1,393 research outputs found

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.

    Practical Aggregation in the Edge

    Get PDF
    Due to the increasing amounts of data produced by applications and devices, cloud infrastructures are becoming unable to timely process and provide answers back to users. This has led to the emergence of the edge computing paradigm that aims at moving computations closer to end user devices. Edge computing can be defined as performing computations outside the boundaries of cloud data centres. This however, can be materialised across very different scenarios considering the broad spectrum of devices that can be leveraged to perform computations in the edge. In this thesis, we focus on a concrete scenario of edge computing, that of multiple devices with wireless capabilities that collectively form a wireless ad hoc network to perform distributed computations. We aim at devising practical solutions for these scenarios however, there is a lack of tools to help us in achieving such goal. To address this first limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to develop and execute distributed protocols over wireless ad hoc networks on commodity devices. As to enable distributed computations in such networks, we focus on the particular case of distributed data aggregation. In particular, we address a harder variant of this problem, that we dub distributed continuous aggregation, where input values used for the computation of the aggregation function may change over time, and propose a novel distributed continuous aggregation protocol, called MiRAge. We have implemented and validated both Yggdrasil and MiRAge through an extensive experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results show that Yggdrasil provides adequate abstractions and tools to implement and execute distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a practical comparative study on distributed continuous aggregation protocols, that shows that MiRAge is more robust and achieves more precise aggregation results than competing state-of-the-art alternatives

    Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling

    Get PDF
    Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid. Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating. In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023

    Distributed Knowledge Discovery in Large Scale Peer-to-Peer Networks

    Get PDF
    Explosive growth in the availability of various kinds of data in distributed locations has resulted in unprecedented opportunity to develop distributed knowledge discovery (DKD) techniques. DKD embraces the growing trend of merging computation with communication by performing distributed data analysis and modeling with minimal communication of data. Most of the current state-of-the-art DKD systems suffer from the lack of scalability, robustness and adaptability due to their dependence on a centralized model for building the knowledge discovery model. Peer-to-Peer networks offer a better scalable and fault-tolerant computing platform for building distributed knowledge discovery models than client-server based platforms. Algorithms and communication protocols have been developed for file search and discovery services in peer-to-peer networks. The file search algorithms are concerned with identification of a peer and discovery of a file on that specified peer, so most of the current peer-to-peer networks for file search act as directory services. The problem of distributed knowledge discovery is different from file search services, however new issues and challenges have to be addressed. The algorithms and communication protocols for knowledge discovery deal with implementing algorithms by which every peer in the network discovers the correct knowledge discovery model, as if it were given the combined database. Therefore, algorithms and communication protocols for DKD mainly deal with distributed computing. The distributed computations are entirely asynchronous, impose very little communication overhead, transparently tolerate network topology changes and peer failures and quickly adjust to changes in the data as they occur. Another important aspect of the distributed computations in a peer-to-peer network is that most of the communication between peer nodes is local i.e. the knowledge discovery model is learned at each peer using information gathered from a very small neighborhood, whose size is independent of the size of the peer-to-peer network. The peer-to-peer constraints on data and/or computing are the hard ones, so the challenge is to show that it is still possible to extract useful information from the distributed data effectively and dependably. The implementation of a distributed algorithm in an asynchronous and decentralized environment is the hardest challenge. DKD in a peer-to-peer network raises issues related to impracticality of global communications and global synchronization, on-the-fly data updates, lack of control, accuracy of computation, the need to share resources with other applications, and frequent failure and recovery of resources. We propose a methodology based on novel distributed algorithms and communication protocols to perform DKD in a peer-to-peer network. We investigate the performance of our algorithms and communication protocols by means of analysis and simulations

    Exploring Strategies that IT Leaders Use to Adopt Cloud Computing

    Get PDF
    Information Technology (IT) leaders must leverage cloud computing to maintain competitive advantage. Evidence suggests that IT leaders who have leveraged cloud computing in small and medium sized organizations have saved an average of $1 million in IT services for their organizations. The purpose of this qualitative single case study was to explore strategies that IT leaders use to adopt cloud computing for their organizations. The target population consisted of 15 IT leaders who had experience with designing and deploying cloud computing solutions at their organization in Long Island, New York within the past 2 years. The conceptual framework of this research project was the disruptive innovation theory. Semistructured interviews were conducted and company documents were gathered. Data were inductively analyzed for emergent themes, then subjected to member checking to ensure the trustworthiness of findings. Four main themes emerged from the data: the essential elements for strategies to adopt cloud computing; most effective strategies; leadership essentials; and barriers, critical factors, and ineffective strategies affecting adoption of cloud computing. These findings may contribute to social change by providing insights to IT leaders in small and medium sized organizations to save money while gaining competitive advantage and ensure sustainable business growth that could enhance community standards of living

    Intramural, collaborative learning systems

    Get PDF
    This thesis focuses on three related concepts: problem-based collaborative learning; the use of multimedia tools in learning systems; and participatory design as a software engineering methodology to create multimedia tools to be used in learning systems. A literature review of the three areas is followed by an overview of the pedagogical, technological, and business trends that affect the direction of innovation in education, including problem-based learning. A discussion of a software engineering project to develop a multimedia application that enhances the learning of geography skills and puts the programming, interface design and multimedia systems capabilities of college students into action ensues. The project results are presented, and suggestions for future research are proposed

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Communication between nodes for autonomic and distributed management

    Get PDF
    Doutoramento conjunto MAPi em InformáticaOver the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.Durante a última década, protocolos como Simple Network Management Protocol (SNMP) ou Common Management Information Protocol (CMIP) foram as abordagens mais comuns para a gestão tradicional de redes. Essas abordagens têm vários problemas em termos de escalabilidade, devido às suas características de centralização. Apresentando um melhor desempenho em termos de escalabilidade, as abordagens de gestão distribuída, por sua vez, são vantajosas nesse sentido, mas também apresentam uma série de desvantagens acerca do custo elevado de comunicação, autonomia, extensibilidade, exibilidade, robustez e cooperação entre os nós da rede. A cooperação entre os nós presentes na rede é normalmente a principal causa de sobrecarga na rede, uma vez que necessita de colectar, sincronizar e disseminar as informações de gestão para todos os nós nela presentes. Em ambientes dinâmicos, como é o caso das redes atuais e futuras, espera-se um crescimento exponencial no número de dispositivos, associado a um grau elevado de mobilidade dos mesmos na rede. Assim, o grau elevado de funções de automatiza ção da gestão da rede é uma exigência primordial, bem como o desenvolvimento de novos mecanismos e técnicas que permitam essa comunicação de forma optimizada e e ciente. Tendo em conta a necessidade de elevada cooperação entre os elementos da rede, as abordagens atuais para a gestão autonómica permitem que o administrador possa gerir grandes áreas de forma rápida e e ciente frente a problemas inesperados, visando diminuir a complexidade da rede e o uxo de informações de controlo nela gerados. Nas gestões autonómicas a delegação de operações da rede é suportada por um plano auto-organizado e não dependente de servidores centralizados ou externos. Com base nos tipos de gestão e desa os acima apresentados, esta Tese tem como principal objetivo propor e desenvolver um conjunto de mecanismos necessários para a criação de uma infra-estrutura de comunicação entre nós, na tentativa de satisfazer as exigências da gestão auton ómica e distribuída apresentadas pelas redes de futura geração. Nesse sentido, mecanismos especí cos incluindo inicialização e descoberta dos elementos da rede, troca de informação de gestão, (re) organização da rede e disseminação de dados foram elaborados e explorados em diversas condições e eventos, tais como: falhas de ligação, diferentes cargas de tráfego e exigências de rede. Para além disso, os mecanismos desenvolvidos são leves e portáveis, ou seja, podem operar em diferentes arquitecturas de hardware e contemplam todos os requisitos necessários para manter a base de comunicação e ciente entre os elementos da rede. Os resultados obtidos através de simulações e experiências reais comprovam que os mecanismos propostos apresentam um tempo de convergência menor para descoberta e troca de informação, um menor impacto na sobrecarga da rede, disseminação mais rápida da informação de gestão, aumento da estabilidade e a qualidade das ligações entre os nós e entrega e ciente de informações de dados em comparação com os mecanismos base analisados. Finalmente, todos os mecanismos desenvolvidos que fazem parte da infrastrutura de comunicação proposta foram concebidos e desenvolvidos para operar em cenários completamente descentralizados
    corecore