23 research outputs found

    A statistical comparison of metaheuristics for unrelated parallel machine scheduling problems with setup times

    Get PDF
    Manufacturing scheduling aims to optimize one or more performance measures by allocating a set of resources to a set of jobs or tasks over a given period of time. It is an area that considers a very important decision-making process for manufacturing and production systems. In this paper, the unrelated parallel machine scheduling problem with machine-dependent and job-sequence-dependent setup times is addressed. This problem involves the scheduling of tasks on unrelated machines with setup times in order to minimize the makespan. The genetic algorithm is used to solve small and large instances of this problem when processing and setup times are balanced (Balanced problems), when processing times are dominant (Dominant P problems), and when setup times are dominant (Dominant S problems). For small instances, most of the values achieved the optimal makespan value, and, when compared to the metaheuristic ant colony optimization (ACOII) algorithm referred to in the literature, it was found that there were no significant differences between the two methods. However, in terms of large instances, there were significant differences between the optimal makespan obtained by the two methods, revealing overall better performance by the genetic algorithm for Dominant S and Dominant P problems.FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope UIDB/00319/2020 and EXPL/EME-SIS/1224/2021 and PhD grant UI/BD/150936/2021

    A general Framework for Utilizing Metaheuristic Optimization for Sustainable Unrelated Parallel Machine Scheduling: A concise overview

    Full text link
    Sustainable development has emerged as a global priority, and industries are increasingly striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical aspect of production planning that directly impacts resource utilization and operational efficiency. In this paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs). The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more, and assess their effectiveness in optimizing the scheduling problem. The algorithms are evaluated based on their ability to improve resource utilization, minimize energy consumption, reduce environmental impact, and promote socially responsible production practices. To conduct a comprehensive analysis, we consider UPMSP instances that incorporate sustainability-related constraints and objectives

    Scheduling on parallel machines with a common server in charge of loading and unloading operations

    Full text link
    This paper addresses the scheduling problem on two identical parallel machines with a single server in charge of loading and unloading operations of jobs. Each job has to be loaded by the server before being processed on one of the two machines and unloaded by the same server after its processing. No delay is allowed between loading and processing, and between processing and unloading. The objective function involves the minimization of the makespan. This problem referred to as P2, S1|sj , tj |Cmax generalizes the classical parallel machine scheduling problem with a single server which performs only the loading (i.e., setup) operation of each job. For this NP-hard problem, no solution algorithm was proposed in the literature. Therefore, we present two mixedinteger linear programming (MILP) formulations, one with completion-time variables along with two valid inequalities and one with time-indexed variables. In addition, we propose some polynomial-time solvable cases and a tight theoretical lower bound. In addition, we show that the minimization of the makespan is equivalent to the minimization of the total idle times on the machines. To solve large-sized instances of the problem, an efficient General Variable Neighborhood Search (GVNS) metaheuristic with two mechanisms for finding an initial solution is designed. The GVNS is evaluated by comparing its performance with the results provided by the MILPs and another metaheuristic. The results show that the average percentage deviation from the theoretical lower-bound of GVNS is within 0.642%. Some managerial insights are presented and our results are compared with the related literature.Comment: 40 pages, 4 figures, 16 table

    A hybrid multi-objective evolutionary algorithm-based semantic foundation for sustainable distributed manufacturing systems

    Get PDF
    Rising energy prices, increasing maintenance costs, and strict environmental regimes have augmented the already existing pressure on the contemporary manufacturing environment. Although the decentralization of supply chain has led to rapid advancements in manufacturing systems, finding an efficient supplier simultaneously from the pool of available ones as per customer requirement and enhancing the process planning and scheduling functions are the predominant approaches still needed to be addressed. Therefore, this paper aims to address this issue by considering a set of gear manufacturing industries located across India as a case study. An integrated classifier-assisted evolutionary multi-objective evolutionary approach is proposed for solving the objectives of makespan, energy consumption, and increased service utilization rate, interoperability, and reliability. To execute the approach initially, text-mining-based supervised machine-learning models, namely Decision Tree, Naïve Bayes, Random Forest, and Support Vector Machines (SVM) were adopted for the classification of suppliers into task-specific suppliers. Following this, with the identified suppliers as input, the problem was formulated as a multi-objective Mixed-Integer Linear Programming (MILP) model. We then proposed a Hybrid Multi-Objective Moth Flame Optimization algorithm (HMFO) to optimize process planning and scheduling functions. Numerical experiments have been carried out with the formulated problem for 10 different instances, along with a comparison of the results with a Non-Dominated Sorting Genetic Algorithm (NSGA-II) to illustrate the feasibility of the approach.The project is funded by Department of Science and Technology, Science and Engineering Research Board (DST-SERB), Statutory Body Established through an Act of Parliament: SERB Act 2008, Government of India with Sanction Order No ECR/2016/001808, and also by FCT–Portuguese Foundation for Science and Technology within the R&D Units Projects Scopes: UIDB/00319/2020, UIDP/04077/2020, and UIDB/04077/2020

    A Robust Reactive Scheduling System with Application to Parallel Machine Scheduling

    Get PDF
    In this turbulent world, scheduling role has become crucial in most manufacturing production, and service systems. It allows the allocation of limited resources to activities with the objective of optimizing one performance measure or more. Resources may be machines in a factory, operating rooms in a hospital, or employees in a company, while activities can be jobs in a manufacturing plant, surgeries in a hospital, or paper work in a company. The goal of each schedule is to optimize some performance measures, which could be the minimization of the schedule makespan, the jobs\u27 completion times, jobs\u27 earliness and tardiness, among others. Until very recently, research has concentrated on scenarios that assume a predefined schedule that is failure free. Initial schedules produced in advance are being followed hoping no delays will occur, because once they do, the whole schedule may be compromised as it is not designed to adapt to change. Researchers focused on the generation of good schedules in the presence of complex constraints while assuming fixed processing times, known job arrival times, unbreakable machines, and immune employees. However, this is not the case in the real world, where processing times are stochastic, job arrival times could be unknown, machines do break down, and employees get sick. In fact, most environments including manufacturing are dynamic by nature and not static, vulnerable to many unpredictable events, which leads the initial schedule to become obsolete once it is executed. The reason these deterministic schedules fail is because they do not account for variability, scheduling the activities directly after each other, so when a certain activity is delayed, all its successors will be delayed too. In this dissertation, new repair and rescheduling algorithms, and robust systems equipped with learning capability are developed for the unrelated parallel machine environment, a known NP-hard problem. The introduced rules and algorithms were subjected to different stochastic rates of breakdowns and delays and were judged based on several performance measures to ensure the optimization of both the schedule quality and stability. Schedule quality is assessed based on the schedule Makespan (time to finish all jobs) and CPU, while schedule stability is based on the number of shifted jobs from one machine to another and the time to match up with the original schedule after the occurrence of a breakdown. The extensive computational tests and analyses show the superiority of the proposed algorithms and systems compared to existing methods in the literature, especially when implemented with the learning capability. Moreover, the rules were ranked based on their performance for different performance measure combinations, allowing the decision maker to easily determine the most appropriate repair/rescheduling rule depending on the performance measure(s) desired

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    Bridging a Gap Between Research and Production: Contributions to Scheduling and Simulation

    Get PDF
    Large scale distributed computing infrastructures (e.g., data centers, grids, or clouds) are used by scientists from various domains to produce outstanding research results, such as the discovery of the Higgs Boson in High Energy Physics. These infrastructures are also studied by Computer Scientists to produce their own set of scientific results. Ideally, a virtuous circle should exist between Domain and Computer Scientists: the former raising challenges that could be addressed by the latter. Unfortunately, in many occasions, a gap exists that prevents such an ideal and fostering collaboration. This habilitation covers research works conducted in the fields of scheduling and simulation that contribute to the filling of this gap. It discusses the necessary conditions to achieve this goal and details concrete initiatives in this endeavor

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Complex scheduling models and analyses for property-based real-time embedded systems

    Get PDF
    Modern multi core architectures and parallel applications pose a significant challenge to the worst-case centric real-time system verification and design efforts. The involved model and parameter uncertainty contest the fidelity of formal real-time analyses, which are mostly based on exact model assumptions. In this dissertation, various approaches that can accept parameter and model uncertainty are presented. In an attempt to improve predictability in worst-case centric analyses, the exploration of timing predictable protocols are examined for parallel task scheduling on multiprocessors and network-on-chip arbitration. A novel scheduling algorithm, called stationary rigid gang scheduling, for gang tasks on multiprocessors is proposed. In regard to fixed-priority wormhole-switched network-on-chips, a more restrictive family of transmission protocols called simultaneous progression switching protocols is proposed with predictability enhancing properties. Moreover, hierarchical scheduling for parallel DAG tasks under parameter uncertainty is studied to achieve temporal- and spatial isolation. Fault-tolerance as a supplementary reliability aspect of real-time systems is examined, in spite of dynamic external causes of fault. Using various job variants, which trade off increased execution time demand with increased error protection, a state-based policy selection strategy is proposed, which provably assures an acceptable quality-of-service (QoS). Lastly, the temporal misalignment of sensor data in sensor fusion applications in cyber-physical systems is examined. A modular analysis based on minimal properties to obtain an upper-bound for the maximal sensor data time-stamp difference is proposed
    corecore