217 research outputs found

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    Painting Lighting and Viewing Effects

    Get PDF
    We present a system for painting how the appearance of an object changes under different lighting and viewing conditions. The user paints what the object should look like under different lighting conditions (dark, partially dark, fully lit, etc.) and (optionally) different viewing angles. The system renders the object under new lighting conditions and a new viewing angle by combining these paintings. We also provide a technique for constructing texture maps directly from the user’s paintings

    EXPÉRIMENTATIONS VIRTUELLES: VIE ARTIFICIELLE POUR LA GÉNÉRATION DE FORMES ET DE COMPORTEMENT

    Get PDF
    National audienceCet article présente une sélection de travaux réalisés par l'équipe VORTEX de l'IRIT depuis 1993 dans les domaines de la génération automatique de formes et de comportements. Nous montrons ici la spécificité de ces travaux utilisant des techniques originales issues de la vie artificielle afin de proposer un nouveau type d'interaction entre l'utilisateur et l'environnement de simulation

    A Motion Control Scheme for Animating Expressive Arm Movements

    Get PDF
    Current methods for figure animation involve a tradeoff between the level of realism captured in the movements and the ease of generating the animations. We introduce a motion control paradigm that circumvents this tradeoff-it provides the ability to generate a wide range of natural-looking movements with minimal user labor. Effort, which is one part of Rudolf Laban\u27s system for observing and analyzing movement, describes the qualitative aspects of movement. Our motion control paradigm simplifies the generation of expressive movements by proceduralizing these qualitative aspects to hide the non-intuitive, quantitative aspects of movement. We build a model of Effort using a set of kinematic movement parameters that defines how a figure moves between goal keypoints. Our motion control scheme provides control through Effort\u27s four dimensional system of textual descriptors, providing a level of control thus far missing from behavioral animation systems and offering novel specification and editing capabilities on top of traditional keyframing and inverse kinematics methods. Since our Effort model is inexpensive computationally, Effort-based motion control systems can work in real-time. We demonstrate our motion control scheme by implementing EMOTE (Expressive MOTion Engine), a character animation module for expressive arm movements. EMOTE works with inverse kinematics to control the qualitative aspects of end-effector specified movements. The user specifies general movements by entering a sequence of goal positions for each hand. The user then expresses the essence of the movement by adjusting sliders for the Effort motion factors: Space, Weight, Time, and Flow. EMOTE produces a wide range of expressive movements, provides an easy-to-use interface (that is more intuitive than joint angle interpolation curves or physical parameters), features interactive editing, and real-time motion generation

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities

    Get PDF
    Moving from a set of independent virtual worlds to an integrated network of 3D virtual worlds or Metaverse rests on progress in four areas: immersive realism, ubiquity of access and identity, interoperability, and scalability. For each area, the current status and needed developments in order to achieve a functional Metaverse are described. Factors that support the formation of a viable Metaverse, such as institutional and popular interest and ongoing improvements in hardware performance, and factors that constrain the achievement of this goal, including limits in computational methods and unrealized collaboration among virtual world stakeholders and developers, are also considered

    CGAMES'2009

    Get PDF

    Pen-based Methods For Recognition and Animation of Handwritten Physics Solutions

    Get PDF
    There has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and requirements posed by a given problem statement and to couple this knowledge with a computational model of the student\u27s handwritten solution. These pieces of information are used to construct meaningful animations and feedback mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships among diagram elements, mathematics and annotations such as arrows and dotted lines. We use natural language processing to identify the domain of a given problem, and use this information to select one or more of four domain-specific physics simulators to animate the user\u27s sketched diagram. We enable students to use their answers to guide animation behavior and also describe a novel algorithm for checking recognized student solutions. We provide examples of scenarios that can be modeled using our prototype system and discuss the strengths and weaknesses of our current prototype. Additionally, we present the findings of a user study that aimed to identify animation requirements for physics tutoring systems. We describe a taxonomy for categorizing different types of animations for physics problems and highlight how the taxonomy can be used to define requirements for 50 physics problems chosen from a university textbook. We also present a discussion of 56 handwritten solutions acquired from physics students and describe how suitable animations could be constructed for each of them
    • 

    corecore