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ABSTRACT

Distributed Knowledge Discovery in Large Scale Peer-to-Peer Networks

Sachin Shetty 
Old Dominion University, 2007 

Director: Dr. Min Song

Explosive growth in the availability of various kinds of data in distributed 

locations has resulted in unprecedented opportunity to develop distributed knowledge 

discovery (DKD) techniques. DKD embraces the growing trend of merging computation 

with communication by performing distributed data analysis and modeling with minimal 

communication of data. Most of the current state-of-the-art DKD systems suffer from the 

lack of scalability, robustness and adaptability due to their dependence on a centralized 

model for building the knowledge discovery model. Peer-to-Peer networks offer a better 

scalable and fault-tolerant computing platform for building distributed knowledge 

discovery models than client-server based platforms. Algorithms and communication 

protocols have been developed for file search and discovery services in peer-to-peer 

networks. The file search algorithms are concerned with identification of a peer and 

discovery of a file on that specified peer, so most of the current peer-to-peer networks for 

file search act as directory services. The problem of distributed knowledge discovery is 

different from file search services, however new issues and challenges have to be 

addressed. The algorithms and communication protocols for knowledge discovery deal 

with implementing algorithms by which every peer in the network discovers the correct 

knowledge discovery model, as if it were given the combined database. Therefore, 

algorithms and communication protocols for DKD mainly deal with distributed 

computing. The distributed computations are entirely asynchronous, impose very little 

communication overhead, transparently tolerate network topology changes and peer 

failures and quickly adjust to changes in the data as they occur. Another important aspect 

of the distributed computations in a peer-to-peer network is that most of the 

communication between peer nodes is local i.e. the knowledge discovery model is 

learned at each peer using information gathered from a very small neighborhood, whose
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size is independent of the size of the peer-to-peer network. The peer-to-peer constraints 

on data and/or computing are the hard ones, so the challenge is to show that it is still 

possible to extract useful information from the distributed data effectively and 

dependably. The implementation of a distributed algorithm in an asynchronous and 

decentralized environment is the hardest challenge. DKD in a peer-to-peer network raises 

issues related to impracticality of global communications and global synchronization, on- 

the-fly data updates, lack of control, accuracy of computation, the need to share resources 

with other applications, and frequent failure and recovery of resources. We propose a 

methodology based on novel distributed algorithms and communication protocols to 

perform DKD in a peer-to-peer network. We investigate the performance of our 

algorithms and communication protocols by means of analysis and simulations.
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V

This dissertation is dedicated to the proposition that
Success is not final, failure is not fatal: it is the courage to continue that counts.
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CHAPTER I 

INTRODUCTION

Integrating multiple, independently developed local knowledge discovery models 

distributed in a peer-to-peer network into a global knowledge discovery model is the crux 

of this dissertation. Experience shows that this integration is a difficult problem because 

of increased communication overhead and delayed convergence during the discovery of 

the integrated model. Most of the current approaches make sub-optimal tradeoffs between 

run-time performance and convergence of the models. Current practice involves 

employing one of the two basic approaches: large-scale distributed discovery, which may 

compromise convergence for performance, and collective integration, which may 

compromise run-time performance for convergence.

The work proposed in this dissertation attempts to fill the void in a very important 

research area in modeling and simulation: Learning a descriptive knowledge discovery 

model from distributed data. As distributed databases are prevalent in most 

commercial/military organizations, there is a growing need to have an architecture to 

learn the underlying descriptive knowledge discovery model. Due to logistical and 

security reasons, organizations expect the architecture to learn the model without 

exchanging databases among the participating data sites. In absence of data exchange, the 

architecture is expected to impose minimal communication overhead on the underlying 

network, without adversely compromising the convergence. The capabilities for bi

directional inferences (e.g., prediction and diagnosis), quick debugging and 

reconfiguring, combined with a rigorous probabilistic foundation, has led to the rapid 

emergence of Bayesian Networks as the model of choice for knowledge discovery. This 

dissertation addresses the integration of independently developed Bayesian Networks in a 

manner that reconciles demands for lower communication overhead and faster 

convergence.
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1.1 Problem Statement

Learning the structure of a distributed Bayesian network from local Bayesian networks 

learnt in nodes in a peer-to-peer network is an unsolved problem. This dissertation

proposes a methodology based on novel distributed algorithms and communication
\

protocols to learn Bayesian networks from distributed data. Our methodology will 

address challenges related to global synchronization, global communication and 

dynamism in discovering a distributed Bayesian Network model in a decentralized 

environment. Our methodology is an emerging technique to address the aforementioned 

challenges.

The objectives of the work presented in this dissertation are as follows:

• Improving the convergence rate of Bayesian Network structure learning 

algorithm.

• Better control over the information dissemination between the nodes in a peer-to- 

peer network.

• Asynchronous computation of distributed Bayesian Network structure learning 

algorithms.

• Scalability and fault-tolerance in distributed Bayesian Network structure learning 

algorithms.

• Reducing global communication overhead in distributed computations.

1.2 Dissertation Statement

The main contributions of this work are three-fold. The first contribution is a semantic 

genetic algorithm (SGA) to learn the best Bayesian network structure from a database. 

SGA introduces semantic crossover and mutation operators to aid in obtaining accurate 

solutions. The crossover and mutation operators incorporate the semantics of Bayesian 

network structures to learn the structure with very minimal errors. SGA has been proven 

to discover Bayesian networks with greater accuracy than existing classical genetic 

algorithms.
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The second contribution of this work proposes an adaptive fanout based epidemic 

protocol to allow the computation of the global Bayesian network to be completed within 

a pre-determined response time. The protocol is based on controlling the information 

dissemination process between nodes in a peer-to-peer network. The fanout property of 

the epidemic protocol has been modified. Two approaches have been implemented to 

modify the fanout: Round Based Dynamic Fanout and Cluster Based Dynamic Fanout. In 

the first approach, the network topology is flat and each node transmits a message with a 

varied fanout every round. In the second approach, the network topology is hierarchical 

and the fanout values in every cluster differ within the same round. The main objectives 

are to ensure that peers receive messages within a bounded latency and that the system 

message overhead is a bounded value.

The third contribution of this dissertation is a majority based consensus methodology to 

learn a Bayesian network structure from databases distributed in peer-to-peer networks. 

The methodology consists of a majority consensus protocol and a majority Bayesian 

network algorithm which are executed in tandem on each node such that every node can 

learn the Bayesian network structure as if it were given the combined database. The 

protocol and the algorithm perform their operations asynchronously. Thus it imposes 

very little communication overhead .and transparently tolerates network topology changes 

and node failures.

To implement DKD in a peer-to-peer network using our methodology, semantic genetic 

algorithms, adaptive fanout based epidemic protocol, majority consensus protocol, and 

the majority Bayesian network algorithm should be executed in tandem at each and every 

node in a peer-to-peer network. The semantic genetic algorithm would be responsible to 

accurately learn the structure of the local Bayesian network model at each and every 

node. The majority Bayesian network algorithm would be responsible for updating the 

local Bayesian network based on the information received from the neighboring peers. 

The majority Bayesian network algorithm would interact with the majority consensus 

protocol while sending local Bayesian networks and receiving neighboring Bayesian 

networks. The majority consensus protocol is responsible for the discovery of the exact
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distributed Bayesian network at every peer node and ensuring that the communication is 

local. The majority consensus protocol would entrust the task of choosing neighbors, 

populating the neighbor list, and controlling the information dissemination to the adaptive 

fanout based epidemic protocol.

1.3 Outline

The remainder of this dissertation follows a traditional format. Chapter 2 discusses the 

background of Bayesian network structure learning, epidemic protocols and distributed 

knowledge discovery algorithms. This chapter also presents related work in the above 

fields as well as limitations of approaches mentioned in the literature and the approach 

taken by this dissertation. Chapter 3 presents the first contribution, a Semantic Genetic 

Algorithm, which allows for a faster convergence in learning the structure of a Bayesian 

Network. The chapter discusses the details of the modified crossover and mutation 

operators used in the algorithm. In Chapter 4, the information dissemination problem in 

peer-to-peer network is addressed. This chapter presents an adaptive fanout based 

epidemic protocol which provides better control over the overall information 

dissemination process during communication between peers. Chapter 5 presents a 

majority based consensus methodology to learn a distributed Bayesian network from data 

distributed among nodes in a peer-to-peer network. Chapter 6 concludes by discussing 

the contributions of this dissertation to the practice of distributed knowledge discovery 

and presenting some areas for future work.
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CHAPTER II 

BACKGROUND AND RELATED WORK

This chapter discusses the background of structure learning in Bayesian Networks for 

knowledge discovery, epidemic protocols and distributed knowledge discovery. This 

chapter also reviews a sampling of relevant research in the above fields, discusses the 

limitations of previous approaches, and the approach taken in this dissertation.

2.1 Structure Learning in Bayesian Networks for Knowledge Discovery

Knowledge discovery (KD) refers to extracting knowledge from large amounts of data. 

The KD process is comprised of a set of techniques and algorithms taken from different 

fields such as statistics, the social sciences, and artificial intelligence. The KD process 

can be subdivided into different sub-processes depending on the kind of information to be 

searched and the input data.

• Clustering -  Process of partitioning a given set of data points into distinct groups 

or clusters such that the similarity between the data points in one cluster is 

maximized and the similarity between data points in different clusters is 

minimized.

• Classification -Process of assigning objects to predefined categories or classes.

• Sequential Patterns -  Process of determining strong sequential dependencies 

among different events.

• Association Rules -  Process of finding all rules that correlate the presence of one 

set of items with that of another set of items from a transaction of item sets.

To implement each of the above processes, a very rich set of algorithms and techniques 

have been taken from the fields of statistics and machine learning [26], This dissertation
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focuses on an algorithm which is based on a probabilistic framework called Bayesian 

networks. Next, background information related to Bayesian networks and its relevance 

to KD is provided.

2.1.1 Bayesian networks for Knowledge Discovery

Modeling the human learning process has been one of the most challenging tasks faced 

by researchers in the artificial intelligence field. Machine learning is an area of artificial 

intelligence concerned with the development of techniques which allow computers to 

learn. More specifically, machine learning is a method for creating computer programs 

by the analysis of data sets. A common approach to machine learning is that of 

discovering causal connections and probabilities between events [9], Conditional 

dependencies are a major aspect of learning as they give us the power to infer future 

events and make intelligent decisions. These conditional dependencies can be shown 

visually in a graphical model. A Bayesian network (BN) is a special type of graphical 

model which utilizes Bayes' rule for inference.

Most simply, Bayes’ rule can be expressed as:

■P(«)

where P(a) is the probability of a, and P(a | b) is the probability of a given that b has 

occurred.

BNs represent probabilistic relationships among a set of variables. Recently researchers 

have developed methods for learning BNs from a combination of expert knowledge and 

data. These methods are fairly new and still evolving, but are found to be very effective 

in the banking, military and medicine domains [8, 18]. A typical KD process using BNs 

proceeds as follows [16], The existing knowledge of a domain is encoded in a BN by an 

expert. A database is used to update this knowledge to create more BNs. The final result 

is a refinement of the original expert knowledge and sometimes the identification of new 

distinctions and relationships. The two most important advantages of using BNs are the 

capability of encoding expert knowledge in a BN and the nodes and arcs in learned BNs 

correspond to recognizable distinctions and causal relationships.
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As mentioned earlier, BNs are a special type of graphical model, represented as directed 

acyclic graph of dependencies between nodes. An edge from node n, to n2 means that 

node nx directly influences node n2. A BN describes a collection of joint probabilities 

between several nodes. The chain rule allows us to define joint probabilities in terms of
n

conditional probabilities. We determine P(xx,....,xn) by c o m p u t in g P (x ,  |/?a(x,.)),
1=1

where /?a(x,.) refers to the parent of variable x: . Fig. 2.1 shows a hypothetical example of 

a BN. The BN represents three variables(X = {x ,x},Y  = {y,y}  andZ = {z,z}). X and Y 

are parents of variable Z. The joint probabilities can be determined as 

p (X , Y, Z ) = p(X).p(Y).p(Z  | X ,Y ) .

p(x) = 0.3
P(y) =0.45

p ( z \ x , y ) 0.2

p ( z \ x , y ) 0.8

P { z \ x , y ) 0.1

P ( z \  * , y ) 0.6

Fig. 2.1 A Bayesian Network Representation.

2.1.2 Structured Bayesian Learning

Once a BN is constructed it constitutes an efficient device to perform probabilistic 

inference, but the problem of building such a network still remains. The structure and 

conditional probabilities necessary for characterizing the network can be provided either 

externally by experts or from direct empirical observations. The learning task in a BN 

can be separated into two subtasks, structure learning, that is to identify the topology of 

the network, and parameter learning, the numerical parameters (conditional probabilities) 

for a given network topology. This dissertation focuses on structure learning, rather than
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parameter learning. However, for the construction of a complete BN, it is also necessary 

to estimate parameters.

Structure learning of a BN consists of two tasks: one to identify the nodes or variables, 

and two to fill in the directed edges. Given a list of data items, finding the representative 

variables or nodes is a trivial task. The real challenge, then, is to fill in the directed 

edges. We want to know which nodes are parents of which other nodes. The set of 

parents and the range of each node tells us what the target conditional probabilities are. 

This problem has been shown to be NP-hard [18].

2.1.3 BN Selection Methods

In order to learn a BN from data, one of the most common criteria is the Bayesian 

Descriptor Estimation (BDE) score, which is equivalent to the Minimum Descriptor 

Length (MDL) score. The main idea behind the MDL score is to maximize the final 

score output while minimizing the complexity of the structure. To reduce the search 

space during learning BN, many heuristic approaches have been taken: greedy search, 

best-first search, and Monte-Carlo methods [21]. Several algorithms based on the 

aforementioned approaches have been proposed. The important ones are K2 [8], and 

Genetic Algorithms [42]. Larranaga et al. proposed a genetic algorithm based on the 

score-based greedy algorithm[40]. In their algorithm, a directed acyclic graph (DAG) is 

represented by a connectivity matrix that is stored as a string. The recombination is 

implemented as one-point crossover on these strings, while mutation is implemented as 

random bit flipping. In a related work, Larranaga et al. [41] employed a wrapper 

approach by implementing a genetic algorithm that searches for an ordering that is passed 

on to K2 [8], a score-based greedy learning algorithm. The results of the wrapper 

approach were comparable to those of their previous genetic algorithms. Different 

crossover operators have been implemented in a genetic algorithm to increase the 

adaptiveness of the learning problem with good results [9]. Lam and Bacchus [39] 

proposed a hybrid evolutionary programming (HEP) algorithm that combines the use of 

independence tests with a quality-based search. In the HEP algorithm, the search space of 

DAG is constrained in the sense that each possible DAG only connects two nodes if  they
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show a strong dependence in the available data. The HEP algorithm evolves a population 

of DAG to find a solution that minimizes the minimal MDL score. A common feature of 

the aforementioned algorithms is that the mutation and crossover operators were classical 

in nature. These operators do not help the evolution process to reach the best solution.

Wong et al. [59] developed an approach based on MDL score and evolutionary 

programming. They have integrated a knowledge-guided genetic operator for the 

optimization in the search process. However, the fitness function is not taken into account 

to guide the search process. Myers and Levitt [46] have proposed an adaptive mutation 

operator for the learning structure of BN from incomplete data. It is a generalized 

approach to influence the current recombination process based on previous population; it 

also does not take into account the fitness of a population. Blanco et al. [4] have adopted 

the estimation of distribution algorithms method for learning BN without the use of 

crossover and mutation operators. This is not in accordance with the classical genetic 

algorithm due to the lack of recombination operators. Recently, Dijk et al. [12] built 

another generalized genetic algorithm to improve the search process without taking into 

account the specific characteristics of the population. As we see, most of the genetic 

algorithm-based approaches mentioned above adopt a generalized approach to improve 

the search process.

2.2 Distributed Knowledge Discovery

Distributed Knowledge Discovery (DKD) can be described as a process of discovering 

knowledge from a database geographically distributed among a group of sites connected 

by a high latency network. The goal of a DKD system is to build a global model 

representing the data distributed at more than one site. This section presents 

architectural, algorithm, and communication challenges in implementing DKD.

2.2.1 Architecture

Fig. 2.2 shows a classification of current DKD system architectures. Each of the 

architectures poses different challenges and provides different benefits.
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Data-Based

Mobile

Model-Based

Stationary

Client -Server (CS) MAS on peer-to-peer

Architecture-Based

Multi-Agent Systems (MAS)

Distributed Link Mining Systems

Fig. 2.2 Distributed Knowledge discovery architectures.

Data-based. This is a centralized learning strategy which refers to a common approach 

to DKD, as the focus is on the location of the data. Fig. 2.3 describes the architecture. 

In the figure, the data sites refer to the distributed databases, and the KD process is 

responsible for building a complete KD model (global model) based on the data from all 

the distributed locations. Centralized learning involves data from all data sites moved to 

a single central server for analysis and predictive modeling. Client-Server technologies 

are ideal for implementing this strategy. However, this strategy for DKD has a high 

communication overhead as it involves transfer of huge quantities of data. The advantage 

of this strategy is that the DKD server has well defined computational resources which 

have the ability to handle resource intensive KD tasks.
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cr Global Model

Knowledge discovery

t
Merge Data

Data Data
Site 1 Site 2

Data 
Site N

Fig.2.3 Data Based approach for DKD

Model-Based. This is a local learning approach, where in-place strategies are employed 

by building models at each data site and then moved to the server where they are 

combined. Fig. 2.4 sketches the architecture. In the figure, the global model is created 

by the merging of the local models. Multi-agent systems have been used to implement 

the local learning strategies. Agent technology is seen as being able to address the 

specific concern of increasing scalability and enhancing performance by moving code 

instead of data and thereby reducing the communication overhead incurred in the 

centralized strategy. However, the absence of dedicated KD servers and the lack of 

control over available computational resources at remote sites are limitations.

In this approach, the local models can be implemented by sequential knowledge 

discovery algorithms without any modification. The challenge is to combine the partial 

results coming from the local models. Different techniques can be adopted, based on 

voting strategies or collective operations [28]. Multi-agent systems may apply meta- 

learning to combine partial results of distributed local classifiers [52], The drawback of 

the model-driven approach is that it is not always possible to obtain an exact final result; 

i.e., the global knowledge model obtained may be different from the one obtained by
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applying the data-driven approach (if possible) to the same data. Moreover, in this model, 

hardware resource usage is not optimized. If the heavy computational part is always 

executed locally to data, when the same data is accessed concurrently, the benefits 

coming from the distributed environment might vanish due to the possible strong 

performance degradation. \

~ r ~

C Global Model

( ^ ^ M e r g e  M o d el~ ^^ )

Local Model Local Model

ciE)"
Local Model

Data Data Data
Site 1 Site 2 SiteN

Fig. 2.4 Model Based approach for DKD

Architecture-Based. This is a layered approach to DKD. Fig. 2.5 shows the schematic 

diagram for this approach. This approach provides a control over the performance of 

DKD. It is a relatively newer approach to distributed learning. The two main layers in 

this approach are: resource selection and communications. The resource selection layer 

moves data to different sites with respect to their original location for better 

performances. The communications layer avoids sending the local models to a central 

location and allows the global model to be built during the local computation. This 

allows for arbitrary precision to be achieved, at the price of a higher communication 

overhead. Since in this approach for DKD the focus is on optimized resource usage, we 

refer to this approach as architecture-driven.
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Fig. 2.5 Architecture Based approach for DKD.

2.3 Epidemic Protocols

Having discussed the architecture models for the distributed knowledge discovery model 

in the previous section, the next step is to describe protocols and algorithms to learn the 

structure of Bayesian networks from distributed data. This section presents details of 

epidemic protocols: communication protocols which provide a scalable, robust, and 

probabilistic reliable mechanism for information dissemination in large-scale peer-to-peer 

communication systems

2.3.1 Background

Epidemic algorithms have gained popularity as a robust and scalable way of propagating 

information in distributed systems [3]. A process that wishes to disseminate information 

to the system does not send it to a server, but rather to a set of other peer processes, 

chosen at random. In turn, each of these processes does the same and also forwards the 

information to randomly selected processes, and so forth. The principle underlying this 

information dissemination technique is similar to the spread of epidemics. Once started, 

epidemics are hard to eradicate: a few people infected by a contagious disease are able to 

spread it, directly or indirectly, to a large population. Epidemics are resilient to failures in
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the infection process. That is, even if many infected people die before being able to 

transmit the disease, or are immunized, the epidemic is still reliably propagated over 

populations. Epidemic dissemination algorithms are simple and easy to deploy. In 

addition to scalability, epidemic algorithms exhibit a very stable behavior even in the 

presence of link and node ̂ failures. There is no single point of failure and the reliability 

degrades gracefully with the number of failures. A large amount of research has been 

devoted to observing, analyzing, and devising mathematical theories for epidemics. 

Applying the epidemic idea to dissemination of information among a large number of 

nodes with a dynamic connection topology is thus very appealing [20], [29]. The use of 

epidemic algorithms has been explored in applications such as failure detection [58], 

routing in adhoc networks [44], data aggregation [15], resource discovery and monitoring 

[57] and database replication [11].

2.3.2 Related Work

As mentioned in the introduction section, most of the epidemic protocols in the literature 

usually adopt a constant fanout. The first attempt at implementing an epidemic protocol 

for information dissemination resulted in the Bimodal Multicast [3]. This protocol works 

on two phases. In the first phase, a best-effort multicast protocol (e.g., IP multicast) is 

used for a rough dissemination of messages. In the second phase, a gossip based peer 

retransmission protocol is used to ensure reliability with a certain probability. In 

particular, every process in the system periodically gossips a digest of its received 

messages; receivers can solicit such messages from the sender. The fanout used for the 

second phase is a constant of one. The gossip based probabilistic multicast protocol 

proposed for failure detection also assumes a constant fanout of one [58], The failure 

detection service has been performed for larger network sizes but the fanout has been 

kept to a constant of one irrespective of network size. More recently, there have been 

efforts to implement reliable group communication protocols for distributed systems and 

applications such as publish/subscribe systems [13]. These protocols deploy a scalable, 

peer-to-peer membership service, but the protocol was never designed to compute an 

optimal value of fanout. Instead, the fanout values were set to be a constant for a given 

network. In particular the fanout values are increased to higher values as the network size
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increases. Higher fanout degrades performance due to increased message overhead. For 

networks with dynamic behavior where information is changing continuously, for 

example, a network of sensors or a cluster of distributed computing hosts, spatial 

epidemic protocol can be used to guarantee that the new information reaches all the 

nodes. In [30], the spatial epidemic protocol bounds propagation time by a poly- 

logarithmic function in distance by choosing epidemic targets with a probability which is 

an inverse polynomial function of distance. The fanout is assumed to be a constant of 

one. In [29], it is discussed that a generic gossip protocol needs O(nlogw) messages to 

spread a rumor. For example, the gossip protocol which forwards each rumor from the 

sender to the receiving nodes for O(logw) rounds needs to transmit the rumor 0(n log«) 

times in order to ensure that every player finally receives the rumor with a high 

probability.

The very first attempt to compute an optimal value for the fanout in a probabilistic 

reliable information dissemination process was performed by [32], The authors computed 

the fanout needed to deliver information to all nodes with a high probability by using 

random graphs. They showed that a fanout in the order of log(w) + c + o(l) gives a success

e~cprobability of e , where c is a design parameter whose value ranges from 0 to 1. The 

reliability of this gossip-based protocol is related to key system parameters (system size, 

failure rates, and the number of gossip targets). Reliability can be maintained by ensuring 

that each peer provides only a small subset of the total membership information, and by 

organizing peer members into a hierarchical structure that reflects their proximity 

according to some network-related metric. The network topology is hierarchical, which 

leads to separate fanout values for inter-cluster and intra-cluster peers.

2.4 Distributed Knowledge Discovery Algorithm

A distributed knowledge discovery architecture that employs epidemic protocols for 

communication provides a better run-time performance, but we still have to construct a 

consistent global knowledge discovery model from local knowledge discovery models 

distributed in peer-to-peer networks. This section talks about algorithms in the literature,
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that discuss different approaches to discovering a global knowledge discovery model.

2.4.1 Related Work

There have been numerous approaches to perform structure learning of a BN from 

complete data [36, 37, 51,53]. Learning the structure of BN from incomplete data has 

also been covered in [38, 44, 45,46,55]. The structure and parameter learning 

methodologies for complete data presented above have been tested on local datasets only. 

The performance of these methodologies on distributed datasets has not been 

experimented. For all the above methods to be effective, all data must be available at a 

central location. The learning methodologies for incomplete data are a good fit for 

distributed Bayesian network learning. But none of the above methodologies have been 

experimented in an environment where additional data is available for improving the 

learning performance.

Though there has been a lot of research performed on learning the structure and 

parameters of a BN on a local dataset, research efforts on structure learning on distributed 

datasets have been minimal. The available research on distributed Bayesian network 

learning can be classified as structure and parameter learning on homogeneous and 

heterogeneous data sets. To the best of our knowledge, there have been only two models 

presented for distributed Bayesian network learning. Both models propose a centralized 

approach. The centralized solution to this problem is to download all datasets from 

distributed nodes. Kenji has worked on the homogeneous distributed learning scenario 

[31]. In this case, every distributed node has the same feature but different observations. 

A collective approach to implementing a Distributed Bayesian Network (DBN) has been 

proposed by Chen et. al [6] but this approach is implemented in a client-server 

framework for heterogeneous datasets. To identify cross links, every node has to submit 

relevant datasets to the central server. The central server is responsible for the 

construction of the global BN model. Each local node can create its own BN model based 

on its local datasets only.
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The distributed algorithm proposed in this chapter deviates from the client-server model 

proposed by Chen et. al [6] and Johnson et. al. [27]. The distributed algorithm is based on 

a majority voting protocol. Majority voting protocols have been proposed in research 

areas wherein a decision is made by participating nodes. There are few majority vote 

protocols which are based on local communication. Local communication is key to the 

success of our distributed algorithm. The majority vote problem is similar to the 

persistent bit problem, for which local protocols were given [34, 35,5], and the two 

problems are reducible to one another. The main drawback of the aforementioned 

persistent bit protocols is that each of them assumes some form of synchronization: In 

[35], nodes query groups of other nodes and must await a reply before they proceed, 

while [34] works in locked-step, assuming a global clock pulse. In contrast, our majority 

vote protocol requires no synchronization at all. There are also more subtle differences 

which make these protocols impractical for majority vote. For instance, the former only 

works when the majority is very evident while the latter, because it allows any 

intermediate result to be corrupted, requires O (n) memory at each node, where n is the 

network size.

There have been few approaches to implementing distributed data mining algorithms in 

peer-to-peer networks [32], In this approach, a local communication based model is 

chosen to learn association rules in a distributed database. The messages exchanged 

between nodes include the data items and a confidence level for the rules. The efficiency 

of the local communication model is dependent on the size of the data items exchanged 

and the neighbor list. There is a significant message overhead due to the presence of data 

items in each message exchange between two peers. Also the validity of the protocol 

depends on user supplied frequency and confidence parameters. This makes the protocol 

less robust to different kinds of datasets.

2.5 Distributed Knowledge Discovery in Peer-to-Peer Networks

This dissertation proposes a methodology to learn a distributed Bayesian Network from 

local Bayesian networks learnt at individual nodes which are part of a peer-to-peer 

network. Our methodology consists of a semantic genetic algorithm to learn a local
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Bayesian network structure, an adaptive fanout based epidemic protocol to provide a 

scalable, robust and probabilistic reliable controlled communication capability, and a 

majority based consensus methodology to facilitate learning the accurate structure of a 

global Bayesian Network at each and every node in the network.

The methodology is similar in principle to the architectural model described in section 

2.2.1. The focal point of this dissertation is the implementation of the communication 

layer in the architecture model described in Fig. 2.5. The main responsibility of the 

communication layer is to ensure the quicker convergence of learning a global Bayesian 

network from distributed data in a scalable and robust network at the expense of lower 

communication overhead. Epidemic protocols are potentially effective solutions for 

disseminating information in large scale and dynamic systems. They are easy to deploy, 

robust and provide high resilience to failures. They proactively fight random processes 

and network failures and do not need any reconfiguration when failures occur. This 

characteristic is particularly useful in peer-to-peer systems deployed on Internet or ad-hoc 

networks.

One can adjust the parameters of an epidemic information dissemination protocol in such 

a way that high reliability of dissemination is achieved despite process crashes and 

disconnections, packet losses and dynamic network topology. This provides the illusion 

of a global and virtual information system that every client can access and also takes part 

in implementing. The constant fanout parameter in an epidemic protocol is changed to an 

adaptive fanout to provide better control over the information dissemination process. An 

adaptive fanout based epidemic protocol provides a mechanism to compute the global 

Bayesian Network model within a pre-determined response time, by controlling the 

information dissemination process.

As the methodology is implemented in a peer-to-peer network, the computation of the 

global Bayesian network occurs in-network. A majority based consensus methodology 

ensures that every node learns an exact global Bayesian Network, as if it were given the 

combined database. The methodology consists of a majority consensus protocol and
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majority Bayesian network algorithm. The protocol and algorithm work in tandem at 

each node. The protocol and algorithm are entirely asynchronous, impose very little 

communication overhead, transparently tolerate network topology changes and node 

failures, and quickly adjust to changes in the data as they occur.
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CHAPTER III 

Data Mining of Bayesian Network Structure Using a 

Semantic Genetic Algorithm-Based Approach
\

3.1. Introduction

One of the most important steps in data mining is to build a descriptive model of the 

database being mined. To do so, probability-based approaches have been considered an 

effective tool because of the uncertain nature of descriptive models. Unfortunately, high 

computational requirements and the lack of proper representation have hindered the 

building of probabilistic models. To alleviate the above problems, probabilistic graphical 

models have been proposed. In the past decade, many variants of probabilistic graphical 

models have been developed, with the simplest variant being Bayesian networks (BN) 

[52], BN is a popular descriptive modeling technique to see relationships between 

attributes of a set of records for available data. It has been employed to reason under 

uncertainty, with wide varying applications in the field of medicine, finance, and military 

planning [52] [27]. Computationally, BN provides an efficient way to represent 

relationships between attributes and allow reasonably fast inference of probabilities. 

Learning BN from raw data can be viewed as an optimization problem where a BN has to 

be found that best represents the probability distribution that has generated the data in a 

given database [18]. This has lately been the subject of considerable research since the 

traditional designer of a BN may not be able to see all of the relationships between the 

attributes. In this chapter, we focus on the structure learning of a BN from a complete 

database. The database stores the statistical values of the variables as well as the 

conditional dependence relationship among the variables. We employ a genetic algorithm 

technique to learn the structure of BN.

A typical genetic algorithm works with a population of individuals each of which needs 

to be coded using a representative function and be evaluated using a fitness function to
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measure the adaptiveness of each individual. These two functions are the basic building 

blocks of a genetic algorithm. To actually perform the algorithm, three genetic operators 

are used to explore the set of solutions: reproduction, mutation, and crossover. The 

reproduction operator promotes the best individual structures to the next generation. That 

is, the individual with the highest fitness in a population will reproduce with a higher 

probability than the one with the lowest fitness. The mutation operator toggles a position 

in the symbolic representation of the potential solutions. Mutation avoids local optima by 

exploring new solutions by introducing a variation in the population. The crossover 

operator exchanges genetic material to generate new individuals by selecting a point 

where pieces of parents are swapped. The main parameters, that influence the genetic 

algorithm search process, are initial population, population size, mutation, and crossover 

operators.

The rest of the chapter is organized as follows. Section 3.2 presents the details of our 

approach for structure learning in a BN structure using a modified genetic algorithm. In 

Section 3.3, we experiment with two different genetic algorithms. The first one is the 

genetic algorithm with classical genetic operators. In the second algorithm, we extend the 

standard mutation and crossover operators to incorporate the semantic of the BN 

structures. Finally, Section 3.4 concludes the chapter and proposes some thoughts for 

further research.

3.2 SEMANTIC GENETIC ALGORITHM-BASED APPROACH

3.2.1 Structure Learning of Bayesian Networks

Formally, a BN consists of a set of nodes that represent variables, and a set of directed 

edges among the nodes. Each node is represented by a finite set of mutually exclusive 

states. The directed edges between nodes represent the dependence between the linked 

variables. The strengths of the relationships between the variables are expressed as 

conditional probability tables (CPT). Thus a BN efficiently encodes the joint probability
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distribution of its variables. For n-dimensional random variable (Xp ....,Xn) , the joint 

probability distribution is determined as follows,

where xt represents the value of the random variable Xt and pa{x^) represents the value

of the parents of x i . Thus, the structure learning problem of a BN is equivalent to the

problem of searching the optimum in the space of all DAG. During the search process, a 

trade-off between the structural network complexity and the network accuracy has to be 

made. The trade-off is necessary as complex networks suffer from over fitting, making 

the run time of inference very long. A popular measure to balance complexity and 

accuracy is based on the principle of MDL from information theory (Lam and Bacchus, 

1994). In this chapter, the BN structure learning problem is solved by searching for a 

DAG that minimizes the MDL score.

3.2.2 Representative Function and Fitness Function

The first task in a genetic algorithm is the representation of an initial population. To 

represent a BN as a genetic algorithm individual, an edge matrix or adjacency matrix is 

needed. The set of network structures for a specific database characterized by n variables 

can be represented by an rrxn connectivity matrix C. Each bit represents the edge between 

two nodes where

The two-dimensional array of bits can be represented as an individual of the population 

by the following string CnC12...ClnC21C22...C2fI...CnlCn2...C„„, where the first n bits

represent the edges to the first node of the network and so on. It can be easily found that 

Ckk are the irrelevant bits which represent an edge from node k  to itself which can be 

ignored by the search process.

With the representative function decided, we need to devise the generation of the initial 

population. There are several approaches to generate initial population. We implemented

n

(3.1)
/=]

1, if j  is a parent of i 
0, otherwise
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the Box-Muller random number generator to select how many parents would be chosen 

for each individual node. The parameters for the Box-Muller algorithm are the desired 

average and standard deviation. Based on these two input parameters, the algorithm 

generates a number that fits the distribution. For our implementation, the average 

corresponds to the average number of parents for each node in the resultant BN. After 

considerable experimentation with databases whose Bayesian structure is similar to the 

ASIA network [43], we found that the best average was 1.0 with a standard deviation of

0.5. Though this approach is simple, it creates numerous illegal DAG due to cyclic 

subnetworks. An algorithm to remove or fix these cyclic structures has to be designed. 

The basic operation of the algorithm is to remove a random edge of a cycle until cycles 

are not found in a DAG individual.

Now that the representative function and the population generation have been decided, 

we need to find a good fitness function. Most of the state-of-the-art implementations use 

the fitness function proposed in the algorithm K2 [8]. The K2 algorithm assumes an 

ordered list of variables as its input. It maximizes the following function by searching for 

every node from the ordered list of a set of parent nodes:

(3-2>
7=1 '  y  i 7  /r= l

where r{ represents the possible value assignments (vn,..., v(- ) for the variable with index

1. Nljk represents the number of instances in a database in which a variable X, has value 

vik, and qi represents the number of unique instantiations of pa(xt).

3.2.3 Mutation and Crossover Operators

We introduce two new operators, semantic mutation (SM) and single point semantic 

crossover (SPSC), to the existing standard mutation and crossover operators. The SM 

operator is a heuristic operator that toggles the bit value of a position in the edge matrix 

to ensure that the fitness function g(xi,pa(xi)) is maximized. The SPSC operator is

specific to our representation function. As the function is a two-dimensional edge matrix 

consisting of columns and rows, our new crossover operator operates on either columns
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or rows. Thus the crossover operator generates two offsprings by either manipulating 

columns or rows. The SPSC crosses two parents by manipulating columns or parents and 

maximizing the function g(xi,pa(x i) ) , and also manipulating rows or children and

maximizing the function By combining SM and SPSC, we implement
i
\

our new genetic algorithm called the semantic genetic algorithm (SGA). The following is 

the pseudocode for the semantic crossover operation. The algorithm expects an 

individual as input and returns the modified individual after applying semantic crossover 

operations.

Pseudo code for Semantic Crossover

Step 1. Initialization

Read the input individual and populate a parent table for each node

Step 2. Generate new individual

For each node in the individual do the following n times

2.1 Execute the Box Mueller algorithm to find how many parents need to be 

altered.

2.2 Ensure that the nodes selected as parents do not form cycles. If cycles are 

formed repeat step 2.1

2.3 Evaluate the network score of the resultant structure.

2.4 If current score is higher than previous score, then the chosen parents are the 

new parents of the selected node

Repeat steps 2.1 through 2.4.

Step 3. Return the final modified individual.
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3.3 Simulations

3.3.1 SGA Implementation

The SGA algorithm has been implemented and incorporated into the Bayesian network 

tools in Java (BNJ) [2], BNJ is an open-source suite of software tools for research and 

development using graphical models of probability. Specifically, SGA is implemented as 

a separate module using the BNJ API. To depict the Bayesian network, BNJ visually 

provides a visualization tool to create and edit Bayesian networks.

3.3.2 Simulation Methodology

Fig. 3.1 shows the overall simulation setup to evaluate our genetic algorithm. Following 

are the main steps of the algorithm:

Step 1. Determine a BN and simulate it using a probabilistic logic sampling 

technique [21] to obtain a database D, which reflects the conditional 

relations between the variables;

Step 2. Apply our SGA approach to obtain the BN structure Bs , which 

maximizes the probability P(D\BS) ;

Step 3. Evaluate the fitness of the solutions.

X I X 2 X 3 X 4 X5

Probabilistic 
Logic Sampling

X I
SG A

X I X3 X I X3
10000

X5 X 4 X5 X 4

Generating BN Learned BNDatabase

Verify Generating BN with the learned BN

Fig. 3.1 Simulation setup for learning Bayesian network structure.
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3.3.3 Simulations and Analysis

The BN sizes used in our simulations are 8, 12, 18, 24, 30, and 36. The 8-node BN used 

in the simulations is from the ASIA networks as shown in Fig. 3.2. The ASIA network 

illustrates a method of propagation of evidence and considers a small amount of fictitious 

qualitative medical knowledge. The remaining networks were created by adding extra 

nodes to the basic ASIA network.

Smoking

C ancerTuberculosis Bronchitis

TbOrCa

Dyspnea
XRay

Fig. 3.2 The structure of the ASIA network.

There are several techniques for simulating BN. For our experiments we have adopted 

the probabilistic logic sampling technique. In this technique, the data generator generates 

random samples based on the ASIA network’s joint probability distribution table. The 

data generator sorts nodes topologically and picks a value for each root node using the 

probability distribution, and then generates values for each child node according to its 

parent’s values in the joint probability table. The root mean square error (RMSE) of the 

data generated compared to the ASIA network is approximately zero. This indicates that 

the data was generated correctly. We have populated the database with 2000, 3000, 5000, 

and 10,000 records. This was done to measure the effectiveness of the learning algorithm 

for larger records. The following inputs are used in the simulations:

• Population size X. The experiments have been carried out with A=  100.
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• Crossover probability p c , we chose p c =0.9.

• Mutation rate p m, we considered p m =0.1.

The fitness function used by our algorithm is based on the formula proposed by Cooper 

and Herskovits [8]. For each of the samples (2000, 3000, 5000, 10000), we executed 10 

runs with each of the above parameter combinations. We considered the following four 

metrics to evaluate the behavior of our algorithm.

• Average fitness value -  This is an average of fitness function values over 10 runs.

• Best fitness value -  This value corresponds to the best fitness value throughout the 

evolution of the genetic algorithm.

• Average graph errors -  This represents the average of the graph errors between 

the best BN structure found in each search and the initial BN structure. Graph 

errors are defined to be an addition, a deletion or a reversal of an edge.

• Average number o f generations -  This represents the number of generations taken 

to find the best fitness function.

For comparison purpose, we also implemented the classical genetic algorithm (CGA) 

with classical mutation (CM) and single point cyclic crossover (SPCC) operators. Fig. 3.3 

plots the average fitness values for the following parameter combination. The average 

and best fitness values are expressed in terms of logPfD lfiJ. The number of records is

10,000. The figure also shows the best fitness value for the whole evolution process. One 

can see that SGA performs better than CGA in the initial 1 5 -2 0  generations. After 15 - 

20 generations, the genetic algorithm using both operators stabilizes to a common fitness 

value. The final fitness value is very close to the best fitness value. An important 

observation is that the average fitness value does not deviate by any significant amount 

even after 100 generations. The best fitness value is carried over to every generation and 

is not affected.
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Fig. 3.3 Plot of generations versus average fitness values (10000 Records).

The final learned BN was constructed from the final individual generated after 100 

generations. Figs. 3.4 and 3.5 plot the final learned BN for 5,000 records and 10,000 

records, respectively. It can be observed that for both scenarios, the learned BN differs 

from the actual generating BN shown in Fig. 3.2 by a small number of graph errors. It is 

also worth noting that the number of graph errors reduces when the total number of 

records increases. This could mean that to reduce the total number of graph errors, a 

large number of records needs to be provided.

Sm okingVisitAsia

C an cerT u bercu losis Bronchitis

TbOrCa

XRay D ysp nea

Fig. 3.4 Learned BN after 100 generations for 5,000 records - graph errors = 3.
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SmokingVisitAsia

CancerTuberculosis Bronchitis

TbOrCa

XRay Dyspnea

Fig. 3.5 Learned BN after 100 generations for 10,000 records - graph errors = 2.

Tables 3.1 and 3.2 provide the average number of generations and the average graph 

errors for different numbers of records. It is obvious that for 3000 records the total 

number of generations taken to achieve the stabilized fitness value is very high. Also the 

average number of graph errors is too high. For 5,000, and 10,000 records the values for 

these metrics are reasonable and acceptable.

Table 3.1 Average number of generations. Table 3.2 Average graph errors for 8-node

Records SGA CGA
3000 3 4
5000 2 3
10000 2 3

Records SGA CGA
3000 25 30
5000 20 15
10000 20 15

To compare the performance of SGA with CGA in the presence of larger BN structures, 

we modified the 8-node ASIA network and generated five additional BN with node sizes 

12, 18, 24, 30, and 36. Tables 3.3-3.7 show results for simulations carried out on these 

additional BNs. The tables compare the average graph errors in both approaches. The 

accuracy of SGA does not deteriorate under increased network sizes.
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Table 3.3 Average graph errors for 12-node

Records SGA CGA
3000 21 28
5000 24 29
10000 20 25

\
Table 3.4 Average graph errors for 18-node

Records SGA CGA
3000 19 24
5000 19.5 25.5
10000 20.7 26

Table 3.5 Average graph errors for 24-node

Records SGA CGA
3000 14.8 22.2
5000 15.3 23.1
10000 10.9 13.3

Table 3.6 Average graph errors for 30-node

Records SGA CGA
3000 15.7 21.5
5000 14.9 20.3
10000 14 18.9

Table 3.7 Average graph errors for 36-node

Records SGA CGA
3000 15.1 19.4
5000 15.6 20.5
10000 13.6 22.5
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3.4. Conclusions

In this chapter, we have presented a new semantic genetic algorithm (SGA) for BN 

structure learning. This algorithm is another effective contribution to the list of structure 

learning algorithms. Our results show that SGA discovers BN structures with a greater 

accuracy than existing classical genetic algorithms. Moreover, for large network sizes, 

simulation results show that the accuracy of SGA does not degrade and this accuracy 

improvement does not come with an increase of search space. In all our simulations, 100 

to 150 individuals are used in each of the 100 generations. Thus 10,000 to 15,000

networks are completely searched to learn the BN structure. Considering that the
2

exhaustive search space is of 2” networks, only a small percentage of the entire search 

space is needed by our algorithm to learn the BN structure.
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CHAPTER IV 

Controlling the Information Dissemination Process 

Using An Epidemic Protocol with Dynamic Fanout

4.1. Introduction

Using epidemic protocols fo r  information dissemination in large-scale systems. 

Epidemic protocols adopt a scalable, robust, and probabilistic reliable paradigm for 

information dissemination in large-scale peer-to-peer communication systems [11], [20], 

[24]. An epidemic protocol proceeds through asynchronous rounds before the 

information is reliably disseminated to every node. A round is defined as the time taken 

for all nodes to disseminate a message to their neighboring nodes. In the basic epidemic 

protocol, every node within the system is potentially involved in the information 

dissemination process. A peer node that has delivered a given message will be termed 

infective, or susceptible. Basically, every node buffers every message it receives up to a 

certain buffer capacity and forwards that message a limited number of rounds. The node 

forwards the message each time to a randomly selected set of nodes. The size of this set is 

called fanout. Many variants of the basic epidemic protocol exist and are typically 

distinguished by the value of the various parameters: buffer capacity, the number of 

rounds, and the fanout. The reliability of information delivery depends both on these 

parameters as well as on the size of the system. The epidemic protocol can also be 

perceived as a proactive mechanism where redundancy and randomization are deployed 

to prevent potential process and network link failures [14].

The information dissemination process in a peer-to-peer communication system takes 

place in the same way as an epidemic protocol. The underlying peer-to-peer 

communication paradigm is the key to the scalability of the dissemination scheme. This 

paradigm makes the epidemic protocols a robust and scalable means for dissemination of
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information. To successfully implement an epidemic protocol in a peer-to-peer system, 

three design issues need to be carefully addressed:

• Membership—how do processes get to know each other, and how many do they 

need to know?

• Topology Awareness—how do we make the connections between processes 

reflect the actual network topology such that the performance is acceptable?

• Message Filtering—how do we take into account the actual interest of processes 

and decrease the probability that they receive and store information of no interest 

to them?

The need fo r  epidemic protocols with dynamic fanouts. The use of epidemic algorithms 

has been explored in applications such as reliable multicast [31], failure detection [58], 

data aggregation [15], [23], resource discovery and monitoring [57], and database 

replication [11]. Each of these experimentations implements different variations of the 

basic epidemic protocol. For instance, in [23], the aggregation protocol is based on the 

simple “push-pull gossiping” scheme. In this scheme, every node executes two different 

threads. The active thread periodically initiates an information exchange with one random 

neighbor. The passive thread waits for messages sent by one sender. We observe that in 

most of the epidemic protocols, fanout is kept a constant that is based on the assumption 

that every peer possesses uniform and independent membership. This assumption is not 

valid in practical applications where every peer cannot be expected to be infected 

independently of other peers. Moreover, a constant fanout is only applicable in scenarios 

where the total number of infected nodes in every round is immaterial, but this may not 

be the case when a controlled infection pattern is expected. The infection pattern is a 

frequency distribution specifying the number of nodes that are expected to be infected at 

the end of a round. By controlling the infection pattern, the end user has a better control 

over the overall latency and message overhead of the information dissemination process. 

Contributions. In this chapter, we introduce a model for dynamic fanout based epidemic 

protocol to aid in fine-grained control of the information dissemination process. We 

present two approaches to quantify the fanout and thereby ensure all nodes receive a 

specific message within a bounded time. The first approach is called Round Based
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Dynamic Fanout, in which each node transmits a message with a varied fanout from 

round to round. In this approach, the network topology is flat with no hierarchy. The 

fanout values are quantified based on the infection pattern and redundancy message 

pattern over rounds. In the second approach, Cluster Based Dynamic Fanout, we shift 

from a flat membership network to a cluster membership network. In the first approach, 

the fanout remains constant during a round. In the second approach, nodes are clustered 

based on geographical proximity criterion and we vary the fanout between clusters of 

nodes. This implies that during each round, nodes in different clusters disseminate 

information using different fanout values. In both approaches, the number of messages 

generated is bounded by 0(n  logn) , where n represents the total number of nodes in the 

system. In spite of ensuring users controlled information dissemination, the lower bound 

on the message overhead for both the approaches is the same as the one achieved in 

epidemic protocols with a constant fanout.

Applications o f the proposed epidemic protocols. Our dynamic fanout model is best 

suited for distributed computing applications in which a global function within a pre

determined response time needs to be computed. One such application is distributed 

knowledge discovery where the global knowledge discovery model is constructed from 

local knowledge discovery models learnt at each peer node. The accuracy and speed of 

the global knowledge discovery model construction process is dependent on the 

underlying controlled information dissemination process. In the presence of a dynamic 

data environment, the knowledge discovery process must proceed according to the 

availability of data in peer nodes. An epidemic protocol with constant fanout will not 

guarantee the completion of the process according to pre-determined response time 

requirements. Also, in a dynamic data environment the constant fanout would hinder the 

accuracy of the model. To provide a reliable guarantee, a dynamic fanout based epidemic 

protocol is required. The pre-determined response time requirements can be fitted into an 

exponential distribution based on the knowledge of availability of relevant data and 

computing power in each peer node. The values from the exponential distribution can be 

used to compute the infection pattern. This infection pattern can then be provided as an 

input to the underlying epidemic protocol. Thus, in every round of the knowledge
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discovery process only peer nodes with relevant data items will participate in the 

information dissemination process

Roadmap. Section 4.2 presents the first approach, Round Based Dynamic Fanout. 

Section 4.3 presents the second approach, Cluster Based Dynamic Fanout. For both 

approaches, we provide the theoretical analysis to the model. In the analysis of the first 

approach, we present the dynamic fanout equations and the lower bound on the overall 

message overhead. In the analysis of the second approach, we show how the nodes with 

dynamic fanout get infected based on a beta-distribution model. Section 4.4 gives some 

simulation results supporting the analysis. Section 4.5 concludes the chapter.

4.2. ROUND BASED DYNAMIC FANOUT

In this section, we present the first approach for implementing dynamic fanout based 

epidemic protocol, followed by a detailed mathematical analysis. Among the three design 

issues, we address the membership issue by adopting Newscast [24], an epidemic-based 

membership manager protocol. The main goal of Newscast is to continuously reconnect 

the (logical) connections between peers. The reconnection process is designed in such a 

way that the resulting peer-to-peer network is very close to a random graph. As we adopt 

a flat-membership approach, the network topology is flat in nature without any hierarchy. 

Message filtering is not performed at every node and thereby even redundant and 

duplicate messages are processed during every epidemic instance.

4.2.1 The Round Based Dynamic Fanout Approach

The basic idea underlying our approach, inspired by the work presented in [13], is as 

follows. Each peer maintains a fixed size view of member peers. The view is sorted 

according to network distance estimates. Therefore, the first position in the view holds 

the closest peer known so far. At protocol initialization phase, views need to be initialized 

with a random sample of nodes taken from the whole peer-to-peer network. For this 

purpose, we use Newscast to build and maintain an approximately random-graph overlay 

topology. In order to evolve the topology, peers exchange views in an epidemic fashion.
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Periodically, each peer actively selects a neighbor from its view and starts a view 

exchange process (see pseudo-code in Fig. 4.1). Each peer node execution implements 

two threads. The active thread is shown in Fig. 4.1a and the passive thread is shown in 

Fig. 4.1b. In the active thread, every peer node picks the set of random neighbors based 

on the round-based fanout. The round-based fanout is computed based on user 

specifications, which are specified as an infection pattern over rounds. The peer node 

sends the message and its local view to this set of random neighbors. Once the remote 

peer’s view has been received, it is merged with the local one. This merge operation 

preserves the ordering of the local view. Therefore, newly received member peers are 

sorted in accordance with their network distance estimates.

do forever

// Wait fo r  finite interval o f At, which is equal to the time taken for a round to be 

completed

wait(At);

// Roundfanout retrieves the fanout to be used in the current round. The round 

based fanout is //computed based on the user specified infection pattern. 

fanout= Roundfanout(current round)

//Using the SELECTPEERS method, the neighbor list is populated with 

neighbors. The size of the neighbor list is equal to the current round-based fanout. 

Neighbors [fanout] = SELECTPEERS();

//Using the SENDMESSAGE method, message is transmitted to the neighbor list. 

SENDMESSAGE(Neighbors[fanout]);

// The view of the current node is sent to the neighbors list 

SEND ST ATE(myview, Neighbors [fanout]);

// Receive the view from the node who sent its view
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n_state = RECEIVESTATE();

//Merge the current view wit the received view in a temporary list. 

my_state.UPDATE(n_state);

(a) Active Thread

do forever

n_state = RECEIVESTATE();

SENDST ATE(n_state. sender); 

my_state.UPDATE(n_state);

(b) Passive Thread

Fig.4.1 Round based Dynamic Fanout pseudo-code

In the following analysis, we assume that the composition of the network does not vary 

during the run and we observe the transmission of a single message from a peer. Each 

peer participates in the gossip process via synchronous rounds. During each round, each 

peer has an independent, uniformly distributed, random view of known peers. Thus, peers 

have a global membership view and epidemic targets are picked from this global view 

uniformly and randomly. We also assume two kinds of failures affecting our system. 

They are message loss and peer crash. Both failures are assumed to be stochastically 

independent. All nodes are assumed to have the same failure probabilities. The values of 

x and e are the same as the corresponding values in [23]. Neither the recovery of crashed 

peers nor Byzantine failures are taken into consideration,. We assume that redundant 

messages are generated every round. We estimate the redundant message factor pr from 

our simulations discussed in the next section.
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Notations

n Number of peers in a peer-to-peer network

r A single epidemic round

^max The maximum number of rounds

e Probability of a message loss

k  Number of peer crashes in a round

r  Probability of a peer crash during a single round, r = k  /  n

pr Probability of redundant messages during a single round

i r Number of susceptible peers that are infected by a message sent from an infective

during round r. IQ = l , indicating at round 0 there is only one peer with a message

Sr Number of peers that are not infected in the network after the end of round r. At

the beginning of an epidemic period, Sq = n -1 and we expect the epidemic period 

to end with a high probability °fSftmax = o .

Fr The fanout associated with every peer, i.e., a peer that receives a message during

round r will transmit the message to Fr+̂  peers in round r +1,

4.2.2 Mathematical Analysis

The main objective of our analysis is to measure the adaptive fanout value in every round 

and the number of messages generated after the epidemic protocol successfully 

terminates. The first step of our analysis is to estimate the distribution of Sr and pr over

the Rmm rounds. We plan to associate values for both distributions with an exponential

rule. The constraints of the exponential rule are Sn = n - 1, Sp = 0,
u Nnax

and Pq = thresh, where thresh is the maximum probability of redundancy

allowed in the network. After estimating Sr and pr , the corresponding fanout values for

each round r can be determined.

Our analysis is based on the chain-binomial based recurrence relation [1] [10], 

which has been derived from epidemic models and successfully applied to epidemic
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protocols in peer-to-peer networks. According to Eugster et.al.[13], the lower bound on 

the probability that a given susceptible peer is infected by a message is given by

P - ( l - e ) ( l - r )

where F  is the constant fanout size. In our approach, the fanout varies from round to 

round. We conjecture that the equation for probability of infection pr during the 

individual round remains the same. In the analysis provided in [23] redundant or 

duplicate messages were assumed to be discarded by the peer and their impact on the 

overall message overhead was not considered. After incorporating the variable fanout 

Fr and the probability of redundancy in the above equation, the probability that a given 

susceptible peer is infected by a given message in round r is given by:

Pr n - 1
(4.1)

Let qr = \-p r be the probability that a given susceptible peer is not infected by a given 

gossip message in round r. Also the probability that a given susceptible peer is not 

affected by the presence of l r infected peers is q / r . Along the same lines, we can derive 

that the number of peers which would not be infected by the message in the round r+ 1 is:

Sr+l= Srqr!' (4.2)

Substituting (1) into (2) we get

1 -
n - 1 J.

(4.3)

After some algebraic manipulations, the fanout value for round r can be computed by

In
K  =

n - 1
( l - e ) ( l - r ) ( l - & )

To compute the value of lr , we use the following simple relationship

1-exp

f
r+ l

V S r J (4.4)

/  = S _ .-S ,  , fo v \< r < R (4.5)
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The fanout values computed for every round will ensure that the message will reach 

every peer. Next .we compute the lower bound on the m e s s a g e  o v e r h e a d  o f  o u r  a d a p t iv e  

fanout approach. The delay involved in the fanout calculation is only in the initial setup 

of the values for Sr by the user. Once the user specifies the expected values forS)., there 

is no additional involvemerit of the user in the fanout calculation.

4.3.3 Message Overhead

In our approach, the number of messages generated by a peer during each round is not 

constant and is determined by die value of Fr . At the beginning of round r, each peer

transmits Fr new messages into the network and Ir peers are participating in the 

message transmission process. So the number of new messages generated in round r is

Fr x i  r .

Considering n »  Fr , in practical peer-to-peer systems, Eq. (4.3) thus becomes:

A F.Sr+l = Sr exp
n — 1

( l - e ) ( l - r ) ( l - A ) x / (4.6)

Applying logarithms and algebraic manipulations we get an expression for Fr x i r as 

follows,

n — 1
F J. = log ' A '

V ^ r + i  J

(4.7)
( l - e ) ( l - r ) ( l - £ )

Summing up Eq. (4.7) for all permissible rounds, the total number of messages generated 

in the network is given as:

n — 1M r ="max _ ( l - e ) ( l - r ) ( l - £ ) .  

After the summation process, Eq. (4.8) reduces to

n - \

X  lo8
r= 0

' A '
V S r + \ J

(4.8)

M r =
Amax ( l - e ) ( l - r ) ( l - & )

log
\  "max J

(4.9)

Eq. (4.9) can be approximated as

M r =
‘'•max

n — 1
( l- e ) ( l- r ) ( l -y 9 r)

log(w-l) (4.10)
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Thus, the message overhead is bound by 0(n log n), which is similar to other constant 

fanout based epidemic protocols.

4.3. Cluster Based Dynamic Fanout

In the first approach the nodes were connected by a flat membership, where the local 

subscription list is composed of nodes located all over the network. In our second 

approach, we adopt a cluster model where nodes are clustered according to a 

geographical proximity criterion. In the first approach, the fanout for a given node 

changes from round to round but remains constant within a round. We relax this constant 

round-based fanout assumption in our second approach. The three design issues are 

handled in the same fashion as the first approach. The pseudo-code for the information 

dissemination process in this approach is similar to Fig. 4.1. The only difference is the 

fanout values and the view list for each node.

In the cluster based dynamic fanout approach, the probability p  that a given susceptible 

peer is infected by a message follows a frequency distribution during every round. There 

are two ways in which p  can be varied: vary p  among each node in the network or vary p  

between clusters. We chose to vary p  between the clusters because our network topology 

consists of heterogeneous clusters, that may include workstation clusters composed of 

machines with different processor architectures, data formats, and operating system 

environments. It is arguable that the probability of infection should vary between the 

nodes within a cluster too, but such a level of detail may make the model intractable. In 

the following analysis, we present an agreement between our hypothesis and observed 

data.

4.3.1 Network Topology

The topology of the network studied is shown in Fig. 4.2. The figure shows a two level 

hierarchy for ease of analysis, and can be easily extended to a hierarchy of more levels. 

The figure shows two types of nodes; empty circles represent internal nodes, while solid 

circles represent external nodes. Internal nodes have a local subscription list composed
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exclusively of nodes belonging to the same cluster; external nodes are provided with 

remote subscription list consisting of nodes in other clusters. The presence of these two 

types o f nodes in our network topology leads to two kinds of fanout: intra-cluster fanout 

and inter-cluster fanout. The intra-cluster fanout denotes the constant number of links 

each internal node has wi,th member nodes in the same cluster. In our topology, this 

fanout remains constant within each cluster, but the intra-cluster fanouts vary between 

any given pair of clusters. In Fig. 4.2, clusters Ci and C2 have a fanout of 2, while 

clusters C3, C4, and C 5 have a fanout of 3. The inter-cluster fanout denotes the number of 

remote links that each external node must maintain with other external nodes. In our 

topology, this fanout is a constant of 1.

Fig. 4.2 Cluster membership depicting intra-cluster fanout and inter-cluster fanout.

4.3.2 Analytical Model

The basis for our analytical model is the variation of the intra-cluster fanout. To model 

this variation we focus on varying the value of p. There are different ways to model the 

variation of p. We chose to adopt a simple way to take into account variation of p, by 

introducing a suitable distribution for p  and then estimating the parameters in the 

distribution and testing goodness-of-fit. We assume p  is a random variable following a
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beta distribution. We prefer to use a beta distribution because an exhaustive analysis 

would lead to a very complex Markov Chain with an impractical size.

As our analyses are based on the chain-binomial model, we define the term “chain” 

before we proceed with our analysis. At each stage of an epidemic, there are certain 

numbers of infective and susceptible nodes, with the latter yielding new infective nodes 

at next stage distributed in a binomial series. Thus we have a chain of binomial 

distributions. An instance of a chain in a cluster is denoted by:

For example, if  all the nodes in a 5-node cluster have been infected in 3 rounds then a 

possible chain sequence would be (4, l)^ 3] = {(4, l)0, (2,3)}, (1,4)2, (0,5)3}.

The probability of occurrence of a chain in a cluster can be expressed as follows:

P(p) = P « .S ,I \0Am,\p ) .  (4.11)

Since we assume that p  varies between clusters only, we compute the required 

expectations by averaging the probability of frequencies of every kind of chain P(p) over 

all possible values ofp  in the limit (0, 1), which gives the following,

p=o

The density function is given by:

if P (p)f(p )dp . (4.12)

f ( p ) = P (1 p) ,0 <  p < \,  (4.13)
B(a,b)

where B(a, b) is the beta function and a > 0, and b> 0.

The probability P(p) is derived from the chain-binomial model [5] as:

P(p) = P(Sr+i= j \S r =i) = (4.14)
\ J ~ b

In Eq. (4.14), q = 1 -  p represents the probability that a susceptible peer is not infected by 

a given message. By integrating over all values of p  where p  has the beta density in Eq. 

(4.13), the expectations can be shown as functions of parameters a, b, i ,j.
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\p (p ) f(p )d p  =
' / i  -  A  (1 -  q ‘ ) a+J- ‘- x q M ^ ~ l

J ~ l B(a,b)

n - i

J ~ b

T

B(a,b)
(« - /) !  (a + y '- /- l) ...a (6  + /(« -  j ) - l) .. .b

(4.15)

U -O K n -j) '-  (a + b + j - i ) ( a  + b)

Thus in our chain we are required to record only the values of susceptibles and infectives 

(Sr , I r ) = (sr , ir ) the probability P(p)  of this chain equals

P(p) =
n -s ,o s0 Vl-10 „so(n~s\)

V51 SoJ

n
(1 - q s°y'~s°q

n - s n̂iax-1
SR —S g , ,\  A max Amax * J

i=i

I I

/  \  n - s r
Q - q ’- y ^ - ’r

.  1=1 ^5r+l ~ Sr /

fynax
2 _, sr(n~sn l )

(4.16)

m̂gx
X  sr(n~sn

Combining Eq. (4.15) and Eq. (4.16), we integrate P (p ) over all values ofp, which gives

D
Amaxnf  n - s r ^« - * r +lz ' n ~Sr+\' (-1 )mqms'

_ r = l ~ Sr j m=Q < m ,

E [P {p )\= \
n - s .  '

V5r+1 Sr J

n - s .

v5V+i srj
r n - s

V^r+l S r J

^ ( n - s \
Z  ' ( - 0 * f
' 1 V K

' ( n - s  \
Z V N

( l - ^ - y - 1
B(a,b)

dp

k= 0

a-1

5(fl,6)
(4.17)

k B(sr[k + sr] + b,a)
B(a,b)

Eq. (4.17) provides a mechanism to measure the expected value of the probability of a 

particular chain. The next step is to estimate the parameter values of a, and b. We 

estimate these values based on the data collected from simulation experiments. For 

example, in one sample simulation scenario, we setup a network topology of 100 clusters, 

each with a membership of 5 nodes. The initial sequence in each cluster would comprise 

of the following chain -Sq = 4 and /Q = 1. In our example, the expected number of clusters 

with the chain (1 ,3 ,0) equals
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i o o f V a - p ) , (l £  ?  dP

B(a' b) (4.18)
= S to  + 3^  + 4 )

B(a,b)

Similar integrations for other more probable chains based on the simulation data will be 

carried out and the estimation of the parameters a, and b will be done by applying 

maximum likelihood methods.

4.4. Simulations and Analysis

In this section, we compare the analytical results obtained for both approaches with 

simulation results. For the round based dynamic fanout approach, our results highlight the 

impact on infection pattern and message overhead in presence of variable fanouts from 

round to round. For the cluster based dynamic fanout approach, our results show the 

relation between the infection pattern of clusters and the beta-distribution characterized 

probability of infection model. We conducted the simulations using peersim, an open 

source peer-to-peer simulator developed at the University of Bologna [22] [49],

4.4.1 Round Based Dynamic Fanout

In our simulations, we have used Newscast as the underlying overlay network 

membership protocol. The reason for this choice is twofold: First, we want to show 

empirical results in a realistic overlay network that can actually be built in a decentralized 

way. Second, Newscast is known to be robust and capable of maintaining a sufficiently 

random network in the failure scenarios. In Fig. 4.1a, Newscast has been used to 

implement the SELECTPEERS function. We have performed our simulations on network 

sizes ranging from 500 nodes to 2,500 nodes. The size of the local neighbor sets at each 

peer node, that are maintained and exchanged by the NEWSCAST protocol is set to 1 % 

of the overall network size. This value is large enough that a given message is able to 

reach all nodes in the network. For our approach to be effective we rely on the user for 

the infection pattern. In our simulations, we have tackled the issue of designing good user 

inputs by adopting an exponential distribution rule. Using this rule the distribution of the 

non-infection pattern Sr and the redundancy probability Pr was computed. In computing
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the distribution for fir , the thresh value is set to 0.3. The values for x and e  are set to

0.05 and 0.01, respectively. We have conducted 20 simulation runs Using equation (4), 

the fanout values were computed for each round. To incorporate fractional values in our 

simulation runs, we either converted the real number to a lower or higher integer value 

randomly in different runs such that the average value is equal to the real number. Table 

1 presents the analytical and simulation values for non-infection pattern Sr with network 

sizes of 1,000 and 2,000 nodes. As is evident from Table 1, the option of variable fanouts 

from round to round allows users to control the infection pattern. In addition, the user can 

specify the total number of rounds for a specific infection pattern and the fanouts are 

computed accordingly. Though the Sr values for individual runs deviated from their

corresponding analytical values, but the average over 20 runs converged to the theoretical 

values. Table 4.1 summarizes the average values for Sr over a set of runs and the standard 

deviation of the observed simulation results. The simulation values for Sr do confirm to 

our analytical model.

Table 4.1 Round based dynamic fanout for 1,000 and 2,000 nodes

Rounds

1000 2000

Sr
(Analysis)

Sr (avg).
(Simulation)

Std Dev Sr

(Analysis)

Sr (avg.) 
(Simulation)

Std Dev

1 999 999 0 1999 1999 0

2 994 992.4 0.7 1994 1991.5 0.7

3 961 959.3 0.5 1961 1959.4 0.5

4 771 770.5 0.75 1728 1725.3 0.75

5 210 209.5 2.6 969 965.5 2.6

6 1 0.5 0 52 50.3 0.55

7 - - 1 0.5 0

Table 4.2 presents the computed dynamic fanout values for network sizes of 1,000 and 

2,000 nodes. The fanouts are computed for each round.
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Table 4.2 Round based dynamic fanout for different network sizes

Rounds Nodes

500 1000 1500 2000 2500

1 - - - - -

2 5 5 5 5 3

3 4.089 4.46 4.44 4.27 3.5

4 4.47 5.79 13.68 10.848 3.785

5 7.76 6.32 2.33 3.08 7.33

6 10.86 8.37 4.94 5.56 4.19

7 - - - - 3.4016

8 - - - - 4.99

9 - - - - 15.875

Table 4.3 highlights the message overhead in the round-based dynamic fanout 

approach under different network sizes. The third column shows the cumulative message 

overhead at the end of all rounds generated by the simulations. Column 4 shows the 

theoretical values for message overhead computed based on the analytical results from 

Eq. (4.10). We observed that the overall message overhead is independent of the 

variations in fanout, but is dependent on the percentage of redundant messages in the 

network. As we can observe from Table 4.3, as the number of nodes increases, the 

message overhead deviate from the analytical values. This deviation is largely due to the 

fact that as network size gets larger, the percentage of redundancy messages also 

increases.

Table 4.3 Message Overhead in the Round based Dynamic Fanout approach

Number of Nodes Maximum

Rounds

Message Overhead 

(simulations)

Message Overhead 

(Analysis)

1,000 6 3540 3000

1,500 7 5624 4764

2,000 7 7795 6602

2,500 9 10031 8494

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



50

4.4.2 Cluster Based Dynamic Fanout

For this approach, we have run experiments on two scenarios. In the first scenario, our 

network topology was comprised of 100 clusters, with each cluster consisting of four 

nodes. In the second scenario, the total number of clusters remained the same, but the 

number of nodes in each ctuster was increased to five. As the infection probability varies 

for each cluster, we observe the infection pattern over rounds. The infection pattern for 

each cluster is represented as a binomial chain. For example, in the first scenario, a 

cluster with four nodes, where one node is infected ( /Q = 1) and three nodes are not yet

infected (5Q = 3), we record the number of new infected nodes {/r }at r = 0,1,2,... rounds

as the chain 1-1-2, where all nodes are eventually infected. In Table 4.4, the first column 

shows all the possible infection pattern chains for a cluster of size four. The chain- 

binomial probabilities for all of these chains {/Q = l,/1,...,//t}are given in the second

column, where n is the total number of clusters. Our goal is to find out the total number

of clusters which have the same infection pattern. Each entry in column two shows the

total number of clusters for the corresponding chain in the first column. We need

estimates of p  and z , to find out the total number of clusters for each infection pattern

chain. The third column shows the expected probabilities of the chain-binomial model.

The expected probabilities are presented by simpler notations as follows:

z = {a + b)~1 
p  = a/(a + b)

n

z , ( * ) = n o + - ) - ( « )
1=0

(4.19)

i= 0

n

^p{n) = Y [{p  + iz)
/=o
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Table 4.4 Chain- Binomial Probabilities for cluster size of 4

Infection Pattern {Ir} 

r  = 0 1 2 3

Probabilities Expected Values o f Probabilities

l - l - l - l 6np3q3 6z?(2)z,(2)/z(5)

1-1-2 3np3q2 3z,0)z,(2)/z(4)

1-2-1 3np3q 3z,(0)z,(2)/z(3)

!-3 np3 z,(2)/z(2)

In Table 4.5, the first column presents the binomial chains and the second column 

contains the total number of clusters from simulation results. The third column contains

the total number of clusters which need to be computed based on the estimates of p  and

z . To find the estimates of p  and z , we employ a log-likelihood function. The log- 

likelihood function is constructed based on the expected probabilities in the third column 

of Table 4 and the simulation generated total number of clusters in the second column of 

Table 5. The log-likelihood function Log L is given as follows,

LogL = 5 * log(6z? (2 )zp (2) / z(5)) + 6 * log(3z? (1 )zp (2) / z(4)) +

19*log(3z? (0)2, (2) / z(3)) + 70 * log(z, (2) / z(2))

Substituting the values of z, z , and zp from (4.19), we get

LogL = C + 301ogg + lllog(^ + z) + 1001og p
+ 100 log(/? + z) +100 log(p + 2z) -100 log(l + z)

-100 log(l + 2z) -  20 log(l + 3z) -11 log(l + 4z)
-11 log(l + 5z)

where C is a constant.

(4.20)

(4.21)
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Table 4.5 Simulation and Analytical Values of infected clusters for cluster size of 4

Infection Pattern {ir} 

r = 0 1  23

Observed number of clusters 

(Simulation)

Fitted values from the 

analytical model

l - l - l - l 5 3.1

1-1-2 6 4.1

1-2-1 19 14.8

1-3 70 67.3

Using MATLAB, the minimization of LogL given in (4.21) is carried out. The value of 

C has no effect on the minimization process since it is a constant. The maximum 

likelihood estimates of p  and z  are found to be

p  = 0.822 ±0.028

z = 0.521±0.178 

The corresponding estimates of a and b were obtained as

a = 1.29, 

b = 03

2 

1.8 

1.6

$  1 4  ‘to
I  1-2

15 1
CD

I  0.8 

0.6 

0.4 

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P

Fig 4.3 Beta-Distribution function for cluster of size 4
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Since b is less than unity, the beta-distribution is ./-shaped with an infinite ordinate at 

p= 1. Substituting the values of p, q, z into the third column of Table 4.4, the fitted values 

for our chain-binomial model with variable p  are calculated as seen in the third column of 

Table 5. The fitted values are the total number of clusters for the corresponding infection 

pattern chain given in the first column.

In the second scenario, we observe the scalability of the cluster based dynamic fanout 

scheme. We increase the cluster size to 5, which increases the total number o f nodes in 

the system to 500. As in Table 4.4, the first column of Table 4.6 shows all the possible 

infection pattern chains for a cluster of size 5. The chain-binomial probabilities for all 

these chains are given in the second column of Table 4.6. The third column shows the 

expected probabilities of the chain-binomial model.

Table 4.6 Chain- binomial Probabilities for cluster size of 5

Infection Pattern {ir} 

r  = 0 1 2 3  4

Expected number 

of Clusters 

(analysis)

Expected Values o f Probabilities

l - l - l - l - l 2 4  nq6p A 2 4 z 9 ( 5 ) z p ( 3 ) / z ( 9 )

1 - 1 - 1 - 2 \2nq5p 4 1 2 z , ( 4 ) z , ( 3 ) / z ( 8 )

1 - 1 - 2 - 1 \2 n q * p \ \ -q 2) 1 2 z , ( 3 ) z , ( 3 ) ( l  +  «7 +  1 2 z ) / z ( 8 )

1 - 1 - 3 4  < ? y 4 z , ( 2 ) z , ( 3 ) / z ( 6 )

1 - 2 - 1 - 1 \2nqAp \ \ - q 2) 1 2 z ? ( 3 ) z p ( 3 ) ( 1  +  <7 + 1 2 z )  /  z  ( 8 )

1 - 2 - 2 6q2p 2( \ - q 2)2 6 z ? ( 1 ) z /, ( 3 ) [ 7 6 z 2 + ( 1 7  +  1 9 ^ ) z  +  (1 +  9 ) 2 ] / z ( 7 )

1 - 3 - 1 4 n q p \ l - q 3) 4 z ? (0)z, ( 3 ) [ 3 8 z 2 + ( 1 2  +  9q)z + (1 + q f  ] / z ( 7 )

1 - 4 P 4 z , ( 3 ) / z ( 3 )

From the third column of Table 4.6 and the simulation data in second column of Table 

4.7, the log-likelihood function is given as follows:
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Log  L — C + 52 log # + 11 log(#  + z) + 5 log(#  + 2 z)

+ 4 log(#  + 3z) + 3 log(#  + 4z) + log(#  + 5z)

+100 log  p  + 1001og(y? + z) + 1001og(/> + 2z)

+ 1001og(/? + 3z) + l lo g ( l  + q + 12z)
(4 22 )

+ 1 lo g (7 6 z 2 + (17 + 19#)z  + (1 + q)2) ’
s + 411og(38z2 + (12 + 9 # )z  + (1 + # )2)

-1 0 0 1 o g ( l  + z) -  1001og(l + 2 z ) -1 0 0 1 o g ( l  + 3z)

-  52 log (l + 4 z ) -  52 log (l + 5 z) -  52 lo g (l + 6z)

-51 log (l + 7 z ) -  4 lo g (l + 8z) -  lo g (l + 9 z)

where C is a constant.

Using MATLAB, the minimization of LogL was carried out. The maximum likelihood 

estimates of p  and z are found to be

p  = 0.8444±0.0113

z = 0.612210.0221 

The corresponding estimates of a and b were obtained as

a = 1.377, 

b = 0.253
A

The shape of the beta-distribution is identical to Fig. 4.3, as the value of b is less than 1. 

Table 4 7 Simulation and Analytical Values of the infected clusters for cluster size of 5

Infection Pattern {/.} 

r= 0  12  3 4

Observed number of clusters 

(Simulation)

Fitted values from the analytical 

model

l - l - l - l - l 1 0

1-1-1-2 1 0

1-1-2-1 1 1.5

1-1-3 1 0.65

1-2-1-1 1 1.5

1-2-2 6 10.3

1-3-1 41 37.72

1-4 48 51.24
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4.5. Conclusions

We have described two approaches for implementing a dynamic fanout based epidemic 

protocol: Round based dynamic fanout and Cluster Based Dynamic Fanout. We have 

derived fanout equations for the round-based dynamic fanout approach and computed the 

overall message overhead. We used a flat membership scheme to implement the first 

approach and a cluster based network topology to implement the second approach. In the 

first approach, the number of infected processes per round is based on the frequency 

distribution provided by a system user. This helps users quantify fanout to control the 

epidemic infection and allows users to fine tune this parameter according to their 

requirements. In the Cluster Based Dynamic Fanout approach, the fanout is not constant 

among the various clusters unlike the round-based dynamic fanout approach. We have 

observed that the infection pattern among the various clusters during every round. 

Simulation results for cluster size four and five have proved that the infection pattern 

closely follows a beta distribution.
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CHAPTER V 

A Majority Based Consensus Methodology For 

Learning Bayesian Network Structure From 

Distributed Databases

5.1. Introduction

Distributed data mining deals with the problem of data analysis in environments with 

distributed data, computing nodes, and users. Bayesian network (BN) is a popular and 

effective model for performing data mining. A BN is a probabilistic graphical model to 

represent uncertain knowledge. To perform distributed data mining, a BN model has to 

be constructed from data distributed among a network of computing nodes. There are 

numerous domains in wired and wireless networks where a BN is a more natural and 

scalable solution. Consider an ad hoc wireless sensor network where the numerous sensor 

nodes are monitoring some time-critical environmental data. Central collection of data 

from every sensor node may place a heavy burden over the limited bandwidth wireless 

channels. Heavy traffic may also be the cause for power drainage in these devices. A 

distributed architecture for learning BN is an appropriate solution for reducing the 

communication load and also distributing the battery power more evenly across the 

different nodes in the sensor network. Similar requirements for distributed computation 

of data mining can be found in ad hoc wireless networks of mobile devices like PDAs, 

cell phones, and wearable computers. Potential applications include personalization, 

collaborative process monitoring, and intrusion detection over ad hoc wireless networks. 

Thus there is a need for distributed architectures that pay careful attention to the 

distributed resources of data, computing, and communication in order to consume them in 

a near optimal fashion.
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In this chapter, we address the problem of learning a BN from a homogeneous database 

distributed among a peer-to-peer network of computing nodes. The distributed 

architecture proposed in this chapter is called Majority Based Consensus Methodology. 

This methodology is analogous to the majority consensus problem in distributed 

computing [5]. According to this problem, each node has an input, and it is required that 

the output at each node stabilizes to the majority of these inputs. In our methodology, 

each node executes a BN learning algorithm, which discovers a local BN based on the 

local database. In addition to this local learning algorithm, each node implements a 

majority consensus protocol to discover all the links in the global BN, that exist in the 

global database. The two main issues addressed by the protocol are reduction of 

communication cost by local negotiation, and computation of the global Bayesian 

network within an appreciable time limit, which is lesser or equal to the time taken to 

construct a global Bayesian network within a centralized framework.

The two main contributions of this chapter are the Majority Consensus Protocol and the 

Majority Bayesian Network Learning Algorithm, The protocol and algorithm work in 

tandem to discover the global BN at each node in the network. The key strength of our 

Majority Consensus Protocol is faster convergence with significantly lower message 

overhead. Also the performance of our majority consensus protocol is not dependent on 

user configurable parameters. The parameter independence makes the protocol more 

predictable and robust. The majority consensus protocol is implemented locally and 

requires no synchronization among the nodes. The impact of the locality of 

communication leads to faster convergence of the computation of the global Bayesian 

network model at the expense of lower message overhead. By locality, we imply that 

each node updates it BN based on the link information provided by a small set of 

neighbors. The key strength of the Majority Bayesian Network Learning Algorithm is the 

ability to correctly ascertain the confidence in the cross links discovered by the Majority 

Consensus Protocol. By using the algorithm the time taken by each node to discover the 

global BN does not exceed the time taken by a centralized BN learning approach.
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The following is the outline of this chapter. Section 5.2 formulates the problem. Section

5.3 describes the majority consensus protocol and majority Bayesian network-learning 

algorithm in detail. Section 5.4 presents the simulation results and analysis. Finally we 

conclude in Section 5.5.

\

5.2. Problem Definition

Notations

N  Set of nodes in the peer-to-peer network

V  Set of variables in the database; v e F

DB The global homogenous database

DBj Local database at node /

E  Set of edges representing probabilistic relationships among the variables in DB

Ei Set of edges representing probabilistic relationships among the variables in DBt.

BN  The global Bayesian network, which can be defined as (V, E)

BNj The local Bayesian network at node i

The problem of structure learning of B N  is defined as follows. For a complete DB  (no 

missing values) distributed in a peer-to-peer network of N  nodes, and a known variable 

order, the problem is to identify the structure of the BN, (V, E), at each node that best 

matches DB. To accomplish this task, we assume that the DB  is distributed leading to DB, 

present at each node in the peer-to-peer network. The underlying distribution of data in 

DBi may or may not be identical across different nodes in the network. Each node has all 

the variables in the same order.

In Fig. 5.1, the DB  is distributed across three peer nodes as DB\, DBz, and DB^, where y,, 

y e [1,9], denote the variables in the DB. The observations for these variables are available 

at the three peer nodes. The BN\ is comprised of variables (v,, v2, v3) at node 1, 

(v3,v4, v5, v6,v9) form BN2 at node 2, and (v7, vg, v9) form BN2 at node 3. The solution

to the problem is depicted in Fig. 5.2. The figure shows that every node in the network 

discovers the structure of the BN.
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Fig. 5.2: Global Bayesian Network discovered at each node in the peer-to-peer network
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5.3. Majority Consensus based Methodology

We now present the consensus-based methodology to learn the structure of BN  when data 

is distributed among different peer nodes. The main objective of our methodology is to

ensure that all peer nodes in the network converge towards the correct BN  according to
\

their combined databases. To implement this approach, we develop two components, 

which execute on each peer node in tandem: Majority Consensus Protocol and a Majority 

Bayesian Network Learning Algorithm. The majority consensus protocol specifies the 

communication mode among the nodes, the frequencies of messages exchanged and the 

level of coordination required. The majority Bayesian network learning algorithm 

specifies the minimal amount of information sent by each node, updating the local 

Bayesian network at each node based on new information, and terminating when a global 

solution has been reached.

The primary steps in the protocol and the algorithm are summarized as follows:

- At each node, the majority Bayesian network learning algorithm will compute a 

local Bayesian network based on the variables associated with the data observed 

on each node.

In each node the majority Bayesian network learning algorithm computes the 

confidence of the local Bayesian network using a structure-learning algorithm.

In the meantime, the majority consensus protocol independently identifies the 

neighbors for each node. A membership protocol along the lines of Newscast [6] 

is employed by the consensus protocol to fill up the neighbor list for each node.

- The consensus protocol creates a message packet and transmits the local Bayesian 

network structure and the confidence level to the neighbors. This process is 

executed at each node.

On receipt of the message, the majority Bayesian network learning algorithm at 

each node updates the local Bayesian network by new edges if the resulting 

confidence level of the updated Bayesian network is better.

The above process is repeated until the structure of BN  is learned at each node.
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In the following sections, we provide the details of the majority consensus protocol and 

the majority Bayesian network learning algorithm

5.3.1 Majority Consensus Protocol

The protocol is based on an optimization problem where all the nodes decide whether 

they have all the observations necessary to learn the structure of BN. The two main 

processes in the majority consensus protocol are message construction and majority 

selection.

a. Message Construction

The contents of the message exchanged between peer nodes represent the confidence 

level in the existence of edges. Here the edges represent the relationship between 

variables in a Bayesian network, and the confidence levels represent how closely the 

local Bayesian network represents the local database. The main goals of the message 

construction process are to encode sufficient information necessary for majority selection 

and maintain reasonable message length. As the contents of the message contain the 

confidence level in the edges, the message is represented as a 3-field tuple,(Edgab, confy, 

leny) where Edgab represents the relation between any two variables a and b in the 

database; confy is the confidence level that represents the accuracy of the presence of the 

relation between nodes i and j.  The confidence levels associated with each edge (relation 

between variables) are encoded as (0- 24), (25 -  49), (50 -  74), (75 -  100). The leny 

represents the count of total records in the database, which were considered in 

determining the confidence level. The confidence level and record length values are 

normalized to 100.

b. Majority Selection

The main objective of the majority selection process is to ensure that each node 

converges toward the correct majority. The correct majority refers to the correct 

confidence level for all the edges. Since the messages exchanged among nodes contain 

binary information, we measure the consensus as the proportion of nodes i whose ad hoc 

solution agrees with the majority.
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Each node has a neighbor list, that has been populated by the Newscast membership 

protocol. Once a message is constructed, nodes communicate their messages to the 

neighboring nodes. Each node will record the latest message it sent to its neighboring 

nodes and the latest message it received from its neighboring nodes. When the system 

initializes, the message received from the neighboring nodes is initialized to all zeros. 

After the initialization phase, each node i will send a 3-field tuple message to its 

neighboring node j  containing the values Edgab, confij, leny.. Based on the message 

received by each node i, a function is therefore calculated for every neighbor j .  Every 

time a node receives a message it needs to save the confidence levels in its buffer. When 

the calculation of the function takes place, it is easy to refer to the confidence levels by 

the values of i and j.

Let IT and II'7 denote the current majority values at node i and the updated majority 

values received by node i from node j ,  respectively. In the absence of any message 

transmission, parameters 11' and IT7 are initialized to the confidence levels and the record 

lengths values present in each node for every relation. Based on the message sent to or 

received from its neighbors and the initialized values of confidence levels and record 

length values, node i calculates the following two parameters for each edge Edgab-

IT = £ (confjj -  R * lentj )  (5.1)
i , j e = E‘

IT7 = (confy + confji ) -R* (leny + len-)

where E‘ represents the set of neighboring nodes for node i, and R denotes the majority 

ratio to make a decision on a certain confidence level. If no message was yet received 

from any neighbor, then II' represents the majority value represented by the confidence 

levels computed by the local Bayesian network algorithm at node i. Throughout 

execution the ad hoc output of node i is set according to the majority values in I I ' . If the 

sign of IT is positive, then the relation is accepted. Each time there is a change in the 

local confidence levels, message is received or a new neighbor connects, IT7 and II' 

values are calculated. Each node implements the majority selection process 

independently. Each node i co-ordinates the confidence level in each edge with its
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neighbor j  by maintaining the same values in IT '. For every edge, / and j  stop exchanging 

messages as long as the following conditions are true:II' > IT' > 0, and FT >17'' > 0.

The pseudocode for the majority selection process is shown in pseudocode 1. From the 

pseudocode, it is easy to derive that when the protocol dictates that no node needs to send 

any message, it implies that for every node j  the FT'' values for the neighbors match with 

the IT values. If there is a disagreement on the structure of B N , then due to locality there 

must be disagreement between two immediate neighbors. In such a case, at least one node 

j  must send its II' values to its neighbor i. The number of message interactions is bound 

by the size of the system. This implies that the protocol always reaches consensus in a 

static state.

Pseudocode 1 Majority Selection Process 

// Inputs

Newscast (El ) // Newscast membership function populates neighbor list E'

Getmajorityratio(R ) II Get majority ratio from the user (configurable parameter)

//Initialization

l f  = 0

fo r every i, j  e E ‘

n° = 0

confj =0 

leny =0

//O u tp u t on Reception of Message

i f  MessageRecv( confv, len-) II Message arrived on link (ji) from node j
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n ' -  £  ( c o nf j -  -  R * l e n y  )
i , j zE‘

IP  = (confy + confjj ) -R* (leny + len ̂  )

for every i, j  e E'

i f  ((IP  < 0) and ( IP  < IT )) or ((IP  > 0) and ( IP  > I P )) 

confij = Z  confn

l e n iJ= £ l enu
I , i* i , j e  E 1

MessageSent( c o n f , lentj) II Send message to node j  from node i

Fig. 5.3 is a graphical illustration of the majority selection process. In Fig. 5.3, R is set

to 0.5. In Fig. 5.3a node i and the values for parametersny , n ,/ , n ^ ,  and n ' are 

depicted. Prior to this state, nodes j, k, and / have exchanged messages with node i and 

node i has computed the values based on equation (5.1). In Fig. 5.3b, a message is sent 

from node k  to node i. The result of this operation causes node i to compute values for

n ik and n ' . The values of n l* and n ' reduce, but no additional messages are sent to 

nodes j  and I as n ' is equal to n y and Yli l . In Fig. 5.3c, node k  sends another message to 

node i. On reception of this additional message, values of n'* and n ' get further reduced.

By now, the conditions of n ' < rP and n ' < are satisfied, resulting in node i sending 

messages to nodes j  and / (Fig. 5.3d).
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Fig. 5.3: A visual illustration of the Majority Selection process from the perspective of node i.

5.3.2 Majority Bayesian Network Learning Algorithm

The main objective of the majority selection process is to communicate new edges to 

neighboring nodes, but the identification of these edges within the database of each node 

has to be determined. The majority Bayesian network learning algorithm is responsible 

for discovering edges based on its local data and combining edges discovered by other 

nodes by using a structure-learning algorithm.

Structure learning is a model selection problem, wherein we need to select a model based 

on the data. We adopt a searching and scoring based method K2 [5] which defines a 

“confidence” that describes the fitness of each possible structure to the observed data.
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The K2 algorithm is similar to an optimization problem: find a structure of Bayesian 

network that maximizes the confidence. The confidence function has a decomposability 

property defined as follows:

conf (BN, DB) = £  conf (v,, pa(vi), DB(vi, pa(vt))) (2)
7

where pa(v{) represents the parent of variable v„ and DB(vj, pa(vj)) denotes the data 

involving only v, and pa(vt). Once the confidence level is defined and computed for the

variables at each node, the next step is to identify the local Bayesian network with the 

highest confidence level. The search for the optimal Bayesian network is NP-hard, 

leading to the need for sub-optimal search methods. As the K2 algorithm is characterized 

by a decomposability property. The sub-optimal search methods involve making a series 

of edge changes (adding or deleting of edges one at a time). The confidence levels are 

checked at the end of every edge change. Every time an edge is changed, a check is 

performed to ascertain if the resultant local Bayesian network is a valid directed acyclic 

graph. For every edge change, a confidence level confa (BNa ,DB) is calculated for BN° 

before the change and confb(BNb,DB) for BN* after the change. The decision regarding 

whether BN° or BN* is the best fit depends on which of the confidence levels has a 

maximum value. As the score satisfies the decomposability property, the confidence 

levels of edges are maintained by computing the following score for each edge: 

conf (v;, pa(vi)2, DB(vt, pa(vt )2)).

Once a message is received from the majority consensus protocol, the contents of the 

message indicate new edges or edges with updated confidence levels. If the message 

contains discovery of a new edge, the edge is added to the local Bayesian network. If the 

message merely indicates changes in confidence level, the confidence level of the 

corresponding existing edge is updated. The confidence level computation is performed. 

The structure of the local Bayesian network is modified based on the difference between 

the confidence levels before and after the change. The pseudocode for the algorithm is 

provided in pseudocode 2 below.
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Pseudocode 2 Majority Bayesian Network Learning Algorithm 

// Inputs

Newscast(El)

//Execute Bayesian Network Structure Learning Algorithm to discover the local edge list 

Edg at node i.

BNJ(Edg)

//In itia lization

fo r every e e Edg

Compute(e.conf eden) II Set confidence thresholds and update number of records 

fo r every e e Edg

fo r every i, j  e E'

e.conff=edenij=e.confji =edenji =0

/ /  Output on Reception

//Message received from node j.  Node j  sends 3-tuple message containing edge(a,b), the 

confidence, and length values.

MessageRecv (eh conf len.j) 

i f  e, 2 Edg

Add(Edg, et)  / /  Add e,- to edge set Edg)

ComputeConf / /  Compute confidence levels fo r  BN before and after the addition 

I f  conf(prevBN) < conf(newBN) 

ei.confi = conf 

£,■. lenji = len

else

ComputeConf // Compute confidence levels for BN before and after the addition
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I f  conf(prevBN) < conf(newBN)

Update(ei: ny, n ')  // For edge e, calculate values fo r  n '7 and n'

While(true) //Ensure that neighbors have updated confidence values

fo r  every e e Edg '

for every i , j  e E'

i f  ((e( IP  )< 0) and (e ( IP  )<e ( IT ))) or ((e ( IP  > 0) and (e ( IP  )>e ( n ' ))) 

e ( co nfi j ) = £  e ( c o  n f u )
/  , / *  ije E 1

e ( l e n , j )  =  £  e ( l e n n )
I ,i * i , j  e  E '

MessageSend{ e, eiconfy ), e{leni} ) J)

The visual representation for the majority Bayesian network algorithm is provided below. 

On identification of an edge at each node, the confidence level is computed. At the same 

time, the node will begin an instance of majority selection process to determine if  the 

edge is globally correct in the network. As each node runs an instance of the majority 

selection process, every 3-field tuple message contains a unique edge identifier in 

addition to the confidence and record lengths.

Fig. 5.4 describes four different scenarios addressed by the majority Bayesian network 

algorithm. In Fig. 5.4a the first scenario is depicted wherein node i  has edges E l, E2, and 

E3 along with the confidence and length values. On receipt of a new edge E4 from node 

k , E4 is added to node i  and the values E 4.con fkj and E 4.le»ki are computed as shown in

Fig. 5.4b. In Fig. 5.4c the second scenario is shown wherein node i  receives updated 

confidence values for edge E3 from node k . On receipt of the updated confidence values 

from node k ,  the n'values for E3 are computed at node i  as shown in Fig. 5.4d. As the

conditions n' > nv >0 and n' > >0 are satisfied, messages are sent to node j  and / to

update their confidence in edge E3.
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El<  a->b, 70,100> 
E2< a->c, 50,100> 
E3< c->d, 40,100>

i

El< a->b, 70,100>
E2< a->c. 50,100>
E3< c->d, 40,100>
E4< e-> f 70,100>

E A.conf fa = 80

EA.lenki = 100

(a)

<  e-> f,80,10

I

<c->d,80,100>

f

(C ) (d)
Fig. 5.4: A visual illustration of the majority Bayesian network learning algorithm from the perspective of 
node

5.4 Simulations and Analysis

To validate and verily the majority based consensus methodology, we implemented a 

simulator capable of running a network of 10,000 interconnected nodes. The nodes were 

connected in a random tree. For lack of real datasets, we tested our approach on the ASIA 

model dataset [13]. We generated 1,000,000 observations from this model, which were 

distributed among the peers in the network. In practice, however we do not have control 

over the distribution of the data among different nodes. Local Bayesian networks were
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constructed using a K2 [5] structure-learning algorithm for learning the Bayesian network 

structure.

A software package based on BNJ [1] and Peersim [16] has been developed to 

implement our majority based Bayesian network learning algorithm. Peersim is an open 

source peer-to-peer systems simulator platform, using the Newscast protocol for the 

management of the overlay topology. The time is divided into rounds, and in each round 

each node implements the majority Bayesian network algorithm and the majority 

consensus protocol. The majority process and message construction, Bayesian network 

learning processes, execute on each node.

5.4.1 Effect of Majority Selection on Local Communication

One of the main performance characteristics of our protocol is estimation of the locality 

of the majority selection protocol. Locality is quantified by measuring the scope of a 

node. The scope of node i is defined as the number of neighbors whose confidence levels 

are maintained by i. The overall locality is measured by taking into account the 

maximum, average and minimum values of scope. Average locality is preferred for 

Majority Selection. In absence of average locality, the performance of the protocol 

degrades with increasing scalability. The scope also provides information related to 

message and processing overhead. Message overhead is computed based on the total 

number of messages exchanged between node i and its neighbors. Processing overhead is 

computed by calculating the number of cycles required at node i to arrive at a decision. 

Hence average locality also makes the communication fast and efficient.

Fig. 5.5 describes the average and minimum scope results of a simulation with 5,000 

nodes connected in a random tree topology. The figure shows the locality of the protocol 

to determine the existence of one relational edge between two variables. The confidence 

levels for the relational edge are based on the amount of related data at each node. As the 

data is randomly distributed among the 5,000 nodes, the confidence levels for the
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relational edge are assigned randomly. Fig. 5.6 shows similar results for a network of 

10,000 nodes.
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Fig. 5.5: Locality for network size of 5,000 nodes and majority value of 50%.
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Fig. 5.6: Locality for network size of 10,000 nodes and majority value of 50%.
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Figs. 5.5 and 5.6 show that if the data is distributed in an unbiased fashion, the locality of 

the protocol is assured. For a majority ratio of 50%, if the confidence levels are greater 

than 60% or less than 40%, the number of nodes involved in the communication of 

messages is limited to 10-12 nodes. As the confidence levels approach 50 %, the average 

scope grows. This indicates that more nodes have to be involved in the decision-making 

when the confidence levels approach the majority ratio.

From the above results in the above figures we can conclude that except for edges whose 

confidence levels are about equal to the confidence threshold, the rest of the edges are 

discovered using information gathered from a very small neighborhood, whose size is 

independent of the size of the network.

We assess the strength of our majority consensus protocol by measuring the message 

overhead. The message overhead calculation is based on the difference between the 

average confidence levels and the majority ratio. The total message overhead in our 

majority consensus protocol is equal to the messages exchanged between every node with 

its neighbors. The message exchanged is a 3-field tuple represented by <Edgab, confy, 

leriij >. If Size represents the length of each tuple in bytes, then the overall message 

overhead is given by ^  Sizei; only when the following conditions are met
i J * E ‘

0 < ((cow/; -  R) /(/?)) < 0.2 or 0 > ((cow/ -  R) /(R)) > -0.2.

The message overhead is approximately equal to zero when ((confk -  R) /(R)) > 0.2 or 

((,confk -R ) /(R )) < —0.2. It should be noted that the message overhead depends on the 

size of the neighbor list and the number of data bits exchanged between neighbors.

To prove that the message overhead incurred in majority consensus protocol is lower, we 

compare our protocol with a similar majority based protocol proposed by Ran Wolff 

et.al. [22], According to Ran Wolff et. al, the message overhead in their majority based 

protocol is given by a constant function 1 + ^  counf , where i and j  represent the
i , j e E '

nodes in the network, countv represents the message length exchanged between the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



73

nodes i and j , and E ‘ represents the set of edges which collide with node i . If the 

majority based approach proposed by Ran Wolff et al is applied to discover distributed 

Bayesian networks where the majority of the confidence levels are not close to the 

majority ratio, then the message overhead is given by the constant function 

1 + count'1 , while in the case of majority consensus protocol, the message overhead is

approximately equal to zero. Thus, there is significant savings in message overhead by 

applying majority consensus protocol when the confidence levels are not close to the 

majority ratio.

5.4.2 Convergence of Majority Bayesian Network Learning Algorithm

In addition to locality, the other important characteristic of the majority consensus 

protocol is the convergence rate. We measure convergence by calculating the percentage 

of new edges discovered and the percentage of correct edges in the global Bayesian 

network. Fig. 5.7 shows the percentage of new edges discovered on an average basis 

during the execution of the majority consensus protocol. The convergence rate is 

measured by the total number of rounds completed before the discovery of the global 

Bayesian network. A round is defined as the amount of time taken by all nodes to execute 

one instance of both the protocol and algorithm. Fig. 5.7 also shows the percentage of 

correct edges discovered. In Fig. 5.7, the confidence levels of the edges in the majority 

of the nodes were away from the majority ratio. This leads to fewer messages exchanged 

and thereby most of the nodes agree on the majority decision quickly. All edges are 

discovered at the end of 12 rounds. Fewer rounds confirms the fact that if the confidence 

levels of the edges are far away from the majority ratio the nodes discover the new edges 

quickly. As the number of messages exchanged between the nodes decreases, the nodes 

can reach a decision quickly leading to fewer rounds.
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Fig. 5.7: Percentage of new edges and correct edges discovered for a network of 5,000 nodes on an ASIA 
dataset.

Fig. 5.8 shows the percentage of the nodes who arrive at a correct global Bayesian 

network model when the confidence level in the edges are less than or equal to 40%. For 

edges with confidence levels lesser than or equal to 30%, all the nodes quickly arrive at a 

decision to reject the edges. The number of rounds taken to arrive at this decision is less 

than or equal to 10. This result confirms the fact that all nodes converge quickly when the 

edges have confidence levels much lower than the 50% threshold
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Fig. 5.8: Percentage of nodes which compute the right decision for confidence levels lesser than or equal to 
30 % threshold.
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Fig. 5.9 shows the percentage of the nodes that arrive at a correct global Bayesian 

network model when the confidence level in the edges is greater than or equal to 60%. 

For edges with confidence levels greater than or equal to 70%, all the nodes quickly 

arrive at a decision to accept the edges. The number of rounds taken to arrive at this 

decision is less than or equal to 10. This result confirms the fact that all nodes converge 

quickly when the edges have confidence levels much higher than the 50% threshold
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Fig. 5.9 Percentage of nodes which compute the right decision for confidence levels greater than or equal 
to 70% .

In Fig. 5.10, the confidence levels are closer to the threshold. The presence of a majority 

of nodes with confidence levels near the 50% threshold leads to more messages 

exchanged thereby delaying the agreement on decision making by all the nodes. Figure 

5.10 indicates that edges with confidence levels near the 50% threshold require a large 

portion of the network to participate in order to arrive at a decision. Edges with 

confidence levels closer to 50% therefore take a significant amount of time for all nodes 

to agree.

Fig. 5.10 also shows that the number of rounds are considerably higher as compared to 

convergence in Figs 5.9 and Figs. 5.10. In spite of the larger convergence time in our
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protocol for confidence levels closer to the majority ratio, the number of rounds are not 

dependent on the network size. We compare the convergence of our protocol with the 

convergence of a similar majority consensus protocol proposed by Burman et.al. [5], 

According to Burman et. al, when a batch of transient faults hits an asynchronous 

distributed system by corrupting the state of some / nodes, the state stabilizes in 0(f) time 

at all nodes, for any unknown f. State stabilization time is proportional to the network 

diameter, so the convergence of the protocol proposed by Burman et.al. increases with 

the network diameter, unlike our protocol whose convergence is independent of the scale 

of the network.
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Fig. 5.10: Percentage of nodes which compute the right decision for confidence levels near the 50% 
threshold.

To better explain Figs. 5.7, 5.8, 5.9, and 5.10, the interaction between the majority 

consensus protocol and majority based Bayesian network algorithm needs to be analyzed. 

The majority consensus protocol behaves in a wave pattern characterized by positive
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slopes and negative slopes. In the first round, every node assumes the confidence level to 

be zero. In the initial rounds, the protocol convinces more nodes of a certain confidence 

level leading to a wave with a positive slope, but when the majority of nodes do not agree 

on a certain confidence level, then the wave exhibits a negative slope. If the confidence 

level among the edges is between 70-90%, then the edges are learned quicker and agreed 

upon by most nodes. These edges are very significant and are expected to be discovered 

in the earlier rounds and quickly agreed upon by all the nodes in the network. The same 

analysis applies for edges with lower confidence levels (10-30%). The edges with low 

confidence levels are rejected earlier by most of the nodes. They are also discovered early 

but are quickly rejected as a greater portion of the local database is scanned. Now, the 

edges with confidence levels between (40-60%) require more rounds for all the nodes to 

agree with the majority decision. As these confidence levels are near the 50% majority 

threshold, the majority based Bayesian network algorithm takes a longer time for all the 

nodes to agree with the majority decision.

The above results also confirm the fact that the scalability of the methodology is 

dependent on the separation of the confidence levels from the majority ratio. To ensure 

that the performance of the methodology is independent of the size of the network, the 

majority of the confidence levels of the edges should be further away from the majority 

ratio.

5.5 Conclusion

We have devised a new methodology for discovering the structure of a Bayesian Network 

from data distributed in a peer-to-peer network. The crux of the methodology is the 

majority consensus protocol. The strength of the protocol is the locality of 

communication and quicker convergence if the confidence levels of the edges are not too 

close to the majority ratio. The locality of the communication allows a node running the 

majority BN algorithm to deduce a correct global BN model by interacting with fewer 

neighbors.
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The efficiency of the local communication also depends on the confidence level of the 

edges. Simulation results verify that all new edges, except for edges with confidence 

levels closer to the majority ratio, are discovered by exchange of messages with a small 

neighborhood of nodes, whose size is independent of the size of the network. If the edges 

have a lower confidence level (10-30%), the communication is very efficient due to fewer 

exchanges of messages. Edges with a higher confidence level (70-90%) also result in 

fewer messages exchanged between neighboring nodes. As most of the edges have 

confidence levels which fall into the above two categories, the communication load 

mainly depends on the edges whose confidence level is between (40-60%). To control the 

communication load in our methodology, the confidence levels of the relations should be 

chosen based on the above constraints.
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Chapter VI 

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation has demonstrated that integration of distributed Bayesian Networks 

from data distributed in a peer-to-peer network can have faster convergence at a 

significantly lower communication overhead. The peer-to-peer model proposed in this 

dissertation is similar to the architectural model for distributed knowledge discovery. 

More specifically the peer-to-peer model can be implemented in the communication layer 

of the architectural model. The crux of the model is to perform the integration of the 

distributed Bayesian Network “in-network” without placing additional burden of 

integration on any computing node. This property of our model is a huge advancement 

over centralized integration of models proposed in previous approaches on distributed 

knowledge discovery.

Further, this dissertation shows that epidemic protocols are a good fit in the computation 

of distributed Bayesian Networks due to their robust and scalable manner of distributing 

information in peer-to-peer networks. Additional properties of epidemic protocols which 

make them very useful for our work are their ease of deployment and resilience to 

failures. This dissertation also presents a distributed algorithm by which every node in the 

peer-to-peer network can learn the exact distributed Bayesian network, as if it were given 

the combined database. The algorithm is based on majority consensus among all the 

nodes. It is entirely asynchronous, imposes veiy little communication overhead, 

transparently tolerates network topology changes and node failures,

This chapter lists the above contributions and expounds on several possible directions for 

future improvement.
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6.1 Conclusions

We have presented a methodology to discover a distributed Bayesian network from data 

distributed among nodes in a peer-to-peer network. The crux of our methodology is to 

provide every node in a peer-to-peer network the ability to discover the exact global 

Bayesian network. The main contribution of our work is built around the three main 

components which are part of our methodology: Semantic Genetic Algorithm for 

structure learning of Bayesian Networks, Adaptive Fanout based Epidemic Protocol, and 

Majority Based Consensus Methodology.

The main contributions of our work are:

• Semantic genetic algorithm (SGA) to learn the best Bayesian network structure 

from a database. In SGA, we introduced semantic crossover and mutation 

operators to aid in obtaining accurate solutions. The crossover and mutation 

operators incorporate the semantic of Bayesian network structures to learn the 

structure with very minimal errors. SGA has been proven to discover Bayesian 

networks with greater accuracy than existing classical genetic algorithms

• A model for dynamic fanout based epidemic protocol to aid in fine-grained 

control of the information dissemination process. Our dynamic fanout model is 

best suited for distributed computing applications in which a global function 

within a pre-determined response time needs to be computed. One such 

application is distributed knowledge discovery where the global knowledge 

discovery model is constructed from local knowledge discovery models learned at 

each peer node. The accuracy and speed of the global knowledge discovery model 

construction process is dependent on the underlying controlled information 

dissemination process. In the presence of a dynamic data environment, the 

knowledge discovery process must proceed according to the availability of data in 

peer nodes. We present two approaches to quantify the fanout and thereby ensure 

all nodes receive a specific message within a bounded time.
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• The first approach is called Round Based Dynamic Fanout, in which each node 

transmits a message with a varied fanout from round to round. In this approach, 

the network topology is flat with no hierarchy. The fanout values are quantified 

based on the infection pattern and redundancy message pattern over rounds.

• In the second approach, Cluster Based Dynamic Fanout, we shift from a flat 

membership network to a cluster membership network. In the first approach, the 

fanout remains constant during a round. In the second approach, nodes are 

clustered based on geographical proximity criterion and we vary the fanout 

between clusters of nodes. This implies that during each round, nodes in different 

clusters disseminate information using different fanout values.

• Our final contribution is the use of a majority based consensus methodology to 

learn the structure of a Bayesian Network from data distributed in a peer-to-peer 

network. The methodology is comprised of the Majority Consensus Protocol and 

the Majority Bayesian Network Learning Algorithm. The algorithm and protocol 

work in tandem to discover the global BN at each node in the network.

• The key strength of our Majority Consensus Protocol is faster convergence with 

significantly lower message overhead. Also, the performance of our majority 

consensus protocol is not dependent on user configurable parameters. The 

parameter independence makes the protocol more predictable and robust. The 

majority consensus protocol is implemented locally and requires no 

synchronization among the nodes. The impact of the locality of communication 

leads to faster convergence of the computation of the global Bayesian network 

model at the expense of lower message overhead. By locality, we imply that each 

node updates its BN based on the link information provided by a small set of 

neighbors.

• The key strength of the Majority Bayesian Network Learning Algorithm is to 

correctly ascertain the confidence in the cross links discovered by the Majority
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Consensus Protocol. By using the algorithm the time taken by each node to 

discover the global BN does not exceed the time taken by a centralized BN 

learning approach.

6.2 Future Directions

In the future, we expect to eliminate a few of the assumptions we made in our 

methodology and use the methodology to learn different knowledge discovery models 

such as association rules, and classification. Eliminating some of the assumptions we 

made in our work would make our methodology more beneficial to model designers. 

Using the model to learn different knowledge discovery models would provide us with 

key insights into the model’s flexibility.

The issues in the adaptive fanout model that need further investigation include: a) good 

choice of user specified infected nodes list, b) scalability of network in the cluster based 

dynamic fanout approach. For the round based dynamic fanout approach, the design of a 

good frequency distribution of infected nodes provided by the system user needs to be 

carefully examined. The cluster based dynamic fanout approach needs to be implemented 

on a large cluster size. We aim to address these issues in our future work.

One of the critical assumptions of the majority based consensus methodology was related 

to the construction of the database. The database was distributed homogeneously among 

the nodes in the peer-to-peer network. In a homogenous database all nodes have all o f the 

variables whose edges have to be discovered. One of the directions for future work would 

be to learn the structure of a Bayesian network from a heterogeneous database. In a 

heterogeneous database, every node has a subset of variables and their observations. This 

restriction leads to the exchange of observations between nodes. To achieve this, the 

Majority Bayesian Network algorithm will have to be modified accordingly. The majority 

consensus protocol would need no changes, as it is independent of the type of the 

database.
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Another assumption is related to dynamic changes in data. The simulations performed to 

validate our majority based consensus methodology were based on static data. Relaxing 

this assumption would give us more insight into the operation of the majority consensus 

protocol. The convergence of our methodology will be affected in the presence of 

dynamic data. The majority consensus protocol will have to be modified to alleviate the 

delay in convergence due to addition or deletion of data from the local databases.

Future work might also use our methodology to learn the parameters of a Bayesian 

network along with structure and other knowledge discovery models like association 

rules, decision trees, and clustering. Our methodology has been constructed in such a 

fashion that to discover any other type of knowledge discovery model would only entail 

changes in the majority Bayesian network algorithm. The different components of models 

(for example, rules and transactions discovery for association rule mining) and different 

confidence level interpretation (for examples, frequency and support for association rules 

mining) should be taken into consideration. Our methodology can gain widespread 

acceptability if it is successfully applied in order to discover different types of knowledge 

discovery models.
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