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Abstract

A reliable supply of electric power is not a matter of course. Power grids enable the trans-
port of power from generators to consumers, but their stable operation constantly requires
corrective measures and a careful supervision. In particular, power generation and demand
have to be balanced at all times. A large power imbalance threatens the reliability of the
power supply and can, in extreme cases, lead to a large-scale blackout. Therefore, the power
imbalance is constantly corrected through distinct control schemes.

The power grid frequency measures the balance of power generation and demand. To
guarantee frequency stability, and thereby a balance of generation and demand, load-
frequency control constantly counteracts large frequency deviations. However, the trans-
ition of the energy system to renewable energy sources challenges frequency stability and
control. Wind and solar power do not provide intrinsic inertia, which leads to increas-
ingly fast frequency dynamics. Different economic sectors become strongly coupled to the
power system, as, for example, the adoption of electric vehicles will interconnect the trans-
port sector and the power system. Finally, wind and solar power are weather-dependent,
which increases the variability of power generation. All in all, this gives rise to diverse,
interdependent and stochastic impact factors, that drive the balance of power demand and
generation, and thus the grid frequency. How can we predict, explain and model frequency
dynamics given its strong non-autonomous and stochastic character?

In this thesis, I use machine learning to disentangle the effects of external drivers on grid
frequency dynamics and control. First, I propose a prediction model that only uses historic
frequency data, but fails in representing external impacts. Therefore, I include time series
of techno-economic drivers and model their impact on grid frequency data using explain-
able machine learning methods. These methods reveal the dependencies between external
drivers and frequency deviations, such as the important impact of forecast errors in the
Scandinavian grid or the varying effects of different generation types. Finally, I integrate
these drivers into a stochastic dynamical model of the grid frequency, which both repres-
ents short-term dynamics and long-term trends due to techno-economic impacts. My work
complements traditional simulation-based approaches through validation and modelling
inspiration. It offers flexible modelling and prediction tools for power system dynamics,
which are profitable for systems with diverse impact factors but noisy and insufficient data.
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Zusammenfassung

Eine zuverlässige Stromversorgung ist keine Selbstverständlichkeit. Stromnetze ermög-
lichen die Übertragung elektrischer Energie von den Erzeugern zu den Verbrauchern, aber
ihr stabiler Betrieb erfordert ständige Korrekturmaßnahmen und eine sorgfältige Über-
wachung. Insbesondere müssen Stromerzeugung und -nachfrage jederzeit im Gleichge-
wicht sein. Ein großes Leistungsungleichgewicht gefährdet die Zuverlässigkeit der Strom-
versorgung und kann im Extremfall zu einem großflächigen Stromausfall führen. Daher
wird das Leistungsungleichgewicht ständig durch verschiedene Regelungssysteme korri-
giert.

Die Netzfrequenz ist ein Maß für das Gleichgewicht von Stromerzeugung und Strom-
nachfrage. Um die Frequenzstabilität und damit ein Gleichgewicht zwischen Erzeugung
und Nachfrage zu gewährleisten, wirkt die Regelleistung ständig großen Frequenzabwei-
chungen entgegen. Die Umstellung des Energiesystems auf erneuerbare Energiequellen
stellt jedoch eine Herausforderung für die Frequenzstabilität und -regelung dar. Wind-
und Solarenergie bieten keine eigene Trägheit, was zu einer beschleunigten Frequenz-
dynamik führt. Verschiedene Wirtschaftssektoren werden stark an das Stromsystem ge-
koppelt. Zum Beispiel wird die Einführung von Elektrofahrzeugen den Verkehrssektor
und das Stromsystem miteinander verbinden. Schließlich sind Wind- und Sonnenenergie
wetterabhängig, was die Variabilität der Stromerzeugung erhöht. Insgesamt führt dies zu
vielfältigen, voneinander abhängigen und stochastischen Einflussfaktoren, die das Gleich-
gewicht von Stromnachfrage und -erzeugung und damit die Netzfrequenz beeinflussen.
Wie können wir die Frequenzdynamik vor dem Hintergrund ihrer nicht-autonomen und
stochastischen Eigenschaften vorhersagen, erklären und modellieren?

In dieser Arbeit verwende ich maschinelles Lernen, um die Auswirkungen externer Fak-
toren auf die Netzfrequenzdynamik und -steuerung zu entschlüsseln. Zunächst schlage
ich ein Vorhersagemodell vor, das nur historische Frequenzdaten verwendet, aber exter-
ne Einflüsse nicht abbilden kann. Um dieses Defizit zu beheben, beziehe ich Zeitreihen
technisch-wirtschaftlicher Einflussfaktoren ein und modelliere ihre Auswirkungen auf die
Netzfrequenz mithilfe erklärbarer maschineller Lernmethoden. Diese Methoden zeigen
die Abhängigkeiten zwischen externen Einflussfaktoren und Frequenzabweichungen auf,
wie z. B. den bedeutenden Einfluss von Prognosefehlern im skandinavischen Netz oder
die unterschiedlichen Auswirkungen der verschiedenen Erzeugungsarten. Schließlich in-
tegriere ich diese Einflussfaktoren in ein stochastisches dynamisches Modell der Netz-
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Zusammenfassung

frequenz, das sowohl kurzfristige Dynamiken als auch langfristige Trends aufgrund von
technisch-wirtschaftlichen Einflüssen darstellt. Meine Arbeit ergänzt die traditionellen si-
mulationsbasierten Ansätze durch Validierung und Modellinspiration. Sie bietet flexible
Modellierungs- und Prognosewerkzeuge für die Dynamik von Stromnetzen, die für Syste-
me mit verschiedenen Einflussfaktoren, aber verrauschten und unzureichenden Daten von
Nutzen sind.
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1. Introduction

1.1. The reliability of electricity supply: a matter of

course?

Electricity is essential for the daily life of many people around the world. In various coun-
tries, central societal functions such as health, security and safety of the people depend on
the reliable supply of electricity [6]. For example, a prolonged large-scale blackout will
cause the failure of several telecommunication services, thus preventing people to obtain
important information during a crisis. Furthermore, all electric rail transport shuts down,
road traffic becomes chaotic due to failing traffic lights, water supply stops due to failing
electrical pumps, with more failures expected in food supply, the financial and the health
care sector. Due to such consequences for the basic functioning of society, power supply
is considered a critical infrastructure, which needs special strategical protection [6, 7].
Among the critical infrastructures, such as water supply and transport, power supply is
particularly important since almost all other critical infrastructures depend on it [8]. In
the future, these interdependencies will grow due to the energy transition. In particular,
the rise of electric cars and the shift from gas-based heating to electric heat pumps will
potentially increase the electricity demand in the transport and heating sectors [9, 10].
These growing interdependencies with the power system amplify its criticality, such that
its reliable operation is of vital importance.

In Europe, the power systems typically exhibit a high level of reliability. The reliability
standards require that electricity might be unavailable not more than 3-8 hours per years
in the whole grid [11]. In Germany, the average time with unavailable electricity supply
per person was around 11 minutes in 2020 (Figure 1.1a), i.e., on average, each person
spent 0.002 % of the year without electricity [12]. Therefore, the experience of a reliable
electricity supply is a matter of course in daily life.

However, a large technical infrastructure and continuous adaptive measures are neces-
sary to maintain such a high level of system reliability. This becomes clear when decom-
posing the electricity costs paid by an average private household (Figure 1.1b). Only 26%
are paid for actually generating electric power, while 22% account for the grid charges,
which are exclusively used to ensure the reliability of electricity supply [12]. In partic-
ular, grid charges pay for grid management, i.e., the extension and maintenance of the
power grid, and for the supply of adaptive measures called ancillary services. These an-
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1. Introduction
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Figure 1.1.: A high reliability of electricity supply requires costly grid management and
balancing. a: The average duration of power interruptions is constantly low in
Germany, thus guaranteeing a reliable electricity supply in daily life [12]. b:
This reliability requires continuous balancing efforts and infrastructure man-
agement, which are reflected in the electricity costs through the grid charge.
The pie depicts the average electricity costs paid by private households in the
year 2021 [12].

cillary services are continuous measures that control and correct power generation, load
and transmission to guarantee a reliable operation of the power system within physical
constraints.

Different threats to system reliability require different ancillary services [12]. In Ger-
many, the largest part of grid charges relates to congestion management (69 %) and grid
losses (20 %). Congestion occurs in a power grid if the generated power cannot be trans-
ported to the consumer because the capacity of the grid is not large enough. Power losses
are caused by power transmission and thus have to be paid additionally. The third most
costly ancillary service is power balancing and control (8%). It deals with temporary mis-
matches between power generation and demand and is therefore inherently connected to
the power grid frequency.

1.2. Power grid frequency stability and control

The power grid frequency is a central indicator for the reliable operation of power systems
[14]. It is measured as the angular velocity of the AC voltages in the power grid. Under
normal operating conditions, the voltage angles in large-scale power grids are synchronised
at timescales above one second such that I refer to a single “bulk” frequency throughout
this thesis. The target value of the grid frequency is fref = 50 Hz in Europe (both 50 and 60

Hz are used in other regions), but the actual value fluctuates around this reference. These
deviations∆f from the reference are caused by imbalances∆P between power generation
and demand. If there is an under-production of electricity (∆P < 0), the lacking power
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1. Introduction
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Figure 1.2.: Large grid frequency deviations threaten the reliability of electricity supply.
The figure depicts a large frequency deviation in Continental Europe in Janu-
ary 2019, which reached the statutory operational limits of a secure system
operation (data from ref. [13]). As an emergency measure 1.5 GW of indus-
trial load were shut down. Within the operational limits, frequency control
measures continuously prevent large deviations, thus ensuring a high level of
system reliability.

is drawn from the rotational energy Erot of all synchronous generators within the power
grid and their rotors slow down thus causing a frequency drop in the AC voltages of the
generators (and vice versa for an over-production of electricity). This inertial response of
synchronous generators is commonly modelled by the aggregate swing equation [15],

2Erot

fref

d∆f

dt
= ∆P. (1.1)

The Rate of Change of Frequency (RoCoF) d∆f/dt, increases with the power mismatch,
but also with declining rotational energy Erot, which I discuss in Section 1.3.

If grid frequency deviations become too large, they threaten the reliability of the power
supply, thus resulting in costly emergency measures. Electric devices in the power grid
can only operate safely within a narrow band around the reference frequency. For example,
generators can only operate up to a certain minimum frequency (49.5 Hz in Continental
Europe) and they shut down below this value to prevent internal damages [16]. This fur-
ther decreases the frequency and can lead to cascading outages including other types of
instabilities such as voltage or angle instability [17]. As an emergency measure, power
loads are disconnected from the grid, thus reducing the power imbalance and stabilising
the grid frequency [14]. This measure, called load shedding, was for example used to
mitigate a severe frequency deviation in January 2019 within the Continental European
grid (Figure 1.2). The grid frequency reached the statutory operational limits and 1.5 GW
of industrial loads were shed as a countermeasure [18], which is nearly twice the power
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1. Introduction

consumption of a large German city (such as Cologne). In 2020, load shedding was only
needed at nine days in Germany, which however came at a large cost of nearly 32 million
Euros to reimburse the affected costumers [12].

To avoid such costly emergency measures, different control schemes constantly act on
the frequency and impede deviations beyond statutory operational limits [14]. Primary
control is activated on the timescale of seconds. It is governed by a proportional controller
Pprim = KT∆f and thus dampens the frequency deviation. The total damping coefficient
K1 = KT +KL summarises the effect of primary control and frequency-dependent loads,
which also contribute with a small damping coefficient KL ≪ KT . On a timescale of
minutes, secondary control activates to restore the grid frequency to its reference value.
Secondary control is typically governed by an integral controller Psec = K2θ̄ with θ̄ =∫ t

∆f(t′)dt′ [19], but other implementations are also possible [20].
The resulting dynamics of grid frequency deviations are governed by a non-autonomous

differential equation. Combining the inertial response from Eq. (1.1) and the control meas-
ures yields

2Erot

fref

d∆f

dt
= ∆P −K1∆f −K2θ̄,

dθ̄
dt

= ∆f. (1.2)

Note that I chose a simplified representation of primary and secondary control to make the
dynamics analytically accessible and enable their precise understanding, but more detailed
and realistic models exist [14].

The dynamical system (1.2) corresponds to a damped harmonic oscillator with external
driving ∆P . The complexity arises from ∆P , which varies strongly over time. An im-
portant example are deterministic frequency deviations (DFDs), which occur due to the
temporary mismatch between the continuously evolving load and the step-like power gen-
eration that is traded within fixed market intervals [21]. This temporary power mismatch
changes its sign mainly according to the load gradient: If the load rises in the morning, we
observe positive frequency peaks, while negative peaks occur during the night where the
load decreases. These deterministic peaks are clearly visible in Figure 1.2, where the fre-
quency rises or drops regularly at the beginning of each hour. In addition to these market-
based effects, the power mismatch changes due to forecast errors, power outages or other
kinds of unscheduled events [22]. This highlights the highly non-autonomous nature of
grid frequency dynamics. In the future, these non-autonomous effects will become in-
creasingly complex due to the energy transition.

6



1. Introduction

1.3. Energy transition challenges grid frequency

stability

The transition to renewable energy sources introduces new challenges in three main areas
[23], which also amplify the complexity of grid frequency dynamics and the threats to
system stability.

Increased variability Most renewable energy sources depend on the variable weather
conditions. In particular, the large-scale integration of wind and solar power into the power
system increases the variability of power generation on different scales. Most importantly,
seasonal and synoptic fluctuations continuously change the power output of renewable
sources [24–26]. On larger timescales, the level of available wind power changes signific-
antly from year to year [27] and from decade to decade [28]. Even on smaller timescales
of seconds, varying weather conditions shape the fluctuations of renewable power gen-
eration [29, 30]. In general, renewable power fluctuations cannot be fully predicted, e.g.,
day-ahead wind power forecasts typically exhibit forecast errors of up to 20% [31]. The
uncertainty and variability of renewables thus introduces power imbalances and thereby
affects grid frequency dynamics.

Growing interdependencies The optimal location of renewable energy sources often
lies far away from large centres of load. For example, wind power in Germany is favour-
ably built along the northern coastline, while most of the load concentrates in western
and southern Germany [32]. This requires a strong extension of the transmission grid, not
only in Germany [32, 33], but also within Europe [34]. Even between different asynchron-
ous power grids that are only connected via DC links, multiple new interconnectors are
planned, e.g., to transport hydro power from the Nordic to the Continental European grid
[34, 35].

Furthermore, the coupling of electricity markets within Europe will be intensified to
balance variable power generation and demand more efficiently. On spot markets, such as
the European Power Exchange (EPEX Spot), power is delivered several hours (day-ahead)
or several minutes after the market closure (intraday) [36]. The day-ahead and intraday
markets in Europe are already strongly coupled, which entails a more effective allocation
of import/export capacities, but some countries will still join in the future [37]. Reserves
and balancing services, such as secondary control capacities, are also traded on specific
markets. These reserve markets will be increasingly coupled as requested by an EU regu-
lation [38], which is currently implemented through projects such as PICASSO [39] and
MARI [40].

Finally, different industrial sectors become more coupled, for example due to the elec-
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1. Introduction

trification of heating (cf. Section 1.1). All in all, these developments increase the interde-
pendencies between the power generation and demand of different regions, power grids,
electricity markets and industrial sectors. These developments diversify the impact factors
on both power generation and load and thus on the dynamics of the grid frequency.

Low inertia Wind and solar power are connected to the power grid via inverters [41].
Therefore, they do not provide intrinsic inertia like conventional synchronous generators
do [42]. Their contribution to Erot is zero, which directly affects the RoCoF according to
Eq. (1.1): More inverter-based generation, i.e., smaller Erot, means larger RoCoFs. This is
critical, as different devices in the power system can only cope with limited RoCoFs [43].
Due to the variability of renewable generation, the inertia will also vary over time, thus
constantly changing the response characteristics of grid frequency dynamics.

These challenges already affect grid frequency stability and control, as illustrated by
current inertia data from Great Britain (Figure 1.3a). Already now, the inertia is nearly
always below its critical value, below which acceptable RoCoFs are not guaranteed any-
more. Therefore, costly ancillary services have to regulate the largest possible RoCoF (Fig-
ure 1.3b) in order to protect electric devices that cannot cope with large RoCoFs.

Increased variability, growing interdependencies and inertia fluctuations enhance the
non-autonomous character of grid frequency dynamics (cf. Eq. (1.2)). They intensify the
temporal complexity of power imbalances ∆P (t) and give rise to new inter-dependent im-
pact factors. This setting makes power system dynamics an interesting target for transdis-
ciplinary science [44], and multiple intersections with statistical physics and data analysis
exist [45]. In particular, the data-driven analysis of grid frequency dynamics has flourished
during the past years.

1.4. Empirical research on grid frequency dynamics

and control

In the past years, power system data has become increasingly available on public plat-
forms. Grid frequency measurements from different locations are publicly available with
a second or sub-second resolution since 2011 [48]. In Europe, other time series from power
system operation are published on a central transparency platform since 2015 [49]. This
has enabled a growing number of empirical studies on grid frequency stability and control.

Grid frequency time series have been studied using data and complexity analysis, which
yielded complex stochastic characteristics on different timescales. The distribution of fre-
quency deviations exhibits heavy tails in various power grids around the world [50, 51],
while its overall shape can be both single-peaked and multi-peaked [52]. The frequency

8



1. Introduction

0

200

400

Ro
ta

tio
na

l E
ne

rg
y 

E r
ot

 [G
VA

s]

Critical inertiaa

Apr May Jun Jul Aug Sep Oct Nov Dec 2019 Feb Mar
0

1

Co
st

s o
f 

Ro
Co

F 
co

ns
tra

in
t 

[M
io

. £
]

b

Figure 1.3.: Renewable energy sources challenge grid frequency stability in Great Britain.
a: Already now, the rotational energyErot, which is stored in synchronous gen-
erators, varies strongly and reaches critically low values due to high shares of
renewable generation. Above the critical inertia of 360 GVAs, even the sud-
den loss of the largest in-feed (1.8 GW [46]) cannot result in RoCoFs larger
than 0.125 Hz/s, which is the security constraint for the RoCoF in Great Bri-
tain [43]. b: Below the critical inertia, ancillary services might be necessary
to comply with the RoCoF constraints. The daily costs of these measures are
depicted in this panel. The data is taken from ref. [47].

increments often exhibit a non-Gaussian distribution in particular at small timescales [53],
but the distribution varies strongly among different power grids [51]. In European grids,
the power spectrum reveals strong hourly and daily periodicities in the grid frequency
time series [50, 54, 55], which however does not hold for other grids, e.g., on small islands
[51]. Detrended fluctuation analysis was used to investigate frequency fluctuations, which
yielded multiple characteristic timescales in European frequency data [51, 56, 57]. In par-
ticular, on short timescales of seconds, European grid frequency measurements exhibit
long-range correlations beyond Brownian motion.

Different stochastic approaches were proposed to model these complex characteristics
of the grid frequency. Superstatistics were applied to model the heavy-tailed distribution
of frequency deviations in different power grids [50], which demonstrated that statistical
parameters of the grid frequency vary at a timescale of 1-5 h. Such non-stationary char-
acteristics were also revealed by superstatistical models of the increments on timescales
below 1s [58]. Multiple authors used stochastic differential equations to model grid fre-
quency dynamics [19, 54, 59]. A Langevin equation with Gaussian white noise was able
to partly reproduce the heavy tails of grid frequency distributions by incorporating the de-
terministic effect of electricity markets into the model. Moreover, it reproduced the char-
acteristic periodicities present in the autocorrelation function [19]. The British and Irish
frequency was modelled with a stochastic model that reproduced their bi-modal distribu-
tion, which suggests deadbands in the primary control as a cause of the bi-modality [60,

9



1. Introduction

61]. Ref. [62] goes beyond Gaussian white noise and modelled the British frequency with
fractional non-Gaussian (levy-stable) noise, which reproduced the long-range frequency
correlations, as well as the non-Gaussian tails of their distribution. All in all, these studies
demonstrate the non-standard statistics of grid frequency dynamics that vary over time at
multiple different timescales.

This PhD thesis goes one step further and asks for the drivers of this non-stationary
and non-Gaussian process. This is particularly interesting as growing interdependencies
diversify the drivers of power system dynamics (cf. Section 1.3). Using grid frequency
measurements together with other techno-economic time series from power system oper-
ation, I investigated the following questions:

Q.1 Prediction: Can we predict grid frequency dynamics given their non-autonomous
stochastic character?

Q.2 Explanation: How do external drivers influence frequency dynamics and control?

Q.3 Stochastic modelling: How can we incorporate these external effects in stochastic
models of the grid frequency?

To tackle these questions, I used methods from machine learning and eXplainable arti-
ficial intelligence (XAI).

1.5. Scope of the thesis: explainable machine learning

for grid frequency stability

Machine learning methods are well suited to model complex, non-linear dependencies and
interactions [63]. Modern methods, such as gradient tree boosting [64, 65] and artificial
neural networks [66], can process a large number of features by performing feature selec-
tion or feature extraction. This makes them perfectly suitable to model the large number
of impact factors that drive grid frequency dynamics and control.

However, such complex models are often black-boxes, i.e., the researcher cannot un-
derstand how the model actually predicts the target from different features [67]. This is
particularly problematic in power system control, which requires trustworthy models to
guarantee a reliable electricity supply [68]. Moreover, black-box models (mostly) pre-
vent scientific insights from the modelling process [69]. To learn about drivers and impact
factors, I therefore applied methods from XAI. These methods allow us to understand how
a black-box model predicts the outputs based on its input factors. Thus, they are promising
to provide both an analysis and a prediction tool for power grid frequency deviations based
on operational data.

10



1. Introduction

The thesis is structured in three parts. The first part, Section 2, focuses on prediction
and the effect of the non-autonomous character of grid frequency dynamics (Topic Q.1). I
present a paper that predicts the frequency solely based on its history (univariate predic-
tion), whose limits implicitly reveal the role of external influences that are not present in
the model. The second part, Section 3, explicitly studies the effect of external drivers on
grid frequency dynamics and control (Topic Q.2). It includes three publications that use
explainable machine learning to predict and explain indicators of frequency stability, such
as the RoCoF (cf. Section 1.2), as well as frequency control activation. In the last part, Sec-
tion 4, I turn back to the stochastic models from the literature and incorporate the external
drivers studied before (Topic Q.3). In particular, I present a paper with a physics-inspired
machine learning model that integrates both a stochastic dynamical model and the effects
of external techno-economic features.

In addition to the aforementioned publications, I contributed to three other manuscripts
while working on my thesis, which, however, are not part of my thesis: I contributed to
ref. [51] as a supporting author, where I analysed spatio-temporal fluctuations of grid fre-
quency time series using principal component analysis. In refs. [70, 71], I contributed with
supervision, research design and writing. In particular, we applied my explainable machine
learning approach (from Topic Q.2) to reveal interactions between grid frequency stability
and power flows between different synchronous power grids [71]. In ref. [70], we used
machine learning to predict dynamic stability of power grids under line failures by using
static features of the power system.

11





2. Non-autonomous grid frequency
dynamics: strengths and limitations of a
univariate prediction

A precise knowledge of grid frequency deviations is central to optimally control power
imbalances. The prediction of future deviations can optimise control and balancing, e.g.,
through model predictive control (cf. Section 5.1). However, this prediction task is chal-
lenging due to the non-autonomous nature of grid frequency deviations with its diverse
impact factors. In the following section (2.1), I present a univariate prediction model that
forecasts the grid frequency solely based on its own history, i.e., without explicitly in-
cluding external impact factors. By analysing the strengths and limitations of the model, I
implicitly reveal the importance of external factors that shape grid frequency dynamics.

The results emphasised the importance of deterministic, daily patterns for predicting the
grid frequency, especially in Continental Europe. Using specific hourly patterns as pre-
dictor improved the prediction of the frequency trajectory for a horizon of 15-30 minutes.
The prediction horizon was strongly reduced at the beginning of a trading interval, where
the generation is suddenly adapted due to the interval-based trading on electricity markets
(cf. Section 1.2). This performance loss indicates the importance of external impact factors
such as electricity trading. Therefore, external techno-economic impact factors have to be
included to better describe the non-autonomous grid frequency dynamics.

In this publication, I conducted the research, created the figures and wrote the major
part of the manuscript.

2.1. A) Predictability of Power Grid Frequency

[1] Kruse, J., Schäfer, B. & Witthaut, D. Predictability of Power Grid Frequency. IEEE
Access 8, 149435–149446. doi:10.1109/ACCESS.2020.3016477 (2020).

The article was published Open Access under a Creative Commons Attribution 4.0 In-
ternational License. A copy of this License is available at http://creativecommons.
org/licenses/by/4.0/.
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ABSTRACT The power grid frequency is the central observable in power system control, as it measures the
balance of electrical supply and demand. A reliable frequency forecast can facilitate rapid control actions and
may thus greatly improve power system stability. Here, we develop a weighted-nearest-neighbour (WNN)
predictor to investigate how predictable the frequency trajectories are. Our forecasts for up to one hour
are more precise than averaged daily profiles and could increase the efficiency of frequency control actions.
Furthermore, we gain an increased understanding of the specific properties of different synchronous areas by
interpreting the optimal prediction parameters (number of nearest neighbours, the prediction horizon, etc.)
in terms of the physical system. Finally, prediction errors indicate the occurrence of exceptional external
perturbations. Overall, we provide a diagnostics tool and an accurate predictor of the power grid frequency
time series, allowing better understanding of the underlying dynamics.

INDEX TERMS Power grid frequency, frequency control, power system stability, time series forecasting,
k-nearest-neighbours.

I. INTRODUCTION
The electrical power system relies on a constant balance of
supply and demand. Abundant energy will speed up gener-
ators and lead to an increase of the power grid’s (mains)
frequency. Similarly, a shortage of generation slows down the
same generators and reduces the systems frequency as kinetic
energy stored in the generator is transformed into electrical
energy. Control systems, ordered from primary to tertiary
control, help to ensure the balance of supply and demand by
closely monitoring the frequency trajectory and maintaining
it close to the desired reference value of f = 50 or 60 Hz [1].
Large deviations of the frequency away from the reference
require decisive control actions and cause high costs [2].

To optimize the usage of costly control actions, we require
a precise understanding of the power grid frequency. This
frequency is neither constant nor varying slowly but is instead
highly stochastic and subject to multiple external influences
[3], [4]. For example, the organization of the energy market
leads to deterministic imprints of dispatch activities in the
frequency in forms of sudden jumps or drops [5]. Simultane-
ously, an increasing share of renewable generators decreases

The associate editor coordinating the review of this manuscript and

approving it for publication was Jahangir Hossain .

the inertia available in the grid [6] and introduces addi-
tional fluctuations [7], [8]. Given this hybrid stochastic and
deterministic nature, the question arises to which extend the
frequency trajectory is predictable. A precise estimate of the
future frequency trajectory would be very beneficial as it
would allow an estimate of necessary control power early in
time, saving costs [2] and stabilizing the grid [1].

Beyond precise forecasts of the near future trajectories,
a fundamental understanding of the power grid frequency
dynamics is critical as this one-dimensional time series
encodes vast information on the stability and the current state
of the power system [9]. Only a solid understanding of how
the energy mix, demand patterns and energy market rules
impact the power system and its stability will allow us to
implement and control highly renewable power systems in the
future. As the starting point to develop such an understanding,
we study the power grid frequency since frequency data is
much more readily available [10] than precise demand or
generation values in a given synchronous area.

With the increasing popularity of machine learning tech-
niques [11], there are many tools available to forecast time
series, such as the power grid frequency. Recent studies
used artificial neural networks (ANN) [12] to predict hourly
frequency time series in India based on features such as
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FIGURE 1. The nature of the power grid frequency. (a): The frequency reflects the balance of power demand and
generation. Over-production causes a frequency increase and under-production a frequency decline. (b):
Example frequency time series from the CE synchronous area [21]. It displays the typical frequency jumps at 15 minute
intervals that are caused by the trading on electricity markets and subsequent changes of the power plant dispatch.

wind power generation and power demand. Other authors [9]
used a linear state space model and uncertain basis function
to predict US frequency time series for up to one second,
while a Bayesian network was used to predict the frequency
time series for up to 3 minutes [13]. Finally, auto-regressive
moving average (ARMA) models have been used in the
British grid to achieve prediction horizons of tens to hundreds
of seconds [14] and in the US to achieve forecasts of 5 to
30 minutes [15].

We will particularly focus on k-weighted-nearest-
neighbour (WNN) methods, which have gained popularity in
a variety of fields from biology [16] to financial systems [17],
but have also been applied in the energy sector, e.g. to forecast
electricity prices [18] or power demand [19]. In contrast
to earlier applications of the WNN predictor on the power
grid frequency [15], we improve the statistical evaluation
of the predictor and introduce a system-specific null model
to benchmark its performance. Furthermore, we employ the
forecast accuracy not only as a performance measure but
as a tool to analyze the dynamics of the power system in
general and the interplay of internal and external influences
in particular. WNN predictors are particularly well suited for
that purpose as they are among the best explainable machine
learning algorithms [20].

In this article, we use frequency recordings from several
European synchronous areas to motivate the mean fre-
quency (daily profile) as an suitable null model (Section II)
and develop a WNN predictor to forecast the time series
(Section III). We demonstrate how our predictions outper-
form the null models in particularly on short prediction
horizons and provide in-depth analysis and interpretation of
when and how the power grid frequency can be predicted
(Section IV).

II. DATASET DESCRIPTION
A. DATA SOURCES AND PRE-PROCESSING
We train and test our frequency predictor on large
high-resolution datasets from three different European
synchronous areas. In particular, we use publicly available
frequency recordings of the years 2015-2018 from the

Continental Europe (CE) [21], the Great Britain (GB) [22]
and the Nordic synchronous areas [23], following the nam-
ing convention used in [24]. The data from CE and from
GB comes with a one-second resolution, while the Nordic
data exhibits a resolution of 0.1 s. Moreover, some of
the datasets have varying formats and multiple frequency
recordings are corrupted or missing. We therefore resam-
ple the data to a common one-second resolution and con-
duct a thorough pre-processing (Supplemental Material). The
pre-processed time series are available online [25], thus pro-
viding a ready-to-use database to develop new methods for
frequency analysis and prediction.

We want to point out that our pre-processing involves
the identification and exclusion of corrupted measurements.
However, the k-nearest-neighbour method can cope with
the resulting holes in the time series. Missing segments are
simply ignored during the nearest neighbour search. This is a
great advantage of the WNN predictor, as we can harness the
full length of the dataset without manipulating it too much.

B. CHARACTERISTICS OF THE FREQUENCY TIME SERIES
The frequency trajectory exhibits deterministic as well as
stochastic characteristics, which can be attributed to different
dynamics within the power system. Firstly, a frequency devi-
ation generally reflects a mismatch of power generation and
demand (Fig. 1(a)). Such a mismatch occurs when the power
generation does not match the expected demand curve. The
demand itself evolves continuously and shows typical daily,
weekly and seasonal patterns [2]. In contrast, the power gen-
eration exhibits discontinuous behaviour due to the trading
on electricity markets and the resulting changes of the power
plant dispatch [5]. In Europe, this trading is operated on
various different spot-markets such as the European Energy
Exchange Power Spot (EPEX SPOT), which covers coun-
tries in Western and Central Europe. The resulting dispatch
changes are commonly scheduled for discrete time intervals
of one hour, 30 and 15 minutes [26], [27]. The mismatch
between the step-like behaviour of the generation and the
continuous behaviour of the load leads to regular frequency
jumps at the beginning of these trading intervals [3], [5], [10].
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FIGURE 2. The daily profile is an important null model. (a): The autocorrelation functions show significant peaks that repeatedly occur with a period
of 24 h. The one-day period thus is the main recurrence period for frequency patterns. Note that the upper limit of the y-axis has been reduced from
1 to 0.5 in order to make even small peaks visible. (b) The daily profile is the average daily pattern that recurs with a one-day (24 h) period. It is most
pronounced in CE, where deterministic trading and dispatch actions play and important role. (c): The standard deviation measures the variability
among all frequency samples (in the training set) at a fixed time within the hour. The larger CE area displays the lowest variability, with a clear
maximum at the beginning of the hour.

Fig. 1(b) shows a frequency sample that displays these typical
deterministic jumps after every 15 minute interval.

Secondly, the frequency characteristics are determined by
the frequency control schemes. To assure a secure power
system operation, these control measures drive back the fre-
quency after a deviation from its reference value of 50 Hz [1].
They thus lead to a characteristic behaviour after a frequency
jump or sag, which can for example be observed in Fig. 1(b).
On time scales of seconds after a disturbance, the inertia of the
rotating generators and the energy supplied by primary con-
trol limits the frequency deviation caused by the disturbance.
Afterwards, on time scales of several minutes, secondary and
tertiary control set in and restore the system to a state of stable
operation at the reference frequency [1].

Finally, the frequency characteristics are influenced by
other external factors that are of rather stochastic nature.
Fluctuations of the demand directly affect the power balance,
where demand forecasting errors [28] and large social events
[29] can lead to significant unexpected frequency deviations.
The variability of renewable energy sources causes additional
frequency fluctuations due to its intermittency [30] or due to
generation forecasting errors [31]. In summary, the frequency
characteristics are thus determined by a complex mix of
stochastic and deterministic processes.

C. ANALYSIS OF FREQUENCY PATTERNS
Despite its complex characteristics, the power grid
frequency still exhibits regular patterns with a specific

recurrence period. We identify this period by searching for
regular peaks in the auto-correlation function (ACF) with
time lags of up to one month (Fig. 2(a)). In all grid areas,
the ACF displays regular peaks with a period of one day.
Significant (but less pronounced) peaks with a period of 12 h
only show up in the CE data. In CE and GB, the ACF also
exhibits regular peaks with shorter periods of 15 min, 30 min
and 60 min, but these peaks are much smaller than the daily
peak [4]. Frequency patterns are thusmost strongly correlated
with patterns that occur one or multiple 24h-periods later.
We conclude that the one-day period is the main recurrence
time for frequency patterns within all three synchronous
areas.

The average pattern that belongs to this main recurrence
period is the mean daily frequency evolution, which we call
the daily profile. A formal definition of the daily profile is
given later in (10). The daily profiles of our three datasets
exhibit some common feature but also important differences
(Fig. 2(b)). All profiles show pronounced frequency jumps
at the beginning of the full hour, which reflect the impact
of the hourly trading interval. In particular, the CE profile
displays sharp peaks of different heights, while the peaks in
the GB profile are the least pronounced. The direction and
height of the peaks in the CE profile are time-dependent and
related to whether the demand curve is rising or falling [5].
These results are consistent with the ACFs in Fig. 2(a). There,
we also observe the strongest correlation for the CE data and
the lowest correlation for the GB data. The CE frequency is
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thus strongly determined by regular daily patterns, while the
GB frequency only exhibits weak patterns within this period.

The relevance of regular patterns for the frequency time
series is further characterized by the standard deviation (StD)
in Fig. 2(c). We calculate the StD for each time within the
hour, i.e. the StD at 0 min is computed as the StD of all fre-
quency recordings with time stamps XX : 00 : 00 averaging
over all hours XX and days. In general, CE exhibits the lowest
and GB the highest variability. The StD peaks after the full
hour trading event in the Nordic and especially in CE areas,
where the StD almost doubles after the full hour trading peak.
The exact value of the full hour frequency peak thus exhibits
a particularly high uncertainty.

We conclude that CE is a comparatively low-noise system
with defining deterministic events that drive the standard
deviation. Deterministic patterns are least pronounced in GB,
such that random fluctuations are of highest importance com-
pared to the other areas. TheNordic data ismostly in between.
The differences between the grid areas can be attributed to
different system properties as well as varying regulations for
frequency control andmarket operation. For example, the low
variance in the CE area is likely related to its large size [10],
which provides much inertia and enables spatial balancing
of nodal power mismatches. Moreover, the deadband, i.e. the
frequency range without active control, is the largest in GB
thus resulting in a high frequency variability [24]. Despite
these differences, there is one important common result: In all
three cases the main recurrence period of frequency patterns
is one day. The same result was found for frequency time
series from US grids [15]. This highlights the importance of
the daily time scale and the corresponding daily profile for
the prediction of future frequency patterns.

III. FORECASTING METHODS
A. WEIGHTED NEAREST NEIGHBOURS
The WNN method predicts future values of a time series
by looking for similar patterns in the past. To predict the
frequency f (t) for t ≥ t0, we cut the historical time series into
non-overlapping patterns Fn with γ data points and a time
delay τ :

Fn =


f (t0 − (n+ 1)γ τ )

f (t0 − (n+ 1)γ τ + τ )
f (t0 − (n+ 1)γ τ + 2τ )

. . .

f (t0 − nγ τ − τ )

 . (1)

The vectors Fn form an embedding of the time series in a
space of dimension γ , which is also referred to as delay
embedding in the context of time series analysis [32, Chap. 2].
To include the information of all data points, we choose a
delay equal to the original time resolution of τ = 1 s.

The WNN predictor searches for patterns Fn that are simi-
lar to the initial pattern F0, which ends at the prediction start
t0. However, we already know that frequency patterns mainly
recur with a period of one day (Section II). Therefore, we only
look for similar patterns at the same time of the day, i.e. only

within the set

F = {Fn|∃i ∈ N : nγ τ = i · 24h}. (2)

From this set, we choose those patterns that are closest to the
initial pattern in terms of the distance

d(Fn) = ‖Fn − F0‖,

with ‖ · ‖ denoting the Euclidean distance. Given this metric,
we sort the patterns as d(Fn1 ) ≤ d(Fn2 ) ≤ . . . ≤ d(FnM ),
M = |F | being the total number of patterns. We then select
k patterns with the smallest distance to the initial pattern and
obtain the ordered set of nearest neighbours

Sk = {n1, n2, . . . , nk |Fnj ∈ F}. (3)

In practice, we use the scikit-learn package to search and sort
the nearest neighbours [33].

Finally, we assume that trajectories, which were similar
in the past, will likely be similar in the future (Fig. 3).
Technically, the prediction fp(t0 + 1t) is therefore given
by a weighted average of the trajectories succeeding the
k-nearest-neighbours:

fp(t0 +1t) =
1∑k
j=1 αj

k∑
j=1

αjf (t0 − njγ τ +1t). (4)

The weights αn are chosen to decrease with the dis-
tance d(Fnj ) which introduces an additional smoothing [32,
Chap. 3]. Following [18], we use a linear weighting that has
the following form:

αj =
d(Fnk )− d(Fnj )

d(Fnk )− d(Fn1 )
. (5)

In practice, we apply the WNN method to predict the time
steps 1t ∈ {1s, 2s, . . . ,T } with a maximum prediction
length of T = 3600s. A prediction with maximum length
T runs for up to 13 s (on an Intel Core i5-8250U machine
with 1.60 GHz processing speed and 23 Gb of RAM). Longer
predictions are not relevant, since the superiority of theWNN
method over the null models ismostly revealedwithin the first
30 minutes of the prediction (see Section IV).

B. PERFORMANCE ESTIMATION
During the optimization and evaluation of the WNN
predictor, we use the Mean Square Error (MSE) as the
central performance measure. In particular, we evaluate the
time-dependent MSE of a general predictor f̂ (t0 + 1t) for
each prediction step 1t by averaging over different starting
times t i0:

MSE1t (f̂ ) =
1
N

N∑
i=1

(
f̂ (t i0 +1t)− f (t

i
0 +1t)

)2
. (6)

To select different starting times, we randomly choose
N = 5000 different start hours hi0. The starting time is then
given by t i0 = hi0 + 1t0 where h

i
0 counts the hours after the

start of 2015 and 1t0 represents a fixed starting time within
the hour. In this way, we account for the frequency dynamics
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FIGURE 3. The WNN predictor searches for similar patterns in the past. To predict the future of the present (initial) pattern F0, the WNN method looks for
similar patterns Fnj in the past. The patterns that are most similar to the initial pattern form the set of nearest neighbours. Here, we have chosen a set S2
of two nearest neighbours. The average of their subsequent trajectories generates the WNN prediction.

that crucially depend on the time within the hour as discussed
in Section II.

To estimate the out-of-sample performance of our
predictor, we split our data into different subsets (equally
for all synchronous areas). In general, the years 2015 and
2016 serve as training set, which is searched for near-
est neighbours during the WNN prediction. To optimize
the hyperparameters of the WNN predictor, we evaluate
its MSE on a validation set that comprises the year 2017
(Section III-C). Finally, we define the year 2018 as our test
set. On the test set, we compare the performance of ourWNN
predictor to system-specific null models (Section III-D).

C. HYPERPARAMETER OPTIMIZATION
Our WNN method exhibits two hyperparameters which are
the number of nearest neighbours k and the window size
(or pattern length) γ τ . We use a window size of γ τ = 60 min
unless stated otherwise, which provides a good prediction
at low computational effort. The window size is thus not
explicitly optimized, but we investigate its impact on the
prediction accuracy in Section IV-E.

In contrast, we strictly optimize the number of nearest
neighbours k by using two different approaches. In the
fixed-k approach, we estimate an optimal number of nearest
neighbours by minimizing the time-averaged prediction error
MSE(fp) of the WNN predictor fp:

MSE(fp) =
1
T

T∑
1t=1s

MSE1t (fp). (7)

In practice, we perform a grid search on the set G =

{1, 3, 5, . . . , 451} to determine a fixed optimal value kopt ∈
G for all prediction times 1t ∈ [1s,T ]. This is how the
WNNmethod is commonly used [18], [19]. We denote this as
fixed-k WNN prediction.

In the adaptive-k approach, we minimize the
time-dependent error MSE1t (fp) (6) for each prediction step

1t individually. In this way, we account for the very different
prediction horizons we investigate in our paper. These range
from several seconds to one hour, thus making it highly
probable to obtain different optimal k-values for different
prediction horizons. In practice, we therefore calculate a
time-dependent estimator kopt (1t) for each prediction step
1t by performing a grid search on the set G. To make the
estimator more robust against noise, we smooth kopt (1t)
using a sliding window with a length of one minute. Finally,
the adaptive-k WNN prediction is calculated by simply
inserting a time-dependent k into (4).

D. NULL MODELS
On our test set, we compare different predictors based on their
Root Mean Square Errors (RMSE), which reflects the actual
frequency error in Hz:

RMSE(f̂ ) =
√
MSE1t (f̂ ). (8)

We use two easily interpretable null models to benchmark
the performance of the WNN predictor. Our first trivial null
model is the reference value of 50Hz, which is also the
frequency mean:

fm(t0 +1t) = 50Hz. (9)

Our second null model is the daily profile. In Section II,
we have shown that the daily profile is the most important
system-specific pattern that recurs with a period of one day.
It should therefore be a benchmark model for every newly
proposed frequency predictor. In practice, we calculate the
daily profile predictor by averaging over all the patterns in
the set F (from (2)):

fd (t0 +1t) =
1
|F |

∑
n∈F

f (t0 − nγ τ +1t). (10)

To make its prediction comparable to the WNN predictor,
we have restricted the set F to patterns from the training set.

VOLUME 8, 2020 149439



J. Kruse et al.: Predictability of Power Grid Frequency

FIGURE 4. The best predictions are a smoothed version of the observed frequency trajectory. Here, we present the best (a) and worst (b) adaptive-k
predictions from the test set. The selection is based on the relative error RMSE(fp)/RMSE(50Hz). With that we account for the difference in variance
among the samples, which would automatically result in higher or lower error values. The prediction error σ1t (11) equals one standard deviation
within the largest set of nearest neighbours used during the prediction. It is thus an upper bound for the standard deviation of the adaptive-k WNN
prediction.

Note that the WNN predictor (4) converges to the daily
profile predictor in the limit k →∞ when applying uniform
weights.

IV. RESULTS
A. FORECAST EXAMPLES
The best and worst prediction examples give us a first
impression about the performance of the WNN predictor
(Fig. 4). We complement these examples with an estimate of
the prediction uncertainty σ1t that is based on the StD of the
nearest neighbours:
σ 2
1t = 〈f (t0−nγ τ +1t)

2
〉 − 〈f (t0−nγ τ +1t)〉2. (11)

Here, 〈·〉 denotes the average over all n ∈ Sk . For the
adaptive-k WNN, we use k = max1t kopt (1t), which turns
(11) into an upper bound for the uncertainty.

The examples indicate that the best predictions are essen-
tially a smoothed curve of the observed frequency trajectory.
The prediction is often very similar to the daily profile, but
performs better especially in the first 15 minutes. Even more,
the prediction uncertainty provides a good estimate for the
short-term variability of the frequency trajectory.

The worst predictions in GB and CE make mistakes at
the boundaries but still capture the remaining trajectory
(e.g. 30-45min inGB). In both examples, the daily profile and
the WNN forecast predict the same direction for the hourly
frequency jump but the observed frequency deviates in the
opposite direction. The deviation indicates unforeseen events
affecting the grid frequency trajectory, which are also not
captured at all by the daily profile. This relation points to a
potential application of time series prediction in the posteriori
analysis of power system operation. A large forecasting error
can serve as a tool to identify external (unforeseen) events.

Meanwhile, the worst prediction in the Nordic area
stays nearly constant and the observed frequency randomly
oscillates around a shifted value. This exemplifies the weak
performance of the WNN predictor for unspecific patterns
with strong noise.

B. PERFORMANCE OF FORECASTING METHODS
We evaluate the performance of our forecasting methods by
calculating their RMSE on our test set (Fig. 5). The results
show that our WNN predictor outperforms both null models
in all grid areas. Its RMSE is smallest for CE and largest
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FIGURE 5. The WNN predictors outperform alternatives. The WNN predictor outperforms the null models in all three synchronous areas by returning
the smallest RMSE, especially in the first 15-30 minutes. The scale of the y-axis differs between the subplots, since the GB area exhibits much larger
errors than the CE area. The RMSE of the WNN predictor is further strongly time-dependent and converges to the daily profile towards the end of the
prediction. Note that adaptive-k and fixed-k WNN show a very similar performance and only differ on very small time scales (Fig. 6).

for GB. This relates to Section II where we identified GB
as the most stochastic and CE as the most deterministic and
thus most predictable grid. The improvement of the WNN
predictor relative to the daily profile is largest in Nordic
(up to 30%) and smallest in CE (up to 20%). This is due to
the fact that the daily profile itself is already a good predictor
in CE. Meanwhile, the daily profile performs much worse in
the Nordic area, where its RMSE nearly follows the 50Hz
prediction error.

Comparing performance over time, we observe that the
WNN outperforms the null models especially during the
first 15min. As the prediction length increases, the WNN
prediction converges to the daily profile. On the other hand,
the performance is also clearly affected by the trading events
(especially in CE). This time-dependence will be investigated
in more detail in Section IV-D and IV-E.

Finally, we note that there is no significant difference
between the adaptive-k and the fixed-k WNN predictor for
long predictions of up to 60 minutes (Fig. 5). However,
we observe a significant difference for very short prediction
horizons, which we will discuss in the next section.

C. OPTIMAL NUMBER OF NEAREST NEIGHBOURS
Determining the optimal number of nearest neighbours
kopt (1t) can help to better understand the functioning of
the WNN predictor. Moreover, it yields valuable information
about the grid frequency dynamics in general. We present the
optimization results in Fig. 6, which shows the normalized
MSE landscape as a function of k and 1t as well as the
optimal values kopt (1t). The adaptive number of nearest
neighbours tends to increase the more the prediction is in
the future. However, the minimum is very flat at most

time steps and both the adaptive-k and the fixed-k predic-
tor lead to very similar errors (in agreement with results
from Section IV-B). We only observe a significant difference
within the first minute, where the adaptive-k WNN yields up
to 5% better results than the fixed-k approach. We conclude
that the adaptive approach is slightly better, especially in the
first 1 min. We will therefore only apply the adaptive-k WNN
method throughout the rest of the paper.

As an application, we can interpret kopt (1t) in terms of the
predictability of frequency patterns. A low number of near-
est neighbours corresponds to well-defined trajectories that
match to some past trajectories accurately. Contrary, a higher
number of nearest neighbours kopt (1t) indicates that trajecto-
ries are rather unspecific with respect to the history. A large
number of trajectories has to be averaged such that the pre-
diction is similar to the daily profile. In particular in the
first 15 minutes, the adaptive-k yields very low k values.
The frequency trajectory is thus very specific in this time
regime. As the prediction time increases, the optimal number
kopt (1t) rises. The trajectory thus becomes more unspecific
with respect to past patterns and thus less predictable for the
WNN predictor. Consistently, theWNN predictor approaches
the daily profile at the end of the hour, which we obtain for
k →∞.

D. IMPACT OF THE PREDICTION START
Up to now we have focused on predictions starting at full
hours, such that the prediction interval coincides exactly
with the main time scale of energy trading and power
plant dispatch. We now widen our scope and assess the
time-dependence of the WNN performance by initializing
the prediction at different starting times 1t0 (Fig. 7). To still
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FIGURE 6. The Optimal number of nearest neighbours increases over time. To compare the error landscape for different time steps 1t , we normalize the
MSE in this figure. The normalization rescales the MSE to values between zero and one for each time step 1t . The time-dependent minimum of this
landscape is the adaptive number of nearest neighbours kopt (1t). The fixed kopt minimizes the aggregated MSE leading to very similar
prediction errors in all but the the first minutes.

relate theWNN performance to our null models, we addition-
ally assess its relative error RMSE(fp)/RMSE(fd ) (‘‘relative
RMSE’’), which is normalized by the daily profile error
RMSE(fd ).

Irrespective of the trading events, we observe two different
time regimes depending on the prediction length. During
the first 15 minutes, the relative RMSE and the optimal
number kopt (1t) are increasing while still being much lower
than future values. Here, the frequency dynamics exhibit
specific patterns that resemble particular patterns in the past
(as described in Section IV-C). This specific memory is lost
over time, as the relative RMSE increases continuously dur-
ing the first 15-30 minutes. In particularly in the CE and
Nordic areas, one can identify two clearly distinct time scales
of memory loss: Firstly, there is an initial rapid increase
of the RMSE and the relative RMSE within approximately
one minute. It is followed by a slower, not necessarily
monotonous increase of the relative RMSE on timescales up
to tens of minutes. This clear separation of time scales is
especially visible when energy trading is important, i.e. at full
hours being strongest in the CE area. It could be attributed to
the grid inertia or to control measures that provide additional
memory for a short period of time.

Finally after 15-30 minutes, the relative RMSE reaches a
relatively constant level in CE and GB with values close to
one. Here, the WNN prediction does not differ much from
the daily profile anymore. Meanwhile, the relative RMSE
and the optimal number kopt (1t) continue to rise for up to
60 minutes in the Nordic area. Here, the memory of spe-
cific historic patterns thus reduces much slower compared
to the other areas. We will come back to this effect in
Section IV-E.

In addition to the prediction length, the trading events play
a crucial role for the prediction. In all grid areas, the RMSE

increases strongly around the one-hour trading event.
For CE and Nordic, we observe this also at 15 and 45 min-
utes. Around these events, the dispatch is changed abruptly,
causing large frequency deviations, which are hard to forecast
accurately (Fig. 2(c)). The optimal number of nearest neigh-
bours kopt (1t) and the relative RMSE also peak at the trading
event. This indicates a lack of specific information about the
trading peak and a high uncertainty connected to it. CE is
a special case, as its one-hour trading jump is particularly
hard to forecast. Interestingly, kopt (1t) decreases again after
the peak. The trajectory thus becomes more specific and pre-
dictable again, probably due to the control measures reacting
to the disturbance in a pre-defined way.

The trading peaks have another important impact on the
prediction error. After a trading event, the RMSE loses its
dependence on the starting time 1t0 and joins the error
curve of earlier prediction starts. This happens in all grid
areas, at latest during the one-hour trading event. In practice,
it means that our prediction starting at 55 min performs
approximately as well at 60 min as the one that started at
0 min. The information contained in the initial pattern thus
looses its significance with the occurrence of a trading event.
In other words, the trading events cause a memory loss in the
frequency trajectory.

We conclude that the best WNN prediction is always
obtained right after the prediction starts. On a time horizon
of up to 30 min, the prediction is significantly better than
the daily profile. However, this time horizon is considerably
shortened if there are trading events, such as the full hour
dispatches.

E. IMPACT OF THE WINDOW SIZE
We finalize the discussion of the WNN predictor by shortly
investigating the impact of different window sizes. In addition
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FIGURE 7. Trading events shorten the prediction horizon. Here, we show the optimal number of nearest neighbours kopt (1t) (a), the RMSE (b) and the
relative RMSE (c), which is normalized by the daily profile error. Irrespective of the starting time within an hour 1t0, the predictions perform best
within a time horizon of 15min. However, trading events introduce additional uncertainty thus increasing the prediction error and shortening the
prediction horizon.

to the window size γ τ = 60 min (which we have used
throughout this article), we show the prediction errors for
γ τ = 15 min and 30 min in Fig. 8.

On time scales of several minutes to one hour, there is
no significant difference between the predictors in CE and
GB. The large window is slightly better than the shorter ones.
In contrast, the smallest window performs best in the Nordic
area especially in the first 15 minutes. Shorter windows con-
tain more specific information about the near past than longer
windows. In the Nordic grid, the significance of very specific
historic patterns thus prevail much longer than in the other
grids. This is consistent with Section IV-D, where we have
seen that the memory of specific historic patterns reduces
relatively slow in the Nordic area.

On time scales below one minute the smallest window
performs best for all grid areas (inset). Shortly after the

prediction starts, the memory of the last few seconds deter-
mines the trajectory. Irrespective of the area, the shorter
window thus performs best on this time scale, as it contains
more specific information about about the near past of the
trajectory.

We conclude that small window sizes are best for
prediction horizons below one minute. For several minutes
to one hour, large window sizes are slightly better in CE and
GB. If computational resources are scarce, smaller window
sizes can also be used here, as they are less computationally
expensive but only slightly less accurate. In the Nordic area,
small window sizes are the best even for several minutes.
However, the performance differences are small in all grid
areas, which also justifies that we did not systematically
determine the optimal value for γ , thus saving computational
time during training.
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FIGURE 8. Shorter windows predict more accurately at the beginning. The optimal window size (or pattern length) γ τ is different depending on the
prediction length. During the first minute, the shortest window performs best in all grid areas, as it contains more specific information about the near
past. For several minutes to one hour, the results differ between the areas.

V. DISCUSSION
Summarizing, we have demonstrated how a k-weighted-
nearest-neighbour (WNN) approach provides an accurate
forecast of the power grid frequency. The predictor performs
particularly well when using an adaptive number of nearest
neighbours.

Compared to previously existing forecasts of the power
grid frequency [9], [12], [14], [15], we make three key con-
tributions: First, we introduce the daily profile as a relevant
and system-specific null model. Secondly, we improve the
statistical evaluation of the WNN predictor by increasing
the amount of training and test data from one month [15]
to multiple years. Thirdly, we interpret the time-dependent
predictability and optimization results based on the economic
and physical dynamics in the different synchronous areas.
In that way, we establish machine learning techniques as
valuable tools for an a posteriori assessment of power system
operation and stability.

Our results can be used to improve power system stability.
Since our estimates are more precise than the daily pro-
file, they could be used to estimate necessary control power
capacities. This is particularly interesting since we have a
solid prediction horizon of about 60 minutes, making slower,
typically cheaper forms of control available, instead of purely
relying on expensive primary control [1], [2]. Especially
during the first 15-30 minutes, our predictor is significantly
more accurate than the daily profile and could replace it for
planning purposes. Notably, this application is not restricted
by computational speed as the WNN predictor only needs a
few seconds to generate a forecast. Moreover, our analysis
is not limited to any specific grid but can be applied to any
power system, given sufficient data to train the algorithm.

We even gained valuable lessons when the predictor per-
formed worst: The largest prediction errors are associated
with unforeseen events that are also missed by the daily pro-
file. Therefore, the introduced WNN predictor could also be

used as a diagnostics tool to identify external perturbations,
where for example renewable generation [34] or singular
demand patterns caused by large sports events [29] impact
the frequency dynamics. Furthermore, even our worst pre-
dictions correctly returned the expected average and standard
deviation of the frequency time series for the next hour.
Hence, the predictor could be used as a worst-case estimator
to determine how much control power will be maximally
necessary during the next hour to guarantee stable operation.

Finally, we went beyond pure forecasting of the next sixty
minutes of the power grid frequency dynamics but instead
achieved a better understanding of the different synchronous
areas: Monitoring the number of nearest neighbours allowed
us to distinguish deterministic and stochastic behavior of dif-
ferent synchronous areas but also of different time intervals.
Our analysis reveals that before the electricity market acts
every 15 minutes, the time series becomes less predictable
but becomes more predictable after the power has been dis-
patched. This insight could be used to modify dispatch strate-
gies in order to minimize the unpredictable impact on the
frequency, reducing the required control power and thereby
saving money.

Our results on the forecast of the power grid frequency
can be extended in multiple directions in the future. Firstly,
we were restricted by data availability. A similar forecast and
interpretation could be developed and applied to power grid
frequency time series from other regions in the world, e.g.
data from the Eastern Interconnection in the US or from the
Irish grid, with its highwind penetration. Secondly, additional
features such as wind power generation can be included
to better understand the impact of unforeseen pertubations,
which are not captured in our univariate forecast. Thirdly,
many alternative forecasting methods are available, from
artificial neural networks (ANN) [11] and recurrent neural
networks (RNN) [35] to classical methods of time series
prediction [32]. However, a fully comprehensive review of
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all available methods was beyond the scope of this study
and will be left for the future. Finally, we are convinced that
our approach to forecasting and machine learning as a tool
to understand a system’s dynamics should also be applied
to other time series, such as renewable generation [36], air
pollution [37], [38] or the stock market [39].
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Supplementary Material: Data preparation

F

The frequency data for this paper has been pre-
processed. A thorough pre-processing was necessary, as
all datasets contain missing or corrupted data points and
exhibit different formats and time resolutions. During the
pre-processing we uniformly mark missing and corrupted
data points, which offers the opportunity to individually
fill, interpolate or exclude these invalid measurements. The
whole process consists of two steps (Section 1) and exhibits
some free parameters that are fixed based on the data
(Section 2). Our code and the ready-to-use pre-processed
data are available online [1].

Our time series include frequency measurements from
the Continental Europe (CE), the Great Britain (GB) and
the Nordic synchronous areas. The raw data is described
in Table 1. By the 18th February 2020, the data has been
publicly available on the websites of different Transmission
System Operators (TSO). We follow the naming convention
established in [2] and use "area" synonymous with "syn-
chronous area".

1 PRE-PROCESSING PROCEDURE

1.1 Convert data to common format

The data contains time stamps with varying formats and
Daylight Saving Time (DST) changes. We thus process the
time stamps and convert them to a uniform format. We point
out that we use local time including the DST changes in the
processed data. This is relevant for our weighted-nearest-
neighbour prediction since we compare frequency patterns
based on their time stamp. By using the local time, we
account for other important socio-economic patterns (such
as the load) that rather follow local time than UTC time. In
addition, we convert the time series to a common resolution
of one second. We therefore resample the Nordic data by
averaging it in non-overlapping windows of 10 data points.
Finally, we mark missing time stamps by inserting a NaN-
value (Not a Number) into the time series.

1.2 Mark and clean corrupted data

We search for different types of corrupted data. In particular,
we identify isolated peaks, too high or low frequency values
and too long windows with constant frequency. The identi-
fication is based on the frequency f(t) or their increments
∆f(t) = f(t)− f(t− 1) and follows these definitions:

• A time stamp t contains an isolated peak, if ∆ft and
∆ft+1 have the opposite sign and are too large, i.e.
|∆ft|, |∆ft+1| > ∆fc.

• Following [6], frequencies below 49Hz and above
51Hz are consider as unrealistic and thus as too low
(and too high).

• We define a too long constant window as a time
intervals of length T > Tc that exhibits increments
|∆f | < 10−9 Hz.

These three types of data points are marked and converted
to NaN-values. This offers the possibility to apply custom
cleaning methods to the data (for example interpolation
or data exclusion). Here, we clean the data by filling (at
maximum) Nf NaN-values with the last valid frequency
value. During the prediction, we exclude frequency patterns
with remaining NaN-values from the simulations.

2 CHOICE OF PRE-PROCESSING PARAMETERS

The above procedure exhibits three free parameters. We
select the parameters ∆fc, Tc and Nf in the following way.

• Isolated peaks mainly occur in CE data (Table 2).
The increment histogram for CE (Fig. 1(a)) shows
minima at ∆f = ±0.05 and separated maxima be-
yond this values. That indicates that the increments
beyond this threshold are caused by another process
than the regular stochastic frequency movement. The
frequency sample in 1(b) also shows that ∆fc = 0.05
would include most of the isolated peak. The GB and
Nordic area do not show as many isolated peaks in
their data (Table 2). A manual inspection of the iso-
lated peaks with ∆fc = 0.05 reveals that no regular
data points are accidentally marked as corrupted in
the GB and Nordic data. We therefore keep the choice
∆fc = 0.05.

• We allow intervals of constant values below a length
of Tc = 1 min. We mainly predict the frequency
on time intervals of several minutes, so constant
windows with T < 1 min are negligible.

• We choose Nf = 6 since most of the corrupted CE
and GB data can be cleaned in that way (Fig. 2). At
the same time, we do not manipulate the time series
too much on time scales relevant for our prediction.
Note that a large part of the marked data in the
Nordic time series will not be filled by Nf = 6s. This
is mainly due to the large amount of missing data
within the Nordic frequency recordings (Table 2).

Using the procedure outlined above, we obtain clean data to
be used for training and validation, see also [1], where the
clean data can be downloaded.
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Figure 1. Isolated peaks exhibit increments larger than ∆fc = 0.05 Hz. The Historgram (a) of the frequency increments in the CE data shows two
minima for ∆fc = ±0.05 Hz. The frequency sample (b) from CE confirms that unrealistic isolated peaks exhibit frequency increments larger than
0.05 Hz. Both observations suggest the choice of ∆fc = 0.05 Hz as a threshold for isolated peaks.
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Figure 2. Missing and corrupted data points are marked as NaN-values. As a result, there are many intervals of NaN-values in the processed data.
This figure displays the histogram for the lengths of these segments. CE and GB exhibit a particularly large amount of intervals with lengths below
6 time steps. Filling Nf = 6 values thus eliminates many corrupted or missing data segments while not changing the data too much.

Table 1
Raw frequency recordings are available from different TSOs. For each synchronous area, we obtained publicly available frequency data from one
of the Transmission System Operators (TSO). TransnetBW is a German TSO, while Nationalgrid and Fingrid are British and Finish, respectively.

Although we have only used the years 2015-2018 in this paper, we have pre-processed a longer period of time.

TSO (synchronous area) Time resolution [s] Pre-processed period
TransnetBW (Continental Europe) [3] 1 2012-02-01 to 2019-08-31

Nationalgrid (Great Britain) [4] 1 2014-01-01 to 2019-07-01
Fingrid (Nordic) [5] 0.1 2015-01-01 to 2019-11-30

Table 2
The number of corrupted data points differs between the synchronous areas. We mark different types of corrupted data points according to the

definition in Section 1 and the parameters from Section 2. Note, that we apply this procedure after resampling the data. This table thus shows the
number of corrupted and missing data points (or intervals) for the data after step (a) in Section 1.

Synchronous area Isolated peaks Too high frequency Too low frequency Long constant windows Missing data intervals
CE 12229 10 8630293 1438 21
GB 6 0 0 3 0

Nordic 109 0 0 75 25103
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3. Explainable machine learning of the grid
frequency: the effect of techno-economic
drivers

Techno-economic impact factors play an important role for grid frequency dynamics. For
example, electricity trading affects the grid frequency at regular intervals, thus impeding
a univariate forecast (Section 2.1). In the following sections (3.1-3.3), I present machine
learning models to infer the impact of techno-economic features on grid frequency sta-
bility and control. To explain the black-box models, I used SHapely Additive eXplanation
(SHAP) values [72], which allow us to quantify the importance of features and visual-
ise their impact on the model prediction in a consistent way. The results revealed central
drivers of frequency stability (two publications in Sections 3.1 and 3.2) and control activ-
ation (one publication in Section 3.3).

First, I investigated four important indicators of frequency stability and their relation
to techno-economic impact factors (Section 3.1). My SHAP analysis indicated the im-
portance of forecast errors for the Nordic grid frequency, while renewable generation was
important in Great Britain and fast generation and load ramps dominated in Continental
Europe. Furthermore, dependency analyses revealed opposite impacts of different gener-
ation types, which I explained with their different technical characteristics. I contributed
to this work by conducting the research, creating the figures, designing the major part of
the research and writing the major part of the manuscript.

Second, I took a closer look at one of the stability indicators that quantifies the determ-
inistic frequency deviations (DFDs) due to electricity trading (Section 3.2). As described
in Section 1.2, DFDs are strongly connected to the load gradient: if the load rises the fre-
quency rises at the beginning of trading intervals, while it drops if the load decreases.
Using SHAP values, I demonstrated that this view is incomplete and revealed the import-
ance of solar ramps and local legislation, thus leading to a better prediction of DFDs in
Continental Europe. For this publication, I designed and conducted the research, created
the figures and wrote the major part of the manuscript.

Third, I turned to frequency control and studied the impact of techno-economic fea-
tures on secondary control activation in Germany (Section 3.3). The results again point to
the role of different generation types, e.g., the role of slow generation changes of nuclear
power stations that can induce temporary power imbalances. Furthermore, I demonstrated
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that SHAP values do not always reveal causal relationships, and proposed a smart feature
selection to mitigate this problem. Beyond analysis, I also demonstrated how my approach
could be used as a transparent forecasting tool for control activation. For this work, I con-
ducted the research, created the figures and wrote half of the paper.

3.1. B) Revealing drivers and risks for power grid

frequency stability with explainable AI

[2] Kruse, J., Schäfer, B. & Witthaut, D. Revealing drivers and risks for power grid fre-
quency stability with explainable AI. Patterns 2, 100365. doi:10.1016/j.patter.2021.
100365 (2021).

The article was published Open Access under a Creative Commons Attribution 4.0 In-
ternational License. A copy of this license is available at http://creativecommons.
org/licenses/by/4.0/.
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SUMMARY

Stable operation of an electric power system requires strict operational limits for the grid frequency. Fluctu-
ations and external impacts can cause large frequency deviations and increased control efforts. Although
these complex interdependencies can be modeled using machine learning algorithms, the black box char-
acter of many models limits insights and applicability. In this article, we introduce an explainable machine
learning model that accurately predicts frequency stability indicators for three European synchronous areas.
Using Shapley additive explanations, we identify key features and risk factors for frequency stability. We
show how load and generation ramps determine frequency gradients, and we identify three classes of gen-
eration technologies with converse impacts. Control efforts vary strongly depending on the grid and time of
day and are driven by ramps as well as electricity prices. Notably, renewable power generation is central only
in the British grid, while forecasting errors play a major role in the Nordic grid.

INTRODUCTION

The power grid frequency plays a central role for power system

control, as it reflects the balance of power generation and de-

mand.1 An oversupply of power leads to a frequency increase,

while a shortage causes a frequency decrease. Large frequency

deviations correspond to large power imbalances, which

threaten system stability andmay lead to large-scale blackouts.2

Frequency stability is regarded as a major challenge for the tran-

sition to a sustainable energy system because renewable power

sources do not provide an intrinsic inertia.3 Understanding the

emergence of large frequency deviations is therefore essential.

Deviations from the reference frequency of 50/60 Hz have

distinct causes, which are in turn modified by the complex

THE BIGGER PICTURE The transition to a sustainable energy system is challenging for the operation and
stability of electric power systems as power generation becomes increasingly uncertain, grid loads in-
crease, and their dynamical properties fundamentally change. At the same time, operational data are avail-
able at an unprecedented level of detail, enabling new methods of monitoring and control. To fully harness
these data, advanced methods from machine learning must be used.
In this paper, we present explainable artificial intelligence (XAI) as a tool to quantify, predict, and explain
essential aspects of power system operation and stability in three major European synchronous areas. We
focus on the power grid frequency, which measures the balance of generation and load and thus provides
the central observable for control and balancing. Combining XAI with domain knowledge, we identify the
main drivers and stability risks, while our model and open dataset may enable further XAI research on power
systems.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

Patterns 2, 100365, November 12, 2021 ª 2021 The Authors. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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interplay of different elements of the energy system. For

example, changes in power generation due to electricity trading

intervals causes regular frequency jumps,4 the magnitude of

which depends on several technical parameters.3,5 Fluctuating

wind and solar power6,7 or singular load patterns due to societal

events8 create frequency fluctuations on different scales. To

guarantee frequency stability in such a complex and uncertain

environment, transmission system operators (TSOs) intensively

monitor the system and allocate expensive control reserves as

necessary. An improved understanding of the frequency dy-

namics and external influences could greatly facilitate control ef-

forts and contribute to power system stability. While several

studies have investigated univariate correlations to quantify the

impact of individual features,9–11 a comprehensive, data-based

analysis is lacking.

Modern machine learning (ML) methods are well suited to this

task as they can handle a large number of features and large vol-

umes of data. In recent years, the volume of publicly available

energy system data has grown steadily, including frequency re-

cordings12,13 and data on a variety of external features, such as

generation and load time series.14,15 An optimal basis for

analyzing and predicting grid frequency with data-driven models

therefore already exists.16 However, complex ML models do not

provide insights on the mapping of input to output.17,18 This is

particularly problematic for critical infrastructures such as power

systems, where the black box character poses a security

risk.19,20

Approaches using explainable artificial intelligence (XAI) could

change this. XAI is a quickly growing research field, which covers

inherently transparent ML models as well as post-modeling ex-

planations for black box models.21 Shapley additive explana-

tions (SHAP) values are an example of post-modeling explana-

tions, offering a method of measuring feature effects and

avoiding inconsistencies present in other approaches.22,23 In

particular, SHAP values have certain desirable properties, such

as additivity, efficiency, and symmetry. SHAP values can be

quickly computed for gradient boosted trees,24 which in turn

offer a powerful nonlinear modeling and are particularly suited

to tabular data. The combination of tree-based models and

SHAP values is already widely used, with applications ranging

frommedicine25 to geoscience.26 In contrast, only a few applica-

tions of this methodology have been presented in the field of en-

ergy systems analysis to date: for example, to explain solar po-

wer forecasts,27 transient security assessments,28 or power

project failures.29

Here, we present an explainable ML model based on gradient

boosted trees for selected indicators of frequency stability, and

we evaluate its predictive power for three grids in Europe: Con-

tinental Europe (CE), the Nordic area, and Great Britain (GB). We

demonstrate the benefits of explainability via SHAP values,

ranging from coarse-grained global feature importances to

detailed dependencies and finally to fine-grained interactions

between different external features. In particular, we quantify

the impacts of generation and load ramps on the rate of change

of frequency (RoCoF) at the beginning of each hour. SHAP

values explain the different impacts and roles of different gener-

ation technologies. We use aggregated SHAP values to analyze

efforts to control generation, which vary strongly depending on

the grid and time of the day. We then investigate enduring fre-

quency deviations, which can be attributed to systemic power

imbalances, and discuss the role of solar power generation. As

data, we utilize the hourly time series of four stability indicators

(model outputs or targets) and 66 external features (model in-

puts) for the years 2015–2019 (see also our Zenodo30 repository).

Our approach complements established simulation-based

methods that predict frequency deviations on the basis of load

and generation forecasts. Although simulations can be very ac-

curate, they are reliant on the quality of input data, underlying

forecasts, and specific parameters. Data-driven models can

reveal additional driving factors, unknown effects, and emerging

risks and thus complement and improve existing simulations.

For instance, our analysis highlights the role of forecasting er-

rors, which varies depending on the grid.

The next two sections of this paper present the four frequency

stability indicators and our ML model. Then, the most important

features in each synchronous area are identified before the influ-

ence on generator ramps—in particular, on RoCoF predictions—

are discussed and nonlinear feature dependencies are revealed.

We go on to demonstrate how SHAP analysis reveals feature in-

teractions before concluding with a discussion.

RESULTS

Frequency stability: Indicators and influences
The power grid frequency fluctuates on various timescales,

ranging from seconds to weeks.31 In our model, we aggregated

frequency deviations to hourly indicators, which are directly rele-

vant for power system stability (Figure 1; experimental proced-

ures). We analyzed the maximum frequency deviation within

the hour (nadir)32 and the RoCoF,32 which are of central rele-

vance for grid monitoring and control. Nadirs above a threshold

level indicate immediate danger and can be counteracted with

measures such as load shedding. High RoCoFs are dangerous

because control actions require a few seconds to take effect.

In addition, we evaluated two integrated stability measures to

account for the duration of frequency deviations. We character-

ized the variability of hourly time series using the mean square

deviation (MSD) from 50 Hz. The MSD also indicates the total

(primary) control effort, meaning that a large MSD reflects high

operational costs.33 Finally, we evaluated the integrated fre-

quency deviation (integral), which is proportional to themean de-

viation within the hour. Large integrals correspond to a system-

atic imbalance between the hourly power generation and the

demand. Regional differences in the grid frequency within a syn-

chronous area are small during normal operation and are typi-

cally damped out after several seconds.34,35 Although we used

local grid frequency measurements, the above indicators char-

acterize frequency stability in an entire synchronous area.

We evaluated these four indicators on an hourly basis, as this

timescale is central for power system operation.37 Electricity is

traded predominantly in blocks of one hour, and generation is

adapted at the beginning of each hour, leading to deterministic

patterns in frequency.4 When the load decreases continuously

during an hour, but the dispatch is set to the hourly mean, then

power is scarce at the beginning of the hour and the frequency

drops. As a consequence, frequency deviations show a pro-

nounced daily profile, which we use later as a null model to eval-

uate prediction performance. Another reason for choosing to
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evaluate on an hourly basis is that most external features are only

publicly available at an hourly resolution.14

The assessment of frequency stability indicators convention-

ally focuses on the transient response after amajor disturbance.1

Many model-based simulation studies have investigated the

effects of various parameters on the frequency response, in

particular the effect of inertia,38 as well as effects on the proper-

ties of the load-frequency control system.10 In recent years,

ambient and deterministic frequency fluctuations have received

more attention in the context of model-based simulations.

Studies have highlighted the influence of inertia, control system

parameters,5 and intermittent wind power feed-in39 on the fre-

quency statistics. Deterministic frequency deviations (DFDs)

have been studied using dynamical models4 and stochastic

models40 revealing the importance of the daily load evolution

and generation jumps caused by electricity trading. The main

limitation of the simulation approach is that data and parameters

are often not publicly available to accurately model all interac-

tions within the power system. For example, load-frequency

control systems are operated by individual TSOs, and parame-

ters may have been disclosed to other TSOs.41 Thus, simplified

assumptions are used, which often do not reflect effects present

in real-world data.

Over the last few years, comprehensive datasets have

become publicly available, enabling an empirical analysis of po-

wer system frequency stability.13,35 Most data-driven studies

focus on the impact of a single isolated feature and resort to a

linear correlation analysis. For instance, studies have quantified

the correlations between different measures of frequency quality

and the load value and ramps in the Nordic grid,11 wind power

generation in the Irish grid,9 load ramps in the British grid,10

and societal events coinciding with large frequency deviations.8

A correlation between load and solar ramps as well as trading

volumes reflects the role of solar power in power balancing.42

The relation between wind power generation and large fre-

quency increments in the CE grid has been studied using condi-

tional probabilities by Haehne et al.7 Although existing studies

provide us with essential insights into power system operation

and frequency stability, they are limited in two ways. Firstly,

linear correlation analyses cannot capture nonlinear depen-

dencies andmay thus underestimate or even overlook important

effects. Secondly, only one feature/covariate is used in most

cases, and the observed effects are not adjusted for other vari-

ables. This is problematic when features are correlated, e.g.

due to confounding. Modern ML methods can capture multiple

dependencies and thus provide more accurate results.16

An explainable model for frequency deviations
We developed an explainable ML model to predict indicators of

frequency stability from external features (Figure 1; experimental

procedures). We used gradient tree boosting (GTB), which pro-

duces nonlinear models with state-of-the-art performance for

manyML applications43 while enabling a fast and efficient calcu-

lation of SHAP values to explain the predictions.24 We fed our

model with physically meaningful features based on load, gener-

ation, and electricity price time series. Our data included both

Figure 1. Overview of our explainable ML model

From right to left: using publicly available external features from the ENTSO-E transparency platform,36 such as load ramps or generation ramps, a gradient tree

boosting ML model was constructed to predict indicators of frequency stability. The model was then interpreted using SHAP values, which quantify the effect of

the features on the model output in relation to a base value (see experimental procedures). The SHAP value of each feature is shown at the bottom of the figure,

separated by white arrows; only the most important features are named. Together with the base value, positive (red) and negative (blue) SHAP values add up to

the model prediction. The data represent a sample hour in 2016 from Continental Europe.
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day-ahead available features, such as the day-ahead predicted

load change (‘‘load ramp day-ahead’’) and ex post available fea-

tures, such as the error between the day-ahead forecast and the

actual total generation change (‘‘forecast error generation

ramp’’). Finally, we computed SHAP values to quantify how

each feature contributes to the model output. For example, in

Figure 1 (bottom), the feature ‘‘load ramp day-ahead’’ has a

negative contribution (blue), thus causing the predicted nadir

to be lower than its average. SHAP valuesmake local predictions

more transparent and enable aggregated insights into global

feature effects, dependencies, and interactions. However, it

should be noted that SHAP values do not guarantee causal

relations (see experimental procedures for a more detailed

discussion).

Based on its R2 score, our model outperformed the daily

average profile of the stability indicators, which is an important

system-specific null model (experimental procedures and sup-

plemental experimental procedures S5). We achieved perfor-

mances 3.7 (CE), 7.6 (Nordic), and 16.3 (GB) times higher than

the daily profile, thus indicating additional important depen-

dencies. Restricting the full model to day-ahead available fea-

tures resulted in similar performance gains of 2.6 (CE), 3.0

(Nordic), and 8.9 (GB), which opens the possibility of predicting

stability indicators a day ahead. The ability to include ex post

available features, such as forecast errors, was particularly

beneficial in the Nordic area. Here, the full model performed

2.6 times better than the restricted day-ahead model. This indi-

cates the importance of forecast errors for the Nordic frequency

dynamics, which we examine in the next section.

Main features affecting frequency deviations
We demonstrated our model explainability on the coarse-

grained level of global feature importances, which characterize

how much a certain feature affects the hourly frequency stability

indicators within the trained model (Figure 2).

In the RoCoF model, only a few features dominated: mainly

generation ramps from hydropower and load ramps. The impor-

tance of hydropower generation ramps relates to their large

ramping speed, which we discuss below. In the Nordic area,

the total day-ahead generation ramp is much more important

than load ramps for the RoCoF. This suggests that changes in

power export and storage may be relevant here, as these are

not represented in the load for the area.

The nadir was primarily affected by ramps and their respective

forecasting errors. In CE, the day-ahead load rampwas themost

important feature. This reflects the importance of DFDs, which

are strongly correlated to the direction of the load ramps.4 In

the Nordic grid, the forecast errors of generation and load

ramp were by far the most important features, partly explaining

the large performance gain when ex post data were included in

the model (see above). In contrast, there were many features

of almost equal importance in the British nadir model. Here,

wind power ramps and solar ramp forecast errors were among

the five most important features. This indicates the importance

of renewables for frequency deviations in GB.

TheMSD behaved similarly to the nadir in CE and in the Nordic

grid, with some subtle differences. Load ramps were the most

important feature in CE. Forecasting errors again dominated in

the Nordic grid, but load and hydropower generation ramps

also played a role. A different situation was found in GB. Day-

ahead prices dominated the MSD prediction, with some genera-

tion forms (coal and nuclear) coming in at a distant second, while

generation ramps did not significantly contribute. These differ-

ences point to a more complex behavior of the MSD, which we

further discuss below.

Finally, the integral was largely affected by forecasting errors

for load and generation ramps, which caused long-lasting power

mismatches. This was particularly evident in the Nordic grid,

where other features were not as important. In GB, wind power

ramps were ranked highly, confirming the importance of renew-

ables. In CE, solar power generation and ramps, as well as nu-

clear power ramps, were relevant for the prediction. We investi-

gated how the interaction of these two distinct generation types

explain model variance.

In summary, CE exhibited strong DFDs that were connected to

hourly load and generation ramps. This is consistent with previ-

ous results4,41 (Figure S10). Nordic frequency deviations were

strongly connected to forecasting errors, which is in line with

Nordic TSOs reporting forecast errors as a driver.44 In GB, hourly

DFDs were less important (supplemental experimental proced-

ures S4) and frequency deviations were mainly affected by re-

newables, i.e. their fluctuations and forecast errors (cf. National-

grid ESO45). The total synchronous generation, which

approximates the inertia in ourmodel (experimental procedures),

affected the British frequency dynamics only in extreme situa-

tions where there was very low inertia (supplemental experi-

mental procedures S6). Despite the importance of reduced

inertia in renewable energy systems,3,45 our model showed

that the average effect of inertia on the aggregated stability indi-

cators is negligible (Figure 2). This was consistent with other

studies on aggregated frequency fluctuations (cf. Vorobev

et al.5), which found that inertia is important for extreme events

but aggregated dynamics are not. It should be noted that we

focused on frequent daily fluctuations and stability concerns,

which are highly relevant for TSOs and for reducing daily opera-

tional costs.33 This supplements studies focusing on blackouts

and cascading failures.46

Characterizing the effect of generation ramps
Fast generation ramps significantly affect the hourly RoCoF. For

this reason, we went beyond mean feature importances and

examined the direction of these dependencies using SHAP

values (Figure 3). The effect of ramps is mostly monotonic,

meaning that a feature effect either increases or decreases

monotonically with the feature value (Figures 3A–3C). Remark-

ably, the direction of the dependency varies depending on the

type of generation and the grid. As expected, hydropower gen-

eration ramps were consistently positively correlated (see Fig-

ure 3D for CE). The dependency of hard coal ramps for CE

was the opposite to the dependency for GB and the Nordic grid.

The observed differences between the generation types can

be explained in terms of the relative ramping speed of a genera-

tion type within a respective area (see experimental procedures

on how this speed is estimated). In the Nordic grid, hydropower,

a technology capable of fast ramps, is essential and all other

generation types must be considered slow in comparison. In

GB and CE, non-hydropower dominates the generation mix

and technologies with slower ramps than hydropower plants
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but ramps faster than other generation types play important

roles. Notably, hard coal is one of the slow generation types in

GB but one of the fast types in CE due to the importance of nu-

clear and lignite generation in CE, which are even slower than

coal. We categorized the generation types using SHAP values

for the generation ramps to predict the RoCoF and relative ramp-

ing speeds (Figures 3D and 3E). We found that fast generation

ramps drove the RoCoF. A positive ramp was associated with

more positive frequency jumps. In contrast, ramps of slow gen-

eration types offset the RoCoF, leading to a negative correlation.

The only exception here was the behavior of gas power plants in

GB, which showed a negative correlation despite being fast. This

is due to their role as the prime source of balancing reserve in

GB.47 To summarize, the ramps no longer drove the RoCoF,

but the RoCoF drove the ramps.

Notably, a model-agnostic data analysis does not produce

such consistent results, as our features are strongly correlated

(experimental procedures). For example, the Pearson correlation

coefficient between nuclear ramps and RoCoFs in CE is positive

(supplemental experimental procedures S3). Instead, the SHAP

framework indicates a negative relationship, which we consis-

tently explain with relative ramping speeds.

Relating large control efforts to nonlinear dependencies
Frequency stability indicators often exhibit a complex nonlinear

dependency on the features. Using the MSD, an indicator for

the (primary) control effort,33 as an example, we found that the

daily profiles of the MSD differed strongly between the three

grids (Figure 4). These differences were well reproduced by the

ML model and were explained using daily aggregated SHAP

values (experimental procedures).

In CE, the control effort peaked around midnight (Figure 4A)

due to the nonlinear effects of negative load ramps. Details on

this relation are shown in a dependency plot (Figure 4D). Load

Figure 2. Most important features for predicting frequency stability

The feature importance in our model is measured by the mean absolute SHAP value. The union of the five most important features for each stability indicator and

area is shown (see experimental procedures). The importance rank of the five most important features for each area is given above the corresponding bar. While

forecast errors and load and generation ramps have a high relative importance, the total synchronous generation is not among the five most important features

and its average effect is therefore negligible.
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ramps between �7 and +25 GW/h had a small negative effect

on the MSD because such small ramps are easy to control.

Outside this range, the effect increased strongly in a nonlinear

and asymmetric manner. Negative load ramps had much larger

effects than positive load ramps, and they occurred almost

exclusively around midnight (see color code). In the Nordic

daily profile, load ramps were also the most important feature

(Figure 4B), and they showed a very similar nonlinear depen-

dency (Figure 4E). In contrast, the daily MSD profile in GB

strongly depended on day-ahead prices (Figure 4C), which

had an almost linear dependency (Figure 4F). The control effort

peaked during the day in response to high prices in the day-

ahead market, while the MSD and the prices were low at night

(00:00 to 04:00 h).

Notably, fluctuating renewables did not contribute strongly to

the daily MSD profile in our model, although they are an impor-

tant driver for frequency fluctuations in GB in general (cf. Fig-

ure 2). The observed differences between the synchronous areas

could be due to different control regulations. For example, in GB,

wind power farms must provide frequency control,48 and sec-

ondary control is allocated manually.49

Explaining systematic imbalances with interactions
The SHAP framework explains the role of different features and

reveals how predictions depend on the interaction of features

(see Figure 5 for an application of the integral in the CE grid

and experimental procedures for technical details). It should be

noted that the ML predictors for the other targets also displayed

clear interactions. The most important features were solar and

nuclear power ramps, which had a reverse dependency (Fig-

ure S13). Without interactions, the SHAP value increased gradu-

ally and nonlinearly with the solar ramp (Figure 5B). Strong nega-

tive ramps of solar power generation induced an ongoing

shortage of power and thus led to negative integrals.

Interactions with nuclear and gas ramps altered the effect of

solar ramps by up to 60%, leading to a strong vertical dispersion

of the observed SHAP values (Figure 5A). In particular, negative

nuclear ramps amplified the effect of negative solar ramps, while

A

D E

B C

Figure 3. Effect of generation ramps on the RoCoF

(A–C) Examination of the effects of dispatchable, i.e., weather-independent, generation technologies, which generally affect the hourly RoCoF due to their gradual

change at the beginning of (hourly) trading intervals.4 The bee swarm chart depicts the SHAP effects on the RoCoF in the Continental Europe (A), the Nordic (B),

and the Great Britain (C) grid areas. For each area and generation type, we normalized the SHAP values by their maximum absolute value to improve visibility.

Each colored dot represents one time step in the dataset and the dots pile up vertically to indicate their density on the x axis. The figure only examines generation

ramps with a feature importance higher than 0.01 to ensure reliability of results.

(D) Quantification of the direction of the dependencies with the correlation between the feature value and the SHAP effect, shown here for pumped hydro ramps.

(E) Combining the directions with the relative ramping speeds of the generation technologies (see experimental procedures) helps to distinguish RoCoF-driving

and RoCoF-offsetting technologies within the three areas.
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negative gas ramps dampened the effect on the integral (Figures

5C and 5D). These opposite interactions were again related to

different ramping speeds. Nuclear power has the lowest ramping

speed in CE, which meant that negative nuclear ramps amplified

the continuous ramping behavior in interaction with solar ramps.

In contrast, gas power had a fast ramp and therefore often pro-

vided balancing power, leading to the opposite effect. In general,

these results demonstrate that interactions can influence how

strongly a single feature affects power system stability.

DISCUSSION

Our model is based on explainable ML, and it predicts important

indicators for power system frequency stability using external

features, such as day-ahead electricity prices or total system

load. Using real data (ex post analysis), our ML model outper-

formed the daily profile, a system-specific null model, by a factor

of up to 16.3. Using only day-ahead available data, our ML

models performed similarly in most cases. When SHAP values

were calculated and examined, our model revealed important

features and dependencies, and could thus pave the way for

multiple applications.

Our model offers a versatile and substantially improved

approach for analyzing risks and drivers of grid frequency sta-

bility. Previous data-driven studies analyzed the impact of one

external feature on grid frequency fluctuations based on linear

correlations9–11 or conditional probabilities.7 Such univariate

analyses cannot be adjusted for effects of other features,

which could be correlated with the feature of interest and

may lead to incorrect conclusions (cf. Weißbach et al.42).

Moreover, univariate, linear dependency analyses underesti-

mate the effects of nonlinearities and ignore feature interac-

tions. Our model includes multiple variables and fits nonlinear

dependencies and interactions, which are made transparent

by SHAP values. It breaks down the effect of correlated fea-

tures (as discussed in Figure 3) and reveals otherwise unde-

tectable nonlinear effects (Figure 4) and feature interactions

(Figure 5). In addition, our model visualizes feature effects in

the daily average evolution of frequency stability (Figure 4),

which adds to the many useful visualization tools available

A

D FE

B C

Figure 4. Explaining the daily average control effort with SHAP values

(A–C) The daily average profile of the MSD (dashed line), i.e., the daily average control effort, is very well reproduced by theMLmodel (solid line), but its shape differs

between the areas.We examine these differenceswith daily SHAP values for theMSD inContinental Europe (A), the Nordic grid (B), andGreat Britain (C). Daily SHAP

values (see experimental procedures) are sorted such that negative effects are plotted above the prediction line and positive effects below it. The importance of the

plotted feature effect decreases the farther away the feature is from the prediction line. Less important features are aggregated in a residual variable.

(D–F) For the Continental Europe (D) and Nordic (E) grids, the dependency plots of the most important daily SHAP effects reveal nonlinear relationships. These

relationships explain the large control effort around midnight (color code), while the linear effect of prices explains the low control effort in GB during the night (F).
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in the SHAP framework. Our publicly available model50 and

dataset30 can be used to predict any frequency stability indi-

cator, thus offering a ready-to-use and flexible tool for

analyzing power grid stability.

We applied our model to three different synchronous areas

and identified options for improving power grid operation stra-

tegies. We discussed four examples for potential applications:

(1) first, we showed how generation ramps drove the RoCoF

and the nadir and revealed subtle differences between genera-

tion types and grids. These insights can help to optimize ramp-

ing behavior and mitigate DFDs51 and improve frequency qual-

ity. In particular, hydropower generation ramps should be

optimized in response to other ramps. (2) Our results show

that forecasting errors play an essential role in the Nordic

grid. While TSOs are generally aware of the problem,44 the

SHAP analysis provides a much more detailed view and reveals

when and how these errors affect frequency stability. An

example is given in Figure 4B, which shows that the features

‘‘forecasting errors of the generation ramps’’ are particularly

important during the night. Our model identifies situations

where forecasting errors are particularly critical and will thus

improve risk awareness in grid operation. (3) Low inertia has

been identified as a major threat for the stability of future power

grids.3 Our analysis provides a more finely nuanced view on

this topic. In our XAI model, inertia does not generally have a

high feature importance. Instead, the impact of inertia on fre-

quency stability is nonlinear and more pronounced for low

inertia values (Figure S14). (4) Finally, the predictive power of

our XAI model can be harnessed for online grid monitoring

and preventive control measures. For instance, a model-pre-

dictive frequency restoration reserve has been proposed to

mitigate DFDs.52 The applicability of such predictive control

strategies can be extended by data-enabled methods (cf.,

e.g., Huang et al.53).

The main restrictions to our model performance and explain-

ability are due to the quality of available power system data.

Firstly, frequency deviations due to renewable fluctuations7 or

load fluctuations8 occur on timescales that are smaller than the

intervals of electricity trading. The limited time resolution of pub-

licly available power system time series restricts both the perfor-

mance of an ML model and its ability to suggest causal relation-

ships because the time order of events is partly hidden.

Secondly, all locations in a synchronous power grid affect the

frequency deviations; but in large grid areas, such as CE, many

countries provide no or only a limited amount of data.14 This

further emphasizes the need for open data in energy system

analysis and design.54

Our paper contributes to the applicability of XAI methods in

energy systems and engineering sciences in general. Firstly,

deriving causal relationships fromdata is a key challenge inmod-

ern ML techniques. With the power grid frequency, we provide a

very well-suited test bed; while not all features and interactions

are available, there is plenty of domain knowledge to interpret

and cross-check XAI results. Secondly, we provide an excellent

dataset30 for applications and the benchmarking ofMLmethods,

such as causal inference or predictive models. While generation

data are already publicly available,36 aggregating these for a

whole synchronous area and combining them with frequency

stability indicators yields a novel dataset for future usage. Finally,

in Figure 4, we explored how daily aggregated SHAP data may

be used to explain specific temporal profiles, which could be

useful in other ML applications when dealing with strong daily

or seasonal trends, e.g., in weather or traffic predictions.55,56

In conclusion, we hope that our work will trigger further appli-

cations of XAI in energy science, harnessing the strengths of

modern ML tools while avoiding the drawbacks of black box ap-

proaches, which impede scientific insights18 and pose security

risks.19 Our model provides insights by explaining feature effects

A B C D

Figure 5. The effect of feature interactions on systematic power imbalances

(A) CE is used to show the SHAP effects of solar ramps on the frequency integral, which are the most important effects in CE (Figure 2). The integral, which

represents systematic imbalances, decreases for negative solar ramps, but the SHAP effects vary strongly, as indicated by their vertical dispersion.

(B–D) Using SHAP interaction values (see experimental procedures), this dispersion was broken down into different interaction effects. These effects depend on

the generation type, as negative nuclear rampsweaken the effect of negative solar ramps (C), while negative gas ramps lead to an amplified effect (D). Subtracting

all interaction effects from the original SHAP values (A) yields the remaining effect of solar ramps (B), which is strongly altered.
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with SHAP values in the context of the domain science. SHAP

dependency and interaction plots visualize the knowledge

learned by the model and offer individual explanations for each

prediction. The most predictive associations then suggest

causal relationships, which can then be validated by domain

knowledge or further experiments. For example, we identify Ro-

CoF-driving, RoCoF-offsetting, and RoCoF-balancing genera-

tion technologies by connecting our model results to physical

ramping rates, thus suggesting different causal relationships.

‘‘Suggesting relations’’ is key here since neither boosted trees

nor SHAP guarantee causal relationships but rather indicate as-

sociations based on the data. All in all, SHAP values alone do not

provide scientific insights, but, when combined with domain

knowledge, they can lead to further knowledge.

Future work includes explicitly forecasting the given indicators

and classifying whether upcoming events could be problematic

for grid operation. Once forecasts or other early warning and

control methods have been implemented, our model will need

to be retrained using these new, controlled datasets to derive

the updated feature-target interactions. Furthermore, while we

already outperform the daily profile, the performance of our

tree-based predictor could be improved if further features were

integrated and our model was compared with other ML predic-

tion models. Finally, such regression models should be comple-

mented by causal inference models to provide clear counterfac-

tual statements and comparisons with XAI approaches.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information questions should be directed to the lead author, Johannes

Kruse (jo.kruse@fz-juelich.de).

Materials availability

This study did not generate new unique materials.

Data and code availability

The dataset to reproduce our results is available on Zenodo: https://doi.org/

10.5281/zenodo.5118352. The Python code used to create our results and

the figures is also archived on Zenodo: https://doi.org/10.5281/zenodo.

5497609.

Data preparation of frequency stability indicators

In a modern AC power grid, the grid frequency is typically spatially synchro-

nized and its dynamics can be represented by a single bulk time series on time-

scales of several seconds and more.1 In Europe, different synchronous areas

exist, which are only inter-connected through DC links and hence display their

own frequency dynamics and follow their own specific regulations. We

modeled the bulk frequency dynamics for different synchronous areas in Eu-

rope, specifically for the CE, Nordic, and GB areas. We used pre-processed

frequency time series ~fðtÞ with a time resolution of t = 1 s,13 which were origi-

nally measured by regional TSOs.57–59

From the centered frequency time series fðtÞ= ~fðtÞ � 50 Hz, we extracted

four hourly stability indicators, which are directly relevant for power system

operation.32,33 For the ith hour starting at time ti , we calculated the (positive

or negative) nadir, the integral and the MSD based on the hourly time steps

Ii = fti ; ti + t;.; ti + tgg with g = 3600:

NadirðtiÞ = f

 
arg max

t˛Ii
jfðtÞj

!
;

IntegralðtiÞ = t
X
t˛Ii

fðtÞ;

MSDðtiÞ = 1

g

X
t˛Ii

f2ðtÞ:

From the derivative of the frequency time series df
dt ðtÞ, we obtained the hourly

(positive or negative) RoCoF by looking for the steepest slope within a window

Wi = ½ti �T ; ti +T� of length 2T around the beginning of the hour ti:

RoCoFðtiÞ = df

dt

 
arg max

t˛Wi

����dfdt
����
!
:

We estimated the derivative df
dt ðtÞ using a low-pass filter on the frequency

increments,60 i.e., by smoothing the incrementsDfðtÞ= fðtÞ � fðt�tÞwith a rect-

angular rolling window of length L. We chose the parameters L and T in such a

way that theyaccounted for thedifferent timescales of theRoCoF in the synchro-

nous areas (supplemental experimental procedures S2). This resulted in a choice

of L = T = 60s for the CE and GB areas, while the Nordic area with its fast hy-

dropower exhibited larger RoCoFs so that we chose L = T = 30s instead.

Data preparation of external features

We collected different power system time series as external features to predict

frequency deviations in Europe. We retrieved six different sets of publicly avail-

able time series from the ENTSO-E transparency platform.36 These sets

comprise the day-ahead load forecast, day-ahead scheduled generation, day-

ahead wind and solar power forecast, day-ahead electricity prices, actual load,

and actual generation per production type. Most of the time series are available

on an hourly basis. Since we predicted stability indicators on an hourly basis, we

downsampled a fewhigher-resolution timeseries to a commonhourly resolution.

We then aggregated the data within the three synchronous areas. Since time

series from ENTSO-E are only available for smaller regions within the synchro-

nous areas (i.e., countries), we added up the load and generation data within

each area. To aggregate the price data, we calculated area-wide averages

weighted by the regional mean load. The time series from the ENTSO-E trans-

parency platform contained multiple missing or corrupted data points,14 which

required a careful aggregation and cleansing procedure (supplemental exper-

imental procedures S1). We deemed area-wide feature aggregation necessary

because all locations within the synchronous power grid contribute to large

frequency deviations.1 We additionally prepared selected country-level data

for the CE and the Nordic areas. The area-wide aggregated features resulted

in a similar or highermodel performance than country-level data (supplemental

experimental procedures S5). Therefore, we decided to use area-wide aggre-

gated features for this publication. An overview of the available (aggregated)

features per area is available in supplemental experimental procedures S1.

Finally, we engineered additional meaningful features based on the hourly

ENTSO-E time series XðtiÞ, which comprise both day-ahead forecast data

XD�1ðtiÞ and actual data XDðtiÞ. For each hourly intervalDt = tg, we introduced

ramp features (slopes) ðXðtiÞ �Xðti �DtÞÞ=Dt, which are inspired by the impor-

tance of generation ramps for the CE frequency dynamics.4 We also added

forecast errors XD�1ðtiÞ � XDðtiÞ and the artificial features of hours (of the

day), weekdays, and months. To include the total available inertia as a feature,

we calculated the sum of the synchronous generation which approximates to

the time-dependent inertia.38

In summary, our dataset comprises hourly time series of 4 stability indicators

(model outputs or targets) and 66 external features (model inputs) for the years

2015–2019. The dataset is available on Zenodo30 and our scripts for down-

loading and preparing the dataset are online at GitHub.50

GTB model

To predict indicators of frequency stability from external features, we used

GTB. Tree-based ensemble methods, such as GTB, are complex, nonlinear

ML models, which makes them suitable for predicting the nonlinear behavior

of power grids.1 They offer a quick method of calculating SHAP values, thus

facilitating efficient post-modeling explanation.24 In addition, they are immune

to the effects of feature outliers and perform inherent feature selection, making

them robust to the inclusion of correlated or irrelevant features.16 This is bene-

ficial for our dataset, which exhibits strongly correlated features (supplemental

experimental procedures S3) as well as outliers due to bad data quality (sup-

plemental experimental procedures S1).
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To fit our GTB model, we used XGBoost, which is a scalable gradient tree

boosting system that provides state-of-the-art results for many ML applica-

tions.43 We randomly split our data into a training set (64%), a validation set

(16%), and a test set (20%). To optimize the hyperparameters of the XGBoost

model, we performed a grid search over selected parameter values and eval-

uated the performance via 5-fold cross-validation on our training set. To deter-

mine the number of trees in the XGBoost models, we performed early stopping

on the validation set. Finally, we concatenated the training and validation sets,

retrained the model on this data with optimal hyperparameters, and tested its

performance on the unseen test set. We also calculated the SHAP values on

the test set. The detailed implementation in Python code is available on Gi-

tHub50 and the sets of final hyperparameters are online at Zenodo.30

To quantify the model performance, we evaluated the R2 score, which quan-

tifies the proportion of variability explained by the model. Predicting the true

targets results in a score of 1, while always predicting the mean of the target

gives a score of 0. To benchmark our predictor, we compared its performance

with the daily profile prediction. The daily profile, i.e., the daily average evolu-

tion of a target, is the most important recurring pattern of frequency dy-

namics.61 Predicting the stability indicators based on their daily profiles thus

represents an important null model. Our GTBmodel consistently outperformed

the daily profile for all areas and indicators (see supplemental experimental

procedures S5 for a detailed performance evaluation).

Model interpretation with SHAP

SHAP values can explain the output of any ML model.23 Based on the game-

theoretical Shapley values, they attribute a model output to the individual

effects of each input feature. In particular, SHAP values quantify the marginal

effect of including a feature into the prediction and comparing themwith a ran-

domized baseline.24,62 Within the class of additive feature attributions, they

guarantee certain optimal properties, such as local accuracy and consis-

tency.22 As they are locally accurate, the SHAP values always add up to the

total model output. Consistency guarantees that a SHAP value does not

decrease if the corresponding feature contributes more to the prediction

when the model is altered.

SHAP values represent the feature effects on individual model outputs rela-

tive to the base value, which is given by the average prediction (cf. Figure 1). By

combining many of these local explanations, SHAP values also offer global

insights.24

Themean absolute SHAP valuemeasures the global importance of a feature

within a model. We identified the five most important features for each stability

indicator and area (Figure 2). Figure 2 also displays feature importances for the

union of these feature sets, i.e. features with an importance rank below five are

also displayed. In addition to global feature importances, dependency plots

show how the effect of a feature changeswith the value of the feature (e.g., Fig-

ure 4D). Notably, these dependencies differ from observing relationships in

scatterplots or between targets and features in a simple correlation analysis.

Such model-agnostic methods cannot distinguish the effect of two correlated

features. In contrast, we estimated interventional SHAP values, which quantify

the marginal feature effect in the model by breaking down correlations with

other features.63,64

In addition to first-order attributions, SHAP offers interaction values that

attribute the model output to pairs of interacting features.24 Interaction values

decompose the first-order SHAP effects into diagonal effects and pairwise

interaction effects (such as in Figure 5). The interaction effects therefore

explain the vertical dispersion within the first-order SHAP dependency plots,

thus offering scientific insights as well as additional consistency checks for

the model applications.

Finally, there is a fundamental difference between predictive models and

causal models.65 Predictive models try to infer the conditional probability of

the target given the feature variables by fitting associations. Causal models

identify the effect on the target when manipulating or intervening on a feature.

ML models, such as the boosted trees used here, are typically predictive

models. Using XAI methods to explain how these ML models work reveals

only associations learned from the data.21 In particular, using SHAP values

to explain predictive models does not necessarily reflect causal effects.66

However, causation involves correlation so that predictive and explainable

ML models can suggest causal dependencies, which then have to be further

validated, e.g. by domain knowledge or causal inference methods.

Aggregated SHAP values

To explain daily average profiles of the model predictions, we visualized the

SHAP values in a way that builds on their additivity. Due to their property of

‘‘local accuracy,’’ the prediction fðtÞ at every point in time t can be written as

a sum of the respective SHAP values,

fðtÞ = 40 +
XN
j =1

4jðtÞ; (Equation 1)

where 4jðtÞ is the SHAP value of feature j at time t. This property of SHAP

values enables a new application in the analysis of daily profiles and other

recurrent patterns. The daily profile of the prediction is the average CfðtÞDh for

the hour h over all days. Based on the SHAP values 4jðtÞ for feature j (j = 1;

.;N) and their base value 40,
24 we decomposed the daily profile as follows:

CfðtÞDh = C40 +
XN
j = 1

4jðtiÞDh =40 +
XN
j = 1

C4jðtÞDh:

The daily aggregated SHAP values C4jDh then explain the daily profile of the

prediction. To display the daily SHAP values, such as in Figures 4A–4C, we

identified the three most important features according to their average effect
1
24

P24
h= 1

��C4jDh
�� on the daily profile in each area. In Figures 4A–4C, we then visu-

alized these features from the union of these sets to display themost important

daily SHAP values. The remaining daily SHAP valueswere aggregated and dis-

played as a residual variable.

Finally, we add three notes on the interpretation of (daily) aggregated SHAP

values. (1) We note that the aggregated SHAP values do not coincide with

SHAP values of a model trained on the aggregated data. This must be taken

into account when interpreting the results. (2) Due to the nonlinearity of an

MLmodel, a large daily SHAP value does not necessarily correspond to a large

average for the corresponding feature in that hour. (3) Second-order interac-

tions between features are ‘‘fairly’’ distributed between first-order SHAP

values according to the classical Shapley values,24 i.e., large daily SHAP

values can partly relate to strong interactionwithin this specific hour. To further

resolve interactions within the daily SHAP values, the additivity of second-or-

der SHAP values can be used to generate daily profiles of the interactions. This

is beyond the scope of this paper.

Relative ramping rates

Weused relative ramping rates to validate our SHAP results, particularly for the

prediction of the RoCoF. In particular, we quantified the relative ramping speed

of each conventional generation technology k within a synchronous area. The

ramping speed ~sk is determined both by the absolute change of generation

DXk and the timescale lk on which the generator adapts its output to the

new set point:

~sk : =
DXk

lk
:

We approximated the typical value of DXk with the median of the absolute

generation changes DXkzMedian
ti

jXkðti � DtÞ � XkðtiÞj. The relative ramp

speed sk , compared with the fastest technologym within the area, then reads

sk =
~sk
~sm

=
DXk

DXm

lm

lk
z

DXk

DXm

rk
rm
:

Finally, we approximated the ratio of timescales lk by using the inverse ratio

of technology-specific ramping rates rk .
67 The technology m with the largest

absolute ramping speed was determined by the maximum value of DXkrk .
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES S1:
EXTERNAL FEATURE AGGREGATION AND DATA CLEANSING

To model frequency stability indicators, we collect publicly available times series of external features from the
ENTSO-E Transparency platform.1 For the synchronous areas investigated here, we aggregate the ENTSO-E time
series, which are originally only available for smaller regions within the areas (e.g., countries). However, the time
series contain many missing data points, so that we need a careful procedure to aggregate the region contributions
within the synchronous areas.

Firstly, we specify region types for which we obtain the best data quality. In all but a few cases, we retrieve country
level data. Only in Continental Europe, we retrieve bidding zone data for Italy (North, Center North, Center South,
South and Sicilia) and control zone data for Germany (TenneT, TransnetBW, 50Hertz, Amprion), as data quality is
better for these regions. For Denmark, we also retrieve bidding zone data, as one zone belongs to the Continental
Europe area, while the other belongs to the Nordic area.

Secondly, in the Continental Europe and the Nordic areas, we aggregate the region contributions and propagate
missing data points through the data set. For each feature and region, we mark missing time steps as "NaN". Then,
during aggregation, we propagate missing values by setting the sum of region contributions to NaN if at least one
of them is NaN. For example, if the German load data had a missing value at 10:00 on the 6th of June 2018, the
Continental European aggregated load data would have a NaN at this time step. Finally, we clean all aggregated
features together with the grid frequency data. In particular, we omit a time step from the whole data set if at least
one feature is NaN or the corresponding frequency measurements contains missing or corrupted values. This cleansed
data set is used in model training and testing.

Notably, we will not have many data points left in the aggregated data set, if the region contributions contain too
many NaNs. To avoid this problem, we collect the time series of each feature and region, which we call the region-
variable contribution, and sort them according to their NaN share. Then, we successively add up the region-variable
contributions with increasing NaN share. A contribution is only added if the NaN share S of the aggregated data set
including the new contribution does not exceed a certain threshold ST . If the data exceeds the threshold (S > ST ), we
omit the contribution from the aggregation. We choose ST = 37%, which we found to result in a good balance between
having enough data and including as many contributions as possible. As an example, consider a (hypothetical) area
consisting of 2 countries, "A" and "B", with two features "Load" and "Total generation". Initially, we add load data
from country A as this (hypothetically) has the lowest NaN share of 30%. Then, we add the total generation from
country B with a NaN share of 31%. The contribution is not omitted, since the time steps with NaN values overlap
and the final NaN share of the whole data set only yields 33% thus staying below the threshold. However, the last
two region-variable contributions might not be added, as they introduce to many new NaN values.

This procedure omits a certain amount of data but allows us to retain a large sample size. In Continental Europe,
most of the omitted contributions would increase the feature value by less than 30% on average (Figure S1A) and all
omitted feature contributions are smaller than 5% of the total mean load (Figure S1B). In the Nordic area, we only
omit the Finish day-ahead solar power forecast, accounting for 0.03% of the area total mean load, and in GB there
are no omissions. The aggregated data sets obtained from this procedure contain more than 26800 data points in each
area (Table S2). We thus generate large data sets to efficiently learn structures in the data, while still representing
most of the load and generation within the areas.

Finally, we obtain 25 different (aggregated) times series of external features. Combining them with additional
engineered features, such as forecast errors, we end up with 66 different external features (Table S1), which both
contain day-ahead available features (such as the load forecast) and ex-post available features (such as the actual
generation per type). None of the synchronous areas exhibits all 66 features and the number of model inputs thus
varies between 50 and 64 (Table S2).

SUPPLEMENTAL EXPERIMENTAL PROCEDURES S2:
ROCOF EXTRACTION

The Rate of Change of Frequency (RoCoF) is an indicator of frequency stability, which we use in our study. We
extract the RoCoF at the beginning of each hour by smoothing the frequency increments with a rolling window of
length L and then looking for the maximum (absolute) RoCoF within a window of ±T around the full hour.

We choose the values of L and T according to the typical time scale of the RoCoF in the three different synchronous
areas. The average hourly evolution of the absolute frequency deviation indicates this time scale (Figure S4). In
Continental Europe and Great Britain, the average deviation reaches its maximum 60 s after the full hour, while the
Nordic area exhibits its peak already after 30 s. We thus choose L = T = 60 s in the Continental Europe and Great
Britain areas, but a shorter time scale of L = T = 30 s in the Nordic grid area.
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Ex-post Ramps [MW/h] Load ramp, Total generation ramp, Biomass ramp, Coal gas ramp, Fossil peat ramp, Gas
ramp, Geothermal ramp, Hard coal ramp, Lignite ramp, Nuclear ramp, Offshore wind ramp,
Onshore wind ramp, Oil ramp, Other ramp, Other renewables ramp, Pumped hydro ramp,
Reservoir hydro ramp, Run-off-river hydro ramp, Solar ramp, Waste ramp

Generation and load
[MW]

Load, Total generation, Synchronous generation, Biomass generation, Coal gas generation,
Fossil peat generation, Gas generation, Geothermal generation, Hard coal generation, Lignite
generation, Nuclear generation, Oil generation, Other generation, Other renewable genera-
tion, Pumped hydro generation, Reservoir hydro generation, Run-off-river hydro generation,
Solar generation, Waste generation, Wind offshore generation, Wind onshore generation,

Forecast errors of
generation and load
[MW]

Forecast error load, Forecast error total generation, Forecast error solar, Forecast error
offshore wind, Forecast error onshore wind

Forecast errors of
ramps [MW/h]

Forecast error load ramp, Forecast error generation ramp, Forecast error solar ramp, Forecast
error offshore wind ramp, Forecast error onshore wind ramp

Day-ahead Generation and load
[MW]

Load day-ahead, Scheduled generation, Solar day-ahead, Offshore wind day-ahead, Onshore
wind day-ahead

Ramps [MW/h] Load ramp day-ahead, Generation ramp day-ahead, Solar ramp day-ahead, Offshore wind
ramp day-ahead, Onshore wind ramp day-ahead

Other Price ramp day-ahead [Currency/MWh/h], Prices day-ahead [Currency/MWh], Hour, Week-
day, Month

Table S1. All external features in the data set. The units correspond to those used in our publicly available data set.2

Area Number of features Number of data points
Continental Europe 64 26857

Nordic 58 37154
Great Britain 50 43240

Table S2. Properties of our data sets.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES S3:
BASIC CORRELATION ANALYSIS

A basic correlation analysis between external features and frequency stability indicators can already reveal inter-
esting dependencies. However, this model-agnostic correlation analysis does not account for correlations among the
features, which might affect the correlation coefficient between a feature and the stability indicator. Following the
main text, we demonstrate this for the effect of nuclear ramps on the RoCoF in Continental Europe.

As depicted in Figure S5, there are various strong correlations between features in all three grid areas. For example,
nuclear power generation is positively correlated with the load in Continental Europe. In Figure S6, the features are
correlated with our four stability indicators. We observe that nuclear ramps are positively correlated with the RoCoF
in Continental Europe, which is not consistent with our SHAP results (see main text). We can explain the positive
correlation of nuclear ramps with the hidden relationships to other variables, such as load ramps. Load ramps have
a positive effect on the RoCoF in Continental Europe (Figure S10). Due to the strong correlation between load
and nuclear power generation (Figure S5) the effect of load ramps can thus "leak" into the correlation coefficients
of nuclear ramps. This can explain why we observe a positive correlation between nuclear ramps and the RoCoF in
Continental Europe, although nuclear ramps are RoCoF-offsetting in this area, as revealed by SHAP analysis in the
main text.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES S4:
DETERMINISTIC FREQUENCY DEVIATIONS

Deterministic frequency deviations (DFDs) occur at the beginning of electricity trading intervals.4 The generation
is adapted in a step-wise manner at the beginning of these intervals, which are mostly hourly time periods. The
mismatch between the step-wise generation and the continuously evolving load generates an instantaneous power
imbalance, which causes a deterministic frequency jump at the beginning of the hour.

Such DFDs are an important factor for frequency stability in Continental Europe. This is indicated by the time
within the hour when the absolute frequency deviation peaks ("Nadir occurrence time"). Figure S12 shows the
histograms of these Nadir occurrence times within the hour. In Continental Europe, most of the Nadirs occur in the
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Figure S1. Omitted data contributions in Continental Europe. (a): We quantify the omitted values with the mean omitted
feature value relative to the mean of the included features. The legend indicates the regions (mostly countries) where the
omitted contributions come from. Regions with omitted (relative) contributions below 0.8% are aggregated in the "Other"
variable. (b) The mean omitted feature value relative to the total mean load of the synchronous area remains below 5%.

first five minutes, which indicates their strong connection to the deterministic electricity trading. In contrast, large
deviations in Great Britain occur much more often during the hour and not only at the beginning. This indicates
that DFDs play a smaller role in Great Britain than in Continental Europe. The Nordic area is in between, showing
strong hourly DFDs as well as Nadirs within the hour.

An extension of the work presented here could consider a threshold for the nadir and turn our regression machine
learning task into a classification taks: Will the nadir of the next hour be above or below the security threshold?
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Figure S5. Pearson correlation coefficients between external features. To improve the visibility, we exclude our additional,
engineered features from this plot. Features with 0 correlation everywhere have no data in a specific grid (e.g., Fossil peat data
is only available in Nordic).
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Figure S6. Pearson correlation coefficients between external features and frequency stability indicators. The scale of the colour
code is adjusted to the maximum absolute correlation value Cmax and thus ends at ±Cmax.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES S5:
PERFORMANCE EVALUATION OF THE MACHINE LEARNING MODEL

We evaluate the performance of our Gradient Tree Boosting (GTB) model in terms of the R2-score, which quantifies
the proportion of variability explained by our model. A perfect prediction would result in a score of 1, while predicting
the mean of the target results in a score of 0. As a benchmark, we compare the GTB model to the daily profile, which
is an important null model for frequency dynamics. In particular, we quantify the gain over the daily profile, which
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Figure S7. Distribution of Nadir occurrence time. The occurrence time of the nadir is the minute within the hour where the
absolute frequency deviation reaches its peak. Its distribution within the hour varies between the grid areas, thus indicating
the different importances of DFDs for the grid frequency dynamics.

is the model performance divided by the daily profile performance. Finally, we examine the importance of area-wide
feature aggregation and the possibility to predict stability indicators day-ahead. Note that the GTB model used in
our main text is referred to as the full model. It builds on area-wide aggregated features containing both day-ahead
and ex-post available data.

The GTB model performs best in Continental Europe, while the performance gain over the daily profile is largest
in Great Britain. Figure S8 displays the R2-score for each stability indicator and each area. We obtain the best
predictions in Continental Europe (R2 ∼ 0.7) and the lowest scores in Great Britain. In contrast, the performance
gain over the daily profile is largest in Great Britain (maximum 16.2) and smallest in Continental Europe (maximum
3.4), while the Nordic area is in between (maximum 7.6). Frequency dynamics in Continental Europe are rather
deterministic compared to the stochastic dynamics in Great Britain. Therefore, the prediction is easier and the
additional gain through Machine Learning is smaller in Continental Europe. Consistently, the GTB performance is
best for the RoCoF as this indicator most strongly reflects the hourly deterministic frequency jumps.

The model performance depends on whether we choose area-wide aggregated features or country-level data (Fig-
ure S8). In the Nordic area, we obtain a lower performance when using data from only the largest country (Sweden)
instead of aggregating it area-wide. In Continental Europe, the largest country model (using Germany) performs
similar to or worse than the aggregated model, and choosing a smaller country (Switzerland) reduces the performance
even further. As the grid frequency is affected by all locations within the grid, it is not surprising that data aggregation
is important. Overall, the area-wide feature aggregation yields better results than regional data among the areas.

Using only day-ahead available data in our GTB model already outperforms the daily profile for all stability
indicators and areas (Figure S9). In Great Britain, the day-ahead model exhibits the strongest performance gain over
the daily profile (maximum 8.9), followed by the Nordic area (maximum 3.0) and Continental Europe (maximum 2.6).
However, adding ex-post data in the full model can strongly improve the performance, especially in the Nordic area.
We quantify this effect in terms of the gain over the day-ahead model, i.e., the full model performance divided by the
day-ahead model performance. In the Nordic area, the gain of the full model over the day-ahead model is the largest
(maximum 2.6), while it is lowest in Continental Europe (maximum 1.4). The benefits of adding ex-post data in the
Nordic area stems from the importance of forecasting errors for the prediction (see main text).

SUPPLEMENTAL EXPERIMENTAL PROCEDURES S6:
ADDITIONAL RESULTS WITH SHAP VALUES

We use SHAP values to explain our Machine Learning model for frequency stability indicators. An overview of the
most important SHAP dependencies in our model is available in Figures S10, S11, S12 and S13 for each of the four
stability indicators. In many cases, we observe non-linear dependencies, which underlines the importance of using a
non-linear, complex Machine Learning model such as Gradient Tree Boosting.

Here, we further discuss the effect of synchronous generation on frequency stability indicators. The (total) syn-
chronous generation, which we use as a proxy for the total inertia within the power grid, is not among the eight most
important features (Figures S10, S11, S12 and S13). Its feature importance is ranked on places between 19 and 64 in
CE, between 38 and 52 in the Nordic area and between 25 and 40 in GB. Overall, the average effect of the (approxi-
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mated) inertia on the aggregated stability indicators is thus relatively low compared to the most important features.
Among the areas, the total synchronous generation is most important in Great Britain, as the feature is constantly
among the 40 most important variables. This is consistent with the high share of renewable energy sources in the
British power system and the resulting low-inertia situations.3 The effect of the inertia in Great Britain is depicted
in the dependency plots of Figure S14. For all stability indicators, we observe the maximum (absolute) effect of the
synchronous generation at low feature values. This is particularly evident for the MSD and the Integral, where the
effect of values larger than 20 GW is near to zero. In conclusion, the (approximated) inertia mostly affects frequency
stability in Great Britain in extreme situations of low inertia, but the average effect of this feature on our aggregated
stability indicators is negligible.
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Figure S10. RoCoF dependency plots for the eight most important features.
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Figure S12. Nadir dependency plots for the eight most important features.



13

20 0 20
Load ramp day-ahead [GW/h]

0.02

0.00

0.02

SH
AP

 v
al

ue
s

Continental Europe

1.0 0.5 0.0 0.5 1.0
Forecast error generation ramp [GW/h]

0.05
0.00
0.05

Nordic

2 1 0 1 2
Offshore wind ramp [GW/h]

0.00

0.05
Great Britain

10 0 10
Price ramp day-ahead [Currency/MWh/h]

0.01

0.00

0.01

SH
AP

 v
al

ue
s

1.0 0.5 0.0 0.5 1.0
Forecast error load ramp [GW]

0.05

0.00

0.05

0.5 0.0 0.5 1.0
Pumped hydro ramp [GW/h]

0.05

0.00

2.5 0.0 2.5 5.0
Pumped hydro ramp [GW/h]

0.025

0.000

0.025

SH
AP

 v
al

ue
s

2 0 2 4
Load ramp [GW/h]

0.025

0.000

0.025

5.0 2.5 0.0 2.5 5.0
Gas ramp [GW/h]

0.025

0.000

0.025

5 0 5
Forecast error generation ramp [GW/h]

0.01

0.00

0.01

SH
AP

 v
al

ue
s

0.50 0.25 0.00 0.25 0.50
Forecast error onshore wind ramp [GW/h]

0.025

0.000

0.025

0.5 0.0 0.5
Forecast error solar ramp [GW/h]

0.025

0.000

0.025

2 1 0 1 2
Nuclear ramp [GW/h]

0.00

0.01

SH
AP

 v
al

ue
s

0.50 0.25 0.00 0.25 0.50
Onshore wind ramp [GW/h]

0.00

0.02

0.0 0.5 1.0 1.5
Pumped hydro generation [GW]

0.00

0.05

2 0 2
Run-off-river hydro ramp [GW/h]

0.02

0.00

SH
AP

 v
al

ue
s

0 10 20
Hour

0.02

0.00

0.02

1 0 1
Onshore wind ramp [GW/h]

0.025

0.000

0.025

2 0 2
Forecast error onshore wind ramp [GW/h]

0.00

0.01

SH
AP

 v
al

ue
s

0.25 0.00 0.25 0.50
Run-off-river hydro ramp [GW/h]

0.00

0.02

2 0 2
Forecast error load ramp [GW]

0.00

0.02

10 5 0 5 10
Forecast error load [GW]

0.00

0.01

SH
AP

 v
al

ue
s

2 0 2
Forecast error total generation [GW]

0.00

0.02

0 10 20
Hour

0.00

0.02

Figure S13. Integral dependency plots for the eight most important features.
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Abstract—Deterministic frequency deviations (DFDs) critically
affect power grid frequency quality and power system stability.
A better understanding of these events is urgently needed as
frequency deviations raise the need for substantial control actions
and thereby increase cost of operation. DFDs are partially
explained by the rapid adjustment of power generation following
the intervals of electricity trading, but this intuitive picture
fails especially before and around noonday. In this article, we
provide a detailed analysis of DFDs and their relation to external
features using methods from eXplainable Artificial Intelligence.
We establish a machine learning model that well describes the
daily cycle of DFDs and elucidate key interdependencies using
SHapley Additive exPlanations. Thereby, we identify solar ramps
as critical to explain patterns in the Rate of Change of Frequency
(RoCoF).

I. INTRODUCTION

The balance of power generation and demand is central for
the stability of our power grids. The grid frequency reflects
this balance, since an overproduction of power leads to a rise
and an under-supply to a drop of the frequency [1]. The need
for power balancing therefore translates into constraints on the
grid frequency to limit large deviations from the set point of
50/60 Hz through adequate control measures. This is critical
as large frequency deviations, such as deviations of more than
200 mHz in Continental Europe, can trigger the disconnection
of loads with severe consequences for the power consumers.

An important threat to frequency stability results from de-
terministic frequency deviation (DFDs). DFDs occur regularly
at the beginning of hourly or sub-hourly intervals and can
be observed in various large-scale power grids such as the
Continental European [2], the Great Britain [3] and the Nordic
synchronous areas [4]. Large DFDs lead to a depletion of
frequency control reserves at the beginning of hourly or sub-
hourly intervals, thus making the system vulnerable to addi-

We gratefully acknowledge support from the German Federal Ministry of
Education and Research (BMBF grant no. 03EK3055B) and the Helmholtz
Association via the Helmholtz School for Data Science in Life, Earth and
Energy (HDS-LEE). This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 840825.

tional, unforeseen disturbances or failures [5]. For example,
the combination of a DFD and a measurement failure led to
an extreme deviation of nearly 200 mHz on the 10th of January
2019, in Continental Europe. In this area, the number of large
frequency deviations has increased constantly thus requiring
an intensified control of large DFDs [5].

A common model explains DFDs through the effect of
scheduled changes in the power generation due to block-wise
electricity trading [6]. In this view, the direction of DFDs
during the day is often related to the load ramp, i.e., to the
slope of the load curve [4], [6], [7] and a connection between
large frequency events and the load ramp is suggested [3],
[8]. However, not only load ramps but many other external
features such as electricity prices or forecasting errors affect
power grid frequency deviations [9].

Methods from Machine Learning (ML) are excellent can-
didates to model the complex effects of multiple features on
power grid frequency fluctuations. Due to control measures,
frequency dynamics exhibit complex non-linear dependencies
[1] and measurement errors further modify many publicly
available grid frequency measurements [10]. Moreover, drivers
of frequency deviations such as load or generation ramps are
strongly correlated [9]. Modern ML methods, such as Gradient
Tree Boosting, are able to extract non-linear dependencies
even from noisy data with correlated features [11], which is
not possible in a simple correlation analysis. They can further
harness the growing amount of power system data, which
has been made publicly available in the past years [12], [13].
However, complex ML models are often black-boxes, which
impede a scientific understanding of the model structure [14].

Tools from eXplainable Artificial Intelligence (XAI) enable
us to understand and visualise the dependencies captured by
the ML model [15]. In particular, the recently introduced
SHapely Additive exPlanations (SHAP) values offer a numer-
ically efficient way to quantify the impact of different features
on the model output [16]. Within the set of methods to measure
feature effects, SHAP values guarantee certain optimal prop-
erties and avoid inconsistencies within other approaches [17],
[18]. Combining non-linear ML models and SHAP values thus
enables us to examine the effect of multiple external features©2021 IEEE
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frequency from 10 to 11 p.m. on April 14, 2017, in Continental Europe [19].

on DFDs in a consistent way.
Here, we explore hourly DFDs in the Continental European

(CE) synchronous area with an explainable ML model intro-
duced in ref. [9]. The ML model predicts hourly DFDs from
54 different features such as the actual load and day-ahead
electricity prices. In combination with SHAP values, it offers
a versatile tool for the ex-post analysis of DFDs and their
drivers. In Section II, we first introduce a common load-based
model of DFDs, which is based on the effect of scheduled-
based generation, and then continue with our ML model for
DFDs. In Section III, we first evaluate how well the load-based
DFD model reproduces the daily pattern of DFDs in CE. Then,
we explore the deficits of the load-based model with SHAP
values and finally discuss a refined physical view of DFDs,
which integrates the insights from our explainable ML.

II. METHODS

A. The problem of deterministic frequency deviations (DFDs)

DFDs are regular deviations of the grid frequency that occur
at the beginning of hourly or sub-hourly intervals. For instance,
the grid frequency sample from an evening hour in CE (Fig. 1)
exhibits a steep slope at the full hour and after 30 minutes.
These large slopes even persist after averaging over multiple
days, which demonstrates their deterministic nature [6]. In
particular, the direction of the slope shows a regular daily
profile. In the morning, the deviations typically point upward
and in the evening we typically observe negative slopes. We
quantify the DFDs via the Rate of Change of Frequency
(RoCoF) at the beginning of the hour (Fig. 1).

Within this study, we focus on the CE synchronous area,
which is the largest synchronous area in Europe, covering
26 countries, hundreds of millions of customers and spanning

from Portugal to Turkey and from Italy to Denmark. Numerous
Transmission System Operators (TSOs) operate the CE area
and they coordinate via the European Network of Transmis-
sion System Operators for Electricity (ENTSO-E), where for
example grid codes are defined and data are made available
via a transparency platform [20].

DFDs are extensively observed in the CE grid and have been
explained as a mismatch in supply and demand: As electricity
is traded in blocks of fixed time, the smooth demand curve
is typically approximated by a step-wise generation curve,
thereby causing a particularly large mismatch of scheduled
generation and load at the beginning of the trading blocks
[6]. Such deterministic deviations are very problematic as they
bind Frequency Containment Reserve (FCR), which then is not
available in case further unexpected fluctuations, accidents or
attacks occur, as highlighted by a special ENTSO-E report
[5]. To address this problem, several countries within the CE
area have increased the number of dispatch intervals, leading
to updates of the scheduled generation every 15 minutes
instead of every hour. Still, electricity is mostly traded on
an hourly basis and therefore the hourly interval remains the
most important time scale for power system operation in CE.
Consistently, hourly DFDs continue to dominate the daily
profile of the grid frequency [2]. Therefore, we focus on the
hourly RoCoF to analyse DFDs in this study.

B. Modelling DFDs

A common model for (hourly) DFDs is based on different
temporal behaviour of the load and the generation, which is
crucially determined by the electricity market [6]. In Con-
tinental Europe, electricity is still mostly traded in hourly
blocks, such that power generators adapt their output to the
new set point at the beginning of each hour. This leads to a
step ∆PL(ti) in the power generation at the beginning of the
hour ti, as shown in Fig. 2a. Since the load varies only slowly,
the step-like generation introduces power imbalances around
the full hour. For example, at 06:00 the imbalance changes
from under- to oversupply due to the positive step ∆PL. The
slope of the resulting frequency jump is then proportional to
the generation step [7], which implies a linear model yL(ti)
for the RoCoF:

yL(ti) = a · ∆PL(ti). (1)

Here, the value of the generation step ∆PL(t) is estimated
by the load ramp, i.e., the hourly change of the total load
∆L(t) in CE. This estimate is based on the assumption that
most of the load is covered by schedule-based generation. The
schedule coincides with the hourly average of the load, such
that the generation steps approximate the load ramp. In that
way, the direction of the DFDs is inherently correlated to the
load ramp, so that we call the above approach the load-based
model.

To visualise the assumptions of the load-based model, we
construct load and generation curves on sub-hourly resolution
(Fig. 2a). We design a continuous load curve L(t) with a res-
olution of one minute by applying a cubic spline interpolation
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Fig. 2. A common load-based model cannot reproduce the daily pattern of DFDs. a: A common model explains hourly DFDs with the power jump ∆PL(ti)
that results from scheduled changes in the generation due to hourly trading on the electricity markets. b: Based on the generation steps ∆PL, we a estimate a
linear model yL(t) for the hourly RoCoF, which we call the load-based model (1). The prediction reproduces the data only partially and yields an R2-score
of 0.37 on the test set. The sample depicted in panel a and b is included in the test set. c: The load-based model cannot fully reproduce the daily pattern of
DFDs, which is indicated by a sign mismatch between the daily average prediction (green) and the data-based RoCoF (orange).

to the load values, which only have an hourly resolution (see
Section II-C). The generation values for each minute GL

T (t)
follow a step function with hourly steps ∆PL.

C. Data sources and preparation

To evaluate the load-based DFD model, we use a set of pre-
processed, publicly available time series from the CE power
system, which covers the years 2015 to 2019 [21]. The data
set contains hourly RoCoFs of the CE grid frequency, as well
as multiple hourly-resolved external features, such as the load
and the power generation. The frequency data was originally
recorded by the TSO TransnetBW [19] and the feature data
derived from the ENTSO-E Transparency Platform [20].

The hourly RoCof is extracted from grid frequency measure-
ments f(t) using the procedure sketched in Fig. 1. Based on
frequency data with 1 s resolution [19], we estimate the deriva-
tive df/dt by first extracting the increments f(t+ 1s)− f(t).
Then, we smooth the increments with a rectangular rolling
window of length L = 30 s. Finally, we identify the time
tmax in an interval around the full hour [ti−T, ti +T ], where
the absolute derivative |df/dt| reaches its maximum. We then
set RoCoF(ti) = df/dt(tmax) using T = 30s (cf. [9]).

The external features serve as input to the load-based model
and to our ML model. From the data set of ref. [21], we
only include a subset of 54 features into our model. The
subset includes the actual load and generation per type, as
well as their hourly ramps (i.e., gradients) and forecast errors.
Moreover, we include day-ahead prices together with their
ramps, and three variables indicating the hour, the weekday
and the month. As our focus is on the ex-post explanation
of DFDs and not on prediction, we here use the correct
post-hoc values of all features and omit day-ahead forecasts
which are in principle available in the data set. As the grid
frequency is affected by power imbalances in all locations
of the synchronous area, the features represent the area-wide
aggregated values of the variable. For example, the "load
ramp" represents the slope of the aggregated load within the
whole CE synchronous area. We refer to ref. [9] for a detailed

description of the data set, including the processing and the
aggregation of the external features.

D. Machine learning model for hourly RoCoF

We apply the explainable ML model from ref. [9] to explore
the impact of external features on the DFDs. The model uses
a Gradient Tree Boosting model [22] for the prediction of
hourly RoCoFs from external features, which is then explained
through SHAP values.

For the model training and evaluation, we randomly split
the data set into a test set (20%) and a training set (80%).
In contrast to ref. [9], we additionally include the data of
a continuous 24h interval (from December 2016) in our test
set to allow for a visualisation of the predicted time series
(see Fig. 2b). Moreover, we only use a subset of 54 features
as inputs to our ML model (see Section II-C). To optimise
the model hyper-parameters, we use 5-fold cross-validation
and grid search on the training set. Then, we retrain the
optimal model on the whole training set and calculate the ML
prediction yML(ti) of the RoCoF for every hour ti in the
unseen test set. We evaluate the performance on the test set
using the R2-score, which represents the share of variability in
the hourly RoCoF explained by the model. In the same way,
we also estimate the linear model (1) on the training set (via
least-squares) and evaluate it on the test set. In addition to
the R2-score, we evaluate the model predictions in terms of
their daily average profile. A good model should reproduce the
daily profile of RoCoFs estimated from the frequency data.

To explain the model output, we finally calculate the SHAP
values on the test set [17]. SHAP values quantify the (positive
or negative) effect of each feature on the model prediction
for each hour ti relative to the average prediction. SHAP
values attribute the feature effects based on Shapely values
from game theory and thus exhibit certain optimal properties
such as consistency and local accuracy. For example, local
accuracy guarantees that SHAP values sum up to the model
prediction.



By combining SHAP values of individual hours ti, we can
also understand global relations in the model. For example,
dependency plots depict the relation between features and
targets, e.g., between the load and the hourly DFDs [17].
In addition, we explore daily aggregated SHAP values that
explain the daily average profile of the model prediction [9].
The daily aggregated SHAP values build on the additivity
(local accuracy) of SHAP. They reflect the average impact
of a feature on the RoCoF at a certain hour of the day and
are therefore perfectly suited to explain the daily DFD pattern.
For details on the ML model training, performance evaluation
and model explanation via SHAP values we refer to ref. [9].

E. Data and code availability

The input and output data for our model is publicly available
on Zenodo [21] and the python code for this study can be
obtained from GitHub [23].

III. RESULTS

A. Evaluation of load-based DFD model

The load-based predictor yL(ti) (1) partially explains the
direction of DFDs, but its overall performance is limited.
Fig. 2b depicts the model prediction for a continuous time
interval within the test set. The prediction reproduces the
general trend of the RoCoF with upward jumps in the morning
and in the afternoon, and downward jumps around noonday
and during the night. However, the R2-score only yields
a value of 0.38, which reflects the mismatch of data and
prediction in Fig. 2b.

Evaluating the daily profile of the prediction confirms this
observation (Fig. 2c). The overall shape of the daily RoCoF
profile is reproduced, but the direction of the jumps does not
align with the sign of the predicted RoCoF in 5 of 24 hours. In
particular, the load is increasing on average between 09:00 and
11:00, but the average RoCoF is negative within these hours.
We observe such a sign mismatch also at 04:00 and 16:00.
The direction of the load ramp thus cannot fully explain the
direction of the DFDs within the day.

Note, that adding a constant bias to the linear model
(1) increases the performance to R2 = 0.52. However, the
prediction is merely shifted and its daily profile still exhibits
the wrong sign in 5 hours within the day (not shown in the
figure). Consequently, an additional bias does not improve the
explanation of the daily DFD pattern through the load-based
model.

B. Exploring DFDs with XAI

We explain the deficits of the load-based model by exploring
the daily DFDs with our explainable ML model (Fig. 3). As
shown in Fig. 3b, the ML prediction yML(ti) approximates the
RoCoF in nearly every hour of the sample, which is consistent
with the high R2-score of 0.73 on the test set. We obtain an
even higher correspondence for the daily profile (Fig. 3a).
The ML prediction (solid line) reproduces the daily RoCoF
profile (dashed line) nearly perfectly. The model thus captures

dependencies that are important to predict and explain the
hourly RoCoF, and in particular the daily pattern of DFDs.

Using our ML model explanation, daily aggregated SHAP
values reveal the impact of external features on the daily DFD
pattern (Fig. 3a). The SHAP values describe the contribution
of each feature on the model prediction both in magnitude and
sign. In the figure, the daily SHAP values are represented by
coloured areas. Areas below the prediction line (solid) indicate
a positive effect of the feature on the RoCoF in that hour, while
areas below the line reflect a negative impact. We observe a
positive impact of the load ramp on the RoCoF in the morning
between 04:00 and 11:00, where the load is still rising (see
Fig. 2c). This is in line with the load-based model, which
predicts a positive RoCoF within this period due to the rising
load. However, the actual RoCoF becomes negative between
09:00 and 11:00. Here, the contribution of the load ramp is
still positive, but other features now have a strong impact on
the model outcome. In fact, the ML model mainly attributes
this decrease to the negative impact of hydro power ramps,
which leads to a correct prediction of the downwards DFD
direction.

To further explain the contradiction between the ML predic-
tion and the load-based model in the morning, we connect the
ML prediction to the daily evolution of solar and hydro power
(Fig. 3c). Solar power ramps up slowly between 05:00 and
08:00. As the load already increases strongly during this time
(see Fig. 2c), fast conventional generators, such as pumped
hydro, ramp up to cover the load. Between 09:00 and 11:00 the
load is still rising, but solar power starts to ramp up strongly
and pumped hydro thus has to ramp down. As solar power
ramps are still slow compared to hydro ramps, the generation
step at the beginning of the hour is dominated by fast negative
hydro ramps. Their direction is opposite to the load ramp,
which is not captured in the load-based model. However, the
ML model integrates this effect as depicted in the dependency
plot Fig. 3d, which displays the SHAP values together with
the feature value. Negative hydro ramps have a strong negative
impact on the predicted RoCoF. The ML model integrates this
effect (Fig. 3a) and thus reproduces the direction of the DFD
correctly.

In the afternoon, fast generation ramps and a smoothing
effect of solar power explain the deficits of the load-based
model. At 16:00 the load does not change strongly and the
load-based model predicts a slightly negative RoCoF (see
Fig. 2c). However, solar power ramps down strongly in that
time, so that flexible generators, such as pumped hydro, ramps
up to cover the load (Fig. 3c). The ML model captures this
effect and the daily SHAP values in Fig. 3a clearly show the
positive effect of hydro power at 16:00, which leads to an
upward DFD at this time. Interestingly, we also observe large
positive SHAP values of solar ramps between 15:00 and 17:00.
According to the dependency in Fig. 3e, negative solar power
ramps strongly increase the RoCoF, while positive ramps have
a small negative effect. The impact of negative ramps most
probably relates to a smoothing effect solar power. Solar power
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Fig. 3. Revealing the effect of external features on daily DFDs with machine learning. a: We model the hourly RoCoF with an ML model based on external
features, such as load ramps or forecast errors. By interpreting the model with SHAP, we can calculate daily (aggregated) SHAP values that explain the
average impact of a feature on the model prediction for each hour of the day (coloured areas). For example, load ramps (grey) have a positive impact on
the predicted RoCoF (solid line) at 07:00 and a negative impact at 22:00. b: The ML prediction yML(ti) predicts the hourly RoCoF with high accuracy in
this sample, yielding an overall performance of R2 = 0.73 on the test set. c: Driven by the SHAP results, we explain the sign mismatch of the load-based
model with the daily ramps of solar power and fast generation, such as pumped hydro. d-e: Pumped hydro ramps have a positive relation to the RoCoF and
solar ramps a non-linear dependency. The strong effect of negative pumped hydro ramps thus explains the deficits of the load-based model between 09:00
and 11:00 in the morning.

ramps down slowly thus following the load more smoothly
than scheduled generation, which offsets the RoCoF.

The sign mismatch of the load-based model at 04:00 is
not explained by the ML model and probably relates to an
overall bias in the hourly RoCoF. The ML prediction at 04:00
exhibits the average RoCoF value of −0.29 mHz/s (Fig. 3a),
which cannot be related to feature effects as SHAP values only
explain the prediction relative to the average. The average
RoCoF reflects a bias of the hourly DFD towards negative
values. For example, this bias can stem from different ramping
speeds for upwards and downwards regulation of generators,
or from a systematic bias in the power imbalance due to market
mechanisms. While our ML model reproduces the bias of the
average RoCoF, a physical explanation thereof is still open.

Finally, we point to the impact of local legislation that is
revealed by the "hour" feature in Fig. 3a. The hour exhibits its
only (strong) effect at 22:00. At this time wind power farms
in Germany are shut down due to environmental protection in
favour of bats and noise prevention [5]. This leads to a strong

negative effect on the RoCoF, which is well captured in our
ML model, but not included in the load-based model at all.

C. A refined view of DFDs

The ML results lead us to a refined view of the generation
behaviour that cause hourly DFDs (Fig. 4a). To include the
continuous effect of solar power into the load-based model, we
calculate modified generation steps by subtracting the hourly
solar power ramp ∆GS(ti):

∆PS(ti) = ∆PL(ti) − ∆GS(ti), (2)

In this way, we define a refined linear model that predicts the
RoCoF based on the power jump ∆PS(ti):

yS(ti) = a · ∆PS(ti) + b. (3)

Here, we introduced the intercept b to model the negative bias
of the RoCoF as discussed in Section III-B.

To visualise the refined model, we calculate the solar gener-
ation GS(t) for every minute with a cubic spline interpolation
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Fig. 4. A refined physical model better reproduces daily DFDs. a: Based on our ML results, we calculate modified generation steps ∆PS(ti) that do not
include continuous solar ramps. Instead, we interpolate the hourly solar power data to obtain a minute resolved solar generation GS(t). The panel sketches
the new (total) generation GS

T (t) which combines the smooth solar generation and generation steps of size ∆PS(ti). b: By using a refined linear model
yS(ti) of the modified steps ∆PS (3), we improve the prediction of the load-based model. The refined model better reproduces the sample (orange line),
with an overall performance of R2 = 0.63 on the test set. c: The refined model also reproduces the direction of DFDs throughout the day.

of the hourly solar power time series in our data set. The
refined generation curve is then given by GS

T (t) = GL(t) +
GS(t), where GL has hourly steps ∆PS . The resulting sketch
in Fig. 4a depicts the same sample as in Fig. 2a, but the
generation steps have another direction particularly at 09:00.
We clearly see that the continuous solar power ramps up faster
than the load between 09:00 and 10:00. As explained through
our ML model, this leads to fast downwards ramps of flexible
generation, as observed in Fig. 4a at 09:00. Notably, we can
also observe the smoothing effect of solar power between
13:00 and 15:00. Here, the solar generation smoothly follows
the load thus leading to a less severe generation step than
predicted through the load-based model.

The refined model of hourly power steps outperforms the
load-based model and explains the daily DFD pattern success-
fully. The prediction of the continuous sample in Fig. 4b better
aligns with the data, as compared to the load-based model, and
the overall R2-score yields 0.64 on the test set. Furthermore,
the refined model correctly reproduces the direction of the
daily RoCoFs in each hour of the day (Fig. 4c). Together with
a model bias, the approximation of hourly generation ramp
without the contribution of solar power already leads to a good
explanation of the daily DFD pattern.

IV. CONCLUSION

In summary, we have modelled and explored the relation be-
tween DFDs and external features such as load and generation
ramps using explainable ML. Our ML model explains 73% of
the variation within the slope of hourly DFDs. The evaluation
of a common, load-based DFD model yields a much lower
performance of 38% and does not entirely explain the daily
pattern of DFDs in Continental Europe. Using daily aggregated
SHAP values, we offer another way to explain the daily DFD
pattern, thus revealing multiple important external features that
go beyond a pure load-based view. Including this information
into the load-based predictor improves its performance to 64%
and gives a refined view on daily DFD patterns.

Our explainable ML model reveals that solar ramps and
scheduled (fast) generation ramps are important for the daily
DFD pattern. Solar power ramps continuously during the day.
Meanwhile, fast scheduled generation ramps, from e.g. hydro
power, have to balance this behaviour thus leading to DFDs
that can be opposite to the slope of the load curve. This
is consistent with other studies that point to the connection
between solar power and generation ramps on 15 min basis
due to intra-day electricity trading [24], [25].

Our explainable ML approach provides an alternative to
physical models of the grid frequency, but also complements
them. Physical models such as the DFD model in ref. [6]
have limits when modelling the impact of multiple external
features on frequency stability for each hour. Control pa-
rameters and highly resolved generation data are mostly not
publicly available, such that simulation have to use simplifying
assumptions. Our ML model therefore offers an alternative
by using publicly available data and estimating a model
for DFDs without physical simplifications. However, the ML
approach can also complement physical models by pointing to
unknown dependencies and important features that have to be
included to improve physical modelling. For example, we have
presented a refined model of hourly generation steps using our
ML insights, which improves the common load-based view.

As frequency deviations have been increasing in Continental
Europe, a limitation of large DFDs is urgently needed [5].
Data-based predictions can be combined with control actions
to prevent large DFDs [26], thus saving costs for control
actions and making the grid less vulnerable. Explainable ML
models can offer predictions [9], but they also contribute
by better understanding drivers and risks of DFDs in an
increasingly complex power system.
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A B S T R A C T

The transition to a renewable energy system challenges power grid operation and stability. Secondary control
is key in restoring the power system to its reference following a disturbance. Underestimating the necessary
control capacity may require emergency measures, such that a solid understanding of its predictability
and driving factors is needed. Here, we establish an explainable machine learning model for the analysis
of secondary control power in Germany. Training gradient boosted trees, we obtain an accurate ex-post
description of control activation. Our explainable model demonstrates the strong impact of external drivers
such as forecasting errors and the generation mix, while daily patterns in the reserve activation play a minor
role. Training a prototypical forecasting model, we identify forecast error estimates as crucial to improve
predictability. Generally, input data and model training have to be carefully adapted to serve the different
purposes of either ex-post analysis or forecasting and reserve sizing.

1. Introduction

Balancing and control is central for the stable operation of power
systems. Secondary control is one of three measures that are typically
installed to enforce the balance between power supply and demand [1].
While primary control acts within a few seconds after a disturbance
and stabilises the frequency, secondary control activates fully after a
few minutes and restores the frequency back to its reference value.
Secondary control, also referred to as automatic Frequency Restoration
Reserve (aFRR) in Europe, activates automatically according to the
local power mismatch of the control area. Meanwhile, a lack of control
reserves requires costly emergency measures such as load shedding. For
an appropriate reserve sizing and optimal control design we thus need
a precise modelling and a good understanding of the required aFRR
volumes. Furthermore, predicting future aFRR volumes can be helpful
for trading and bidding strategies.

Data-driven models have already proven to be excellent candidates
for modelling and predicting aFRR. In the past years, power system
data has become increasingly publicly available, thus enabling trans-
parent data-driven analysis and prediction [2,3]. Koch et al. have used
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multiple regression and data analysis tools to disentangle the German
paradox of increasing renewable penetration and decreasing imbal-
ance volumes [4]. Similarly, Ref. [5] applies a data-driven analysis to
examine the impact of 15 min intra-day trading on imbalances and
control volumes in Germany. Apart from ex-post analysis, data-driven
forecasting methods have been developed for the aFRR market to allow
for optimal bidding strategies [6]. From the perspective of Transmission
System Operators (TSOs), data-driven forecasting methods have been
used to optimise the dimensioning of aFRR capacities based on historic
data [7]. While simple probabilistic methods use parametric models
to estimate the probabilities of power imbalances, more advanced
methods apply machine learning to predict system imbalances from
external features [8]. In this context, Artificial Neural Networks [9],
(non-parametric) kernel density estimation and k-means clustering [10]
and LASSO [11] have been applied to predict aFRR volumes. However,
complex machine learning models are often black-boxes [12]. In par-
ticular, we cannot easily understand what the artificial intelligence has
learnt, which impedes scientific insights and discoveries [13].

https://doi.org/10.1016/j.epsr.2022.108489
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Fig. 1. An explainable machine learning model to predict the activation of automatic Frequency Restoration Reserve (aFRR). (a): Our model predicts the activated amount of
positive and negative aFRR in Germany with a 15 min resolution. We downloaded activated power and tendered power demands from the German TSOs [15], which is depicted
here for one time step in 2021. (b) We considered four different models. A daily profile, only dependent on the historic aFRR, and three models utilising data from the ENTSO-E
transparency platform [14]: a prediction-oriented model using only day-ahead values, an extended model including actual load, wind/solar generation, physical flows and thereby
forecast errors and a full model that also comprises actual dispatchable generation. (c): We trained and tested these models on randomised train, validation and test sets with
data from July 2019 to May 2021. The last two month of the data set served as a continuous test set for time series forecasting. (d): To explain our model predictions, we used
SHAP values [16], which quantify the impact of each feature on the model prediction 𝑓 (𝑥) relative to the expected prediction 𝐸[𝑓 (𝑥)] (the base value). The figure refers to the
prediction of positive aFRR for the time step used in panel (a).

Here, we leverage tools from eXplainable Artificial Intelligence
(XAI) to gain insights about the drivers of aFRR activation. Using pub-
licly available data [14,15], we build a machine learning model for the
ex-post analysis of historic data as well as a day-ahead predictor. Within
this study, aFRR predictors are first and foremost used as analysis tools
to explore the predictability of aFRR, and not necessarily as precise
forecasting tools directly applicable to reserve sizing. We interpret the
models with SHapely Additive exPlanation (SHAP) values [16], which
enable rich explanations of ex-post models as well as transparent day-
ahead predictors. As our case study, we focus on the German aFRR
and demonstrate how loss functions and data sets have to be adapted
for either use case. Our publicly available data set [17] comprises two
years of 15 min resolved data with 85 features from the German and
European power system as well as the corresponding aFRR volumes.

We start in Section 2 by describing our data collection and pre-
processing procedure as well as the machine learning model. In Sec-
tion 3, we use our model for an ex-post analysis of dependencies and
important features in the German aFRR system. In Section 4, we switch
to the day-ahead prediction of aFRR volumes and demonstrate the
impact of different loss functions and feature sets, before closing with
a discussion in Section 5.

2. Methods

2.1. Frequency restoration reserve: Markets and data

The design of balancing markets determines the procurement and
activation of control power. In Germany, the TSOs procure their aFRR
demand through an anonymous auction [6,15]. First, suppliers of aFRR
have to fulfil pre-qualification criteria such as a minimum activation
speed to participate in the auction. As of September 2020, hydro-
and gas-driven power plants represent the largest part (75%) of the
prequalified aFRR capacity [18]. Second, the TSOs tender a demand
for the required reserve capacity and energy, which is done for all four
German TSOs together (grid control cooperation). Then, prequalified
parties can sell reserve capacity (in MW) on the capacity market, which
they must hold available. In addition, a supplier can omit this step
and directly bid at the energy market (in MWh). The energy market
determines the suppliers that actually deliver the balancing energy.

The activation of aFRR depends on the local power imbalance. The
TSOs activate aFRR according to the imbalance of the control area.
The activation is typically proportional to the integrated imbalance,
which is the case for a standard PI-controller [1]. Suppliers with bids
on the energy market are activated successively starting with the lowest
price until the demand is met. However, the International Grid Control
Cooperation (IGCC) further changes the activated control volume [15].
The IGCC avoids the activation of counter-acting aFRR in different
countries through an imbalance netting among the 17 operational IGCC
member states in Europe (as of July 2021) [19].

Both the procurement and activation of aFRR exhibit fixed time
scales and deadlines. The TSOs tender capacity demands one week
ahead and the capacity market closes one day ahead of delivery, while
the energy market closes one hour ahead. On both markets, aFRR is
sold for 4 h blocks separately for negative (downward) and positive
(upward) regulation. These time scales also determine the resolution
of the available aFRR data.

For our prediction study, we used publicly available aFRR data
from July 2019 to July 2021 [15]. We downloaded tendered capacity
demands, which come with a 4 h resolution, and activated aFRR with
a resolution of 15 min (Fig. 1a). We used the Germany-wide activated
aFRR (in GW) as the target of our prediction, while the tendered
demands only serve as a benchmark. We note that the market design
during our period of investigation changed: The energy market was
only introduced in November 2020. Before, both the capacity price and
the energy price were submitted to the day-ahead capacity market and
energy bids with shorter lead times were not possible.

2.2. Input features and prediction models

As inputs for our prediction model, we used publicly available
power system features from the ENTSO-E Transparency platform [14].
The feature preparation included data collection, aggregation, upsam-
pling and feature engineering.

Following [20], we collected six feature types for Germany from
the ENTSO-E Transparency platform: Day-ahead forecast data for wind
and solar power, load forecasts, day-ahead scheduled generation, day-
ahead prices, actual generation per type and actual load. In addition,
we included pumped hydro consumption and cross-border power flows
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in this study. The flows comprise day-ahead and total commercial ex-
changes and physical flows. For each flow feature, the in and out flows
between Germany and its neighbours were directly aggregated into one
import–export balance reflecting the total (positive or negative) flow
into Germany.

To model the impact of imbalance netting (IGCC), we aggregated
the features across the other IGCC member states (excluding Germany).
We only included day-ahead forecast data, since the actual imbal-
ance netting between the countries should be reflected in the actual
cross-border flows. The aggregation follows the procedure in Ref. [20].

In line with the prediction target, we used features with 15 min
resolution. The German data mostly exhibits the required 15 min
resolution, except from day-ahead prices, scheduled generation and
flow variables. These have an hourly resolution, so that 4 hourly steps
were padded with the same value. The same procedure is applied to
IGCC features that often come with only 1 h resolution. Day-ahead load
and renewable forecasts are treated differently; here we used a linear
interpolation for upsampling for the continuous nature of the variable.

To enhance interpretability, we finally added engineered features
to our input data. For each feature, we constructed ramps (gradients
from time 𝑡 − 1 to 𝑡) and day-ahead forecast errors. Positive forecast
errors indicate an overestimation of the actual values by the day-
ahead forecast. The flows yield two forecast errors, the day-ahead
error between commercial exchanges and physical flows, as well as
the unscheduled flows (the difference between total exchanges and
physical flows).

From this data, we constructed four models containing different
feature sets (Fig. 1b): The day-ahead model contains only day-ahead
available data, the extended model also includes actual load, renewable
generation, physical flows and thereby forecast errors and the full
model also comprises actual conventional generation. Conventional
generators such as hydro or nuclear power participate in frequency
control [18], which opens the question whether we can predict the
activated control without including the actual output of participating
generation types. The fourth model, the daily profile, predicts the daily
mean evolution of the activated aFRR based on historic aFRR data,
without using additional features. We use a 5th model in Section 4,
which is a variation of the day-ahead model. It additionally contains
the day-ahead features (day-ahead load, wind and solar forecasts, . . . )
aggregated over the other IGCC member states.

2.3. Model training, evaluation and interpretation

We used Gradient Boosted Trees (GBTs) to predict the activated
aFRR from power system features. GBTs offer complex non-linear mod-
els and perform inherent feature selection [21], which is beneficial
for the case of strongly correlated time series features in the power
system [20]. Moreover, tree-based methods are highly interpretable
and offer efficient ways to compute model explanations [16]. We used
the LightGBM implementation of GBTs, which enables a particularly
fast way of model training [22].

To train our model, we split the data set into train, test and
validation set (Fig. 1c). First, we set aside the last two months of the
data set as a continuous test set for time series forecasting. Then, we
randomly split the remaining part into a train set (64%), a validation
set (16%) and a test set (20%). We optimised the hyper-parameters of
our LightGBM model via grid search and 5-fold cross validation on the
train set, while performing early stopping of the boosting rounds on
a validation set. Finally, we retrained the model with optimal hyper-
parameters on the union of the train and validation set. This model was
used to evaluate the performance on the randomised or the continuous
test set. Note that we used two different loss functions for training and
two different evaluation metrics, which we will specify depending on
the use case.

We interpreted the trained model with SHapely Additive exPla-
nation (SHAP) values [16]. SHAP values quantify the (positive or

Fig. 2. Prediction performance varies strongly with the model type and feature set. For
our ex-post analysis, we trained our model with an L2 loss and used the randomised
train and test sets to predict positive (left) and negative (right) activated aFRR. In terms
of the R2-score, the full model including actual hydro power generation performed best
which is likely a manifestation of reversed causality as hydro power supplies most of
the aFRR in Germany. Daily patterns in the aFRR activation are very weak such that
the daily profile performed badly.

negative) impact of each feature on an individual model prediction
relative to a base value. They avoid inconsistencies present in other fea-
ture attribution methods [23] and fulfil certain optimal properties [16].
For example, their local accuracy guarantees that SHAP values sum up
to the model prediction. Fig. 1d depicts a sample prediction, where
‘‘Forecast error load’’ has a positive and ‘‘Prices day-ahead’’ has a
negative impact on the prediction. Adding up all feature contributions
and the base value (the expected prediction) yields the model output
𝑓 (𝑥).

2.4. Data and code availability

Our data set, including the prediction targets and features, as well
as the results of our hyper-parameter optimisation is available on Zen-
odo [17]. The code, including the details on our feature pre-processing
and the hyper-parameter optimisation, is also archived on Zenodo [24].

3. Ex-post analysis of aFRR operation

We first consider the application of our machine learning model
for the ex-post analysis of the aFRR system. Model explainability is
essential for any analysis, and we resorted to SHAP values for this task
(cf. Section 2.3). For analysis purposes, we aimed at reproducing the
system trajectory as well as possible and thus chose a standard L2 loss
function (cf. Fig. 4a) and evaluated the performance of the model by
the R2 score. For model training, evaluation and interpretation we used
the randomised train, validation and test set (cf. Fig. 1c).

We found that the tree-based model reproduces the true system
trajectory with an R2 score in the range 0.45–0.63 depending on the
feature used in training set and analysis (Fig. 2). The R2 score reflects
the share of variability in the data that is explained by our model [25].
Hence, we conclude that the machine learning model accounts for
roughly half of the variability.

Taking into account the full set of features provides the best R2 score
as expected, but it does not necessarily provide the deepest insight
into the drivers of the aFRR system. This was revealed by the SHAP
framework, which quantifies both the relation of individual predictions
and feature values as well as the global feature importance. Inspecting
the results for the full feature set in Fig. 3, we found that the most
important features (for both positive and negative aFRR) are given by
actual generation or generation ramps of hydro power plants and the
ramp of nuclear power generation in the case of negative aFRR. The
hydro power plants can be switched and controlled rather rapidly and
thus provide a major share of aFRR power. In fact, they make up the
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Fig. 3. Partial dependency plots can reveal important drivers of activated aFRR depending on the model type. Dependency plots depict the relation between SHAP values and the
feature value, thus characterising the dependency of the model output on the feature. We show the three most important features for the day-ahead (left), extended (centre) and
full model (right) with decreasing mean absolute SHAP value (from top to bottom). The day-ahead and extended models did not include actual generation that supplies aFRR.
Thus, the most important dependency plots for these models likely reflect causal drivers such as forecast errors and mismatches between load and scheduled generation. In contrast,
the full model fitted relations between hydro power and aFRR activation, which probably reflect a reverse causation and must be interpreted differently in the ex-post analysis.
In this figure, all variables have the unit GW, except from ramp features (GW/h) and the ‘‘hour’’ feature (h).

largest amount of prequalified aFRR capacity in Germany [18]. Hence,
it is likely that we here observed a case of reverse causation: The
application of aFRR caused a strong activity of the respective hydro
power plants and not vice versa. Hence, the model with the full feature
set rather explained how aFRR is provided and not why. For instance,
the model suggested that positive aFRR is predominantly provided by
increasing hydro generation while negative aFRR predominantly pro-
vided by increasing pumped hydro consumption. One might extend the
analysis beyond hydro power features to further infer which generation
types actually contribute to aFRR provision.

In the case of negative aFRR, nuclear power ramps were among the
most important features. Nuclear power plants can in principle provide
aFRR, but they account for less than 2% of the total prequalified
capacity in Germany [18]. Hence, we conclude that the dependency
of aFRR activation and nuclear ramps likely reflects a causal relation.
Nuclear power plants typically ramp slowly and continuously, which
can lead to imbalances of power generation and load. In fact, a previous
study has shown a strong dependency between nuclear ramps and long-
lasting deviations of the grid frequency [20], which then results in the
activation of aFRR.

Restricting the model to the extended feature set provided a dif-
ferent picture. The R2 score decreases to 0.50 (negative aFRR) and
0.48 (positive aFRR), respectively (Fig. 2). In this case, the most
important features were given by the scheduled generation, the load
and forecasting error of load and renewable generation (Fig. 3). The
high importance of forecasting errors is absolutely consistent with our
expectation on the causal interrelation of the aFRR systems. Forecasting
errors generally lead to an imbalance of generation and load, causing
a deviation of the grid frequency from its reference value. The control
system will thus demand the activation of aFRR power.

The high feature importance of the scheduled generation and the to-
tal load reflects the general requirements for secondary control power:
If the scheduled generation is already high, it is more likely that the
total generation has to be reduced via negative aFRR than it has to be
increased via positive aFRR. Similarly, if the scheduled generation is
already low, it is more likely to be increased via positive aFRR than

it has to be reduced via negative aFRR. Hence, the SHAP values for
positive aFRR decreased with the scheduled generation, while the SHAP
values for negative aFRR increased with the scheduled generation. The
reverse relation was found for the load. The large impact of actual
load and scheduled generation (with reverse signs) suggests that the
difference between actual load and scheduled generation per 15 min
interval is very relevant for the aFRR. This intuitively makes sense as
the aFRR activation depends on the area control error, see also [5].

Remarkably, we did not observe a high feature importance of the
ramps of load and the dispatchable generation, which are central for
the understanding of deterministic frequency deviations (DFDs), in
particular the Rate of Change of Frequency (RoCoF) [20]. These DFDs
are caused by short-term imbalances due to different adaption/ramping
behaviour of generation and load [26]. The low importance of ramps in
the aFRR model suggests that DFDs are mostly compensated by primary
control. The low importance of DFDs for the aFRR activation is con-
sistent with other studies that show a strong decrease in deterministic
aFRR peaks between 2012 and 2018 due to the introduction of 15 min
intra-day trading in December 2011 [4,5].

In the day-ahead model, the most important features were the total
generation (or similarly load), as well as wind and solar power forecasts
and the hour of the day (Fig. 3). Dependency plots showed a strong
vertical dispersion, such that the dependencies were less clear than
in the other models. This observation, as well as the high importance
of the hour, showed that more specific information is missing in this
model, which is consistent with the additional performance decrease in
the day-ahead model compared to the extended and full model (Fig. 2).
Notably, load and generation were both used heavily by the day-ahead
and the extended models with similar but slightly different dependen-
cies. In the extended model, low generation led to smaller predictions
in negative aFRR, while a low load led to smaller predictions in positive
aFRR.

Finally, we remark that a good analysis model is not necessarily a
good prediction model. In the current framework this becomes apparent
if we do not choose a randomised test set, but a continuous test set in
the end of the available training interval, i.e., replace an interpolation
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Fig. 4. Loss functions have to fit the use case of the model. (a): For the day-ahead prediction of activated aFRR, we trained our model both with the L2 loss (squared error)
and the quantile loss (90% quantile) and evaluated its performance on the continuous test set (cf. Fig. 1c). In this figure, a positive prediction error indicates an overestimation
of the true value by the prediction. (b) and (c): The mean quantile loss (90% quantile) represents the weighted costs of over- and underestimating the aFRR volume, where an
underestimation is much more costly than procuring too much aFRR. The quantile loss model performed best and further minimised these costs compared to the L2 loss model.
While the L2 loss suits best for explaining the aFRR trajectory ex-post, the quantile loss better fits the task to predict required aFRR volumes day-ahead. (d): Tendered aFRR
demands from the Transmission System Operators (TSOs) strongly overestimated the activated aFRR in most cases thus yielding a high mean quantile loss.

by an extrapolation task. In this case the R2 score dropped dramatically
to values below 0.38 (full model), 0.12 (extended model) and 0 (day-
ahead model), respectively (plots not shown, see code for details [24]).
R2 scores below 0 indicate a performance that is worse than simply
predicting the average aFRR volume at each time step [25]. The overall
low performance might be related to the fact that the entire aFRR
system evolves quite strongly during time, for instance regulatory
framework has been adapted repeatedly during the analysis period (cf.
Section 2.1).

4. Day-ahead predictability of activated aFRR

So far, we utilised explainable machine learning to understand aFRR
activation ex-post. Within this section, we explore the predictability of
aFRR, i.e., we propose a prototypical forecasting model based solely
on day-ahead inputs. Our goal is not to obtain a ready-to-use forecast-
ing tool but instead to understand the possibilities and limitations of
forecasting aFRR activation in general.

The L2 loss used in the analysis part was well-suited to predict the
actual aFRR on average but often underestimated the necessary control.
Indeed, the L2 loss treats predictions underestimating control identical
to those overestimating it, while in reality a shortage of control is much
more costly: If the necessary control exceeds the estimated control,
i.e., the control available in back-up generators, the frequency cannot
be restored back to its original set point, making it vulnerable in case
of further disturbances and thereby increasing the risks of generator
disconnections and load shedding [1].

Hence, moving from a pure ex-post analysis towards a predictive
model, we introduced a new loss function, namely the quantile loss,
see Fig. 4. Similar to the L2 loss it penalises predictions more the
further they are away from the actual value. In contrast to the L2
loss, the quantile loss penalises asymmetrically: Overestimating costs is
punished much less than underestimating costs (Fig. 4a). In particular,
we employed the 90% quantile, i.e., we expect to overestimate the
target value in 90% of the cases by penalising underestimation nine
times more than overestimation. Consistently, we did not compute the
R2 score when evaluating model performance but the mean quantile
loss, which can be interpreted as the weighted average cost of false
prediction and procurement of aFRR capacity. Any underestimation of
control needs causes larger costs than any overestimation. Here, we
consider the 90% quantile corresponding to weight factors of 10 ∶ 1,
but the model can be readily adjusted for the actual costs of a TSO
(which are not available to us). In contrast to the previously used R2

score, a model performs better when its mean quantile loss is low.

Indeed, when comparing models trained on L2 loss and quantile
loss, we noted a substantial improvement by introducing the adequate
loss function (Figs. 4b and 4c). Within each loss function, moving
from the day-ahead to the extended model again yielded a further
improvement, consistent with the results from Section 3. Furthermore,
we considered an expansion of the day-ahead model where we included
the International Grid Control Cooperation (IGCC) as a new feature, see
Section 2.2 for details. Including the IGCC altered the prediction quality
only slightly, regardless of the chosen loss function, and hence we did
not investigate it in detail in the following. Finally, the TSO (tendered)
demand systematically overestimated the necessary control by far (see
also Fig. 5) and hence led to the highest costs according to the loss
considered here (Fig. 4d).

The differences between day-ahead, extended and tendered demand
became even more clear when visualising aFRR time series (Figs. 5a and
5b): The tendered capacity demand was almost constant and always
overestimated the actual demand substantially. The true time series
showed pronounced peaks, which were not fully reproduced by the day-
ahead model. Meanwhile, the extended model more closely resembled
the true time series. Using SHAP, we were able to investigate why
the predictions of the day-ahead and the extended model differed. For
individual days, we identified forecast errors in solar generation and
ramps as the main reasons (Figs. 5c and 5d). More systematically, we
revealed forecast errors in both solar and wind power to drive the
mismatch of the predicted power (Figs. 5e and 5f), with solar power
playing a more important role for positive and wind power for negative
aFRR.

To obtain a comprehensive comparison between day-ahead, ex-
tended and full model using the quantile loss, we compared their most
important features in Fig. 6. Based on the design of the models, only
the full model could use specific actual generation information, e.g., on
hydro or nuclear power, while forecast errors were available to both
extended and full model and the day-ahead model was restricted to
estimates. Intriguingly, each model used some of its unique features
extensively and hence they typically had a high rank, yielding results
consistent with the L2 loss results discussed in Fig. 3. Although different
features were available, we still noticed some overlap: For positive
aFRR both the extended and the day-ahead model utilised load (or load-
day-ahead) as a top feature, while negative aFRR was predicted also
based on forecast errors of load and scheduled generation respectively.
This indicates that the absolute value of the load (or the necessary
generation) is important for predicting aFRR usage. Furthermore, the
extended model heavily used forecast errors of volatile renewable gen-
eration, while the day-ahead model relied on the day-ahead renewable
forecasts. This suggests that our day-ahead model tried to estimate
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Fig. 5. SHAP values identify volatile renewable forecast errors as driving the loss in
the day-ahead aFRR prediction. (a) and (b): The figures depict the prediction of the
quantile loss models for July 14, 2021, as part of the continuous test set (cf. Fig. 1c).
While the day-ahead model already covers activated aFRR volumes for many time steps,
it underestimates the volumes in certain periods, where the extended model performed
better. (c) and (d): The SHAP values represent the impact of solar forecast errors on
the prediction of the extended model (trained with quantile loss). For example between
9:00 and 10:00, the extended model better estimated the positive aFRR mostly due to
the large impact of solar forecast errors in the model, thus pinpointing the source of
prediction errors in the day-ahead model. (e) and (f): The correlation 𝜌 between the
underestimated power in the day-ahead model and SHAP values of the extended model
generalises this observation. We display the 5 features with largest absolute correlations
for positive and negative aFRR individually, showing the highest correlations for solar
and wind forecast errors.

potential forecast errors from the day-ahead generation forecasts since
forecast errors appeared as the actual drivers of control activation,
indicated by the increased performance of the extended model. Ideally,
forecast errors would be as small as possible, thereby reducing the need
for aFRR. If this is not possible, including uncertainties in the forecasts
might give better estimates of necessary aFRR.

5. Discussion

Concluding, we have demonstrated how boosted trees and SHapley
Additive exPlanations (SHAP) offer versatile tools for investigating
secondary frequency control both for ex-post interpretation and also
when forecasting trajectories.

Including all available features in the ex-post analysis yielded the
most accurate description, both for negative and positive aFRR. In-
terestingly, the aFRR behaved very differently from deterministic fre-
quency deviations (DFDs). DFDs are mostly driven by ramps [27]
and are already well-described by daily profiles [5,26]. Contrary, the
aFRR depends much more on the mismatch between actual load and
scheduled generation due to forecasting errors and not as much on
ramps, thus not showing a pronounced daily profile.

The day-ahead forecasts of the necessary aFRR mostly relied on day-
ahead estimations for the volatile renewable generation and also on the
total load and generation. Using SHAP, we did not only obtain a most
open and interpretable model but also had the opportunity to identify
the cause for mispredictions, e.g., pinpointing them to large solar and
wind power generation forecast errors (Fig. 5). This analysis allowed us
to understand the predictability of aFRR in general, while a ready-to-
use forecasting tool would require further optimisation, for example a
fine-tuning of the loss function or adding a security margin to prevent
the underestimation of aFRR.

Several important lessons are to be learnt when applying machine
learning to power system analysis: Firstly, good performance and inter-
pretability of machine learning models can be achieved by combining
complex models with ex-post interpretations, such as boosted trees
combined with SHAP used here, or right-off starting with white-box
models, i.e., choosing techniques that are inherently interpretable [28].
Hence, they allow reducing the usage of black-box machine learning
models, which pose severe security concerns [29]. Secondly, the se-
lection of input features is critical when answering research questions
via machine learning: Using ex-post analysis of all available generation
data, we observed hydro power as critical. But this is likely a reverse
causality: Generation in hydro power plants does not raise the need for
secondary control but the necessary secondary control is provided by
hydro power plants. Furthermore, when excluding features, in our case
moving from the full towards the day-ahead model, different features
will be used for similar predictions. Therefore, before deeming a feature
essential based on a single feature set, regularisation methods [21]
should be considered and different feature sets used to train a model.
Thirdly, loss functions are critical to tune the model towards desired
performance. In the case of control power, underestimating the power
is much more costly than overestimating it and this has to be reflected
in the loss function. Ideally, loss functions are directly related to the
actual costs of false predictions in the system under investigation. While
a square loss (L2 loss) is adequate as an ex-post analysis tool, a quantile
loss is more appropriate for predictions.

Frequency restoration capacities have previously been estimated
using machine learning [9–11], including the application of quantile
loss functions. Compared to these earlier studies, we make a clear
comparison between forecasting and ex-post analysis and use the same
methods for both tasks, namely boosted trees analysed via SHAP values.
Thereby, we emphasise the interpretability of a machine learning ap-
proach instead of only optimising performance. By interpreting analysis
results, we obtain insights into the system itself and thereby generate
value beyond individual algorithms.

Our study of day-ahead aFRR forecasting using different loss func-
tions is a starting point to develop appropriate predictors for aFRR
demand. Such a prediction could then be used to optimise the capacity
procurement for aFRR day-ahead thus saving costs and freeing flexible
capacity for other usage. To move towards such as general predictor,
the presented analysis can be further extended, e.g., by incorporating
load and generation data from other countries within the same syn-
chronous area or investigating the aFRR in other synchronous areas.
Before employing our forecast to estimate aFRR needs, it is necessary
to test the effect of time delays in aFRR activation, which can lead
to an underestimation of control within the prediction interval. From
the interpretation side, SHAPs offer further analysis tools, such as
interaction analysis [20] not used here in detail, which could prove
useful to disentangle the influence of individual features on aFRR
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Fig. 6. An overview of feature importances reflects consistent overlaps as well as differences between the model types. We display the mean absolute SHAP value as a measure
for the feature importance for all three model types trained with the quantile loss (90% quantile). To be able to compare with Fig. 3, we evaluated the SHAP values on the
randomised test set (cf. Fig. 1c). The figure shows the union of the four most important features across all model types and targets and the numbers on top of the bars indicate
the rank of the four most important features. From left to right, the models become more restrictive in the feature set thus resulting in differences between the most important
features. However, (day-ahead) load as well as features related to wind and solar power were consistently important in all models.

needs. Finally, aFRR is part of a regulatory framework and interacts
heavily with current market rules. At the moment, it remains an open
question how the predictability and the impact of specific features
changed over time.
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4. Stochastic modelling of grid frequency
dynamics with techno-economic drivers

Machine learning models are well suited to explain risks and drivers of grid frequency dy-
namics. Using tools from explainable AI, I successfully predicted stability indicators and
control activation from techno-economic features, which revealed important impact factors
and dependencies (Section 3.1-3.3). These models focused on large-scale frequency dy-
namics represented by temporally aggregated targets, as stability indicators and control
activation are defined for quarter-hourly or hourly time intervals. In this section (4.1), I ex-
tend the prediction target to short-term dynamics on a second timescale. However, techno-
economic features are only available at hourly timescales, which represent the large-scale
trends of power system dynamics [73]. This challenges their integration into short-term
prediction models. As a solution, I propose a physics-inspired machine learning (PIML)
model, which integrates a stochastic model of short-term dynamics and a neural network
to assimilate techno-economic features.

As a use case, I demonstrated the PIML approach for grid frequency dynamics in Con-
tinental Europe. The PIML prediction of 15 minute frequency dynamics outperformed im-
portant benchmarks such as the daily average profile. In particular, the prediction model
can forecast the next 15 minutes of the time series by using only day-ahead available
features. Furthermore, the model learned time-dependent dynamical parameters, which
showed a strong variability, thus emphasising the importance of non-autonomous mod-
els for grid frequency dynamics. Again, I used SHAP values to explain the model, which
revealed important drivers such as the wind feed-in and fast generation ramps. Finally, I
showed that synthetic time series generated by the model reproduce central characteristics
of grid frequency time series, such as the heavy tails of their distribution. I contributed
to this work by conducting the research, creating the figures, designing the research and
writing the major part of the paper.
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The operation of power systems is affected by diverse technical, economic and social factors.
Social behaviour determines load patterns, electricity markets regulate the generation and weather-
dependent renewables introduce power fluctuations. Thus, power system dynamics must be regarded
as a non-autonomous system whose parameters vary strongly with time. However, the external driv-
ing factors are usually only available on coarse scales and the actual dependencies of the dynamic
system parameters are generally unknown. Here, we propose a physics-inspired machine learning
model that bridges the gap between large-scale drivers and short-term dynamics of the power sys-
tem. Integrating stochastic differential equations and artificial neural networks, we construct a
probabilistic model of the power grid frequency dynamics in Continental Europe. Its probabilis-
tic prediction outperforms the daily average profile, which is an important benchmark. Using the
integrated model, we identify and explain the parameters of the dynamical system from the data,
which reveals their strong time-dependence and their relation to external drivers such as wind power
feed-in and fast generation ramps. Finally, we generate synthetic time series from the model, which
successfully reproduce central characteristics of the grid frequency such as their heavy-tailed distri-
bution. All in all, our work emphasises the importance of modelling power system dynamics as a
stochastic non-autonomous system with both intrinsic dynamics and external drivers.

I. INTRODUCTION

Mitigation of climate change requires a comprehensive
transformation of our economy and lifestyle, in particu-
lar the way we generate and utilise electric power [1, 2].
Power plants based on fossil fuels must be replaced by
renewable sources such as wind and solar power, which
are volatile and uncertain [3]. Various sectors are be-
ing integrated, for instance through electric heatpumps
[4], introducing numerous new interdependencies and in-
creasing system complexity. The electric power system is
at the heart of this transformation. Hence, understand-
ing risks and guaranteeing stability of the electric power
system is critical amidst far-reaching challenges [5].

Power system operation is determined by various tech-
nical, economic and social influences and perturbations.
Power generation from renewable sources is essentially
determined by the weather [6, 7], while the dispatch of
conventional power plants is determined on various elec-
tricity markets [8]. Moreover, the load depends on the
decisions and actions of millions of consumers [9]. As the
power grid does not store electric energy, generation and
load must be balanced at all times. On long time scales
of hours, this is achieved by trading on electricity mar-
kets [10]. On short time scales of seconds and minutes,
several layers of control reserves balance the grid, e.g.,
to counteract unforeseen perturbations and forecasting
errors [11]. The activation of these reserves is mainly

∗ d.witthaut@fz-juelich.de

controlled by the grid frequency, which directly monitors
the power imbalance: A scarcity of generation leads to
a drop of the frequency, which is easily monitored any-
where in the grid. The stability of this load-frequency
control system is challenged by the energy transforma-
tion, as the effective inertia of the grid decreases making
the frequency more susceptible to perturbations [12].

The realistic modelling of frequency dynamics in large-
scale power systems is profitable but complex due to its
non-autonomous character. Stochastic dynamical mod-
els have successfully reproduced central characteristics
of frequency measurements such as their non-standard
distributions [13–15]. Such models can be used to gener-
ate synthetic frequency time series, which are, for exam-
ple, employed to optimise electric devices [16]. Moreover,
they can be used to explore dynamics under different op-
erating conditions, e.g., with an increased wind power
generation [17]. However, multiple technical, economic
and social influences and perturbations shape power sys-
tem dynamics, as explained above. As a consequence,
the power system must be regarded as a stochastic non-
autonomous dynamical system, which makes grid fre-
quency modelling a daunting task.

In this context, the data-driven representation of ex-
ternal drivers can greatly facilitate realistic models, but
data assimilation is challenging due to insufficient data
sources. Integrating actual load time series can improve
stochastic models of grid frequency dynamics in Conti-
nental Europe [14]. The assimilation of load and gen-
eration data enabled an accurate reproduction of grid
frequency recordings for the Gran Canaria island [17].
However, load and generation time series are typically
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only available at hourly time scales [18], while frequency
dynamics happen at much smaller time scales, thus re-
quiring a careful adoption of these external drivers. For
large-scale power systems such as the Continental Euro-
pean grid, the data is often incomplete with missing or
unrealistic data points [19]. The physical model is un-
certain as for example control schemes vary among local
control zones and detailed setups are not publicly avail-
able [20]. Finally, important dynamical parameters such
as the inertia cannot be calculated exactly due to scarce
time series on the power plant level [21].

In this work, we propose physics-inspired machine
learning (PIML) to approach these challenges. Com-
pared to numerical simulations, PIML models can per-
form better in solving ill-posed problems with noisy insuf-
ficient data and imperfect physical models [22, 23]. More-
over, they can better generalise from small amounts of
data than common machine learning methods, and they
efficiently solve inverse problems of differential equations
in situations with insufficient data or incomplete models
[22]. Notably, inverse problems are particularly impor-
tant for power system control to estimate hidden states
or dynamical parameters from measurements [24]. The
inverse problem of inferring system parameters from in-
put/output data is known as system identification [25]
and PIML models offer a promising tool for such appli-
cations [26].

In particular, we develop a PIML model for the load-
frequency dynamics of electric power systems, which in-
cludes proportional and integral controllers, stochastic
noise and external techno-economic driving factors. The
internal dynamics is described by a set of stochastic dif-
ferential equations, which admit an analytic solution.
The external driving is manifested through specific sys-
tem parameters, which depend on a variety of techno-
economic features such as the generation mix. This de-
pendency is deduced via a feed-forward artificial neural
network (FFNN), which is trained on data of the Con-
tinental European power system in a maximum likeli-
hood approach. Finally, we interpret our model with
SHapely Additive eXplanation (SHAP) values [27, 28]
to extract the dependency between dynamical parame-
ters and techno-economic features. All in all, the model
bridges the gap between the large-scale behaviour of in-
terdependent energy systems and markets and the short-
term dynamics of the power system.

The article is organised as follows. In Sec. II we in-
troduce the physics-inspired machine learning model for
the grid frequency dynamics and discuss its implemen-
tation. In Sec. III we present and evaluate three model
applications: probabilistic prediction, system identifica-
tion and explanation, and generation of synthetic time
series. Finally, we discuss our results as well as possible
future directions in Sec. IV.

II. AN INTEGRATED MODEL FOR POWER
SYSTEM LOAD-FREQUENCY DYNAMICS

Here, we present the details of how we constructed
a physics-inspired model of the power grid frequency
including a stochastic description of the frequency dy-
namics on coarse scales and the interaction with techno-
economic features. Furthermore, we interpret the model
in terms of power system operation and discuss the im-
plementation as an artificial neural network. The de-
tailed implementation of our data preparation and model
pipeline, as well as all input data and the results are avail-
able on Zenodo [29, 30].

A. Short-term dynamics and control of the grid
frequency

Our starting point is a stochastic model for the dynam-
ics of the grid frequency as illustrated in Fig. 1a. The
rate of change of the frequency at a time t is determined
by the balance of power generation and load as well as
the load-frequency control system (details are provided
in appendix A 1). Denoting the deviation from the ref-
erence as ω(t) = 2π(f(t)− fref), we have the equation of
motion

M
dω

dt
= Pim(t) + Pnoise(t) + Pcontrol(t), (1)

where M is the aggregated inertia constant. The power
imbalance on the right-side has been decomposed into
three contributions. The term Pim(t) denotes sustained
power imbalances, for instance due to a mismatch of the
load and the scheduled generation of dispatchable power
pants (cf. Fig. 1b). For time intervals of a quarter-hour,
we can approximate the time dependence of these imbal-
ances by an affine linear function

Pim(t) = M · (q + rt), (2)

where q models the power step of scheduled genera-
tion and r represents the continuous drift of the load
(cf. Fig. 1c). The term Pnoise(t) describes short-term
fluctuations of the power balance, which we modelled as

Pnoise(t) = M ·D · ξ(t), (3)

where ξ(t) is white noise with a standard normal distri-
bution and D quantifies the strength of short-term power
fluctuations. The term Pcontrol(t) denotes the balance of
primary and secondary load-frequency control, which can
be modelled by a proportional-integral law as

Pcontrol(t) = −M
τ
ω(t)− M

κ2

∫ t

ti

ω(t′) dt′

︸ ︷︷ ︸
=:θ(t)

(4)

with time constants τ and κ. We note that some simpli-
fications are necessary to keep the model tractable. For
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instance, Eq. (4) neglects the existence of a small dead-
band in the proportional control law.

Due to the presence of noise, the equation of motion (1)
must be interpreted as a stochastic differential equation
(SDE) with the explicit form

dθ

dt
= ω

dω

dt
= q + rt− ωτ−1 − θκ−2 +Dξ(t). (5)

The parameter τ quantifies the effective primary control
time scale. Equation (5) resembles a driven harmonic
oscillator with an eigenfrequency κ, which can be inter-
preted as the intrinsic time scale of secondary control. In
contrast, the effective time scale of secondary control is
approximated by τ/κ2 [13], as the frequency decays with
this time constant in the overdamped case [14]. Note that
these are only effective parameters which were rescaled
by the inertia M . For example, the actual primary con-
trol strength is M/τ (Eq. (4)). However, the whole model
is invariant under a scaling of M (cf. appendix A 2) such
that it is only possible to estimate the ratio of parameters
and the inertia.

Applying Itô’s calculus, the SDE can be recast into a
Fokker-Planck equation (FPE) of the probability density
function P(ω, θ; t)

∂

∂t
P(θ, ω; t) =

[
− ∂

∂ω

(
q + rt− τ−1ω − κ−2θ

)

− ∂

∂θ
ω +

D2

2

∂2

∂ω2

]
P(θ, ω; t). (6)

As we show in appendix A 3, the FPE is solved by a
multivariate Gaussian distribution

P(x; t) =
1

2π|Σ| exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(7)

with x> = (θ, ω) and time-dependent parameters

µ(t) =

(
µθ(t)
µω(t)

)
, Σ(t) =

(
σ2
θ(t) σθω(t)

σθω(t) σ2
ω(t)

)
,

if the parameters satisfy the ordinary differential equa-
tions

d

dt
µθ = µω

d

dt
µω = q + rt− τ−1µω − κ−2µθ

d

dt
σ2
θ = 2σθω

d

dt
σ2
ω = σ2ω − τ−1σθω − κ−2σ2

θ

d

dt
σθω = −2τ−1σ2

ω − 2κ−2σθω . (8)

Here, µ and σ are the mean and standard deviation of the
angle and the frequency deviation, while σθω represents
their covariance.

In appendix A 5, we solve the moment equations (8)
analytically, thus solving the entire stochastic dynamic
model, which vastly simplifies the analysis.

B. Power system operation and interdependecies

The SDE for the frequency dynamics in Eq. (5) con-
tains several parameters, describing the load-frequency
control system (τ , κ), or the power imbalances on differ-
ent time scales (r, q, D). The parameters are not con-
stant, but change during the day. For instance, the mar-
ket based scheduling of conventional power plants causes
characteristic imbalances of generation and load [31, 32].
Electricity is traded on the spot markets in blocks of 15,
30 or 60 minutes, leading to characteristic patterns of
the power imbalance Pim(t) illustrated in Fig. 1b,c. The
shape of these patterns, as well as other properties of the
power system, change in time due to the influence of a
variety of techno-economic features.

We thus propose a model that integrates the internal
dynamics of the frequency-control system, the stochastic
noise, and the impact of various techno-economic fea-
tures. In every 15 minute interval, the frequency is mod-
elled by the SDE (5). The system parameters τ , κ, D, r,
q change from interval to interval, depending on the in-
fluence of external techno-economic features as detailed
below. This dependence is modelled by a FFNN, that is
trained such that the stochastic dynamics best fits the
recorded time series. More precisely, the FFNN consti-
tutes a parameter model FNN : X 7→ ϑ, where X sum-
marises the values of techno-economic features (Fig. 1d).
The vector ϑ includes the system parameters τ , κ, D, r,
q as well as the initial covariances σωθ,0, σ2

ω,0 and σ2
θ,0

at time t = ti, while the initial means µω,0 and µθ,0 are
directly obtained from the data.

We thus establish a model that links different tempo-
ral and technological scales, from the slow evolution of
electricity markets to the fast dynamics of the power grid
frequency. The integrated model predicts a probability
distribution P(ω, θ; t) for an entire interval of 15 minutes
from techno-economic features.

C. Techno-economic features affecting power
system dynamics and operation

As input features for the PIML model, we used sev-
eral operational time series of the Continental European
power system from the ENTSO-E Transparency platform
[18]. Following ref. [28], we downloaded load forecasts,
day-ahead scheduled generation, day-ahead forecast data
for wind and solar power, day-ahead electricity prices, ac-
tual generation per type and actual load. In addition, we
included pumped hydro consumption (cf. [33]), as well as
net scheduled, i.e., market-based flows and net physical
flows between Continental Europe and other synchronous
areas (cf. [34]).
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FIG. 1. A physics-inspired machine learning model for the power grid frequency. a In each interval [ti, ti+1], we modelled the
grid frequency with a stochastic process that provides a normal distribution with time-dependent mean µω(t) and standard
deviation σω(t). The panel depicts our model prediction of the Continental European grid frequency at ti = 23:00 on the 28th of
October 2018 in comparison to the recorded data. b, Deviations from the reference frequency are partly driven by deterministic
power imbalances Pim(t) = M · P (t). These result from a different time evolution of generation G(t) and load L(t) due to
the market-based dispatch of power generation, which is illustrated in this panel using self-engineered synthetic data. c, We
approximate the deterministic mismatch with a sawtooth function P (t). d, The full probabilistic model P(ω, t) incorporates
deterministic imbalances Pim(t), additional stochastic imbalance fluctuations Pnoise(t) and the load-frequency control Pcontrol(t).
The parameter model FNN predicts the model parameters, i.e., the imbalance and control parameters (colour highlight), as
well as the initial covariances, from N = 77 techno-economic features by using a feed-forward neural network (FFNN).

We prepared the features for each 15 minute interval.
This opens the possibility to capture the effects of in-
traday electricity markets that operate in 15 minute in-
tervals, while the day-ahead electricity market typically
acts every 60 minutes [8]. To this end, we determined the
time resolution of each feature in each country, which can
vary due to different market designs. Then, we upsam-
pled 60 minute data using linear interpolation for load
and renewable generation data, and forward padding for
all other feature types.

To gain additional interpretable input data, we engi-
neered physically meaningful features and aggregated the
data area-wise (cf. [28, 33]). We included forecast errors
(day-ahead minus actual), ramps (time derivative of a
feature) and unscheduled flows (scheduled minus physical
flows). Since all features are only available on country-

level, the data was finally aggregated within the whole
Continental European area to represent the aggregated
impact on the grid frequency (the detailed implementa-
tion is available on Zenodo [29]).

The grid frequency recordings used in this work were
taken from ref. [35], which provides pre-processed fre-
quency data from the German transmission system op-
erator TransnetBW [36].

D. Artificial neural network model

The integrated model provides a probabilistic predic-
tion of the power grid frequency for every 15-minute in-
terval [ti, ti+1]. The architecture of the model is depicted
in Fig. 1d.
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As input, we used the techno-economic features
X(i) = (X1(i), ..., XN (i))T for each time interval
[ti, ti+1]. In the first step, each featureXk was normalised
using functions ηk(Xk) = (Xk−〈Xk〉)/σk to improve nu-
meric stability, where 〈·〉 denotes the average and σk the
standard deviation of the feature.

The normalised features were fed into a FFNN of Nh
hidden layers with Nu units and activation functions ϕ.
The last layer comprises a linear activation λ, as we aim
to predict real-valued parameters ϑ.

The following layer rescales the output of the FFNN
and implements several constraints. The rescaling was
implemented to improve training efficiency and stability.
After random initialisation, the outputs uj of the FFNN
typically have the same scale, but the physical param-
eters do not. Such a mismatch will yield large initial
errors along certain parameter axis leading to inhomoge-
neous loss landscapes which can make optimisation in-
efficient and more difficult [37]. This difficulty can be
mitigated by a suitable rescaling. Furthermore, several
output variables must respect physical constraints. For
instance, the time constants τ and κ must be positive
and respect the inequality κ ≥ 2τ to avoid an unphysical
oscillation behaviour of the solution. Rescaling and con-
straints were implemented with parameter-specific func-
tions νj(uj), which are described in appendix C.

After rescaling, the output ϑ(i) of the parameter model
FNN was used to compute a probabilistic prediction of
the grid frequency for the entire time interval [ti, ti+1]
based on Eq. (7). The vector ϑ(i) contains the system
parameters as well as the covariances at t = ti, while
the means µω,0 and µθ,0 are directly taken from data.
For training and forecasting applications, we used the
actual value of the frequency µω,0(i) = ω(ti) and esti-

mated µθ,0(i) =
∫ ti
ti−60s ω(t′) dt′. For the generation of

synthetic time series, we predicted intervals sequentially
in time and estimated µω,0 and µθ,0 from the preceding
prediction and not from the data.

E. Training, testing and interpretation

Our complete data set comprises 107650 data points
from 2015 to 2019. In particular, it includes features
X(i) and frequency time series ω(i) = (ω(ti), ..., ω(ti +
tmax))T for each interval i. To assess the time-
dependence of the performance, we modelled and pre-
dicted subsets of the 15 minute interval with tmax < 15
min (cf. Sec. III A), but the full interval (tmax = 15 min)
was used in all other cases.

We quantified the ability of the model to predict
the stochastic frequency dynamics by the negative log-
likelihood. For a given time interval I = [ti, ti + tmax],
the negative log-likelihood is defined as

C(ω(i),ϑ(i)) = −
∑

t∈I
logP(ω; t|ϑ(i)), (9)

TABLE I. Parameter choices during hyperparameter optimi-
sation. Sig(x) is the sigmoid function and tanh(x) the hyper-
bolic tangent.

Possible values
Learning rate 10−4, 10−3, 10−2

Dropout rate 0, 0.1, 0.2, 0.3
Nu 64, 128
Nh 3,5,7

Activation ϕ(x) Sig(x), tanh(x)

where P (ω; t|ϑ) is the marginal of the PDF (7) evalu-
ated at the measured data ω(t). The log-likelihood is a
negatively oriented metric, i.e., smaller values represent
a better performance.

To train the FFNN, we initialised the weights using
the Glorot uniform initialiser [38]. Using data from 2015
to 2017, we trained the weights with stochastic gradient
descent using the ADAM optimiser with a fixed learning
rate [37]. As a loss function we chose the negative log-
likelihood (9), summed over all quarter-hour intervals in
the training set. The model hyperparameters were opti-
mised using random search on data from 2018 (as a vali-
dation set) and with parameter choices defined in Tab. I.
In particular, we trained the model for 100 epochs and
applied early stopping based on the validation loss. Then,
we retrained the best model on data from 2015 to 2018
and evaluated the performance in terms of the negative
log-likelihood on data from 2019 as a test set.

We benchmarked the developed model by comparing
its performance to the daily profile of the grid frequency,
which is defined as follows. For a fixed time of the
day td, we collected all frequency values recorded on
all days in the training set and calculated their average
µp(td) and the corresponding standard deviation σp(td).
Our daily profile model Pp returns a normal distribution
Pp(ω; t) = N (µp(td), σp(td)) based on the time of the day
td(t) of the time step t. For example, the predicted mean
µp(td) for January 11, 2019, at 11:00 equals the average
of frequency values at 11:00 over all days in the train-
ing set. In addition to the daily profile, we applied the
constant model as a benchmark, which simply provides a
normal distribution using the global mean and variance
of the whole frequency time series.

Finally, we interpreted our parameter model FNN :
X 7→ ϑ with SHapely Additive eXplanation (SHAP)
values [27], which attribute the prediction of a single pa-
rameter ϑj(i) to the impact of different features Xk(i).
Aggregating individual SHAP values offers a tool to in-
spect feature importances and dependencies extracted
by the FFNN. In particular, we used KernelSHAP [39],
which approximates SHAP values for any machine learn-
ing model.

Our FFNN model is implemented with tensorflow [40]
and tensorflow probability [41] and we used keras tuner
for hyperparameter optimisation [42].
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III. MODEL APPLICATION AND
EVALUATION

We demonstrate and evaluate three applications of our
PIML model. First, it provides a probabilistic predic-
tion of the grid frequency trajectory in each time in-
terval, which we evaluate in terms of the performance
and compare it to elementary benchmarks (Sec. III A).
Second, the model infers time-dependent imbalance and
control parameters based on the data, i.e., we can use
it for system identification. We analyse their time-
dependence, compare our estimates with values from
the literature and explain their dependency on techno-
economic features with SHAP values (Sec. III B). Third,
our model provides a tool for generating synthetic fre-
quency time series by drawing samples from the stochas-
tic process. Such synthetic scenarios should reproduce
central stochastic characteristics of the grid frequency,
which we evaluate in Sec. III C.

A. Probabilistic prediction of the grid frequency

Our physics-inspired model provides a probabilistic
prediction for unseen samples of the grid frequency. Its
performance depends both on the length of the prediction
and on the available set of features (Fig. 2).

The machine-learning model outperforms elemen-
tary benchmarks irrespective of the prediction horizon
(Fig. 2a-d). Using all available techno-economic features,
the full model yielded lower median loss values than the
daily profile and the constant model for each prediction
length tmax. Restricting the feature set to day-ahead
available data yields a similar performance, which en-
ables us to forecast future frequency deviations better
than the daily profile.

However, the performance slightly deteriorates with in-
creasing prediction length (Fig. 2e). The absolute log-
likelihood of different data sets, i.e., of different tmax

values, cannot be compared. We therefore employed
the relative loss increase between the machine learning
model and the daily profile as a measure, which mainly
exhibits negative values as our model outperforms the
daily profile. Predicting only the first tmax = 360 sec-
onds yielded a better performance then predicting the
full interval (tmax = 900 s). This points to a potential
limitation of our model at the end of the prediction in-
terval, which is likely due to the approximate treatment
of the power imbalance Pim(t) (cf. Fig. 1c). Our model
assumes a discrete step at the start of an interval, while
real power plants start ramping up or down continuously
earlier at the end of the previous interval [20]. Hence,
the frequency ω(t) at the end of an interval is already
driven by the dispatch in the future interval. This aspect
is not included in the physics-inspired model, while it is
present in the daily profile.

The prediction examples in Fig. 2f-i illustrate the
strengths and limitations of our model. The intervals

with the best model performance at 00:00 and 06:00
demonstrate how our model outperforms the daily profile
by far. A remarkable aspect is observed when inspecting
the intervals with the worst performance: As the physics-
inspired model fails to capture the dynamics, so does the
daily profile, albeit at a different magnitude (Fig. 2g,i).
The limitations of our model due to continuous genera-
tion ramps turned up in Fig. 2i: The frequency increased
and then ramped down expectedly due to the rising load
in the morning, which causes upwards deterministic fre-
quency deviations. However, the frequency ramped up
again towards the end of the interval, which is not cov-
ered in our model (see above), but slightly visible in the
daily profile.

In the following sections, we explain dynamical param-
eters based on techno-economic features, among others.
The full model better suits for explanation as it also in-
cludes actually measured features, such as forecast errors.
Therefore, we only focus on the full model and predict the
full interval (with tmax = 15 min) in following sections.

B. System identification and explanation

1. Inference and variation of system parameters

In addition to probabilistic prediction, our PIML
model provides a tool to infer dynamical system parame-
ters from frequency measurements and techno-economic
features (Fig. 3). In contrast to time-independent mod-
els [14, 43], our parameter model FNN extracts time-
dependent system parameters ϑ(i) for each time interval
i, which mirror the local dynamical properties of load-
frequency control (cf. Fig. 1). Note that we only estimate
effective parameters that also contain the impact of the
inertia (cf. Sec. II), which we discuss later in Sec. IV.

The inferred parameters strongly change during the
day, which illustrates the importance of time-dependent
dynamical modelling (Fig. 3a-e). The daily profile of the
primary control time scale shows variations of 14 %, while
the intrinsic secondary control time scale varies by 16 %.
The power imbalance parameters show even stronger
variations, with the short-term fluctuation strength D
varying by 61 % and the deterministic parameters q and
r changing by 550 % and 442 %.

The imbalance parameters show distinct patterns that
reveal physically meaningful impact factors on the grid
frequency. We inferred upwards power steps q and neg-
ative drifts r in the morning around 06:00 and in the
evening around 18:00, while the opposite behaviour was
estimated around noon and during the night. This suc-
cessfully models the deterministic imbalances between
scheduled generation and continuous load: Around noon
and during the night, the load is decreasing thus causing
downward power steps and positive drifts (cf. Fig. 1b,c).
Moreover, the inferred power steps q peak at the begin-
ning of the hour, while being smaller during the rest of
the hour. This indicates the dominance of generation
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FIG. 2. Probabilistic machine learning model outperforms elementary benchmarks. a,b,c,d, We quantify the performance of
our probabilistic frequency prediction with the negative log-likelihood loss, which implicates better performance if values are
lower. Irrespective of the prediction length tmax, the day-ahead and full models outperform the the benchmark models, namely
the constant model and the daily profile predictor. e, The relative loss increase between our model and the daily profile provides
a comparison between different prediction lengths, yielding a slight decrease of the performance with longer predictions. f,g,h,i,
Prediction examples with best and worst performance at 00:00 and 06:00 illustrate the strengths and limitations of our model.

changes within 1 h intervals over changes in 15 min pe-
riods, which is consistent with the characteristics of the
European electricity markets: In fact, much more gener-
ation volume is traded on the hourly day-ahead market
then on the quarter-hourly intraday market in Europe
[44].

The inferred parameters generally agree with estimates
from the literature [14], with small differences due to
redundancies between secondary control and determin-
istic deviations (Fig. 3f). The panel depicts the ratio
between the time average of our absolute parameter esti-
mates and the reference value from the literature ϑrefj (cf.
appendix B), which was extracted by a time-independent
model. Our model (with standard scaling defined in ap-
pendix C), inferred values for τ and D that are very simi-
lar to the reference, i.e., the ratio to the reference is near
one. The secondary control was weaker in our model
(larger time scale) and the deterministic power mismatch
was also weaker, i.e., our model inferred smaller absolute

generation steps q and drifts r. As discussed in ref. [14],
there is a redundancy between secondary control and de-
terministic power drifts, because both can drive the fre-
quency back to its reference. This makes it generally
difficult to obtain unique estimates, which might explain
the difference to the literature values for κ.

The adequate inference of dynamical parameters is
greatly facilitated by our implementation of appropriate
scaling steps. Fig. 3f depicts the parameter estimates if
no scaling is applied (triangle markers), which resulted in
much stronger deviations from the literature values. This
is probably due to the large difference in scale between
the parameters, which renders the FFNN training inef-
ficient and unstable due to the very heterogeneous loss
landscape [37]. Note that small variations of the scal-
ing coefficients (defined in appendix C) did not strongly
change the parameter estimates (square markers) such
that the results seem to be independent of the exact
choice of the scaling.
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(defined in Tab. II), with 10 random weight initialisations for each combination of scaling parameters. The ensemble means
(markers) and the data range (errorbar) indicate the relation between the inferred parameters and the reference, which shows
particularly large deviations if no scaling is applied.

2. Techno-economic drivers of dynamical system properties

Using SHAP values [27], we explain the dependencies
between the techno-economic features and the dynami-
cal parameters ϑj , which the model extracted from the
data (Fig. 4). Focusing on the deterministic mismatch
parameters q and r and the primary control time scale τ ,
we analysed feature importances quantified by the mean
absolute SHAP value (Fig. 4a), as well as dependencies
(Fig. 4b-d) that display SHAP values for different feature
values.

The power step q was mostly determined by genera-
tion ramps and forecast errors (Fig. 4a,b). The most
important feature, forecast error generation ramp, rep-
resents the difference between day-ahead scheduled gen-
eration ramps (on a 1h basis) and actual values of the
total generation ramps that also include intraday trad-
ing within 15 minute intervals. Therefore, they mirror
the additional 15 minute ramps that are not included in
the day-ahead generation ramps thus making the feature

essential for the model to estimate the power steps q.
In addition, it is known that especially fast generation
ramps drive the power step and thus the rate of change
of frequency (RoCoF) at the beginning of the market
intervals [28]. Accordingly, the PIML model yielded a
high importance of hydro power ramps, which are among
the fastest in the European power system. Interestingly,
positive ramps exhibited a smaller effect then negative
ramps. This probably relates to the limitation of our
model in representing upwards deterministic deviations.
Upwards deviations typically start before the start of the
interval (cf. Sec. III C), while downward ramps rather fol-
low the approximation of a discrete power step at t = ti.
Therefore, the remaining upward power step at ti rep-
resents only a part of the total step. Hence, the model
sees a step which is smaller than for downwards devia-
tions and thus assumes a weaker effect of positive hydro
ramps on the step q.

The drift r of the deterministic mismatch mirrors con-
tinuous changes of the load (Fig. 1b,c). Consistently,
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load ramps obtained the highest feature importance for
r with positive load ramps leading to negative slopes r
(Fig. 4a,c). Solar ramps were also ranked highly, but
their dependency showed the opposite behaviour. This
mirrors the fact that in addition to the load, solar power
also shapes the slow evolution of the deterministic mis-

match Pim(t) ∼ r · t [32]: The load and aggregated so-
lar power typically change slowly and continuously on a
time scale of hours, with the load having a negative im-
pact and the solar power having a positive impact on the
power imbalance. This perfectly manifests in the oppo-
site effects of load and solar ramps on the mismatch slope
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r, which were identified by our PIML model (Fig. 4c).
The effective time scale of primary control τ was deter-

mined by load ramps, waste power generation and wind
power (Fig. 4a,d). Most interestingly, increasing wind
power generation led to a larger time scale of primary
control. In an Ornstein-Uhlenbeck process, τ quantifies
the time to revert back to the mean after a disturbance.
A large wind power feed-in can cause large stochastic im-
balances and thus effectively reduce the mean-reverting
time τ . This would be consistent with our SHAP results
and with previous studies that showed an increased vari-
ability of short-term frequency dynamics with increasing
wind power feed-in [45]. Notably, this dependency can-
not be caused by the rescaling of dynamical parameters
with the inertia. If the actual primary control strength
M/τ was constant (cf. Sec. II), increasing wind power,
and thus decreasing inertia M , would correspond to de-
creasing values of τ . However, we observed the opposite:
the dependency showed increasing values of τ (Fig. 4d),
thus pointing to other causes such as an increased vari-
ability.

Finally, note that the hour and minute features were
very important, in particular for τ , κ and D (Fig. 4a).
This points to missing information in the feature set, so
that the model relies on an average daily behaviour using
the hour and minute features.

C. Generation of synthetic grid frequency time
series

A third major application of probabilistic machine
learning models is the generation of synthetic time se-
ries. Scenario generation, i.e., the generation of multiple
synthetic samples from the model, is important for sim-
ulation or optimisation models [46, 47]. Given a data set
of external features, synthetic time series are obtained as
follows. For every interval i, we applied the FFNN to
predict the system parameters ϑ(i). We then integrated
the original SDE (5) using a standard Euler-Maruyama
method. To ensure continuity, we used the final values
of ω and θ from one interval as initial states for the fol-
lowing interval. As a test case, we generated a synthetic
trajectory from August 25 to September 05 in our test
set, for which the first hours are shown in Fig. 5a.

Power grid frequency trajectories exhibit several highly
characteristic stochastic properties [48]: The distribu-
tion of both frequency ω(t) and its increments ∆ωT (t) =
ω(t+ T )− ω(t) is heavy tailed (Fig. 5b,c). Large devia-
tions and large jumps are much more likely than expected
from conventional normal statistics. Furthermore, the
autocorrelation function peaks at multiples of a quarter-
hour, the smallest interval of electricity trading in Eu-
rope, which are most strongly pronounced after one hour
(Fig. 5d). All these characteristic patterns were well re-
produced by our PIML model.

Moreover, the daily pattern strongly determines the
grid frequency in Continental Europe [49]. Our synthetic

time series adequately reproduced this important pat-
tern, especially during the evening and night (Fig. 5e,f).
In particular, the samples captured the specific dynamics
of August and September 2019 in contrast to the daily
profile predictor, which predicts a strong downward ramp
at 20:00. Upward frequency deviations, for example at
05:00 and 06:00 in the morning, are reproduced less ac-
curately than negative deviations at 23:00 (Fig. 5g). Our
model does not capture continuous (conventional) gener-
ation ramps that start before the beginning of the interval
(cf. Sec. III A). These effects were particularly strong for
upward ramps (e.g., at 05:50 in Fig. 5g) and less domi-
nant for downward ramps (e.g., at 23:50 in Fig. 5e), which
explains the model deviations in the morning interval.

Furthermore, our results reveal important aspects of
load-frequency dynamics and control. The success of
our model suggests that the non-normal statistics is a
direct consequence of the non-autonomous character of
the power system. The changing system parameters in-
duce heavy tails in the frequency distribution, without
the need for heavy-tailed power fluctuations, cf. the dis-
cussion in [15, 48].

IV. DISCUSSION

We have developed a model of power system operation
that integrates both the internal system dynamics and
the external techno-economic features. The integration
has been achieved by the combination of an explicit simu-
lation model in terms of stochastic differential equations,
and an artificial neural network to link the external in-
fluences to the system parameters. We thus obtained a
generic physics-inspired machine learning model of power
system dynamics and control.

Using grid frequency recordings from the Continental
European power grid as a test case, we demonstrated
three applications of our physics-inspired model. First,
we provided a probabilistic prediction of the grid fre-
quency in intervals of 15 minutes. Our model outper-
formed the daily average profile of the grid frequency,
which already is a good predictor in Continental Eu-
rope [28]. This was also possible when using only day-
ahead available techno-economic features, thus provid-
ing the possibility to forecast grid frequency dynamics
15 minutes ahead. Previous grid frequency predictors
only used historic frequency data as inputs [49–51]. Ap-
proaches that integrated external features previously fo-
cused on aggregated frequency deviations [28, 52], which
is also a cause of the data quality. Techno-economic
features are typically available only on aggregated time
scales of 15 min or 1h, while the frequency fluctuates
on time scale of seconds (and even shorter time scales).
We bridge the gap between large-scale techno-economic
features and short-term frequency dynamics by using a
physics-inspired model. It connects the time-aggregated
features with dynamical parameters of a stochastic pro-
cess that well describes the short term grid frequency
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FIG. 5. Physics-inspired machine learning model generates synthetic grid frequency time series with characteristic properties.
a, We sampled a synthetic frequency trajectory from our probabilistic model for the test period August 25 to September 05
in our test set, which was the longest period without missing or corrupted data points. The panel depicts the start of this
period showing a good agreement between real and synthetic time series. b,c,d, The autocorrelation function (ACF) and the
probability density function (PDF) of the frequency deviation ω(t) and its increments ∆ωT (t) = ω(t+T )−ω(t) (T = 10 s) have
heavy tails, which is well reproduced by our synthetic time series. e,f,g. The daily average profiles of the real and synthetic
frequency time series within the test period. For 20:00, we additionally display the daily profile computed from the training
set (2015-2018). Our model better fits the frequency in this hour and therefore grasps local time-dependent properties of its
daily evolution.

fluctuations.

Second, our model provides a tool for system iden-
tification and explanation. The model inferred the ef-
fective system parameters for every 15 minute interval
from frequency measurements and techno-economic in-
put features. The parameters were rescaled by the in-
ertia (cf. Sec. II), but the actual system parameters can
be obtained by incorporating inertia time series, which
however can only be approximated for large-scale power
systems [21, 53]. As an example, we extracted the time-
varying nature of deterministic power imbalances, which

arises due to the step-wise evolution of scheduled conven-
tional generation. The inferred power steps were particu-
larly large for the first 15 minutes within the hour, which
is consistent with the large share of generation traded at
hourly day-ahead markets [44]. The strong time varia-
tion of the inferred parameters indicates the importance
of modelling the grid frequency as a non-autonomous
system with time-dependent parameters. Explaining the
inferred parameters with SHAP values further revealed
their dependency on techno-economic drivers. For exam-
ple, the primary control time scale increased with rising
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feed-in of wind power, which are harder to control and
thus effectively lead to longer relaxation times. Our tool
therefore extracts and explains physically meaningful sys-
tem parameters and their time-dependent drivers.

Third, we used our model for scenario generation of
synthetic grid frequency time series. The synthetic data
well approximated the heavy-tailed distribution of fre-
quency deviations and the recurrent patterns in its au-
tocorrelation. In contrast to previous stochastic models
[13–15], the synthetic time series also reproduced the ac-
tual frequency trajectory with its local time-dependent
characteristics. Most interestingly, we only applied Gaus-
sian white noise, but well reproduced the heavy-tailed
distribution due to the time-dependent parameters of our
stochastic model of power imbalance fluctuations and the
control system. Notably, the model requires very little
system specific information as inputs, but learns them
directly from the data. Hence, the model is highly flexi-
ble and can easily be transferred to other grids.

In the context of power system dynamics and control,
physics-inspired machine learning methods have become
popular during the past years [54, 55]. Classical physics-
informed neural networks (PINNs) are commonly applied
to the differential equations directly [56], which we cir-
cumvented by solving our system analytically. However,

an analytical solution is not possible anymore when in-
cluding non-linearities such as deadbands. In the future,
our model can be modified to leverage classical PINNs to
also treat non-linearities and more generic power system
dynamics. Previous applications of PINNs to power sys-
tem dynamics have successfully addressed autonomous
dynamics [55, 57]. We contribute to these develop-
ments by proposing a model that explicitly models non-
autonomous dynamics, which may greatly advance the
application of physics-inspired machine learning in the
energy sector.
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Physics-inspired machine learning for power grid fre-
quency modelling (v0.1.0), https://doi.org/10.5281/
zenodo.7274829 (2022).

[30] J. Kruse, E. Cramer, B. Schäfer, and D. Witthaut,
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Appendix A: A stochastic model of grid frequency dynamics and control

1. The aggregated swing equation

Grid frequency deviations ∆f(t) = (f(t)− fref) from the reference fref = 50 Hz or 60 Hz reflect power imbalances
∆P in the grid, which have to be compensated via different sources. Firstly, the rotational energy of synchronous
machines provides momentary reserve power Prot through changes in the rotation speed [58]:

Prot =
2HSB
fref

d∆f

dt
= 2πM

d∆f

dt
. (A1)

Here, H denotes the average inertia constant of a synchronous machine, which is typically around 6 s for conventional
generators [13] and SB is the total rated power of all generators. Loosely speeking, H equals the kinetic energy of the
rotating machine rotating at fref divided by its rated power. The parameter M then denotes the aggregated inertia
of the grid.

Secondly, damping power is provided via primary control, also refered to as frequency containment reserve (FCR),
and frequency-sensitive loads [58],

Pprim = K1∆f, (A2)

where K1 = KT + KL is the inverse droop coefficient, which comprises the effect of control KT and load damping
KL ([K1] = W/Hz). The control effect KT is typically one or two orders of magnitude larger than KL [11]. Their
values are often provided in the per unit (pu) system with Kpu

1 = frefK1/P0, as the parameter KT depends on the
steady-state load P0 within the specific system. For example, in Great Britain a typical value of Kpu

1 = 12.5 is
reported [13].

Thirdly, secondary control, also referred to as frequency restoration reserve (FRR), restores the frequency back to
its reference fref . Secondary control is typically implemented as an integral controller (but other implementations
exist)[59]:

Psec = K2θ̄, (A3)

with the integrated frequency deviation

θ̄(t) =

∫ t

ti

∆f(t′) dt′. (A4)

The parameter K2 is the secondary control gain ([K2] = W), which reads Kpu
2 = frefK2/P0 in the pu system. For

example, in Great Britain a typical value of Kpu
2 = 0.05/s is reported [13]. In interconnected power grids, secondary

control may also be used to reduce unscheduled flows between different control areas [60]. These control actions are
applied reciprocally in two areas and thus have only minor effects for the overall frequency dynamics.

Finally, this yields the aggregated swing equation, which is simply the power balance of all contributions:

dθ̄

dt
= ∆f, (A5)

2πM
d∆f

dt
= −K1∆f −K2θ̄ + ∆P (t). (A6)

Here, ∆P (t) denotes the imbalance of power generation and load, excluding the contribution of the control system
(A2) and (A3).

2. Stochastic differential equations

Following reference [14], we modelled the power imbalances ∆P (t) = Pim(t) + D̄ξ(t) as a sum of “deterministic”
power imbalances Pim(t) and stochastic deviations D̄ξ(t). In the large European power grids, deterministic power
imbalances repeatedly arise due to a different ramping of dispatchable generators and the load or due to forecasting
errors [61]. Stochastic deviations are modelled as Gaussian noise ξ(t) defined as the derivative of a Wiener process
Wt that has independent, normally distributed increments dWt with zero mean and variance 〈dW 2

t 〉 = dt.
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To estimate model parameters, we have to rescale Eq. (A6) by M as all parameters otherwise are undefined up to a
multiplicative factor. In addition, we transition from frequencies and integrated frequencies to angular velocities and
angles. We define

τ−1 =
K1

2πM
, (A7)

κ−2 =
K2

2πM
, (A8)

D =
D̄

M
, (A9)

P (t) =
Pim(t)

M
, (A10)

θ = 2πθ̄. (A11)

Based on these definitions, we obtain a stochastic model for the angular grid frequency deviation ω = 2π∆f :

dθ = ω dt, (A12)

dω =
(
P (t)− τ−1ω − κ−2θ

)
dt+D dWt. (A13)

Collecting both stochastic variables into a vector X = (θ, ω)T , we can write our model as a two-dimensional matrix
equation

dX = a(X, t)dt+D dW t, (A14)

using the drift vector a(X, t) = (aθ, aω)T with aθ = ω, aω = P (t)−τ−1ω−κ−2θ, the diffusion matrix D = diag(D, 0)
and a two-dimensional Wiener process W t.

The stochastic differential equation (A14) can be recast into a Fokker-Planck equation for the joint probability
density function P(θ, ω; t) that describes the distribution of the two random variables θ and ω at time t [62]. Using
Itô calculus, one obtains

∂

∂t
P(θ, ω; t) =

[
− ∂

∂ω

(
P (t)− τ−1ω − κ−2θ

)
− ∂

∂θ
ω +

D2

2

∂2

∂ω2

]
P(θ, ω; t). (A15)

3. Solution of the Fokker-Planck equation

In this section, we proof that the Fokker-Planck equation (A15) is solved by a multivariate normal distribution with
PDF

P(x; t) =
1

2π|Σ| exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(A16)

with x> = (θ, ω) and time-dependent parameters

µ(t) =

(
µθ(t)
µω(t)

)
, Σ(t) =

(
σ2
θ(t) σθω(t)

σθω(t) σ2
ω(t)

)
.

if the parameters satisfy the ordinary differential equations

d

dt
µθ = µω ,

d

dt
µω = P (t)− τ−1µω − κ−2µθ ,

d

dt
σ2
θ = 2σθω,

d

dt
σ2
ω = σ2ω − τ−1σθω − κ−2σ2

θ ,

d

dt
σθω = −2τ−1σ2

ω − 2κ−2σθω . (A17)
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We proof this result using the characteristic function, which is defined via the Fourier transform

φ(u; t) =

∫
eiu

>x P(x; t)d2x. (A18)

In terms of the characteristic function, the FPE reads

∂

∂t
φ(u; t) = Lφ(u; t)

= is

[(
P (t) + iτ−1

∂

∂s
+ iκ−2

∂

∂r

)
+ r

∂

∂s
− D2

2
s2
]
φ(u; t), (A19)

where we have defined u> = (r, s). The characteristic function of the normal distribution (A16) reads

φ(u; t) = exp

(
iu>µ− 1

2
u>Σu

)
, (A20)

φ(r, s; t) = exp

(
i(rµθ + sµω)− 1

2
(r2σ2

θ + s2σ2
ω + 2rsσθω)

)
.

We now show that the normal distribution (A20) with the parameters (A17) satisfies the Fokker-Planck equation
(A19). We first evaluate the right-hand side of the FPE,

Lφ(u; t) = is

[(
P (t) + iτ−1

∂

∂s
+ iκ−2

∂

∂r

)
+ r

∂

∂s
− D2

2
s2
]

exp

(
i(rµθ + sµω)− 1

2
(r2σ2

θ + s2σ2
ω + 2rsσθω)

)
,

=

[
isP (t)− D2

2
s2 − (τ−1s− r)(iµω − sσ2

ω − rσθω)− κ2s(iµθ − rσ2
θ − sσθω)

]
φ(u; t). (A21)

Now we proceed with the left-hand side,

∂

∂t
φ(u; t) =

[
i

(
s
dµω
dt

+ r
sµθ
dt

)
− 1

2

(
r2
dσ2

θ

dt
+ s2

dσ2
θ

dt
+ 2rs

dσθω
dt

)]
φ(u; t) . (A22)

Inserting the equations (A17) then yields

∂

∂t
φ(u; t) =

[
isP (t)− D2

2
s2 − (τ−1s− r)(iµω − sσ2

ω − rσθω)− κ2s(iµθ − rσ2
θ − sσθω)

]
φ(u; t), (A23)

which coincides with the right-hand side (A21).

4. Moment equations

The ordinary differential equations for the parameters (A17) can also be obtained in a more direct way, once we
know that the PDF remains Gaussian for all times. In fact, we can exploit that the parameters of a Gaussian PDF
equal the mean and the (co-) variances. The dynamics of the mean and the (co-) variances are determined by the
moment equations, which we extracted using Itô’s lemma. For any twice differentiable scalar function g(X) of the
random variable X in Eq. (A14), Itô’s lemma reads [63],

dg =

[
(∇g)

T
µ+

1

2
Tr
(
DTHgD

)]
dt+ (∇g)

T
DdW , (A24)

where ∇g is the gradient and Hg is the hessian matrix of the function g(X). This yielded in our case

dg =

[
∂g

∂ω
µω +

∂g

∂θ
ω +

D2

2

∂2g

∂ω2

]
dt+

∂g

∂ω
D dW. (A25)

To apply this to moment functions, we further assumed d〈g〉 = 〈dg〉. For the first moments (averages) g = 〈θ〉 and
g = 〈ω〉 we obtained

d〈θ〉
dt

= 〈ω〉, (A26)

d〈ω〉
dt

= P (t)− τ−1〈ω〉 − κ−2〈θ〉. (A27)
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The second moments g = 〈θ2〉, g = 〈ω2〉 and the mixed moment g = 〈ωθ〉 yielded

d〈θ2〉
dt

= 2〈θω〉, (A28)

d〈ω2〉
dt

= 2P (t)〈ω〉 − 2τ−1〈ω2〉 − 2κ−2〈ωθ〉+D2, (A29)

d〈ωθ〉
dt

= P (t)〈θ〉 − τ−1〈ωθ〉 − κ−2〈θ2〉+ 〈ω2〉. (A30)

In this derivation, we used 〈ωdW 〉 = 0 and 〈θdW 〉 = 0. Identifying µθ = 〈θ〉, µω = 〈ω〉, σ2
ω = 〈ω2〉 − 〈ω〉2,

σ2
θ = 〈θ2〉 − 〈θ〉2 and σθ,ω = 〈ωθ〉 − 〈ω〉〈θ〉 then reproduces Eq. (A17).

5. Solution of the moment equations

We now provide a semi-analytic solutions for the ordinary differential equations (A17) describing the evolution of
the paramaters µθ, µω, σ2

ω, σ2
θ and σθ,ω. We first note that the equations for the deterministic part (the means) and

the stochastic part (the (co-) variances) decouple, hence they can be treated separately. We collected the deterministic
equations using the vector yd = (µθ, µω)T ,

dyd
dt

= Adyd + bd(t), (A31)

Ad =

(
0 1
−κ−2 −τ−1

)
, (A32)

bd(t) =

(
0

P (t)

)
. (A33)

With ys = (σ2
θ , σθ,ω, σ

2
ω)T , the stochastic part yielded

dys
dt

= Asys + bs, (A34)

As =




0 2 0
−κ−2 −τ−1 1

0 −2κ−2 −2τ−1


 , (A35)

bd =




0
0
D2


 . (A36)

These equations are linear, ordinary differential equations (ODEs), for which several solution methods exist.

a. Solution of the homogeneous equations

The general solution of the homogeneous ODE ẏ = Ay with time-independent coefficients A is given by

yh(t) = U(t)U−1(0)y0. (A37)

The columns of the matrix U(t) span the solution space of the homogeneous ODE. The column vectors are given
by ui = vie

λit, where vi are the eigenvectors of A and λi are the corresponding eigenvalues. Using any computer
algebra program, we calculated the eigenvalues and eigenvectors for the matrix Ad of the deterministic part:

λd,1 = − 1

2τ

√
1− 4τ2

κ2
− 1

2τ
, (A38)

λd,1 =
1

2τ

√
1− 4τ2

κ2
− 1

2τ
, (A39)

vd,1 = (λd,2κ
2, 1)T , (A40)

vd,2 = (λd,1κ
2, 1)T . (A41)
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For the matrix As from the stochastic part, we obtained

λs,1 = −τ−1, (A42)

λs,2 = −1

τ

√
1− 4τ2

κ2
− 1

τ
, (A43)

λs,3 =
1

τ

√
1− 4τ2

κ2
− 1

τ
, (A44)

vs,1 = (κ2,−κ
2

2τ
, 1)T , (A45)

vs,2 = (−κ2 − λs,3
κ4

2τ
,
λs,3κ

2

2
, 1)T , (A46)

vs,3 = (−κ2 − λs,2
κ4

2τ
,
λs,2κ

2

2
, 1)T . (A47)

To specify the homogeneous ODE solutions for µω(t) and σ2
ω(t), we needed the inverses of the matrix U(t), i.e., the

matrices U−1d (t) and U−1s (t), which we again obtained through a computer algebra program. The ω-components of
the solution for the homogeneous system (A37) then read

µω,h(t) =
1

λd,1 − λd,2
[
κ−2θ0

(
eλd,2t − eλd,1t

)
+ ω0

(
λd,1e

λd,1t − λd,2eλd,2t
)]
, (A48)

σ2
ω,h(t) =

[
σ2
θ,0

(
eλs,2t + eλs,3t − 2eλs,1t

) τ2
κ2

(A49)

+σω,θ,0

(
−2τeλs,1t +

8τ2

κ2
λs,2κ

2(4τ)−1 + 1

λs,2 − λs,3
eλs,2t +

8τ2

κ2
λs,3κ

2(4τ)−1 + 1

λs,3 − λs,2
eλs,3t

)

+ σ2
ω,0

(
−2τeλs,1t +

2λs,2τ
2 − λs,2κ2 − 2τ

λs,3 − λs,2
eλs,2t +

2λs,3τ
2 − λs,3κ2 − 2τ

λs,2 − λs,3
eλs,3t

)]
1

κ2 − 4τ2
, (A50)

where θ0, ω0 denote the initial conditions of the averages and σ2
θ,0, σθ,ω,0, σ

2
ω,0 represent the initial conditions of the

covariances.

b. (Semi-)Analytical solution of inhomogeneous equations

The general solution of the inhomogeneous ODE ẏ = Ay + b(t) with time-independent coefficient A is given by
the sum of the homogeneous solution and an inhomogeneous contribution yin(t)

yODE(t) = yh(t) + yin(t),

= yh(t) +U(t)

∫ t

0

U−1(t′)b(t′)dt′. (A51)

We first provide a semi-analytical solution, which leaves the integration of the inhomogeneity bd(t) to a numerical
routine. This enables us to flexibly insert different power function P (t), as we will see below.

The ω-components of the inhomogeneous contributions yield

µω,in(t) =
1

λd,1 − λd,2

[
λd,1e

λd,1t

∫ t

0

P (t′)e−λd,1t
′
dt′ − λd,2eλd,2t

∫ t

0

P (t′)e−λd,2t
′
dt′
]
, (A52)

σ2
ω,in(t) =

D2

κ2 − 4τ2

[
2τ2

λs,1
(1− eλs,1t) +

2τ/λs,2 − 2τ2 + κ2

λs,3 − λs,2
(1− eλs,2t) +

2τ/λs,3 − 2τ2 + κ2

λs,2 − λs,3
(1− eλs,3t)

]
. (A53)

Note that the deterministic part contains an integral over the deterministic power imbalance P (t), which we can
compute numerically for any power function. However, the factors e−λt in Eq. (A52) can become very large as
λ < 0 for stable systems thus causing numerical problems. To use this semi-analytical solution during neural network
training, one has to mitigate these numerical problems, e.g., by strongly restricting the parameter space.

We used a fully analytical solution for the case P (t) = q+ rt, thus avoiding these numerical problems. In this case,
the inhomogeneous solution of the deterministic part yielded

µω,in(t) =
1

λd,1 − λd,2

[
eλd,1t

(
q +

r

λd,1

)
− eλd,2t

(
q +

r

λd,2

)
+ r

(
1

λd,2
− 1

λd,1

)]
. (A54)
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TABLE II. Properties of dynamical system parameters that are predicted by the FFNN (cf. Fig. 1d). The parameters are
subject to several physical constraints which are summarised in the third row. The output of the FFNN is rescaled by constant
factors listed in the fourth row to improve training efficiency (referred to as the standard scaling). To test the impact of the
scaling, we varied the scaling sj according to the parameter choices in the fifth row. Furthermore, we ensure that the dynamical
system parameter exceeds a minimum value listed in the sixth row.

Parameter ϑj ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8

Name σθ,0 σθ,ω,0 σω,0 τ κ D q r
Physical constraints σθ,0 > 0 |σθ,ω,0| ≤ σθ,0σω,0 σω,0 > 0 0 < τ ≤ κ/2 κ > 0 D > 0 r ∈ R q ∈ R

Scaling sj 0.01 - 0.1 - 100 0.01 10−3 10−6

Scaling variation {1} - {0.1} - {1000, 100} {0.01, 0.1} {10−3, 10−2} {10−5, 10−6}
Minimum vj 10−3 - 10−3 10 30 10−4 - -

Range of νj(uj) (v1,∞) (−σθ,0σω,0, σθ,0σω,0) (v3,∞) (v4, κ/2) (v5,∞) (v6,∞) (−∞,∞) (−∞,∞)

Note that we only require the marginal probability density P(ω; t) =
∫
P(θ, ω; t) dθ to model the grid frequency

dynamics, hence we only needed a closed form solution for µω and σω.

Appendix B: Parameter values from the literature

Based on the definition in Eqs. (A12)-(A13), Gorjao et al. inferred time-independent parameter values using the
Kramers-Moyal expansion [14]. The authors employed the actual grid frequency instead of the angular velocity. Thus,
we rescaled the results according to D → 2πD, q → 2πq, r → 2πr, θ → 2πθ, while τ and κ stayed the same.

τ = 120 s , (B1)

κ = 183 s , (B2)

D = 0.007 s−3/2 , (B3)

q = 0.0042 s−2 , (B4)

r = 0.000009 s−3. (B5)

In the main text, we use these parameter values as reference values and therefore call them ϑrefj . Note that the
authors of ref. [14] did not directly provide a result for r, but its value was implicitly defined through the constraint
〈Pim(t)〉t = 0, which yields r = 2q/tmax. Moreover, the parameter q was specified separately for the full hour and for
every (other) quarter of the hour, so we took the average value here.

Appendix C: Parameter Scaling and Constraints

The developed PIML model includes a layer that rescales the parameters and ensures some physical constrains
(Fig. 1d). The outputs uj of the FFNN do not necessarily fulfil the physical constraints of the parameters ϑj
(cf. Tab. II), as the linear activation of the output takes arbitrary real values, while τ , for example, only takes positive
real values. Moreover, the physical parameters ϑj vary strongly in scale (cf. appendix B), but the outputs uj of
the initialised FFNN typically have the same scale due uniform random initialisation of the weights [64]. This will
yield large initial errors along certain parameter axis thus leading to inhomogeneous loss landscapes which can make
optimisation inefficient and more difficult [37].

Therefore, we added a constraint and scaling layer that applies functions νj to the FFNN outputs. The results
then represent the parameter estimates ϑj = νj(uj). First, the functions νj enforce the physical constraints. For
example, a softplus function S+(u) = log(exp(u) + 1) ∈ (0,∞) enforces positivity, and the sigmoid function Sig(u) =
(1 + exp(−u)−1 ∈ (0, 1) was used to ensure that τ ≤ κ/2 holds. Numerical imprecision can lead to a violation of
these constraints so that we added a safety factor δ = 0.999 in some cases. Second, the factors sj , which mirror the
typical scale of parameters ϑj , are applied to make the optimisation more efficient. Third, minimum values are added
in certain cases to ensure numerical stability during optimisation. For example, a very small standard deviation σω,0
can lead to probability densities beyond float precision. All in all, we defined the following functions using minimum
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values, scaling factors and constraints from Tab. II:

ν1(u1) = S+(u1)s1 + v1,

ν2(u2) = δ tanh(u1)ν1(u1)ν3(u3),

ν3(u3) = S+(u3)s3 + v3,

ν4(u4) =

(
2v4

ν5(u5)
+ δSig(u4)

(
1− 2v4

ν5(u5)

))
ν5(u5)

2
,

ν5(u5) = S+(u5)s5 + v5,

ν6(u6) = S+(u6)s6 + v6,

ν7(u7) = u7s7,

ν8(u8) = u8s8.

To test the impact of the scaling with sj , we varied the scaling parameters according to Tab. II. In particular, we
trained the PIML model for each combination of the individual scaling choices listed in the table. For each scaling
tuple, we additionally simulated 10 different random initialisation of the FFNN weights. Finally, we trained 10
initialisations using the standard scaling defined in Tab. II and no scaling with sj = 1 (cf. Sec. III B).





5. Discussion and Outlook

In this thesis, I have developed machine learning models for the prediction, explanation
and stochastic modelling of the power grid frequency dynamics. The grid frequency is
a central indicator for balance and control in power system operation and thereby a rel-
evant non-autonomous, stochastic dynamical system to investigate. I presented a univari-
ate prediction method that approximates future grid frequency deviations better than im-
portant benchmarks such as the daily frequency pattern. However, the impact of external
drivers such as electricity trading limits its performance, which points to the importance
of external impact factors beyond the intrinsic dynamics of load-frequency control. Using
explainable machine learning, I inferred the impact of such external drivers on indicat-
ors of frequency stability and control activation. The dependency on techno-economic
drivers varied between different power grids, and I revealed the specific roles of differ-
ent generation types, forecast errors and renewable generation. Turning back to grid fre-
quency dynamics, I incorporated the effects of external drivers into stochastic dynamical
models to describe large-scale trends as well as small-scale frequency fluctuations. This
yielded a physics-inspired machine learning model that successfully reproduced import-
ant stochastic characteristics of grid frequency dynamics. The model heavily built on the
time-dependent impact of the external features, which emphasises the importance of non-
autonomous modelling for power system dynamics.

In the following sections 5.1-5.3, I discuss the impact and the limitations of my work
with respect to the three main topics Q.1-Q.3, and give an outlook on possible extensions
and methodological developments. Then, in Section 5.4, I discuss my thesis in the context
of power system engineering with a focus on the relation between simulation-based and
data-driven methods for power system stability and control. Finally, in Section 5.5, I close
with an outlook on other types of non-autonomous dynamical systems and their data-
driven prediction.

5.1. Grid frequency prediction and its applications

The frequency predictors developed in this thesis outperformed important benchmarks.
They predicted frequency deviations 15-30 minutes ahead (Section 2) or even day-ahead
(Section 4) by using day-ahead available techno-economic features as input data.

Such frequency predictors enable multiple applications in power system operation. Pre-
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dicting typical trajectories facilitates the detection of outliers and measurement errors [74,
75]. The prediction can then be used to impute missing or corrupted data points. Fur-
thermore, grid frequency predictions are useful to operate battery energy storage systems
(BESS), which are increasingly used for primary and secondary frequency control [76,
77]. To optimise the state-of-charge of the BESS, model predictive control can be used
in combination with a grid frequency prediction [78]. Model predictive control was also
proposed to anticipate and control deterministic frequency deviations, which can enhance
frequency stability through preventive actions [79].

However, the operation of BESS often requires prediction horizons around one hour
[80]. Such a prediction horizon enables the BESS owner to optimise the bidding strategy
on intraday electricity markets that operate in intervals of 15 or 60 minutes. The univari-
ate frequency predictor in Section 2.1, has a prediction horizon of 15-30 minutes. Other
univariate predictors from the literature have a similar performance [55] or even shorter
prediction horizons [74, 81]. This can impede their application for BESS operation in
certain markets. To reach longer prediction horizons, one has to include external drivers,
which I demonstrated in Sections 3 and 4. My prediction models that include external fea-
tures offer a day-ahead prediction and thus a possibility to optimise bidding strategies on
intraday markets.

Notably, the application of grid frequency predictions for control systems has certain
limits, because frequency data already includes the effect of control measures. Assuming
the frequency trajectory to be fixed is only appropriate if the system under investigation has
a negligible feedback effect on the grid frequency, e.g., in the case of a single wind turbine
[82]. Frequency response through batteries, however, impacts the frequency trajectory.
Therefore, model predictive control typically includes a dynamical system model that is
able to predict the effect of control interventions on the system [83] or such a model is
estimated based on observational data [84].

In the context of power system control, the prediction of power imbalances instead of
frequency deviations can be of great importance. In the past years, power imbalance data
was scarcely available and time series were only uploaded with 15 minute or 60 minute
resolution [73, 85]. Recently, data with higher resolution became available [73, 85], thus
opening the possibility to forecast even short-term power imbalances. Imbalance predic-
tion can be used for preventive control actions of system operators [86] or for estimating the
necessary amount of control reserves for the upcoming day or week [87, 88]. In Section 3.3,
I presented a model that predicts control activation on a 15-minute basis, which outper-
formed important benchmarks. In the future, similar models based on techno-economic
features can be trained to predict short-term power imbalances, which can yield great be-
nefits for frequency control and reserve sizing.
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5.2. Explainable machine learning: causality vs.

correlation

In this thesis, I used explainable machine learning to infer important risks and drivers of
frequency stability from operational data. In particular, I used a multivariate approach to
model grid frequency stability and control based on multiple techno-economic features
from electricity markets and power system operation (Section 3).

This multivariate approach has clear advantages compared to previous empirical ana-
lyses. Previous empirical studies on grid frequency data employed simple correlation ana-
lysis [89–91] and conditional probability assessment [53] to quantify the impact of external
features. However, as already pointed out in ref. [92], correlations between external fea-
tures can lead to wrong conclusions concerning their impact on the target variable. I have
demonstrated this effect in Section 3.1, where I analysed the impact of nuclear ramps, i.e.,
the change of generation of nuclear power plants. The correlation between nuclear ramps
and the RoCoF was positive, but the SHAP analysis of my multivariate model yielded a
negative dependency. The negative dependency was consistent with domain knowledge
(namely, that nuclear ramps are too slow to drive the RoCoF). This revealed the inad-
equacy of simple correlation analysis, which most probably was caused by a correlation
among the features. The multivariate model adjusted for the effect of multiple features and
therefore better revealed the remaining actual effect of nuclear ramps.

Nevertheless, such machine learning methods have certain limits related to the inference
of causal relations. To be precise, my goal is to estimate causal effects of techno-economic
drivers on grid frequency dynamics. However, as stated in refs. [93, 94], SHAP values
do not reveal causal relationships between variables in reality, but only the causal impact
of a feature on the model prediction. This impact does not necessarily correspond to a
causal impact in reality, because machine learning models commonly learn associations
and not causalities. I have addressed this limitation by interpreting my SHAP results with
domain knowledge, thus identifying physically meaningful dependencies (Section 3.1).
For example, the model revealed a strong importance of forecast errors for the Nordic grid
frequency dynamics, which was consistent with reports from Nordic system operators [95].
In particular, the SHAP analysis provided a comprehensive quantitative analysis of how
and when forecast errors are important, going far beyond the previous state-of-the-art. As
another example, my model extracted a strong impact of hydro power on the activation of
secondary control power in Section 3.3. Using domain knowledge, I exposed this depend-
ency as a possible reverse causality, i.e., control activation caused an increase in hydro
power generation and not vice versa. This enabled the design of restricted feature sets that
better allow for a causal interpretation.

Recently, different studies have addressed the problem of causality and SHAP values by
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incorporating causal knowledge into the model explanations. Causal shapely values [96]
and asymmetric shapely values [97] attribute the model prediction to individual features
by using causal domain knowledge. Shapley flow [98] generalises these approaches in an
axiomatic way by reformulating the problem as credit attribution to edges on a directed
acyclic graph. This method decomposes the model prediction into the effect of causal rela-
tions (edges) in a causal graph, which has to be defined beforehand. In the future, such tools
can improve the interpretability of my explainable machine learning models by explicitly
incorporating engineering knowledge about the relation of power system features.

In general, this discussion targets the problem of identifying and modelling causal rela-
tions from observational data [99]. Learning causation requires us to quantify the impact of
interventions instead of just learning conditional probabilities. The field of causal inference
and causal discovery comprises a large amount of literature. For example, a major goal is
the estimation of interventional effects, such as the average treatment effect, or the recon-
struction of causal relationships as causal graphs, for which different estimation methods
exist. Causal inference is straightforward for experimental data, where the treatment is
applied while controlling all other variables. However, such experiments are typically im-
possible in large techno-economic systems such as energy markets and power systems.
We just have observational data with variables that are mutually dependent. Therefore,
advanced causal inference and discovery methods are necessary, which can facilitate em-
pirical analyses of power systems in the future. Multiple python packages implement such
methods, e.g., an end-to-end library for causal inference “DoWhy” [100],“EconML”[101]
to estimate heterogeneous treatment effects from observational data via machine learning,
and the “Causal Discovery Toolbox” [102] for recovering causal graphs from observational
data. Such tools can be helpful for power system analysis, but they have to be carefully ad-
apted to deal with the specific data sources and the causal domain knowledge in energy
system research.

5.3. Stochastic modelling with insufficient data

In Section 4, I investigated how to incorporate external drivers into stochastic dynamical
models of the grid frequency. To this end, I proposed a physics-inspired machine learn-
ing model, which successfully predicted frequency trajectories and reproduced central
stochastic characteristics of frequency time series.

External drivers are essential for grid frequency dynamics, and multiple time series of
these features are publicly available. As I explained in Section 1.2 and 1.3, the grid fre-
quency is affected by diverse impact factors such as power imbalances due to forecast
errors, renewable power fluctuations or short-term load fluctuations. Even the parameters
of the dynamical system such as the inertia can vary over time [103] due to the varying
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operational conditions. Time series of renewable power generation, load and other im-
portant features are publicly available [73] and contain information about grid frequency
dynamics or their dynamical parameters.

One of the main challenges is that such techno-economic time series are typically avail-
able only at an hourly timescale, while frequency dynamics are much faster. For example,
the ramping behaviour of conventional generation on timescales of minutes, i.e., their
change of power generation, strongly affects the deterministic frequency deviations that
occur due to the market-based dispatch of the generators (cf. Section 1.2). Publicly avail-
able generation time series typically have a resolution of 15 to 60 minutes [73], which does
not capture these important dynamics.

Using such techno-economic time series in dynamical system models therefore requires
a careful data assimilation, but it can greatly facilitate realistic modelling. For example, ref.
[104] assimilated load and generation time series to successfully reproduce grid frequency
measurements from the Gran Canaria island. The authors interpolated load and renewable
generation that come with a 10-minute resolution, while dynamical parameters such as the
inertia were calculated directly from properties of the individual power plants.

In large-scale power systems, such as Continental Europe, the integration of techno-
economic times series into dynamical models is more challenging. Load and generation
time series contain various missing or unrealistic values, and time series for individual
power plants are scarce [49]. Parameters of load-frequency control change over time and
differ among local control regions [105], but dynamical models mostly use a time-inde-
pendent uniform control factor [19, 21, 105], such that information on detailed time-
dependent parameters is not available (to the best of my knowledge). Even the inertia,
which is essential for frequency dynamics (Section 1.2), is typically only approximated
from generation time series instead of calculating exact values [91, 103] due to the un-
availability of sufficient data.

In this context, I contribute with my physics-inspired machine learning model by sys-
tematically integrating various operational time series of large-scale power systems into
dynamical models. Instead of assimilating the data via self-engineered functions, I inferred
the relationships with an artificial neural network and a maximum-likelihood approach.
This generic method offers the flexibility to be applied to any power system, even if the
data is incomplete and insufficient.

Notably, this inference task has certain limits. Suitable solutions are non-unique and
there are redundancies between different parameters (cf. Section 4.1). In the future, these
problems could be explored by increasing training times to better approach a global op-
timum. Another option is to further constrain the parameter space and force dynamical
parameters into certain intervals based on domain knowledge. Finally, the physical model
can also be inaccurate so that the correct parameters are not an optimum in the training
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process anymore. Possible model extensions and variations include more detailed repres-
entations of deterministic imbalances, e.g., concerning the ramping behaviour of conven-
tional generators, the integration of non-linearities, e.g., the deadbands of primary control,
or better models of the control loops, which is particularly important for inverter-based re-
newable generation [42].

5.4. Relation to simulation-based methods from

engineering

The power grid is a human-made system, and physical models of its devices are therefore
well established in engineering science [14]. However, when modelling measured data,
simulation-based approaches often use simplifications and not all model parameters are
exactly known [105]. For instance, precise operation strategies are rarely disclosed, and
market outcomes depend on unknown human decisions. Data-driven methods can com-
plement simulation-based methods by validating results and inspiring new model-based
studies. As a first example, simulation-based studies suggest that inertia is not important
for ambient, i.e., day-to-day frequency fluctuations in Great Britain [60]. Notably, inertia
is one of the most critical topics for frequency stability in renewable power systems be-
cause it determines the RoCoF after a disturbance such as an exceptional generator outage
(cf. Section 1.3 and ref. [42]). In Section 3.1, I found that inertia has a negligible feature
importance in my model of day-to-day frequency deviations, thus validating the previ-
ous finding of ref. [60]. Second, I found an unexpected relation between electricity prices
and frequency variability in Great Britain, which could inspire model-based explanations
(Section 3.1).

Due to the energy transition, machine learning techniques will become even more be-
neficial. The integration of great numbers of decentralised renewable energy sources and
the coupling of diverse energy sectors and devices can render the optimisation of power
system security intractable [106]. Machine learning models can be faster, more efficient
and more accurate, thus allowing for secure system operation under increasingly complex
conditions [107].

However, an important challenge is to create trustworthy machine learning tools for the
application in safety-critical domains such as power system operation and control [68].
My approach of using explainable models based on SHAP values opens the possibility
to make transparent predictions, thus increasing the trust in such data-driven applications
[67]. Recently, SHAP values were shown to reproduce Power Transfer Distribution Factors
(PTDFs), a well established sensitivity index for power flows, in a machine learning model
of a test grid, thus emphasising the potential of SHAP for power system applications [68].
Furthermore, hybrid approaches that incorporate physics into machine learning tools have
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been proposed for power systems [108]. They add trustworthiness by producing models
that closely approximate certain physical laws. I contribute to these developments with my
physics-inspired model in Section 4. Here again, machine learning and simulation-based
methods complement each other, e.g., by using feedback loops between simulation and
machine learning to enhance training sets and prediction performance [106].

5.5. Data-driven modelling of non-autonomous

dynamical systems

In this thesis, I investigated grid frequency dynamics and control, which can be described
by an elementary system of dynamical equations (1.2). However, the grid frequency is
driven by external power imbalances ∆P (t), thus turning it into a non-autonomous dy-
namical system. The complex nature of power imbalances in large interconnected power
grids challenges the prediction and modelling of these dynamics.

These challenges primarily arise due to a lack of sufficient data that quantifies the ex-
ternal driving (cf. Section 5.3). (1) The data is only available with low temporal and spatial
resolution, it is noisy and includes measurement errors and missing data points. (2) Some
physical variables, such as the inertia, are not directly observable in large-scale power sys-
tems. (3) The data is observational and not experimental, i.e., it was not extracted under
controlled experimental conditions, and the resulting interdependencies between variables
might not relate to causal effects. Modelling the impact of external drivers on frequency
dynamics with such data is not straightforward.

In this thesis, I demonstrated that machine learning can be used to still benefit from such
data. In particular, explainability was crucial, as it enables us to check the plausibility
of results with domain knowledge or physical models. I showed how transparency and
explainability can be achieved through explanation tools such as SHAP or by integrating
physics and machine learning in physics-inspired models.

The above challenges also arise in other areas of power system stability, e.g., rotor-angle
stability [14]. The synchronisation of multiple generators in a power grid is strongly af-
fected by external effects such as line outages under different operating conditions. Here,
detailed dynamical data is typically not available, because it is too expensive to gather for
every realisation of power system operation. Instead, static features are readily available,
which however do not directly provide the dynamical information. We have studied how
machine learning can contribute in leveraging static features for dynamic stability assess-
ment in such situations with reduced availability of dynamical data [70].

Beyond power systems, we encounter similar challenges when modelling dynamics of
epidemics, climate or financial markets. Epidemics exhibit strongly non-autonomous dy-
namics as the spreading of diseases is affected by multiple factors such as seasonality, polit-
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ical decisions and societal behaviour [109, 110]. Explainable machine learning tools, such
as physics-inspired neural networks, have been used to model such dynamics [111]. The
climate is driven by external forcing, e.g., due to human-induced climate change. Typically,
not all relevant system states can be measured and data is noisy, including measurement
errors. Meteorological data therefore has to be assimilated into physical models, for which
machine learning can be used, too [112]. Finally, financial markets exhibit diverse external
impact factors and multiple machine learning applications have been developed to fore-
cast its non-autonomous dynamics [113]. In my thesis, I discussed generic challenges and
opportunities of using machine learning to model power system dynamics. This contrib-
utes to a better understanding of how to model non-autonomous and stochastic dynamical
system in general.
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48. Gorjão, L. R., Schäfer, B. & Hassan, G. Open Access Power-Grid Frequency Data-
base. https://doi.org/10.17605/OSF.IO/M43TG. 2020.

49. Hirth, L., Mühlenpfordt, J. & Bulkeley, M. The ENTSO-E Transparency Platform
– A Review of Europe’s Most Ambitious Electricity Data Platform. Applied Energy
225, 1054–1067 (2018).
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C) Kruse, J., Schäfer, B. & Witthaut, D. Exploring deterministic frequency deviations
with explainable AI in 2021 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm) (2021),
133–139. doi:10.1109/SmartGridComm51999.2021.9632335. (Section 3.2)
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