], the structured and iterative taxonomy 

development process encompasses seven steps, combining an inductive (empirical-to-

conceptual) and deductive (conceptual-to-empirical) approach [26]. The first step is to 

identify a meta-characteristic (1), which should reflect the purpose of the taxonomy. 

Subsequently, in the second step, one defines ending conditions (2), which determine 

when the iterative process terminates, differentiating between objective and subjective 

ending conditions. The third step allows the decision between the empirical-to-

conceptual, in the following denoted by an (e), or the conceptual-to-empirical approach, 

in the following denoted by a (c) (3), depending on the availability of data about the 



objects. Following Nickerson's guidelines, it is useful to perform different approaches 

in the iterations "to view the taxonomy from a different perspective" [26]. When 

applying the empirical-to-conceptual approach, [26] suggest to select objects for 

classification (4e) first, then to identify common characteristics of these objects (5e), 

and finally to group these characteristics into dimensions (6e). When employing the 

conceptual-to-empirical approach (3), [26] suggest to first conceptualize the 

dimensions and characteristics of the taxonomy (4c), then to map objects to the 

characteristics and dimensions (5c), and finally to create the new or revised taxonomy 

(6c). Both, the empirical-to-conceptual and the conceptual-to-empirical approach 

require an examination whether the current taxonomy fulfills the objective and 

subjective ending conditions (7). If these are not met, a new iteration starts, otherwise, 

the taxonomy development terminates. 

4 Application of the Research Method 

Figure 1 illustrates our methodological process, which consists of determining meta-

characteristic and ending conditions followed by five iterations comprising three 

empirical-to-conceptual approaches and two conceptual-to-empirical approaches. 

Start

Determine meta-characteristic:
Characteristics of data in the context
of AI algorithms for DR

Determine ending conditions:
• Objective ending conditions
• Subjective ending conditions

Objective ending conditions:
• No new dimensions or characteristics were added in the last iteration
• No dimensions or characteristics were merged or split in the last iteration
• There is no dimension duplication
• There is no characteristic duplication within a dimension

Subjective ending conditions:
• Concise
• Robust
• Comprehensive
• Extendible
• Explanatory

Empirical-to-conceptual 
approach

Five iterations for 
taxonomy development

Conceptual-to-empirical-
approach

Objective and subjective 
ending conditions not met

Objective and subjective 
ending conditions not met

Empirical-to-conceptual 
approach

Taxonomy Ending conditions met

Conceptual-to-empirical-
approach

Empirical-to-conceptual 
approach

Objective and subjective 
ending conditions not met

Objective ending conditions 
not met

Figure 1. Taxonomy Development Process Adopted from Nickerson et al. (2013) 

The first step of the taxonomy process requires the definition of the meta-characteristic, 

from which all characteristics and dimensions of the taxonomy must logically derive 

[26]. Based on our research question and the corresponding target group of the 

taxonomy - researchers and practitioners dealing with AI for DR - our meta-



 

 

characteristics are characteristics of input data in the context of AI algorithms for DR 

(1). Next, in a second step, we define the ending conditions that determine the 

termination of the taxonomy development process (2). As objective ending conditions 

we choose the following: “no new dimensions or characteristics were added in the last 

iteration” [26], “no dimensions or characteristics were merged or split in the last 

iteration” [26], “there is no dimension duplication” [26], and “there is no characteristic 

duplication within a dimension” [26]. For the subjective ending conditions, all authors 

have to confirm that the taxonomy is concise, robust, comprehensive, extendible, and 

explanatory [26]. 

We develop a taxonomy with eight dimensions encompassing 30 characteristics and 

two additional requirements in five iterations by combining the empirical-to-conceptual 

(first, third and fifth iteration) and conceptual-to-empirical approach (second and fourth 

iteration) as described above. For the first iteration - an empirical-to-conceptual 

approach (3) - we use a sample of 15 algorithms as objects. These are part of the result 

of a systematic literature review (SLR) by [24], which meets the requirements of a SLR 

according to [57]. The conducted SLR uses the search strings “Artificial Intelligence” 

AND “Demand Response”, “Machine Learning” AND “Demand Response”, and 

“Neural Networks” AND “Demand Response”. [24] only consider literature that is DR-

related and that uses AI techniques explicitly for DR. The applied search engine is 

Scopus and it searches the period from 2009 to 2019 [24]. 15 algorithms are, according 

to [26]’s guidelines, randomly selected as objects from the 161 SLR results. First, we 

investigate the input data requirements of the algorithms by reading the corresponding 

15 papers in detail (4e). Subsequently, we form characteristics concerning input data 

requirements from these objects (5e) and group them into dimensions to create a first 

taxonomy (6e).  

Since the resulting taxonomy does not meet both, the subjective and objective ending 

conditions, we perform a second iteration. To view the taxonomy from a different 

perspective, we now perform a conceptual-to-empirical approach (3). To follow the 

guidelines from [26], we use the “knowledge of existing foundations, experience, and 

judgement [from the authors] to deduce […] [further] relevant dimensions” [26] and 

characteristics (4c). We can learn from other data taxonomies mentioned in the second 

section in this conceptual-to-empirical approach and strengthen our taxonomy by, e.g., 

adopting single characteristic names for more general dimensions like data source or 

data accessibility. Subsequently, we examine 15 new objects from the above-mentioned 

SLR for these new characteristics and dimensions (5c) and create the revised taxonomy 

(6c) [26]. Similar to the first iteration, we add new characteristics and dimensions, and 

therefore, the taxonomy does not fulfill the objective ending conditions. Consequently, 

we carry out a third iteration. In this empirical-to-conceptual approach (3), we examine 

15 new objects from the SLR with respect to differences and similarities (4e). Since our 

taxonomy does not meet the subjective and objective ending conditions, we perform a 

fourth iteration, a conceptual-to-empirical approach. As already mentioned in the 

second iteration, according to [26] we can use the knowledge and experience of the 

authors to further develop the taxonomy. In iteration five, we neither add new 

dimensions nor new characteristics [26]. We check the objective and subjective ending 



 

 

conditions. All objective ending conditions are met and the authors separately review 

the subjective ending conditions concluding that they are fulfilled as well [26]. 

5 Taxonomy 

Our final taxonomy comprises eight dimensions encompassing 30 characteristics and 

two additional requirements. We define the taxonomy according to our meta-

characteristic with the aim to systematize input data requirements of AI algorithms for 

DR. Table 1 illustrates our final taxonomy. In the following, we explain all dimensions 

and characteristics of the taxonomy, and give substantiating sources. 

In order to be able to apply AI algorithms for DR in practice, the data used as input 

plays a decisive role: Our taxonomy illustrates that the input data requirements differ, 

especially with respect to the eight dimensions data usage, data type, data provider, data 

collection time, data source, method of data collection, data accessibility, and data 

privacy, which we amplify in the following. 

Table 1. Taxonomy of Input Data Requirements in the Context of AI Algorithms for DR 

(in dark grey further input data requirements are shown) 

Dimensions Characteristics 

Data usage Forecasting Scheduling and 

control of loads 

Design of pricing 

and incentive 

schemes 

Load and 

customer 

segmentation 

Data type Genera-

tion data 

Price data Grid data Consum-

ption data 

Weather 

data 

Geograph-

ical data 

Data provider Generator Trading 

operator 

Grid 

operator 

(TSO/DS

O) 

Consu-

mer 

Meteoro-

logical 

institute 

Building 

industry 

Data collection time < 1 month 1 month < 6 

months 

6 months < 1 year ≥ 1 year 

Data source Internal data External data 

Method of data 

collection 

Primary data Secondary data 

Data accessibility Open data Shared data Closed data 

Data privacy Free and usable data Corporate secrets Personal data 

Data quality Data quality is a crucial precondition to obtain reasonable results. 

Data granularity The spatio-temporal data granularity is dependent on the data type and application. 

 

Based on the analysis of the reviewed objects and in line with the overview of AI for 

DR by [24], we differentiate between four application areas, representing the 

characteristics for the dimension data usage: The first characteristic forecasting 

includes approaches for load forecasting [58–60] as well as for energy price forecasting 

[61, 62]. There are differences with respect to short-term and long-term forecasts [24]. 

While short-term forecasts allow consumers to better respond to price signals and 



 

 

aggregators to provide better services, long-term forecasts provide useful information 

to better plan DR measures. Scheduling and control of loads constitute the second 

characteristic. Here, we note that significantly more algorithms are developed at the 

consumer level [63–65] than at the aggregator level [66, 67], especially with the aim of 

reducing energy costs and energy consumption [24]. Another characteristic of data 

usage comprises the design of pricing or incentive schemes, which both affect the 

success of the DR scheme [68–72]. These compensation mechanisms are important for 

a successful DR program [24]. The final characteristic in this dimension describes load 

or customer segmentation, the categorization of energy consumers in groups which is 

predominantly based on consumer load profiles and supports, e.g., designing DR 

programs [73, 74]. Our taxonomy development process revealed that AI algorithms for 

DR operate on a number of data types to meet the specific goals of the algorithms. 

Characteristics of the dimension data type include generation data, price data, grid 

data, consumption data, weather data, and geographical data. A majority of them 

represent the components of the electricity system value chain [1]. Examples for price 

data comprise real-time price data [62] or day-ahead price data [75]. Real-time data 

from sensors and dynamic data sources [76] or 15-minute interval meter data [77] 

represent examples of consumption data. Furthermore, we form the characteristic 

geographical data based on the objects’ data such as building construction [76] or type 

of heating appliances [77]. When examining objects during the taxonomy development 

process, it is notable that various data providers exist for the AI algorithms in the DR 

domain. Our taxonomy groups these stakeholders into the characteristics generator 

[78], trading operator [79], grid operator including transmission system operator 

(TSO) and distribution system operator (DSO), consumer, meteorological institute, and 

building industry. In our taxonomy, the data provider refers to the stakeholder that 

makes the data available, but who not necessarily generates it. In addition to the above 

dimensions, the length of the data collection time is important for the applicability of 

AI algorithms for DR. Only if the data is sufficiently available for the relevant period, 

the user can properly apply the algorithm. The objects imply a subdivision in < 1 month 

[80], 1 month < 6 months [81], 6 months < 1 year [82], ≥ 1 year [83] as characteristics 

for the dimension data collection period. The underlying data differs in their source. In 

line with literature, data sources can either be internal or external [36]: Internal sources 

comprise data that is self-generated or data that already exists, e.g., when data is stored 

in IT systems [84]. In contrast, external data is generated publicly or can be purchased 

[35]. Examples of external sources include acquired data, e.g., from EPEX SPOT, data 

provided by customers, or freely available data, e.g., from the international energy 

agency [84]. Regarding the method of data collection, we identify the requirement of 

converted input data in some objects [77], whereby we distinguish between primary 

data and secondary data [34]. Primary data are raw data and are directly gathered from 

the source by the algorithm user itself, while secondary data are not collected by the 

algorithms’ user and may also be edited, derived, and processed. We underline the fact 

that the method of data collection must be distinguished from the data source. For 

example, in the case of primary data, the data does not necessarily have to be produced 

internally, but rather requires that it is not processed prior to its use. Regarding the data 

accessibility, we find essential differences between the objects’ input data. In line with 



 

 

literature, we differentiate between open data [85], shared data [86], and closed data 

[76]. Open data is free and available to anyone for unrestricted commercial or non-

commercial use and may be shared without restriction [87]. Shared data is accessible 

to users who meet specific access criteria and indicate the source of the data whenever 

they use it [34]. Regarding closed data, access is restricted to the data owner or a special 

group due to security restrictions and policies. Additionally, data cannot be shared with 

third parties. In order to also consider privacy rules, data privacy ought to be an input 

data requirement and thus forms a dimension in our taxonomy. Data privacy focuses 

especially on the use and governance of individual data. One example is establishing 

policies to assure an adequate manner, in which personal data is collected, shared, and 

used [88]. In this context, there is a need for balancing of civil liberties and societal 

interests. In addition, regulations regarding data privacy like, e.g., General Data 

Protection Regulation (GDPR) differ depending on the country in which the algorithm 

is applied. We distinguish between free and usable data, data that companies keep secret 

due to the protection of corporate secrets, and personal data. Several of the objects’ 

developers also emphasize the need to pay attention to data security to avoid revealing 

unwanted details about people and their activities [76] as well as privacy protection 

[89]. In addition to the dimensions mentioned, two further input data requirements, 

namely data quality and data granularity, are essential for systematizing the input data 

requirements of AI algorithms for DR. However, compared to the above dimensions, 

these two requirements do not entail specific characteristics and cannot be classified as 

a dimension in the sense of [26]. According to [26], characteristics must be “mutually 

exclusive and collectively exhaustive” [26]. Since no specific characteristics can be 

defined for data quality and data granularity, it would not be assured that each object 

has a characteristic in the dimension data quality and data granularity. Therefore, we 

list these two separately in the form of further input data requirements in dark grey in 

Table 1 and describe them afterwards. Even if data is available, good data quality is 

crucial. As data quality can be seen gradually, we do not directly include data quality 

in the taxonomy, but we list it as an extra input data requirement of AI algorithms for 

DR. Since many IS-researchers are already concerned with data quality required for an 

algorithm to produce “good” results, we will not focus on this issue in more detail. 

However, it is crucial to consider data quality as one of the input data requirements. 

Data quality attributes include, for example, ensuring that the data is free-of-error, 

meaning that the data is accurate and reliable, and completeness, which is intended to 

assure that no data is missing [89, 90]. The algorithms’ developers also mention missing 

data quality: [91], for instance, note "some data were missing in the database" [91] and 

"some data is not accurate" [91]. Similarly, data granularity can be seen gradually: 

The right granularity is a crucial precondition to obtain reasonable results in the first 

place. Besides, the dimension of data granularity is highly dependent on the data type 

and also on the application. Therefore, it is not possible within our research to specify 

generic characteristics for the dimension of data granularity. In particular, different 

units hamper generic definitions of characteristics for the data granularity dimension. 

For example, price data have a different granularity than generation data. 



 

 

6 Contribution and Discussion 

In the field of Green IS and EI, researchers emphasize the responsibility of IS for a 

sustainable and more efficient energy system [10, 11, 13]. In addition, [92] highlight 

the importance of research on IS-enabled energy flexibility. In this context, our paper 

first contributes to the Green IS research stream by building a foundation to raise 

awareness among researchers and also algorithm developers to place a deeper focus on 

the applicability of AI approaches in the field of DR in terms of data requirements. 

Applicable knowledge and implementable practices are especially important in the field 

of Green IS and EI to foster a successful energy transition and to address the UN SDGs 

[15]. By focusing on input data, we address a major topic in algorithm development, as 

the availability of the required input data is crucial for the actual applicability of the 

algorithms. While literature contains various AI algorithms for DR, so far, it does not 

deal with their real-world applicability sufficiently, i.e., the analysis if input data 

requirements of these algorithms match the actual data available. Our paper illustrates 

that different data usage, data types, data providers, data collection times, data sources, 

methods of data collection, data accessibility, data privacy, data quality, and data 

granularity exist for various AI algorithms. Second, with our taxonomy we lay the 

foundation for AI algorithm developers and researchers in DR to illustrate the 

appropriate characteristics of each dimension of our input data requirements taxonomy 

in their future AI for DR approaches. Henceforth, papers developing an algorithm at 

the interface of AI and DR may present their input data requirements in the form of our 

taxonomy. This provides the advantage of “easier” analysis of applicability and 

“simpler” comparison of AI algorithms for DR in terms of their input data requirements. 

Third, our developed taxonomy can serve as a conceptual basis for future research in 

this field, by giving an overview of input data requirements of AI algorithms for DR. 

For example, our taxonomy provides a basis for analyzing which combinations of input 

data requirements typically occur in different application areas. In addition, our 

taxonomy forms the basis and is the first step towards analyzing which data is needed 

for AI algorithms in the area of DR and should be provided with an open data license, 

taking into account ethical and privacy concerns. In addition to that, our taxonomy can 

serve as a starting point to investigate which other currently licensed and closed data 

types could play an important role for AI algorithms in the area of DR.  

Besides the theoretical added value, the results of our paper also have several 

practical implications that play a major role for promoting the energy transition [11]: 

In order to apply AI algorithms for DR in practice, practitioners need to know the 

algorithms’ input data requirements for implementation of the algorithms.  

First, the taxonomy provides practitioners of AI algorithms for DR with a manifold 

overview of which input data and corresponding characteristics respective algorithms 

may require. Second, for practitioners who apply AI algorithms in practice, our 

taxonomy further serves as a structuring tool. For the identification and selection, but 

also for the evaluation of an algorithm with respect to the input data requirements, the 

taxonomy represents an important tool: By analyzing algorithms based on the 

characteristics of the taxonomy, practitioners can evaluate whether they are actually 

able to apply the algorithm or not with respect to required data. Third, building on such 



 

 

evaluation, users of AI algorithms for DR can apply our taxonomy as a tool for 

comparing. Here, the focus is on the comparison of different algorithms and their 

respective input data requirements. Accordingly, practitioners can also use the 

taxonomy to identify advantages and disadvantages with respect to the required input 

data in a structured way. Fourth, our taxonomy may enable new business models by 

serving as an assistance for companies that sell relevant data. Our taxonomy allows to 

identify which specific input data is required for AI algorithms in the field of DR. Based 

on such information, companies can consider publishing relevant data with an open 

data license, or alternatively sell the data on a data market. 

7 Conclusion, Limitations, and Further Research 

To put highly relevant AI approaches into practice, referring to Section 6, we present a 

systematization of the input data requirements of AI algorithms for DR by developing 

a taxonomy following the process of [26]. The final taxonomy consists of eight 

dimensions, which are data usage, data type, data provider, data collection time, data 

source, method of data collection, data accessibility, and data privacy as well as 30 

characteristics. Furthermore, we highlight data quality and data granularity as further 

input data requirements for AI algorithms in the area of DR.  

Having laid out our results, we briefly present some limitations of our work. First, 

already [26] note that a taxonomy “is never perfect, but in the best case useful” [53]. 

Regarding this citation, our taxonomy development is limited to findings from 

academic literature. Second, as the AI application field is rapidly evolving, the 

taxonomy should remain regularly updated, and depending on new (scientific) 

development, new input data requirements may extend the taxonomy in the future. 

Third, we illustrate that our taxonomy serves its purpose and yet, we are aware that this 

taxonomy is only the first step towards the real-world applicability of AI algorithms for 

DR. Fourth, an evaluation of the taxonomy through expert interviews is outstanding, 

which is in turn the starting point for our further research. 

Our paper provides various starting points for further research. Referring to the 

limitations, in a next step, researchers can conduct a reality check and validate the 

taxonomy through expert interviews. Researchers may also apply our taxonomy to 

classify actual AI algorithms for DR. Moreover, our taxonomy may serve as a starting 

point for cluster analysis, for example, to develop archetypes and patterns for AI 

algorithms in the field of DR. These archetypes and patterns may provide a basis for 

identifying certain gaps in existing AI algorithms for DR and for deriving further 

research priorities. In addition, further research can examine how data granularity and 

data quality can be further characterized. Also, an overview of characteristics of the 

sampled and evaluated AI methods with respect to the taxonomy could help to prove 

further relevance and applicability of the taxonomy. Besides, it would further be useful 

to practitioners who need to choose a method for their problem. 
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