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ABSTRACT

A ROBUST REACTIVE SCHEDULING SYSTEM WITH APPLICATION 
TO PARALLEL MACHINE SCHEDULING

Jean-Paul Amaout 
Old Dominion University, 2006 

Director: Dr. Ghaith Rabadi

In this turbulent world, scheduling role has become crucial in most manufacturing 

production, and service systems. It allows the allocation o f limited resources to activities 

with the objective of optimizing one performance measure or more. Resources may be 

machines in a factory, operating rooms in a hospital, or employees in a company, while 

activities can be jobs in a manufacturing plant, surgeries in a hospital, or paper work in a 

company. The goal of each schedule is to optimize some performance measures, which 

could be the minimization of the schedule makespan, the jobs’ completion times, jobs’ 

earliness and tardiness, among others.

Until very recently, research has concentrated on scenarios that assume a predefined 

schedule that is failure free. Initial schedules produced in advance are being followed hoping 

no delays will occur, because once they do, the whole schedule may be compromised as it is 

not designed to adapt to change. Researchers focused on the generation of good schedules in 

the presence of complex constraints while assuming fixed processing times, known job 

arrival times, unbreakable machines, and immune employees. However, this is not the case 

in the real world, where processing times are stochastic, job arrival times could be unknown, 

machines do break down, and employees get sick. In fact, most environments including 

manufacturing are dynamic by nature and not static, vulnerable to many unpredictable
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events, which leads the initial schedule to become obsolete once it is executed. The reason 

these deterministic schedules fail is because they do not account for variability, scheduling 

the activities directly after each other, so when a certain activity is delayed, all its successors 

will be delayed too.

In this dissertation, new repair and rescheduling algorithms, and robust systems 

equipped with learning capability are developed for the unrelated parallel machine 

environment, a known NP-hard problem. The introduced rules and algorithms were 

subjected to different stochastic rates of breakdowns and delays and were judged based on 

several performance measures to ensure the optimization of both the schedule quality and 

stability. Schedule quality is assessed based on the schedule Makespan (time to finish all 

jobs) and CPU, while schedule stability is based on the number of shifted jobs from one 

machine to another and the time to match up with the original schedule after the occurrence 

of a breakdown. The extensive computational tests and analyses show the superiority of the 

proposed algorithms and systems compared to existing methods in the literature, especially 

when implemented with the learning capability. Moreover, the rules were ranked based on 

their performance for different performance measure combinations, allowing the decision 

maker to easily determine the most appropriate repair/rescheduling rule depending on the 

performance measure(s) desired.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Copyright, 2006, by Jean-Paul M. Amaout, All Rights Reserved.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



To Karen George, the optimal solution of my life

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



v i

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Ghaith Rabadi, without 

whom this dissertation would not have been possible. His valuable feedback contributed 

greatly to this work. I can only wish for any PhD student to be as fortunate as I was in 

finding not only a mentor, but also a friend who helped me deliver my best through his 

constant motivation and reinforcement.

I am also very grateful for having an exceptional doctoral committee and wish to 

thank Dr. Resit Unal, Dr. Shannon Bowling, and Dr. Steve Cotter for their continual support 

and commitment. I thank as well the Engineering Management and Systems Engineering 

Department at Old Dominion University for the financial support during my graduate work.

My appreciation is extended to my parents in Lebanon, Michel and Mayda, for their 

unconditional love and encouragement from day one. Thank you mom for calling me doctor 

even when I was still in High School, and thank you dad for being my idol; you gave me so 

much confidence (and sometimes arrogance) by showing me that nothing is unattainable if  I 

put my mind to it. I can only hope that one day I can provide my children with the same 

happiness and security you gave me. I also want to thank my beautiful sister Christelle and 

my brother Georgy for their support and motivation throughout this experience.

Finally, I owe the most to my fiancee Karen, who deserves this PhD as much as I do. 

She had to commit three years of her life in library imprisonment, accompanied by my 

frequent bad temper. Thank you so much my love for picking me up every time I was down.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TABLE OF CONTENTS

Page

LIST OF TABLES.......................................................................................................................... x

LIST OF FIGURES....................................................................................................................xvii

INTRODUCTION...........................................................................................................................1
AREA OF RESEARCH.................................................................................................... 3

On-line Scheduling................................................................................................ 3
Predictive-reactive scheduling.............................................................................. 4
Robust Scheduling................................................................................................. 4

BACKGROUND AND SCOPE OF RESEARCH.......................................................... 6

System’s Time Response.......................................................................................6

. Reactive Approach................................................................................................. 7
Scheduling Techniques ................................................................  ..9
Learning Capability  ................................................................................13
Problem Environment.......................................................................................... 14

PURPOSE OF THIS RESEARCH..................................................................................18

LITERATURE REVIEW............................................................................................................. 19
ROBUST SCHEDULING............................................................................................... 19

Predictable Scheduling........................................................................................20
Reactive Scheduling............................................................................................ 21

LEARNING CAPABILITY.............................   23
UNRELATED PARALLEL MACHINES.....................................................................23
RESEARCH G A P............................................................................................................25
PROBLEM NOTATIONS............................................................................................... 27

OPTIMAL SOLUTIONS FOR THE UNRELATED PARALLEL MACHINE PROBLEM
USING INTEGER PROGRAMMING........................................................................................28

INTEGER PROGRAM................................................................................................... 29
Upper Bound.........................................................................................................30

LOWER BOUND.............................................................................................................34
Initial Schedule Lower Bound............................................................................ 34
Predictable Schedule Lower Bound....................................................................38
Reactive Schedule Lower Bound........................................................................39

MODELS VALIDATION............................................................................................... 41
COMPUTATIONAL TESTS..........................................................................................43
SUMMARY...................................................................................................................... 47

PREDICTABLE SCHEDULING................................................................................................ 48
PROBLEM FORMULATION AND ANALYSIS........................................................ 50

Problem statement............................................................................................... 50

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Initial schedule (Si).............................................................................................. 51
Mehta’s predictive rule........................................................................................52
CFJI Insertion Rule.............................................................................................. 52

COMPUTATIONAL TESTS..........................................................................................54
SUMMARY...................................................................................................................... 62

LEARNING PARAMETER FOR THE PREDICTABLE SCHEDULE...................  63
MACHINE LEARNING FOUNDATIONS...................................................................65
LEARNING APPLICATIONS.......................................................................................6 6

PROPOSED LEARNING METHODOLOGY............................................................. 67
The Learning Capability......................................................................................69
Determining the number of iterations  ......................................................... 71

COMPUTATIONAL TESTS..........................................................................................76
SUMMARY.......................................................................................................................83

REPAIR AND RESCHEDULING RULES............................................................................... 84
PERFORMANCE MEASURES.....................................................................................85
RIGHT SHIFT REPAIR (RSR).......................................................................................8 6

FIT JOB REPAIR (FJR).................................................................................................. 8 8

PARTIAL RESCHEDULING (PR)............................................................................... 90
PR Design of Experiments...................................................................................97

COMPLETE RESCHEDULING (CR)......................................................................... 109
COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN............................ 110

Performance Measures’ Statistical Analyses................................................... 118
Repair and Rescheduling Rules’ Comparison................................................. 148
Computational Tests Summary......................................................................... 167

ROBUST REACTIVE SCHEDULING SYSTEM..................................................................172
COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN............................ 174

Performance Measures’ Statistical Analyses................................................... 174
Repair and Rescheduling Rules’ Comparison................................................. 194
Computational Tests Summary......................................................................... 214

GENERALIZABILITY, CONCLUSIONS, AND FUTURE RESEARCH...........................218
RESEARCH CONTRIBUTIONS AND GENERALIZABILITY.............................219

Research Contributions......................................................................................219
Research Generalizability................................................................................. 219

RESEARCH CONCLUSIONS.....................................................    221
FUTURE RESEARCH..........................................................   225

REFERENCES......................................................................  227

APPENDICES

ROBUST SYSTEM IMPLEMENTATION CODE
IN VISUAL C++..................................   238

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ix

RSR IMPLEMENTATION CODE IN VISUAL C++................................................274

FJR IMPLEMENTATION CODE IN VISUAL C++.................................................277

CR IMPLEMENTATION CODE IN VISUAL C++..................................................284

LINGO MODELS..........................................................................................................288

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



X

LIST OF TABLES

Table Page

1. Jobs processing times on unrelated machines........................................................................ 15

2. Jobs' Processing Times.............................................................................................................31

3. Pj and values.........................................  32

4. Sorted Jobs in the Decreasing Order of e^j)........................................................................... 32

5. Upper Bound Jobs Assignment............................................................................................... 33

6 . Computational Tests for MIP [1].............................................................................................44

7. Computational Tests for the Predictable Schedules...............................................................56

8 . Rules' Relative Deviation percent from CmaxR......................................................................58

9. Computational Tests with a Learning Parameter....................................................................77

10. Percentage of Variability of each rule from the Realized Schedule................................... 79

11. PR Design of Experiments Factors........................................................................................98

12. PR D-Optimal Design Diagnostics........................................................................................99

13. PR D-Optimal Design........................................................................................................... 100

14. PR Rule's D-Optimal Design Results..................................................................................101

15. Cmax Difference Regression Results for FT? rule...............................................................102

16. Cmax Difference ANOVA Test for PR rule....................................................................... 102

17. Cmax Difference Effect Test for PR rule.............................................................................103

18. CPU Regression Statistics for PR ru le ................................................................................104

19. CPU ANOVA Results for PR ru le ...................................................................................... 104

20. Factors and Interactions Effect test for PR rule.................................................................. 104

21. Shifted Jobs R-Square for PR rule.......................................................................................105

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22. Shifted Jobs ANOVA Results for PR rule.......................................................................... 105

23. Factors and Interactions' Effect Test for PR rule................................................................106

24. Match-up Time Regression Results for PR ru le .................................................................106

25. Match-up Time ANOVA Results for FT? rule..................................................................... 107

26. Factors/Interactions' Effect Test for PR ru le ...................................................................... 107

27. Factors analyzed in the Experimental Design of the Repair and Rescheduling rules I l l

28. Rules’ D-Optimal Design Diagnostics................................................................................112

29. D-Optimal Design for the Rules' Experiments...................................................................113

30. Right Shift Rule Computational Results (Average Numbers)............................................114

31. Fit Job Repair Computational Tests (Average Numbers)................................................. 115

32. Partial Rescheduling Computational Tests (Average Numbers)......................................116

33. Complete Rescheduling Computational Tests (Average Numbers)................................. 117

34. Cmax Difference Regression Results for RSR rule.............................................................118

35. Cmax Difference ANOVA Test for RSR rule..................................................................... 119

36. Cmax Difference Effect Test for RSR rule.......................................................................... 120

37. Cmax Difference Regression Results for FJR rule.............................................................121

38. Cmax Difference ANOVA Test for FJR ru le..................................................................... 121

3.9. Cmax Difference Effect Test for FJR rule..........................................................   122

40. Cmax Difference Regression Results for PR rule...............................................................123

41. Cmax Difference ANOVA Test for PR rule....................................................................... 123

42. Cmax Difference Effect Test for PR rule.............................................................................123

43. Cmax Difference Regression Results for CR rule...............................................................124

44. Cmax Difference ANOVA Test for CR rule....................................................................... 124

45. Cmax Difference Effect Test for CR ru le ........................................................................... 125

46. CPU Regression Results for RSR rule.................................................................................126

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x ii

47. CPU ANOVA Test for RSR ru le ....................................................................................126

48. CPU Effect Test for RSR rule.............................................................................................. 127

49. CPU Regression Results for FJR rule.................................................................................128

50. CPU ANOVA Test for FJR ru le ......................................................................................... 128

51. CPU Effect Test for FJR rule.............................................................................................. 129

52. CPU Regression Results for PR rule..........................   130

53. CPU ANOVA Test for PR rule.......................................................   130

54. CPU Effect Test for PR rule.................................................................................................131

55. CPU Regression Results for CR rule...................................................................................132

56. CPU ANOVA Test for CR rule........................................................................................... 132

57. CPC/Effect Test for CR rule.................................................................................................133

58. Match-up Regression Results for RSR ru le ........................................................................ 134

59. Match-up ANOVA Test for RSR rule..................................................................................135

60. Match-up Effect Test for RSR ru le ...................................................................................... 135

61. Factors Effects on Match-up Time in the case of RSR........................................................136

62. Match-up Regression Results for FJR rule......................................................................... 136

63. Match-up ANOVA Test for FJR rule..................................................................................137

64. Match-up Effect Test for FJR rule....................................................................................... 137

65. Match-up Regression Results for PR ru le   ..............................................................138

6 6 . Match-up ANOVA Test for PR rule....................................................................................139

67. Match-up Effect Test for PR ru le ........................................................................................ 139

6 8 . Match-up Regression Results for CR rule.......................................................................... 140

69. Match-up ANOVA Test for CR ru le ...................................................................................140

70. Match-up Effect Test for CR rule........................................................................................141

71. Shifted Jobs Regression Results for FJR rule..................................................................... 142

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x ii i

72. Shifted Jobs ANOVA Test for FJR rule..............................................................................143

73. Shifted Jobs Effect Test for FJR rule...................................................................................143

74. Factors' Effects on Shifted Jobs in the case of FJR ............................................................144

75. Shifted Jobs Regression Results for PR rule....................................................................... 144

76. Shifted Jobs ANOVA Test for PR rule................................................................................145

77. Shifted Jobs Effect Test for PR ru le ....................................................................................145

78. Shifted Jobs Regression Results for CR ru le.................................................................... ..146

79. Shifted Jobs ANOVA Test for CR rule................................................................................146

80. Shifted Jobs Effect Test for CR ru le....................................................................................147

81. Cmax Difference Performance among the rules................................................................. 150

82. One-Way ANOVA for Cmax Difference............................................................................151

83. t test for FJR -  PR in the case of Cmax Difference............................................................152

84. t test for PR -  CR in the case of Cmax Difference..............................................................152

85. CPU Performance among the rules..................................................................................... 154

8 6 . One-Way ANOVA for CPU Time....................................................................................... 155

87. t test for FJR - RSR in the case of CPU ...............................................................................156

8 8 . t test for CR -  PR in the case of CPU..................................................................................156

89. Match-up Performance among the rules..............................................................................158

90. One-Way ANOVA for Match-up Time.......................  159

91. t test for RSR -  FJR in the case of Match-up Time.............................................................160

92. t test for RSR -  PR in the case of Match-up Time..............................................................160

93. t test for CR — PR in the case of Match-up Time................................................................160

94. Shifted Jobs Performance among the rules......................................................................... 162

95. t test for PR -  CR in the case of Shifted Jobs ..................................................................... 163

96. Overall Performance among the rules.................................................................................165

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x iv

97. One-Way ANOVA for the Overall Performance...............................................................166

98. t test for RSR -  FJR in the case of Overall Performance.................................................. 166

99. t test for CR -  PR in the case of Overall Performance...................................................... 167

100. Ranks of the Rules for all combinations of Performance Measures............................... 171

101. Computational Tests for the Robust System w/o Learning.............................................175

102.Computational Tests for the Robust System with Learning.............................................176

103. Cmax Difference Regression Results for Robust System w/o Learning......................... 177

104. Cmax Difference ANOVA Test for Robust System w/o Learning................................. 178

105. Cmax Difference Effect Test for Robust System w/o Learning.......................................178

106. Cmax Difference Regression Results for Robust System with Learning........................179

107. Cmax Difference ANOVA Test for Robust System with Learning................................ 180

108. Cmax Difference Effect Test for Robust System with Learning......................................180

109. CPU Time Regression Results for Robust System w/o Learning....................................181

110. CPU Time ANOVA Test for Robust System w/o Learning............................................. 182

111. CPU Time Effect Test for Robust System w/o Learning................................................. 182

112. Factors' Effects on CPU Time in the case of Robust System w/o Learning....................183

113. CPU Time Regression Results for Robust System with Learning...................................183

114. CPU Time ANOVA Test for Robust System with Learning............................................184

115. CPU Time Effect Test for Robust System with Learning................................................ 184

116. Shifted Jobs Regression Results for Robust System w/o Learning................................. 185

117. Shifted Jobs ANOVA Test for Robust System w/o Learning..........................................186

118. Shifted Jobs Effect Test for Robust System w/o Learning............................................... 186

119. Factors' Effects on Shifted Jobs in the case of Robust System w/o Learning.................187

120. Shifted Jobs Regression Results for Robust System with Learning................................ 188

121. Shifted Jobs ANOVA Test for Robust System with Learning.........................................188

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



XV

122. Shifted Jobs Effect Test for Robust System with Learning.............................................. 189

123. Match-up Regression Results for Robust System w/o Learning......................................190

124. Match-up ANOVA Test for Robust System w/o Learning.............................................. 190

125. Match-up Effect Test for Robust System w/o Learning................................................... 191

126. Factors' Effects on Match-up Time in the case of Robust System w/o Learning........... 192

127. Match-up Regression Results for Robust System with Learning.....................................193

128. Match-up ANOVA Test for Robust System with Learning.............................................193

129. Match-up Effect Test for Robust System w/o Learning................................................... 194

130. Cmax Difference Performance among the rules and systems..........................................196

13.1. One-Way ANOVA for Cmax Difference......................................................................... 197

132. t test for Robust w/o Learning -  CR in the case of Cmax Difference............................. 198

133. t test for Robust w/o Learning -  Robust with Learning in the case of
Cmax Difference...................................................................................................................198

134. CPU Performance among the rules and systems............................................................. 200

135. One-Way ANOVA for CPU Time.....................................................................................201

136. t test for PR - Robust w/o Learning in the case of CPU Time.........................................201

137. t test for Robust with Learning - Robust w/o Learning in the case of CPU .................. 202

138. t test for Robust with Learning -  FJR in the case of CPU Time.................................... 202

139. Match-up Performance among the rules and systems.....................................................204

140. One-Way ANOVA for Match-up Time............................................................................ 205

141. t test for Robust with Learning -  FJR in the case of Match-up Time.............................205

142. t test for Robust with Learning -  RSR in the case of Match-up Time.............................206

143. t test for Robust with Learning -  PR in the case of Match-up Time...............................206

144. t test for Robust w/o Learning -  PR in the case of Match-up Time................................ 206

145. t test for Robust w/o Learning -  CR in the case of Match-up Time............................... .207

146. Shifted Jobs Performance for the rules and systems........................................................ 209

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x v i

147. t test for Robust w/o Learning - Robust with Learning in the case of Shifted Jobs 208

148. Overall Performance among the rules and systems........................................................ 212

149. One-Way ANOVA for the Overall Performance............................................................ 210

150. t test for Robust with Learning — FJR in the case of Overall Performance.................. 213

151. t test for Robust with Learning -  RSR in the case of Overall Performance.................. 213

152. t test for Robust w/o Learning -  PR in the case of Overall Performance......................213

153. t test for Robust w/o Learning -  RSR in the case of Overall Performance................... 214

154. Ranks of the Rules and Systems for all combinations of Performance Measures.........217

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF FIGURES

Figure Page

1. Predictable Schedule subject to Disruptions............................................................................. 9

2. Scope of Research................................................   17

3. Average CPU Time comparison for 2 and 4 machines......................................................... 45

4. Average CPU Time comparison for 6  and 8  machines......................................................... 45

5. Average Iterations' Comparison for 2 and 4 machines.......................................................... 46

6 . Average Iterations' Comparison for 6  and 8  machines.......................................................... 46

7. Relative Deviation percent from CmaxR for all machines..................................................... 58

8 . Relative Deviation percent from CmaxR for 2 machines....................................................... 59

9. Relative Deviation percent from CmaxR for 4 machines...................................................... 59

10. Relative Deviation percent from CmaxR for 6  machines..................................................... 60

11. Relative Deviation percent from CmaxR for 8  machines..................................................... 60

12. Cmax with Unbalanced and Balanced Load......................................................................... 70

13. Graphical Illustration of the Sum of Uniform Distributions...............................................73

14. The CmaxR Distribution.........................................................................................................74

15. Relative Deviation percent from CmaxR (0 on the Y-axis) for 2 machines........................80

16. Relative Deviation percent from CmaxR (0 on the Y-axis) for 4 machines........................80

17. Relative Deviation percent from CmaxR (0 on the Y-axis) for 6 machines........................81

18. Relative Deviation percent from CmaxR (0 on the Y-axis) for 8  machines........................81

19. Repair and Rescheduling Rules’ Performance Measures.................................................... 85

20. Cmax Difference Boxplot.....................................................................................................149

21. CPU Boxplot.........................................................................................................................153

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x v i i i

22. Match-up Boxplot................................  157

23. Shifted Jobs Boxplot.........................  161

24. Overall Performance Boxplot............................................................................................. 164

25. Robust Reactive Scheduling System Architecture.............................................................173

26. Cmax Difference Boxplot for the Rules and Systems........................................................195

27. CPU Boxplot of the rules and systems................................................................................199

28. Match-up Boxplot for the rules and systems......................................................................203

29. Shifted Jobs Boxplot for the rules and systems..................................................................208

30. Overall Performance Boxplot for the rules and systems...................................................211

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1

CHAPTER I 

INTRODUCTION

Scheduling is one of the most crucial factors in manufacturing and production 

systems. It allows the allocation of scarce resources to activities with the objective of 

optimizing one or more performance measures (Leung, 2004). Resources may be machines 

in a factory, operating rooms in a hospital, or employees in a company, while activities can 

be jobs in a manufacturing plant, surgeries in a hospital, or paper work in a company. The 

goal of each schedule is to optimize some performance measures, such as the minimization 

of makespan, jobs’ completion time, jobs’ earliness and tardiness, among others. Scheduling 

is a hard problem both in theory and practice (Dorn et al., 1993). Its difficulty in theory is 

revealed through the excessive combinatorial complexity due to the search for optimal 

solutions for NP-hard problems. Scheduling is also difficult in practice due to the high 

number and variety of the constraints required in the real world. Scheduling dates back to 

1950s, when researchers in operations research, industrial engineering, and management 

were faced with the problem of managing various activities occurring in a workshop (Leung, 

2004). Until the 1980s, most of the algorithms developed were exact with a goal of reaching 

optimal solutions. However, the problems’ complexity kept on increasing, which made it 

infeasible to reach optimal solutions. This is when researchers started investing time in 

approximation algorithms, heuristics, and meta-heuristics, with the goal of finding good 

solutions at a reasonable computational cost. Nowadays, the scheduling field has acquired an 

outstanding body of knowledge.
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Until very recently, most of the literature dealing with production scheduling has 

primarily been oriented towards static deterministic environments where complete 

knowledge of the problem is available without consideration of any kind of failures. 

Researchers focused on the generation of good schedules in the presence of complex 

constraints, while assuming fixed processing times, known jobs’ arrival times, unbreakable 

machines, and immune employees. However, this is not the case in the real world, where 

processing times are stochastic, jobs’ arrival times could be unknown, machines do break 

down, and employees get sick. As a matter of fact, most manufacturing environments are 

dynamic by nature and not static. They are subject to many unpredictable disruptions that 

may cause the predefined deterministic schedule to become obsolete once it hits the shop 

floor (MacCarthy and Liu, 1993). After a disruption, the predefined schedule can become 

inappropriate to the new conditions. The reason these deterministic predictive schedules fail 

is because they do not account for variability, scheduling the activities directly after each 

other; consequently, when a certain activity is delayed, all its successors will be delayed too.

The purpose of this research is to develop a robust scheduling system, which will be 

capable of coping with new events through inherent rules and rescheduling in order to reduce 

the variability in the system and maintain the schedule’s quality.
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3

AREA OF RESEARCH

Motivated by the obsolescence of deterministic schedules in practical manufacturing 

problems, this research was oriented towards dynamic scheduling. The latter’s growing 

popularity is revealed through the increasing number of journal articles and conference 

papers tackling this topic. Most of this literature defines dynamic scheduling as consisting of 

three constructs: on-line scheduling, predictive-reactive scheduling, and robust scheduling 

(Mehta and Uzsoy, 1999; O’Donovan et a l, 1999; Ouelhadj, 2003).

On-line Scheduling

To overcome the shortfalls of the deterministic preplanned schedule, many 

researchers have suggested online scheduling for dynamic scenarios (Feldman et al., 1991; 

Anderson and Potts, 2004), which is a completely reactive scheduling method where no 

deterministic schedule is produced in advance, and decisions are made locally in real-time. 

That is scheduling on the fly following some predefined rules such as priority dispatching 

rules. While online scheduling could be easily implemented, it is very disadvantageous in 

practice as it is unable to neither predict system performance nor provide any resource 

planning for the activities, because no initial schedule exists on which basis a scheduler can 

allocate resources and predict performance.
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Predictive-reactive scheduling

This strategy is considered one of the most common in the literature, where a 

predictive schedule is generated in advance with an aim of minimizing the objective function 

without considering any possible perturbations. Once perturbations occur during the 

schedule’s execution, reactive scheduling modifies the predictive schedule in an attempt to 

improve performance and maintain schedule quality. The importance of a predictive 

schedule is to enable basic planning for the other activities in the system such as labor 

allocation and material purchase (Shafaei and Brunn, 1999). A predictive schedule can also 

identify resource conflicts, control the release of jobs to the shop, and ensure that required 

raw materials are ordered in time. The disadvantage of predictive-reactive scheduling lies in 

its instability and high variability; since predictive schedules still do not account for 

variability and disruptions, the reactive process will have to reschedule the initial schedule 

whenever new events occur, no matter how small the disruption is, resulting in a high 

rescheduling frequency and a realized schedule that is far from the pre-planned one. This, of 

course, may lead to resource conflicts and system instability.

Robust Scheduling

The predictive-reactive scheduling is a good strategy for rescheduling but still does 

not resolve the main weakness of the pre-schedule (predictive schedule), which lies in its 

inability to cope with disturbances, because rescheduling is still a must upon the occurrence 

of any disruption. From here came the need for robust predictable-reactive scheduling,
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which mainly differs from the original predictive- reactive schedule by its predictable 

schedule. The predictable schedule is a predictive schedule but with added ability of 

absorbing the disruptions without affecting planned external activities as well as maintaining 

high shop performance (Mehta and Uzsoy, 1999). A predictable schedule is generated by 

inserting idle time between the pre-schedule’s activities, enabling the disruptions to be 

smoothed out through the system in order to maintain the schedule quality. If a disruption 

occurs during the execution of the predictable schedule, rescheduling will only be necessary 

if  the disruption’s duration exceeds the inserted idle time.

Following the description of the three dynamic scheduling constructs, it can be 

realized that robust predictable-reactive scheduling should be a superior construct for the 

proposed reactive system as it ensures both system stability as well as schedule’s quality. 

Previous literature also agrees with this realization (Mehta and Uzsoy, 1999; Vieira et al., 

2003).
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BACKGROUND AND SCOPE OF RESEARCH

This section summarizes the building blocks of the proposed system: system’s time 

response, reactive approach, scheduling techniques, learning capability, and the problem 

environment.

System’s Time Response

There are different policies to determine the appropriate time for rescheduling, i.e. the 

time when reactive scheduling starts. The literature defines three alternatives: periodic, 

event-driven, and hybrid (Church and Uzsoy, 1992; Sabuncuoglu and Bayiz, 2000; Vieira et 

al., 2000; Chong et al., 2003).

In a periodic policy, schedules are generated at regular intervals and the dynamic 

scheduling problem is decomposed into a series of static problems that can be solved by 

using classical scheduling algorithms. The schedule will be executed and not revised until 

the next period interval. Rescheduling occurs regularly with a constant time interval (the 

rescheduling period) between consecutive rescheduling events and no other events trigger 

rescheduling (Vieira et al., 2000). This will lead to more stability in the system, but leaves 

the system totally vulnerable to new events that could occur dining execution, which might 

result in a poor performance or even a total system failure.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7

In an event-driven policy, rescheduling will only take place if  an event that can 

change the system status occurs. Several studies compared periodic and event-driven 

policies; the latest showed that in turbulent environments, a periodic policy can increase the 

system ability to react to new events but will demand a lot of set-ups, and much better results 

were obtained when event-driven policy was used (Vieira et al., 2000).

In a hybrid policy, rescheduling occurs periodically and also when an exceptional 

event takes place (Church and Uzsoy, 1992). In this policy, you can define which events not 

to react to, and by rescheduling the system periodically, it stays up to date so it can easily 

respond to perturbations. The disadvantage of this policy is the large number of set-ups and 

computational time.

It is worth reminding here that the proposed system will be equipped with a robust 

predictable schedule that can overcome by itself some of the disruptions. In an event-driven 

policy, such disruptions will not trigger the system to react; on the other hand, if  the 

disruption durations are larger than the inserted idle time, rescheduling will take place.

Reactive Approach

The literature shows two main alternatives for the reaction process: schedule repair 

and complete rescheduling (Vieira et al., 2003; Cowling et al., 2003; Ouelhadj, 2003). 

Schedule repair refers to a minimum modification of the pre-schedule, leading to more 

stability in the system, while complete rescheduling refers to rescheduling from scratch,
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which could result in better solutions but will jeopardize system stability. Moreover, 

complete rescheduling will lead to system nervousness and could be very costly, as all the 

pre-arranged plans have to be changed. In practice, most rescheduling has been done using 

schedule repair, except in some severe situations where complete rescheduling had to be 

done (Abumaizar and Svestka, 1997). In their experimental tests, Cowling et al. (2003) 

showed that the schedule repair strategies attain better performance levels in terms of both 

stability and utility measures. They stated that even in environments where significant 

changes in stability are tolerated and improvements in utility are required, schedule repair 

strategies remained competitive. However, the results indicated that complete rescheduling 

becomes a superior strategy when a large number of real time events occur.

As the proposed system in this research will be equipped with a robust predictable 

schedule, some of the disruptions will be smoothed out through the inserted idle time, and in 

such a case, schedule repair is suitable (Figure 1). On the other hand, when disruption 

durations become too large for the inserted idle time to maintain the schedule stability and 

quality, complete rescheduling becomes necessary.
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Figure 1. Predictable Schedule subject to Disruptions

Figure 1 shows how disruptions can be smoothed out in a predictable schedule. Mi and M2 

refer to Machine 1 and Machine 2 respectively, and Ji, h  refer respectively to Job 1,

Job 2,..., Job 7. As one can see, while being processed on Mi, J2 encountered a delay, but as 

this delay’s duration was smaller than the inserted idle time, no modification was necessary 

to the schedule. On the other hand, in M2 , J5 encountered a delay larger than its allocated 

idle time; in this case, the start time of J6 was delayed until the finish time of J5 . Then when 

J6 was processed, it was delayed because it had a late start; however, there is enough idle 

time inserted after Je, i.e. J7 could start right on time.

Scheduling Techniques

This section describes the possible dynamic scheduling techniques that can be used in 

the proposed reactive scheduling system. The literature divides the scheduling techniques 

into seven main categories: Heuristics based approaches, Dispatching rules and Simulation
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techniques, Multi agents, Knowledge based scheduling, Constraint based scheduling, Fuzzy 

logic, and Neural networks (Ouelhadj, 2003; Subramaniam et a l, 2005).

Heuristics-Metaheuristics

Crama (2005) proposed the following definition: “A heuristic for an optimization 

problem P  is an algorithm which is based on intuitively appealing principles, but which does 

not guarantee to provide an optimal solution of P”. A clearer definition was provided by 

Reeves (1995): “A heuristic is a technique that seeks good solutions at a reasonable 

computational cost without being able to guarantee either feasibility or optimality, or even in 

many cases to state how close to optimality a particular feasible solution is”. The advantage 

of heuristics lies in their ease of implementation and reduction of computational time in 

complex problems; they will be used in the proposed system for schedule repair. Popular 

repair heuristics include right-shift rule, affected operations, and match-up rescheduling. 

Many investigations compared these three heuristic types, and the results indicated that 

match-up scheduling outperformed the other two (Bean et al., 1991; Abumaizar and Svestka, 

1997). One main disadvantage in heuristics is that they can easily fall into local optima, but 

in our proposed work, an improved match-up scheduling method will be used to avoid local 

optima as much as possible.

Meta-heuristics differ from heuristics by their ability to avoid local optima as they 

search in different neighborhoods (Reeves, 1995). Three main meta-heuristics are used in 

dynamic scheduling: tabu search, genetic algorithms, and simulated annealing. The literature
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shows in many cases that tabu search outperformed the other two under machine scheduling 

environment (Jozefowska et a l,  1998; Youssef et al., 2001; Lee, 2001).

Dispatching rules and Simulation techniques

Despite their ease of implementation, dispatching rules most often lead to poor 

solutions caused by both their local nature and their large dependency upon the system and 

job characteristics, i.e. any changes in the system could render the once suitable dispatching 

rule inappropriate. On the other hand, simulation was used especially under dynamic and 

stochastic scenarios to compare different rules in order to find which one had the highest 

effectiveness for a specific scenario, after which the scheduler can choose the most efficient 

dispatching rule (Amaout and Rabadi, 2005; Amaout et al., 2006). “Computer simulation 

provides a mechanism in which one can capture the essence of a real manufacturing system 

in the form of a detailed model which can be run, tested, and analyzed in many different 

ways” (O’kane, 2000). However, the problem with simulation is that it requires a large 

amount of CPU time, especially in optimization problems, where many runs are needed to 

obtain gradient information for the decision variables (Kouikoglu and Phillis, 1997). 

Moreover, it is difficult to find optimal solutions using simulation as the only way to attempt 

to optimize is to make changes in the variables, rerun the simulation program to check if 

these changes improved the solution, then repeat this process as long as it takes until reaching 

the best solution (Beasley, 2006). This of course becomes tedious in complex problems such 

as the one addressed in this research.
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For the reasons just stated, dispatching rules and simulation techniques will not be 

used in the implementation of the proposed system.

M ulti agents

Before multi-agent scheduling, most of the scheduling designs were centralized and 

hierarchical, which resulted in a very poor reactivity to new events and perturbations. From 

here came the idea of multi-agent systems, which aims to decentralize the control in the 

schedules’ design, and assumes the presence of many agents with autonomous capabilities. 

These agents interact and cooperate in order to obtain a global optimal solution. The 

literature shows two main multi-agent architectures: autonomous and mediator architectures. 

The autonomous architectures possess high flexibility and robustness, but unfortunately do 

not always guarantee a global optimum and can become unpredictable in complex systems. 

On the other hand, mediator architectures can overcome this disadvantage with the help of a 

mediator that will supervise the agents’ coordination to make sure that the schedule is in the 

direction of global optima. The disadvantage of multi agents lies mainly in the difficulty 

encountered in the implementation, use, and complexity of coordinating the agents 

(Subramaniam et al., 2005).

Knowledge-based Scheduling

The main feature of a knowledge-based scheduling system is the identification and 

application of problem-specific knowledge to solve the addressed problem (Sauer and Bruns,
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1997). Some of the branches of knowledge-based systems are constraint-based scheduling, 

fuzzy logic, and neural networks (Miyashita, 1995; Schmidt, 1994; Gamer and Ridley,

1994).

Even though knowledge-based systems can automate human expert reasoning and heuristics 

to run a production schedule, it is difficult for them to optimize the schedule and upgrade 

themselves with the needed features to accommodate the new changes. Moreover, they 

require an extensive database, leading to a large search time (Subramaniam et al., 2005).

Following the above, heuristics will be the scheduling technique used in this research 

due to its several benefits such as ease of implementation, reduction of computational time, 

and ability to optimize the schedule and attain good solutions.

Learning Capability

It is important to note the importance of equipping the proposed system with a 

learning capability. Selfridge (1993) stated: “If an expert system, brilliantly designed, 

engineered and implemented, cannot learn not to repeat its mistakes, it is not as intelligent as 

a worm or a sea anemone or a kitten.” He then followed: “Find a bug in a program, and fix it, 

and the program will work today. Show the program how to find and fix a bug, and the 

program will work forever.” Machine learning studies the mechanisms through which 

intelligent systems improve their performance over time (Shavlik and Dietterich, 1990).

Over the past decade, machine learning has evolved from a field of laboratory 

demonstrations to a field of significant commercial value. Machine-learning algorithms have
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now learned to detect credit card fraud by mining data on past transactions, learned to steer 

vehicles driving autonomously on public highways at 70 miles an hour, and learned the 

reading interests of many individuals to assemble personally customized electronic news 

(Mitchell, 1997).

As the proposed scheduling system will be subject to dynamic environments, a 

learning capability becomes crucial in order to stay up to date with the environment. Also 

the system needs to learn from its mistakes so they would not happen again. For example, 

suppose that the system assigns 1 0  minutes of idle time after each job, and after running the 

schedule for several problem instances, the system detects that this idle time is not sufficient 

and the jobs are being delayed; in this case, the system should be capable of learning from its 

past and start assigning larger idle times.

Problem Environment

The rules and policies that are developed for the proposed system will be tested on 

unrelated parallel machines. The literature defines unrelated parallel machines as machines 

having different processing times for the same job (Liaw et al., 2003). They are unrelated in 

the sense that the processing speed depends on the job being executed and not the machine; 

each job will have different processing times for each of the available machines. Table 1 is 

an example of jobs’ processing times difference over various machines. The processing time 

is represented by py, i.e. processing time of job j  on machine i, where j  = 1 , ..., n, and 

/=!,.. .,m. The objective of the problem is to find the optimal combination of jobs to
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machines that will minimize certain performance measure(s), subject to the following 

constraints:

• Each job j  can be processed on any of the machines but needs to be processed by one 

machine only.

•  Each machine i is capable of processing one job at a time.

• Job preemption is not allowed.

Table 1. Jobs processing times on unrelated machines
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The reason for developing the proposed scheduling system for the unrelated parallel 

machine problem is because the latter is the most general parallel machine scheduling 

problem. The parallel machine environment includes three main classes: identical machines, 

uniform machines, and unrelated machines, with the unrelated case being the most difficult 

(Hoogeveen et al., 2001). Following this, once the proposed rules and policies are developed 

for the unrelated parallel machine problem, they can be easily transformed with minor 

modifications to other parallel machine scenarios and environments. Much emphasis in this 

research is given to the parallel machine problem because most of the findings on reactive 

scheduling and rescheduling were tested on either a job shop or a flow shop, with very few 

papers addressing the parallel machine problems, which require a different rescheduling 

approach. Furthermore, up to our knowledge, no previous literature has discussed the
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generation of robust predictable or reactive schedules for unrelated parallel machines 

scenarios, which makes this dissertation innovative and clearly contributing to the body of 

knowledge.

Many performance measures were defined for the robust reactive scheduling; the 

most used one is bi-criteria, which minimizes both the makespan and the impact on schedule 

change (Wu et al., 1991,1993). Robustness is achieved by reducing the schedule variability 

from the predictable schedule (schedule change minimization), while ensuring at the same 

time an output that is close to the best or optimal solution (makespan minimization). This bi­

criteria performance measure will be used in this research.

The scope of research that was presented in this chapter is illustrated and summarized 

in Figure 2. Bolded are the areas of research that are addressed in this dissertation.
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PURPOSE OF THIS RESEARCH

The purpose of this research is to develop a robust scheduling system, which will be 

capable of coping with the new events through inherent rules and rescheduling in order to 

reduce the variability in the system and maintain the schedule’s quality.

The mechanisms of the proposed system are described as follows:

• A robust predictable-reactive scheduling construct, which will react according to an 

event driven policy and attempt to overcome the perturbations using schedule repair 

as long as possible, otherwise it will use complete rescheduling.

• New and improved heuristics for scheduling repair and rescheduling in unrelated 

parallel machine environments.

• An objective and cost function that will aim at improving both the schedule’s quality 

and stability.

• A schedule repair / rescheduling approach that can be applicable to different 

environments and not only the unrelated parallel machine environment.

• Finally, the proposed system will be equipped with a learning capability.
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CHAPTER II 

LITERATURE REVIEW

In this chapter, a review of the previous literature on the different areas of research 

(Figure 2) addressed in this dissertation is given.

The literature review is organized as follows. First, the literature on robust scheduling is 

summarized. Next, the learning research is addressed, followed by the literature on unrelated 

parallel machines. Finally, an indication of the gap in the literature that will be covered in 

the proposed research is presented.

ROBUST SCHEDULING

“Even though the need to create robust schedules was recognized over a decade ago 

by Graves (1981), from literature viewpoint there is no clear research explaining how a 

robust schedule can be generated in a dynamic environment” (Ouelhadj, 2003). Robustness 

is considered a concept that is not easy to measure or even define (Pinedo, 2002). A robust 

predictable-reactive schedule should ensure that the performance of the schedule remains 

high when subjected to disruptions and variability (Leon et al., 1994). The robust schedule 

consists of two parts: predictable scheduling, and reactive scheduling (Mehta and Uzsoy, 

1999; O’Donovan et al., 1999).
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Predictable Scheduling

Mehta and Uzsoy (1998) presented a predictable scheduling (PS) approach for a job 

shop with random machine breakdowns and an objective of minimizing Lmax, where Lmax is 

the maximum lateness across all jobs in terms of their completion time and their due-date. 

The authors presented two strategies for idle time insertion and reported that both heuristics 

did better than the traditional predictive-reactive schedule. O’Donovan et al. (1999) 

presented a PS for a single machine with breakdowns and an objective of minimizing 

tardiness between the predictable schedule and the realized schedule. Their idle time’s 

insertion rule was similar to OSMH used by Mehta and Uzsoy (1998). Herroelen and Leus 

(2004) presented different measures for a robust pre-schedule in a project scheduling 

environment. They proposed a method that can be used in machine scheduling by assuming 

that 50% of the time each job on its execution will be delayed by 1 period and the other 50% 

by 2 periods. Hence, their schedule will spread out the disruptions over the schedule horizon, 

but it might lead to an overestimation of the total schedule completion time. Davenport et al. 

(2001) presented three slack-based techniques for creating the pre-schedule. Their paper 

considered a job shop with machine breakdowns, and an objective of minimizing the sum of 

job tardiness. Their techniques were mainly based on Mehta’s OSMH rule. Up to our 

knowledge, no previous literature was found on creating predictable schedules for the 

unrelated parallel machine problem.
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Reactive Scheduling

Reactive scheduling is a procedure to modify the created schedule during processing 

to adapt to changes in production environment (Sim and Xue, 2001). Abumaizar and Svetska 

(1997) proposed the affected operations algorithm (AOR) for the job shop problem with the 

objective of minimizing the makespan as well as the jobs’ deviations. The authors reported 

that their repair heuristic (AOR) performed better than the right shift rescheduling strategy 

and complete rescheduling in almost all of the scheduling scenarios. Nof and Grant (1991) 

compared three types of recovery procedures, including rerouting, splitting orders and 

rescheduling, when disruptions occur. Their experiments showed that rescheduling is better 

than the others when there are machine breakdowns. Guo and Nonaka (1999) addressed 

rescheduling in a flow shop of three machines under machine failures scenarios and an 

objective of minimizing the completion time. They assumed that only one failure occurs at a 

time, and proposed a trigger value that once the disturbance time exceeds it, rescheduling 

would start. Akturk and Gorgulu (1999) proposed a match-up point to reschedule the pre­

schedule in the case of machine breakdowns in a modified flow shop (MFS), with the 

objective of minimizing both tardiness and match-up point. The authors defined the match­

up point as the schedule’s point following a disruption, where the state reached by the revised 

schedule is the same as that reached by the initial schedule, and the preschedule can be 

followed again. It is advantageous to minimize the match-up point, i.e. the period of time 

where a new schedule is used instead of the preschedule, in order to ensure schedule’s 

stability as the resources’ planning was done according to the preschedule. After a machine 

breakdown, a match-up point for each machine is determined and a part of the initial
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schedule that covers the time interval between the disruption and the match-up point is 

rescheduled. The match-up point is created for all the affected machines by this disruption. 

After the match-up point, the pre-schedule is used again. The authors used Branch & Bound 

to solve their problem; they minimized two objectives: the tardiness of the jobs as well as the 

match-up point. The results obtained were satisfactory as the revisited schedule had less 

deviation, smaller match-up point and reduced computational time. Bean et al. (1991) 

proposed a “match-up” heuristic method for scheduling problems with disruptions. They 

showed that assuming enough idle time is present in the original schedule and disruptions are 

sufficiently spaced over time, the optimal rescheduling strategy is to match-up with the pre­

schedule at some time in the future. Their algorithms were tested on a set of problems from 

an automobile manufacturer using tardiness as a performance measure. Alagoz and Azizoglu 

(2003) and Azizoglu and Alagoz (2005) addressed the rescheduling problem for identical 

parallel machines under machine eligibility restrictions subject to machines’ breakdowns. 

Their objective was to reduce the total flow time of all jobs in the system and their stability 

measure was to reduce the number of jobs processed on different machines in the initial and 

revised schedules. They assumed that the times of the disruption as well as its duration are 

known. They proposed an LP model for the rescheduling problem of minimizing total flow 

time, and after they reduced the total flow time, they implemented a branch and bound for the 

problem of minimizing the number of disrupted jobs subject to the constraint that total flow 

time is kept to a minimum. The authors reported good results. No previous literature on 

rescheduling in unrelated parallel machines was found.
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The literature suggests that machine learning dates back to the mid-1950s when it was 

considered as part of the artificial intelligence (Langley, 1996; Michalski et al., 1983). 

However, it did not become a distinct field until around 1980, when the first workshop on the 

topic occurred (Langley, 1996). Langley and Carbonell (1984,1987), Dietterich (1989), and 

Michalski et al. (1983) presented the contributions of researchers in the machine learning 

field. Moreover, numerous conferences and workshops tackled this topic (European 

conference on Machine Learning, International Conference on Machine Learning). A 

machine learns whenever it changes its structure, program, or data (based on its inputs or in 

response to external information) in such a manner that its expected future performance 

improves (Nilsson, 1996).

UNRELATED PARALLEL MACHINES

The literature defines unrelated parallel machines as machines having different 

processing times for the same job (Liaw et al., 2003). They are unrelated in the sense that 

the processing speed depends on the job being executed and not the machine; each job will 

have different processing times for each of the available machines (see Table 1). Previous 

research showed that even the identical parallel machine problem with only two machines is 

NP-hard when the objective function is the minimization of makespan (Garey and Johnson, 

1979). Ghirardi and Potts (2005) considered the problem of scheduling jobs on unrelated 

parallel machines to minimize the makespan. The heuristic they used was an application of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 4

the recovering beam search. Weng et al. (2001) addressed the problem of scheduling a set of 

independent jobs on unrelated parallel machines with sequence dependent setup times so as 

to minimize the weighted mean completion time. They presented in their paper seven 

heuristic algorithms and tested them. In their algorithms, they either assigned a job to the 

machine with the least cost contribution, or to the machine on which the job has the shortest 

processing time. They also introduced an algorithm where they first assigned the job with 

the smallest ratio of processing time plus setup time to weight; this strategy outperformed the 

rest significantly. The authors claimed that their algorithms are extremely fast and can find 

solutions for up to 120 jobs and 12 machines in a fraction of a second. Low (2005) solved a 

multi-stage flow shop scheduling problem with unrelated parallel machines and an objective 

of minimizing total flow time in the system. A simulated annealing (S A)-based heuristic was 

proposed to solve the problem in a reasonable running time. Mosheiov and Sidney (2003) 

addressed the case of job-dependent learning curves and applied it to the problem of 

unrelated parallel machines with the objective of minimizing total flow time. Rabadi et al. 

(2006) addressed the same problem with sequence dependent setup times to minimize the 

makespan, where they introduced a new heuristic (Meta-RaPS) for the deterministic problem 

and compared it to an existing heuristic called the Partitioning Heuristic, which was 

introduced by Al-Salem (2004). The new heuristic outperformed the existing Partitioning 

Heuristic in almost all cases.
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RESEARCH GAP

The previous literature clearly indicates the need for more robust predictable-reactive 

scheduling research and solutions, as no prior research describes a clear approach for the 

generation of robust scheduling systems in dynamic environments.

Moreover, the parallel machine environment lacks the appropriate recovery rules and 

strategies that currently exist in other environments. Most of the knowledge in this field has 

been limited to static deterministic scenarios, which have a great value in theory but can not 

be safely applied in practice due to its lack of consideration of the dynamic characteristics 

that are present in practical environments. In this research, we take the problem a step closer 

to practical applications.

Up to our knowledge, no published work was found on the generation of predictable 

schedules in parallel machine environments. Furthermore, most of the literature that 

addressed schedule repair and rescheduling strategies were designed for either a flow shop or 

a job shop, which require different recovery rules than the ones necessary for a parallel 

machine environment.

In addition, the research gap extends to an absence of publications tackling learning methods 

for predictable schedules, schedule repair, and rescheduling strategies in unrelated parallel 

machine environment.

Finally, no previous literature was found on designing a robust scheduling system that 

combines schedule repair, rescheduling, system’s response, and learning in a parallel 

scheduling environment.
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This dissertation addresses these research gaps and develops new and improved 

recovery rules and rescheduling policies for the dynamic parallel machine environment.
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PROBLEM NOTATIONS

The key notations that will be used throughout the dissertation are shown below.

Notation Definition
B Breakdown occurrence time

Ci
n

Completion time o f  all the jobs scheduled on machine i, i.e. Ci = ^  p tj * xy .
j=i

Cmaxi Initial makespan without idle time
Cmaxp Predictable makespan before schedule execution
CmaxR Realized makespan after schedule execution

D Indicates the down machine
Dj Indicates the job that needs to be rescheduled/fitted
eii Efficiency o f  job j on machine i

ESi The earliest start o f  a job after the occurrence o f  a breakdown on a machine i
Fij Planned finish o f  job j on machine i
i Machines index, i = 1, ..., m

idle,j Idle time assigned to job j that will be processed on machine i
J Jobs index, j = 1, ..., n

Ji
The position o f  job that needs to be scheduled after the breakdown on up 
machine i.

Jd
The position o f  the job that needs to be scheduled after the breakdown on 
machine D, i.e. the position o f the interrupted job

JPik Indicates which job is in position k on machine i
ki Position index, i.e. indicates a job position on a machine i, k = 1, ..., n
Li Location o f  B  on machine i

LFi Latest finish o f  the rescheduled jobs on machine i.
m Number o f  machines

Mlncrease Integer indicating the amount o f  jobs per machine to add to ResJobs in the 
PR  rule

n Number o f  jobs
Ni Number o f  jobs assigned to machine i

Pathj The new location on machine i if  it processes Dj
Pii Processing time o f  job j on machine i
Q Objective function Q = CmaxR - Cmaxp

RC The receiver machine o f  the down job
RE Repair time required by a breakdown B

residlej Idle time residue once Dj is fitted between two jobs on a machine i
ResJobs The number o f  jobs that need to be rescheduled

RF, Repair finish on machine i
SD The sender machine, i.e. the down machine
Sik Planned start o f  the km job on machine i

Span; Span o f  machine i, i.e. time to reschedule the jobs within.

Tidle
m  d

Total idle time in the system = ^  ^  idle ;j
i=i j=i

Xij Binary decision variables = 1, if  job j is assigned to machine i, 0 otherwise
LJj Latest position o f  the job that will start after the breakdown on machine i
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CHAPTER III 

OPTIMAL SOLUTIONS FOR THE UNRELATED PARALLEL 

MACHINE PROBLEM USING INTEGER PROGRAMMING

The development of an Integer Program (IP) model for the unrelated parallel machine 

problem (R) with the objective of minimizing the makespan Cmax addressed in this 

research(R||Cmax) is crucial as the IP will be used to generate optimal initial schedules, and 

also when total rescheduling is necessary.

Several researchers formulated linear/integer program models for the unrelated 

parallel machine problem in order to obtain optimal solutions. Guinet (1991) and Rabadi et 

al. (2006) formulated mixed integer programs for this problem, but with added machine- 

dependent and job sequence-dependent setup times. Martello et al. (1997) presented in their 

paper a mixed integer program for the problem at hand, while Lawler and Labetoulle (1978) 

provided a linear program in order to attain near optimal solutions in a much faster 

computational time than the one required by an IP. Below we will explain both programs.
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INTEGER PROGRAM

Let us first describe the integer program, recalling that our objective is to minimize 

the makespan Cmax, where Cmax = max {Q} (for i = 1,.. .,m), m is the number of machines,

n

and C; is the completion time of all jobs scheduled on machine i, i.e. Ci = p n * xy . 

Objective: Minimize Z

m

Subject to Yuxij = I  for j = 1, •• •, n, (Cl)
i-1

n

Y^Pij *xu -  z > for i= 1 > -> m, (C2)
j =i

^ e { ° , l l  (i = l,...,m ;j = l,...,n), (C3)

where,

Z: makespan Cmax

Pij: processing time of job j on machine i.

Xij: binary decision variable = 1 , if  job j is assigned to machine i; 0  otherwise.

The objective is to minimize the makespan Z, which is also defined as a decision variable. 

Constraints (1) ensure that all the jobs will be assigned and each job will be assigned to only 

one machine. Constraints (2) guarantee that the completion time of jobs on each machine 

does not exceed the makespan.

In the case of the problem at hand, the above mixed integer program (referred to as MIP [1]) 

guarantees optimal solutions as long as the problem size is computationally feasible. Of 

course, the computation time increases dramatically as the problem size increases. Note that
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MIP [1] assumes no disruptions, i.e. used in the static case of the problem. Nevertheless, it is 

indispensable in order to generate optimal solutions for the initial schedule, as well as for the 

total rescheduling scenarios.

Upper Bound

A function /  is said to have an upper bound UB iff(x) < UB for all x in its domain 

(Rowland and Weisstein, 2006a). The closer the UB is to the optimal solution of the 

problem, the better it is. It is very advantageous to use an UB for the MIP because it reduces 

the search space as the nodes that result in a solution worse than the UB will be eleminated. 

The new constraint that is added to MIP [1] in order to use the UB is as follows:

Z < UB (C4)

The value of the UB will be the feasible solution of the problem obtained using the algorithm 

provided by Davis and Jaffe (1981). Their algorithm is discussed below:

Step 1: {Sort the jobs in the non increasing order of their efficiency}

• Find for each job j  its minimum processing time over all machines [p j):

Pj = minlsism Pij, for /  = 1 , ..., n.

• Find for each job j  its efficiency on each machine i [e(i y)):

e uj) = Pj / Poj) > f°r * = 1 > •••» m;y = 1 , ...,n .
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• For each machine i, create a list of jobs j  = 1 , n, sorted in the non increasing order 

o fe (ij) .

Step 2: Assign the jobs to the machines such as sum, is minimal, where sum, is the sum of the 

processing times of jobs already assigned to machine i.

If any machine had no more jobs in its list or had a job with an efficiency eai) < y  ,—, this
/  vm

machine is marked as inactive (inefficient) and no more jobs will be assigned to it.

Step 3: The algorithm terminates when all the jobs are assigned.

The authors reported that their algorithm requires n + m iterations, with a total running time 

of 0 ( mn log n).

As an example, let us consider 8  jobs to be assigned on 3 unrelated parallel machines 

with the objective of minimizing the makespan. The jobs’ processing times are shown in 

Table 2.

Table 2. Jobs' Processing Times

Jobs
1 2 3 4 5 6 7 8

(0 1 82 22 24 62 38 93 51 330_c
£ 2 2 93 56 59 60 48 31 49
o0
S 3 17 92 94 48 14 94 58 49

The first step in the algorithm is to sort the jobs in the non increasing order of their 

efficiency. To do this, Pj and e^)  are calculated and presented in Table 3, and the jobs are 

sorted in Table 4. Note that ties are broken arbitrarily.
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Table 3. pj and e(ij) values

Jobs
1 2 3 4 5 6 7 8

Pi 2 22 24 48 14 48 31 33

eQj) 0.02 1 1 0.77 0.368 0.516 0.608 1

e(2j) 1 0.237 0.429 0.81 0.233 1 1 0.6735

eQj) 0.12 0.239 0.255 1 1 0.511 0.534 0.6735

Table 4. Sorted Jobs in the Decreasing Order of e(jj)

Jobs Num ber

1 2 3 8 4 7 6 5 1

2 1 6 7 4 8 3 2 5

3 4 5 8 7 6 3 2 1

Next, the jobs are assigned to the machines such as sum, is minimal. For example, the first 

jobs checked for assignment are job 2 on machine 1, job 1 on machine 2, and job 4 on 

machine 3; the algorithm will assign job 1 on machine 2 as it will result in the smallest sum, 

over the machines (job 1 will be removed from the other machines’ lists). Next, jobs 2, 6 , 

and 4 are checked to be assigned respectively on machines 1,2, and 3; the selected 

assignment is job 2 on machine 1 as again it will cause the minimal sum,. The algorithm will 

continue in the same manner until all jobs have been assigned. During this, if any machine

had no more jobs in its list or had a job with an efficiency e^j) < J / j — , this machine is

marked as inactive (inefficient) and no more jobs will be assigned to it. Following this, the 

jobs assignment to the machines is presented in Table 5, where 1 indicates that a job is 

assigned to a machine, 0  otherwise.
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Table 5. Upper Bound Jobs Assignment

Jobs
1 2 3 4  5 6 7 8

CO©c
f

1 0 1 1 0 0 0 0 1

2 1 0 0 0 0 1 1 0o
n
S

3 0 0 0 1 1 0 0 0

The makespan obtained by the Upper Bound algorithm is 81; the optimal makespan is 79. 

As can be seen, the algorithm obtained a solution that is very close to the optimal (in this 

case, 2.53% from the optimal).

Mokotoff and Chretienne (2002) also used the above algorithm as an UB when 

solving the same problem addressed in this research, i.e. R\\Cmax.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3 4

LOWER BOUND

As was stated earlier, the unrelated parallel machine problem (R\\Cmax) is NP-hard, 

meaning that the search for optimal solutions grows exponentially and in many cases may not 

be attainable in a feasible time. Therefore, a comparison with lower bounds (LBs) may be 

necessary as a way to evaluate the performance o f the proposed rules. Moreover, the LB will 

be also used as a constraint in the MIP in an attempt to attain optimal solutions faster. 

Different LBs definitions are provided in the literature and they mainly state the following:

“a lower bound is a function or growth rate below which solving a problem is impossible” 

(Algorithms and Theory of Computation Handbook, 1999). So if  a function/is said to have 

a lower bound c, then c < f(x) for all x’s in its domain (Rowland and Weisstein, 2006b).

As previously mentioned, the proposed scheduling system mainly consists of three stages: an 

initial schedule, a predictive schedule, and a reactive schedule. Our approach in developing 

lower bounds for the proposed system in the case of unrelated machines is as follows. Start 

by generating separate lower bounds for each stage of the system, then try to cluster these 

bounds together in order to serve the global system.

Initial Schedule Lower Bound

The initial schedule is essentially the deterministic schedule without the disruptions. 

Therefore, in this section we develop a LB for the unrelated parallel machines scheduling 

problem with the objective of minimizing the makespan.
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Many researchers worked on this problem and some of them achieved good LBs. Grigoriev 

et al. (2005) generated a LB for the same problem but with an added resource constraint K, 

meaning that the jobs were not only machine dependent, but also resource dependent. In 

their paper, they suggested that a good LB could be the feasible solution of the relaxation of 

the problem’s mixed integer program to a linear program. Many researchers used the same 

approach for generating LBs (Martello et al., 1997; Vredeveld and Hurkens, 2002). The 

mixed integer program for the problem on hand was presented in the beginning of this 

chapter (MIP [1]). A similar formulation was used by Martello et al. (1997).

MIP [1] can be transformed to a linear program (LP) by relaxing constraints (3), i.e. 

xy e  {0,1} is replaced by xy > 0. Of course, xy will not be greater than 1 due to the restriction

of constraints (1). In other words, constraints (3) will become:

0 < x y < l  (C3’)

Therefore, Zlp (makespan when using linear programming) would be the lower bound L\. 

The reason for giving so much attention to using LP relaxations of IP models is that LP 

representations, unlike IP’s, are generally easier to solve (Williams and Brailsford, 1996).

In other words, optimal solutions for large problems, or even medium (unrelated machines) 

cannot be obtained using IP, as this process would be computationally infeasible 

(Sundararaghavan et al., 1997). The LP model does not always generate feasible solutions, 

because the decision variables are not binary when they actually should be, as they represent 

the assignment of jobs to machines, which should be either 1 or 0 (yes or no). However, the
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LP model produces a solution that could be close to the optimal one generated by the IP (and 

sometimes the optimal) in a much shorter computational time. For example, when MIP [1] 

was solved using Lingo Solver for an instance of 2 machines and 90 jobs, it took around 16 

seconds to reach the optimal solution (Cmax = 626 minutes); on the other hand, the LP was 

able to reach a very close makespan (Cmax = 622.74 minutes) in less than a second. 

Vredeveld and Hurkens (2002) compared an LP relaxation similar to L\ to a modified LP 

relaxation and a convex quadratic program relaxation. The authors proved through 

computational tests the superiority o f L\.

Another way for generating LBs was proposed by Costa et al. (2002). However, it was for 

the identical parallel machine problem, where the jobs’ processing times are job dependent as 

opposed to being machine dependent. The authors suggested that a good LB would be the 

problem solution with the preemption constraint, i.e. allowing the jobs to be split on different 

machines, and the LB will be equal to the sum of all jobs processing times divided by the 

number of machines. Unfortunately, this LB cannot be applied to the unrelated parallel 

machine problem, because the jobs’ processing times are dependent on their machines’ 

assignments. However, one way to work around this is to actually determine for each job j  = 

1 ,... ,n, its minimum processing time, pj, over the machines / = 1 ,... ,m, and since the total

n j n

processing time cannot be less than V  p , , a valid lower bound would be Lt = — V p .  ,
j - i  m M

where |"x"| is the ceiling of X (for example, [~10.1~|=|~10.9~|= 11). Lj was also suggested by 

Martello et al. (1997) for the same problem at hand.
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Martello et al. (1997) also pointed out that, as each job must be scheduled, a second obvious 

bound to this problem would be the maximum Pj (max{pj}, for j  = 1,..., n). So a valid lower 

bound is L$ = max (L2, max {Pj}).

m j=\

number of machines, without actually assigning each minimum to its appropriate machine, 

i.e. where this minimum occurred. The reason behind this large problem relaxation is that

problem instances where a machine is assigned more than one minimum processing time, 

resulting in empty machines on one hand, and a large makespan on the other. A better LB 

than L 2 could be the preemptive relaxation solution of the problem. Lawler and Labetoulle 

(1978) proved that the unrelated parallel machine problem with preemptive relaxation could 

be solved using the following LP:

Objective: Minimize Z

, the sum of the minimum jobs’ processing times was divided over the

* assigning each job to its machine could lead to an unbalanced schedule. We could have

m

Subject to (Cl)

it
(C2)

0 < Xy < 1 (C3’)

m

Y^Pij x x y Z z ,Q  = 1>--.,n) (C4)
1=1
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Constraints (1), (2), and (3’) are as discussed above. Constraints (4) ensure that no split job 

is processed in parallel. We will refer to the LB obtained in this case as L 4 .

Ghirardi and Potts (2005) suggested that a good LB for the unrelated parallel machine 

problem is the lagrangian relaxation of constraints (2) in the mixed integer model (presented 

above). However, Martello et al. (1997) proved in their paper that this lagrangian relaxation 

would lead to the same LB realized with the LP relaxation, i.e. L\.

In summary, we described different LBs for the deterministic schedule in the 

unrelated parallel machine problem with the objective of minimizing the makespan. L\, 

which was generated through the linear relaxation of the IP model of the problem, was

reported to be a good lower bound. L 2 =
1 n

m j=1
was generated following the rationale

that Costa et al. (2002) used in their identical parallel machine problem; however, this LB 

fails to account for job-machine assignments. L 4 was generated through the linear relaxation 

o f the MIP of the problem subject to the preemption relaxation. Therefore, L 4 clearly is a 

better bound for our problem than L2 (as it is always larger). Furthermore, L4 will also attain 

better LBs than L i as it uses the same LP  but with the extra constraint (4). Finally, a good LB 

to be used in our problem is L4.

Predictable Schedule Lower Bound

As it was mentioned above, a predictable schedule is in fact a deterministic predictive 

schedule but with added idle time between the activities (jobs). The idle time will be inserted 

following the Critical First Job Idle Time (CFJI) rule (Equation (2) in Chapters 4 and 5) that
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was developed by Amaout and Rabadi (2005). The authors reported that their rule 

significantly outperformed the popular Mehta et al. (1998) rule, OSMH, when the rules were 

compared in the unrelated parallel machine environment. CFJI inserts for each job the 

following idle time:

idleij = Ri *5 i * p ij* ( l - ^ )
Ji

where Ri is the mean rate of repair duration on machine i, 8, is the average number of 

breakdowns on machine i per minute, k[i] is the job’s position on machine i, and J, is the 

total number of jobs that are scheduled on M;. As can be seen from Equation (2), the idle 

time is directly related to the jobs’ processing time. Furthermore, the predictable schedule 

will be generated right after the deterministic schedule; i.e. we know exactly where each job 

is located and how much its processing time is. This is why a LB for the predictable schedule 

is not needed, as we are only adding idle time to the jobs.

Reactive Schedule Lower Bound

We recall that the reactive schedule is the new schedule generated by the robust 

system while executing the predictable schedule if  disruptions occur. The perfect scenario 

arises when absolutely no disturbances hit the system, and in this case, the solution would be 

the predictable schedule. This means, the predictable schedule is in fact a LB for the reactive 

schedule, because the latter solution could never be better than the predictable solution; it
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could either be the same (in case no disruptions occur) or bigger (disruptions leading to 

delays in the schedule).
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MODELS VALIDATION

Williams (19.99) suggests that a good approach to validate an integer/linear model is 

to convert this model into the format necessary to be tested on computer software.

Therefore, in order to demonstrate the validity of the proposed approach, the above MIP was 

converted to the format required to be tested in Lingo Solver. Lingo is a tool provided by 

Lindo Systems, Inc. to solve linear, nonlinear, and integer optimization models (Schrage, 

2001). Williams (1999) states that there are three possible outcomes in an IP’s validation: a. 

the model is infeasible; b. the model is unbounded; c. the model is solvable.

Lingo Solver would indicate if  a model is infeasible after checking it. The feasibility 

of the IP at hand was ensured when Lingo solver reported that it found the optimal solution.

Some models could be unbounded, i.e. the objective function can be optimized 

without a limit. However, we confirm that this is not the case in the tested model as again 

Lingo reported that an optimal solution was reached (instead of the message “Unbounded 

Solution”).

If a model is neither infeasible nor unbounded, then a good solution is reached. 

Moreover, the optimality of the solution is confirmed by Lingo, which identifies the optimal 

solution if the model tested generates one. In fact, when Lingo reaches a global optimal 

solution, it reports the following: “Global Optimal Solution Found”. On the other hand, if
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Lingo finds a solution but does not guarantee that it is the global optimal one, it will then 

report: “Local Optimal Solution Found”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 3

COMPUTATIONAL TESTS

MIP [1] presented above will be used to generate optimal initial schedules and will 

also be used when complete rescheduling is needed. After generating LB and UB in the 

previous sections, MIP [1] needs to be tested to determine when it will achieve the best 

performance: without an UB or LB, with an UB, or with both UB and LB. Following this, 

the different instances of MIP [1] were tested using Lingo with different number of machines 

(2, 4, 6, 8) and jobs (20, 40, 60, 80, 100) to ensure the validity of our decision. Each problem 

setting was run for 50 replications (total -  20 x  50 = 1000 replications). Moreover, the 

performance of MIP [1] was judged by the CPU time as well as the number of iterations 

required to reach the optimal solution.

The processing times of the jobs on different machines were generated randomly following 

the uniform distribution U[10,100] (Martello et al., 1997). The reason a uniform distribution 

was used is due to its high variance, ensuring that the presented model is being tested under 

unfavorable conditions (Weng et al., 2001). The tested problem instances are summarized in 

Table 6, where CPU refers to the average CPU time in seconds required to reach optimal 

solutions for all replicates, Iter refers to the average number of iterations needed for all 

replicates, and M  and /re fe r  respectively to Machines and Jobs.
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Table 6. Computational Tests for MIP [1]

M  1 J W /O  UB, W /O LB W ith UB, W /O LB W ith UB & LB
CPU (sec) I t e r CPU (sec) I t e r CPU (sec) I t e r

20 0.17 41 0.18 41 0.24 61
40 0.17 107 0.94 120 0.95 178

2 60 0.245 162 0.92 195 0.99 303
80 0.2 219 0.78 277 1.04 531
100 0.23 241 0.26 261 0.77 521
20 0.59 1194 1.35 1156 1.61 1876
40 1.6 5186 1.69 4656 2.64 6076

4 60 2.94 8557 3.08 9630 3.6 13797
80 3.58 15973 3.47 14367 6.9 20193
100 8.49 28915 5.63 23490 16.72 53291
20 0.63 2583 0.68 2832 1.19 4331
40 10.05 30848 12.87 38839 15.66 53839

6 60 32.5 98285 22.71 78447 121.77 233218
80 103.98 204816 87.5 206355 348.85 564586
100 209.86 370011 99.33 283101 529.18 596226
20 1.2 3039 0.82 2070 1.31 3685
40 21.81 51676 12.05 46732 39.91 113918

8 60 270.31 553584 243.78 536784 458.81 955791
80 823.47 1443105 445.3 1341065 1040.36 1690672
100 1970.32 3484094 1587.63 2634369 4282.44 6468239

It is clear from Table 6 that the MIP with no LB or UB performed the best in terms of both 

CPU time and Iterations in small problems (of size up to 4 machines and 60 jobs), while the 

MIP with the UB performed better in the larger problems. Furthermore, the MIP with both 

UB and LB performed the worst in all problem settings. This behavior can be attributed to 

the fact that the solver now needs to iterate more in order to determine the feasible search 

region (between the UB and the LB). In addition, as MIP [1] with UB performed good but 

with UB and LB performed the worst, MIP [1] with LB will not be tested as obviously it will 

perform worse than MIP [1] with UB.

Figures 3-6 show how both the CPU and Iterations are the smallest when not using an UB in 

small problems, and with an UB for larger problems.
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SUMMARY

In this chapter, MIP [1] that will be used to generate optimal initial schedules for the 

problem at hand was discussed. Furthermore, a LB and an UB were generated and tested 

with MIP[1] to determine in which case it will achieve the best performance: without an UB 

or LB, with an UB, or with both UB and LB.

From the computational tests, it can be concluded that including both UB and LB in the MIP 

will deteriorate its performance instead o f improving it. Moreover, the MIP without an UB 

will be used to obtain optimal solutions for small size problems, while the MIP with an UB 

will be used in large size problems.
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CHAPTER IV 

PREDICTABLE SCHEDULING

Much research has been done in the field of scheduling, concentrating on 

deterministic scenarios and assuming a predefined schedule that is failure free.

Unfortunately, most manufacturing and service environments are dynamic in nature, 

vulnerable to many unpredictable events, such as machine breakdowns, which leads the 

predefined schedule to become obsolete once it hits the shop floor (MacCarthy and Liu, 

1993). Deterministic schedules produced in advance are followed hoping no delays will 

occur, because once they do, the whole schedule may be compromised, as it is not designed 

to incorporate change. The reason these deterministic schedules fail is because they do not 

account for variability by scheduling the activities directly after each other, so when a certain 

activity is delayed, all its successors will be delayed too. To overcome this shortfall, many 

researchers have suggested online scheduling, which is a completely reactive scheduling 

where no deterministic schedule is produced in advance, and decisions are made locally in 

real-time. One of the popular approaches in online scheduling are priority-dispatching rules, 

where whenever a machine becomes free, the available job with the highest priority is 

selected for processing. Dispatching rules are quick in general but inefficient and inaccurate 

because they typically do not use global information, and cannot guarantee that the system 

will operate at a good performance level (Ouelhadj, 2003). Furthermore, on-line scheduling 

is unable to provide any plans for other activities, and it is difficult to predict system 

performance because no initial schedule exists on which basis a scheduler can allocate
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resources and forecast performance. From here commenced the awareness of the importance 

of an initial schedule that will allow for preplanning and prediction.

Very few research papers dealt with generating robust pre-schedules, also called predictable 

schedules. Predictable scheduling is the process of making the predictive (deterministic) 

schedule robust enough to account as much as possible for unpredictable events. This is 

done through the insertion of idle time according to some rule between the scheduled jobs, so 

the disruptions can be smoothed out throughout the schedule.

In this chapter, a new rule for constructing robust schedules for the unrelated parallel 

machine problem is introduced and the computational results showing its dominance are 

reported.
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PROBLEM FORMULATION AND ANALYSIS

This section describes respectively the problem at hand, the objective function that 

needs to be minimized, and the proposed rules.

Problem statement

The scheduling problem considered in this chapter is to schedule n jobs on m 

unrelated parallel machines. The problem constitutes of two parts: generating an initial 

schedule and making the schedule robust. The first part will be achieved using MIP [1] that 

was described in Chapter 3 of this dissertation, recalling that this problem is NP-hard as 

explained earlier. After generating the initial schedule, the second part of this problem 

consists of making this schedule robust enough to be able to absorb the disruptions. This is 

done through the insertion of idle time according to some rule between the scheduled jobs, so 

the disruptions can be smoothed out throughout the schedule.

The jobs' processing times are dependent on the machine they are assigned to; i.e. job j  has a 

processing time py when it is assigned to machine i. Our objective is to minimize the 

variability between the predictable and realized schedule makespans. This is represented as 

follows:

, „  CmaXp-Cmax„
Minimize Z = --------   — x 100%

CmaxR
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where Cmaxp is the makespan obtained from the predictable schedule, and CmaxR is the 

actual makespan from the realized schedule (i.e. the executed schedule with machine 

breakdowns).

Initial schedule ( S i )

The problem objective is to compare different rules for idle time insertion within the 

initial (Deterministic) schedule so it becomes robust (Predictable) where MIP [1] described 

in Chapter 3 will be used to obtain optimal initial schedules. Once the initial schedule (Si) is 

generated, it will be compared to the predictable schedule, which is the same schedule but 

with added idle time. Recall that MIP [1] is described as follows:

Objective: Minimize Z

Subject to Y^Xy = 1, for j = 1,.. . ,  n, (Cl)
/=1

n

* x i j - z > for i = 1, ..., m, (C2)
7=1

x ij e M ,  0  = l,...,m ; j = l,...,n), (C3)

Z <UB (C4)

where,

Z: the makespan (Cmaxsi) for schedule Si.

Pij: processing time of job j on machine i.

Xjj: binary decision variables = 1, if  job j is assigned to machine i; 0 otherwise.

UB: is an upper bound for the problem discussed in chapter 3.
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In other words, MIP [1] will deliver the initial deterministic schedule 5, along with its 

makespan Cmaxsi.

Mehta’s predictive rule

Mehta et al. (1998) presented a predictable scheduling (PS) approach for a job shop 

with random machine breakdowns and objective of minimizing L ,^ . One of the rules they 

proposed for inserting the idle time became quite popular in the robust scheduling domain 

and this is why it will be presented in this chapter and compared to the proposed rules. Their 

rule is called OSMH and it works as follows:

Step 1: generate a schedule without breakdown consideration (Si)

Step 2(OSMH) : add to each operation of Si the associated idle time A, as follows:

Aj = E [DLij] = (pij * Ri)Ai where pij is the processing time of job j  on machine i, R, is the 

mean rate of repair duration on machine i, h  is the mean rate of breakdowns on machine i, 

and E [DLij] is the expected delay of job j  on machine i.

After updating Si with the idle time and generating the predictable schedule, its makespan 

will be calculated and referred to as Cmax o s m h -

CFJI Insertion Rule

Kizilisik (1999) introduced a measure for idle time defined by Mlj (PS) as the 

number of jobs critical to job j  (succeeding job j) , so the larger Mlj (PS), the larger should
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the idle time inserted be. This is very logical because if  the first job fails, it will lead to a 

delay in all its successors. On the other hand, if the last job fails, no successive impact will 

occur. Following this concept, we propose the Critical First Job Idle Time (CFJI) rule for 

inserting idle time, which will be similar to OSMH but with an addition of job position effect 

k[i]. The idle time idlejj for a job j  on a machine i is calculated as follows:

idleij = R; * 8, * Pij * (1- M il), for J; > 1
Ji

where Ri is the mean rate of repair duration on machine /, 5; is the average number of 

breakdowns on i per minute, k[i] is the job’s position on machine i, and Ji is the total number 

of jobs that are scheduled on machine i (note that Si in CFJI rule is different from At in 

Mehta’s rule as the latter was defined to be the mean rate o f  breakdowns on machine i; the 

calculation o f  Si is described in the next section).

The associated makespan in this rule is referred to as Cmax c f ji-
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COMPUTATIONAL TESTS

The above rules have been implemented and compared in Microsoft Visual C++ 6.0 

running on Windows XP with a Pentium 4 processor. The processing times of the jobs on 

different machines were generated randomly following the uniform distribution U[10,100]. 

Uniform distributions were used due to their high variances, ensuring that the rules are being 

tested under adverse conditions.

Once the predictable schedule is implemented, it will be subjected to machine breakdown 

events. Each machine will have its own breakdown rate, where the time between 

breakdowns (TBBi) will follow an exponential distribution with mean E[Mi] (Mehta et al., 

1998), where E[Mj] is the expected processing time of a job on machine i. The average 

number of breakdowns per minute on machine i will be calculated as follows:

First we determine the number of breakdowns on machine i: (Total processing time on i) / 

TBBj

where Ni is the number of jobs assigned to machine i.

As 8j is the average number of breakdowns on machine i per minute and is equal to:

Ni

# of breakdowns on /' = ——
TBB;
j= l (3)

5j =
 ̂Total processing time on machine i ,

' # of breakdowns on machine i
(4 )
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Substituting (3) in (4) => 8i =

j= i

N i

j= l

The breakdowns’ repair time on a specific machine follows a uniform distribution between 

PiE[MJ and P2E[MJ, where we considered (Pi, P2) to be (0.1,0.2) as in Mehta et al. (1998). 

The rules above have been tested under 2,4, 6, and 8 unrelated parallel machines, and 

respectively 20, 40, 60, 80, and 100 jobs. The results obtained are shown in Table 7, where 

Cmaxsi, CmaxosMH, CmaxcFJi, and CmaxR refer respectively to the predicted makespan of the 

initial schedule (Si), OSMH rule, CFJI rule, and the realized makespan obtained after the 

occurrences of machines’ breakdowns. The closer the predicted makespan to CmaxR, the 

more robust the rule is.

Moreover, the 95% Confidence Interval (Cl) attained from runnings 100 iterations of each 

rule was also included in Table 7. This Cl was determined using Equation 4.5 that was 

described by Law and Kelton (2000) using the t distribution:

(5)

where tni ^  is the upper 1 - a ll  critical point for the t distribution with n-1 df, X is the

mean, S is the standard deviation, and n is the sample size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 7. Computational Tests for the Predictable Schedules

Machines Jobs Cmaxsi
Mean

Cmaxsi 
95% C l

CmaxosMH
Mean

CmaxosMH 
95%  C l

CmaxcFji
Mean

CmaxcFji 
95%  C l

Cm axR
Mean

Cm axR 
95%  C l

20 409.12 [402.8-415.4] 566.98 [558.2-575.7] 481.99 [474.5-489.4] 492.45 [482.6-502.3]
40 796.93 [784-809.9] 1104.47 [1086.5-1122.4] 946.84 [931.4-962.3] 957.71 [938.9-976.5]

2 60 1205.49 [1186.3-1224.7] 1670.69 [1644-1697.3] 1437.56 [1414.4-1460.7] 1446.73 [1417.8-1475.6]
80 1592.27 [1569.7-1614.9] 2206.73 [2175.4-2238.1] 1899.8 [1872-1927.6] 1882.43 [1850.8-1914.1]
100 1971.88 [1940.8-2002.91 2732.83 [2689.8-2775.81 2355.17 [2317.9-2392.41 2337.2 [2290.7-2383.61
20 150.95 [148.7-153.2] 209.19 [206.04-212.36] 176.13 [173.4-178.9] 165.17 [162.2-168.1]
40 284.42 [280.1-288.9] 394.31 [388.1-400.5] 337.05 [331.7-342.4] 310.54 [304.3-316.7]

4 60 426.16 [418.9-433.4] 590.61 [580.6-600.6] 507.3 [498.6-515.9] 462.22 [453.8-470.6]
80 554.71 [547.4-562] 768.78 [758.6-778.9] 661.87 [652.8-670.9] 599 [590.7-607.3]
100 691.09 [679.8-703.31 957.78 [940.8-974.81 826.77 [812.7-840.81 744.69 r730.5-758.9l
20 87.63 [86.4-88.9] 121.44 [119.7-123.2] 100.69 [99.2-102.1] 93.91 [92.2-95.6]
40 158.58 [156.3-160.8] 219.77 [216.6-222.9] 186.94 [184.1-189.8] 167.14 [164.4-169.8]

6 60 232.22 [228.1-236.3] 321.83 [316.1-327.5] 275.96 [271.1-280.9] 246.19 [241.3-251.1]
80 307.88 [302.9-312.8] 426.69 [419.8-433.6] 366.54 [360.6-372.5] 328.08 [321.9-334.3]
100 383.79 [377.2-390.3l 531.89 [522.8-540.91 459.02 [450.9-4671 406.58 [399.5-413.61
20 60.89 [60.2-61.6] 84.39 [83.4-85.4] 69 [68.1-69.9] 64.05 [63.1-64.9]
40 107.67 [106.1-109.2] 149.23 [147-151.4] 126.57 [124.6-128.5] 113.01 [111.1-114.9]

8 60 155.74 [153.3-158.2] 215.84 [212.4-219.2] 184.55 [181.6-187.5] 163.04 [160.1-165.9]
80 205.19 [201.7-208.7] 284.37 [279.5-289.2] 243.99 [239.7-248.2] 216.25 [212-220.5]
100 253.14 [248.8-257.51 350.82 [344.8-356.91 301.88 [296.6-307.11 264.69 [259.9-269.51
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As 101 iterations were run for each problem setting (i.e. n = 101), then the confidence 

intervals will be:

X ±w J^X ±,.9S4J^

We recall that our objective is to minimize the variability between the predictable and 

realized schedules’ makespans. Table 8 show the values of the objective function Z’ 

(Equation 1):

CmaXp-CmaXp
Z’ =  p------------— xl00%  (1)

CmaxR

It is important to note that as Z’ approaches zero, the more robust the rule is; a zero indicates 

that the predictive schedule has lead to a makespan equal to the realized schedule.

Figures 7-11 show the percentage of variability from CmaxR for S,, OSMH, and CFJI for the 

2, 4, 6, and 8 machines.
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Table 8. Rules' Relative Deviation percent from CmaxR

Machine Job Cmaxsi CmaxosMH CmaxcFji

2

20 -16.9215 15.134531 -2.12407
40 -16.788 15.324054 -1.135
60 -16.6748 15.480428 -0.63384
80 -15.4141 17.227732 0.922743
100 -15.6307 16.92752 0.768869

4

20 -8.60931 26.651329 6.635588
40 -8.41115 26.975591 8.536742
60 -7.80148 27.776816 9.752932
80 -7.39399 28.343907 10.49583
100 -7.19763 28.614591 11.02204

6

20 -6.68725 29.315302 7.219678
40 -5.12146 31.488572 11.84636
60 -5.67448 30.724237 12.09229
80 -6.15703 30.056693 11.72275
100 -5.60529 30.820503 12.89783

8

20 -4.93365 31.75644 7.728337
40 -4.72525 32.050261 11.99894
60 -4.47743 32.384691 13.19308
80 -5.11445 31.500578 12.82775
100 -4.3636 32.539952 14.0504

P e rc e n ta g e  o f  V ariab ility  from  Cm axR

4 0 | | m

30 | | | | b | ^ ^

— ♦ — C m ax S i
— ■ —  C m axO SM H

— * —  C m axC F JI

°

111

-2° - l i

Figure 7. Relative Deviation percent from CmaxR for all machines
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2 Machines

*  15

- 1°
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-20
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— ± — Cm axCFJI

Figure 8. Relative Deviation percent from CmaxR for 2 machines
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Figure 9. Relative Deviation percent from CmaxR for 4 machines
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6 Machines

40 I l l l l i B B i B i l i l B l i l 1

=  3 0  

2 0

“■ -10

Jobs

— • — C m axSi 

- - - - - - -  C m axO S M H

Figure 10. Relative Deviation percent from CmaxR for 6 machines
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Figure 11. Relative Deviation percent from CmaxR for 8 machines
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From Figures 7-11 and Tables 7 and 8, it can be concluded that the proposed rule CFJI 

outperformed OSMH in all problem combinations as it was always closer to the realized 

makespan. As it was expected, the initial schedule Si has a makespan that is always smaller 

than the realized makespan as it does not account for machine breakdowns. OSMH 

performed better than the initial schedule in a sense that it was never below the realized 

makespan, but in many instances it overestimated the idle time needed to smooth out the 

breakdowns, leading to makespans that are far from the actual realized makespan (CmaxR), 

resulting in an unstable pre-schedule. CFJI reflected high robustness and a good degree of 

schedule prediction.

For the 2 machines (Figure 8), CFJI almost overlapped with the realized schedule, when St 

predicted a much smaller makespan and OSMH a much higher one. For the 4, 6, and 8 

machines (Figures 9-11), St had the closest prediction to CmaxR; however, it was always 

smaller, i.e. such schedules will not be able to meet the set fourth deadlines. On the other 

hand, and even though CFJI was farthest than 5, from the realized makespan, it was higher 

than CmaxR, meaning that the schedule execution finished before the deadline and not after. 

Furthermore, CFJI was still much closer to CmaxR than was OSMH.
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SUMMARY

In this chapter, we have introduced a new idle time insertion rule, CFJI, for the 

generation of robust predictable schedules on unrelated parallel machines. CFJI was 

compared to the traditional initial schedule where no idle time is built-in, and to Mehta’s rule 

OSMH from Mehta et al. (1998). All three rules were implemented in Microsoft Visual C++ 

6.0 running on Windows XP with a Pentium 4 processor, and the conclusions were drawn 

using a large number o f experiments and data instances. Computational tests showed that the 

introduced rule outperformed the other rules; however, as the problem size increased, CFJI 

overestimated the idle time needed for insertion. Following this, a learning parameter that 

will be added to CFJI is introduced in the next chapter in order to deliver superior predictable 

schedules.
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CHAPTER V 

LEARNING PARAMETER FOR THE PREDICTABLE SCHEDULE

In Chapter 4, a new idle time insertion rule (CFJI) was developed and compared to 

existing rules. Even though CFJI outperformed the other rules, it was clear that it 

overestimated the idle time needed especially as the problem size increased. Therefore, the 

system should learn to adjust its behavior, and thus, a learning parameter is developed in this 

chapter to aid CFJI reach more robust predictable schedules; i.e. schedules that are closer to 

the realized schedule.

Selfridge (1993) stated: “If an expert system, brilliantly designed, engineered and 

implemented, cannot learn not to repeat its mistakes, it is not as intelligent as a worm or a sea 

anemone or a kitten.” He then followed: “Find a bug in a program, and fix it, and the 

program will work today. Show the program how to find and fix a bug, and the program will 

work forever.” Machine learning studies the mechanisms through which intelligent systems 

improve their performance over time (Shavlik and Dietterich, 1990). Over the past decade, 

machine learning has evolved from a field of laboratory demonstrations to a field of 

significant commercial value. Machine-learning algorithms have now learned to detect credit 

card fraud by mining data on past transactions, learned to steer vehicles driving 

autonomously on public highways at 70 miles an hour, and learned the reading interests of 

many individuals to assemble personally customized electronic news (Mitchell, 1997).

As the proposed robust scheduling system will be dealing with a dynamic 

environment and to aid CFJI reach superior predictable schedules, a learning capability will
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be developed to ensure that the proposed rules stay up to date with the environment. 

Moreover, the system needs to learn from its mistakes so they would not occur again. 

Learning is essential because most of the machines’ designs do not perform as intended when 

used in different environments. Even if  a machine is used in its associated environment, the 

latter is subject to changes and consequently, the machine could perform poorly if  no 

learning capability is incorporated.
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MACHINE LEARNING FOUNDATIONS

Different subjects have contributed to the field of machine learning; below we describe 

some of the disciplines listed by Nilsson (1996):

• Statistics: estimation of the value of an unknown function at a new point given the 

value of this function at sample points. Statistical solutions of such estimations are 

considered a subset of the machine learning as the algorithms are learning the values 

of new points from previous samples in the same settings. More information on such 

methods can be found in Anderson (1958).

• Brain Models: different researchers (Gluck and Rumelhart, 1989; Sejnowski et al., 

1988) suggested modeling brains and networks based on nonlinear elements (neural 

networks).

• Adaptive control theory: used to estimate the changing parameters of a process during 

its operation. Bollinger and Duffie (1988) provide an introduction to this theory.

• Artificial Intelligence: AI has been concerned with machine learning since the 1950s 

(Langley, 1996). Researchers studied how future decisions can be based on previous 

ideal instances (Nilsson, 1996), and recent work has been aimed at generating rules 

for expert systems using decision tree methods and inductive logic programming.

• Evolutionary Models: Genetic algorithms and programming are considered a part of 

machine learning as they incorporate evolution through crossover and mutation in 

order to attain better performance levels.
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LEARNING APPLICATIONS

Some of the machine learning’ achievements that were summarized by Mitchell 

(1997) are listed as follows.

There are new programs that can effectively learn to recognize spoken words (Lee, 1989), 

detect fraudulent use of credit cards (Pomerleau, 1989), and play world-class backgammon 

(Tesauro, 1995). New research is founded on initial models of human and animal learning, 

as well as their relationship to learning algorithms developed for computers (Anderson, 1991; 

Ahn and Brewer, 1993).

Aytug et al. (1994) stated that a system should be able to correct its misconceptions 

and improve its performance based on experience; this is learning. Other researchers also 

acknowledged the necessity for learning in scheduling systems (Ow et al., 1988; Fox and 

Smith, 1984).

Shaw et al. (1990) implemented a machine learning approach in order to perform intelligent 

scheduling and determine the most effective dispatching rule based on simulation runs. 

Simulation models have been frequently used as learning tools (Yih and Thesen, 1991; 

Adachi et al., 1989; Davis and Smith, 1983).
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PROPOSED LEARNING METHODOLOGY

Learning is needed in the proposed system for the idle time insertion when creating 

predictable schedules. The system should be capable of estimating the appropriate idle time 

to be inserted using results from previous problem iterations. For example, if  prior iterations 

indicated an overestimation of idle time, then the system should readjust and insert less idle 

time.

A predictable schedule is generated by inserting idle time between the pre-schedule 

activities, enabling the disruptions to be smoothed out through the system in order to 

maintain the final output. The idle time will be inserted following the Critical First Job Idle 

Time (CFJI) rule that was discussed in chapter 4 of this dissertation. CFJI inserts for each 

job the following idle time:

idleij = R1* 5 1* p ij * ( l -  M il) ; for j, > i
J;

where R, is the mean rate of repair duration on machine i, 8; is the average number of 

breakdowns on i per minute, k[i] is the job’s position on i, and Ji is the total number of jobs 

scheduled on machine i.

The need to make the system capable of learning and determining how much idle time should 

be inserted is crucial, and statistics will be used to achieve this aim.
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The proposed system has the following objective function:

Min Q = Cmaxtf -  Cmaxp,

where,

Cmaxfl is the realized makespan obtained after the occurrences of machine breakdowns. 

Cmaxp is the predictable makespan generated using CFJI rule.

The closer the predictable makespan to Cmax«, the more robust it is. In the case where 

Cmaxp is far from Cmax^, the system will implement rescheduling techniques and schedule 

repairs in order to ensure a minimal Q. The learning purpose is to use rescheduling until the 

knowledge of the environment is robust enough to provide predictable schedules that almost 

overlap with the realized schedules, i.e. rescheduling would only be necessary in infrequent 

and severe situations. Through the learning parameter, the system will adjust the inserted 

idle time in order to minimize the deviation between the actual and predictable schedules.
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The Learning Capability

The learning component will be incorporated by including in Equation (2) a 

parameter a that will be adjusted during iterations to decide on the appropriate amount of idle 

time. For example,

if  Q > 0 —* Cmax/j > Cmaxp —► increase a

if  Q < 0 —► Cmax« < Cmax/> —* decrease a

If the predictable makespan was smaller (or larger) than the realized makespan, i.e. should be 

adjusted by Q, then the total idle time in the predictable schedule should be adjusted by 

mXQ, where m is the number of machines. Due to different jobs having machine-dependent 

processing times, it is not easy to predict which machine will result in the largest completion 

time, and thus the Cmax. Therefore, the rationale behind mx Q is to simplify the problem by

adjusting the idle time inserted using one parameter only, a, for all the machines. Following 

this, we assume that the load is balanced over the m machines; i.e. the completion times of all 

the jobs scheduled on machine 1 through m are equal and the makespan is equal to the 

completion time of all jobs on any machine. This way the idle time would be equally divided 

among the machines, and as the idle time on one machine (that determined the makespan) 

should be adjusted by Q, the rest of the machines’ idle time should also be adjusted by Q, i.e. 

the total idle time in the system should be adjusted by mx Q. This assumption is valid as our 

objective for the parallel machine problem is to minimize Cmax. The best solution that can
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be attained for such an objective is when all the machines finish at the same time (this is the 

best case scenario), i.e. the load is balanced over the machines.

Cmax = 10 Cmax = 8

Figure 12.a. Cmax with Unbalanced Load Figure 12.b. Cmax with balanced Load

In Figure 12, we illustrate how a balanced load over the machines leads to the smallest 

makespan possible. When the jobs are not balanced over the machines (Figure 12.a), Cmax is 

equal to 10. However, by balancing the jobs over the machines (Figure 12.b), all the 

machines will finish at the same time, leading to the smallest possible makespan (Cmax = 8). 

Following this, it is acceptable to assume that the MIP used to obtain initial schedules will 

attempt to balance the load over the machines as this will lead to the optimal solution.

The purpose of learning here is to estimate a  such that a  * existing idle time would 

be very close to the existing idle time + adjustment needed; this is given in Equations 6 and

6’ .

a  x Tidle = Tidle + (mx Q) (6 )
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m xQ
a  = 1 + ----- ^  (6’)

Tidle

m n
where, Tidle is the total idle time in the schedule = X S  idley .

i=ly=l

m n m n
As a  * Tidle -  a  * £  £  idley = £  £  a  * idle a , Equation (2) becomes:

,=l j =1 i=l y=i

idleij = a  * Ri * 8i * py * (1- ^ ), for Jj > 1 (2’)

and a  will be calculated using Equation 6’.

Determining the number of iterations for the learning parameter (a)

Changing a  for every iteration is unfavorable because it will result in big fluctuations 

in the system as can be illustrated in the following example:

The R||Cmax problem with 2 machines and 100 jobs was tested in Microsoft Visual C++ 6.0 

running on Windows XP with a Pentium 4 processor. The code was designed in such a way 

that the program will keep on iterating while adjusting a until Q, the predictable makespan 

deviation from the realized schedule, is less than 4 minutes. In other words, the program 

changes o in every iteration in an attempt to find its finest value that minimizes Q. In the 

first problem instance, the program computed Cmaxp (831 min), CmaxR (847 min), and Q 

(15.7 min), indicating that the system underestimated the realized schedule by 15.7 minutes.
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Following this, via Equation 6’, the program calculated the appropriate value of a  that will 

increase the predictable schedule’s makespan to a similar rate of the realized one (increase by 

15.7 minutes). In the second problem instance, a  successfully brought up Cmaxp to 848 

minutes (almost equal to the previous CmaxR = 847 min); however, CmaxR for this instance 

was 821 minutes, resulting in a predictable overestimation of 27 minutes. The reason behind 

this is that the breakdowns follow an exponential distribution (vs. a constant one), i.e. the 

realized schedule is always fluctuating according to some distribution that needs to be 

determined.

In other words, in order to give a good estimate of a, we need to determine the realized 

schedule’s distribution, then the required number of iterations k  after which a can be updated.

Realized Schedule’s Distribution

If we examine the realized schedule, the cause behind its fluctuations is due to the 

repair time. Every time a random breakdown occurs, a repair time (that follows a uniform 

distribution) is added to the realized schedule.

In order to understand the realized schedule’s distribution, let us examine how the realized 

schedule is formed. At first, we start with an initial deterministic schedule 5, (can be 

assumed to have a constant duration), then idle time is inserted to 5, so it becomes a 

predictable schedule (assumed also to have a constant duration). Next, the predictable 

schedule is executed in a dynamic environment under machine breakdowns; this schedule 

will incur several delays (Repair time) of durations following the uniform distribution repair 

time. Finally, upon the completion of the execution of the predictable schedule, the latter
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plus the delays will constitute the realized schedule. In other words, it can be assumed that 

the realized schedule is nothing but the predictable schedule plus the repair delays:

Realized Schedule = Predictable Schedule + Repair Delays

Realized Schedule = C + U[piE[M;], p2E[M,]]i + ... + U[PiE[Mi], p2E[Mi]]t

where t is the number o f breakdowns and C is a constant.

As the probability distribution of the sum of a sequence of uniformly distributed random 

values rapidly approaches that of a normal distribution as the number of values summed 

increases (Derbyshire, 2004), it can be concluded that the realized schedule makespan 

(CmaxR) follows a normal distribution. Derbyshire (2004) also provided a graphical 

illustration of how the sum of uniform distributions will lead to a normal one (Figure 13), 

where the first graph represents the uniform distribution, and the subsequent graphs 

correspond to the cumulative addition of this distribution to itself up to n distributions. As 

can be seen, the sum of the uniform distributions approaches a normal distribution.

PX1+X2+X3 ( u )

0.7
PX1+X2+X3+X4 (u) 

0.6

Figure 13. Graphical Illustration of the Sum of Uniform Distributions
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In fact, even if  the repair duration follows a different distribution (other than the uniform 

one), CmaxR will still follow a normal distribution because The Central Limit Theorem states 

that under very general conditions when n random variables (regardless of their distributions) 

are added together, the distribution of the sum tends towards the normal as n increases 

(Brignell, 2006); where n refers in this case to the number of breakdowns with durations 

equal to the repair time.

To further affirm that the CmaxR distribution is a normal one, we ran 1000 instances 

of the same input for the problem of 2 machines and 100 jobs, and then constructed a 

histogram from the data outputted by the program as shown in Figure 14.

Histogram 
2 machines; 100 jobs

CMAXr

Figure 14. The CmaxR Distribution

As can be seen from Figure 14, CmaxR follows almost a normal distribution, indicating that 

the mean of k  iterations can be used to calculate a.
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Following the above, Equation 6’ becomes:

k /  m * Q \  
1 +

a  = U = 1 V Tidle
K

( 6 ” )

where, u refer to the problem iterations’ index from 1 to k  iterations.

Next, we run iterations until the half width of CFJI and Tidle is within 2% of the mean at 

most (at a 95% confidence interval). In other words, for each problem iteration, we calculate 

the mean and 95% confidence intervals, then we check, if  the confidence intervals are far 

from the mean at 2% at the most, we stop and calculate a ; otherwise, we run more problem 

iterations. Following this, the number of iterations k  needed was on average 115, with a min 

of 34 and max of 315.
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COMPUTATIONAL TESTS

In order to test the proposed learning parameter, the same experiments undergone in 

Chapter 4 were rerun with the addition of the a  parameter to CFJI which we will refer to as 

MCFJI (Modified CFJI). Si, OSMH, MCFJI, and Realized have been implemented and 

compared using Microsoft Visual C++ 6.0 running on Windows XP with a Pentium 4 

processor. The processing times of the jobs on different machines were generated randomly 

following the uniform distribution U[10,100].

The results are shown in Table 9 along with the 95% Confidence Intervals.

We recall that our objective is to minimize the variability between the predictable and 

realized schedule makespans. Table 10 show the values of the objective function Z’:

CmaXp-CmaxR
Z’ =  x 100%

Cmax.LR
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Table 9. Computational Tests with a Learning Parameter

Machine Job Cmaxsi
Mean

Cmaxsi 
95% Cl

CmaxosMH
Mean

CmaxosMH 
95% Cl

CmaxMCFji
Mean

Cm axMcFji 
95% Cl

CmaxR
Mean

CmaxR 
95% Cl

20 409.11 [402.8-415.4] 590.54 [581.4-599.7] 492.99 [485.3-500.6] 492.45 [482.6-502.3]
40 796.93 [784-809.9] 1127.43 [1109.1-1145.8] 958.11 [942.5-973.7] 957.71 [938.9-976.5]

2 60 1205.49 [1186.3-1224.7] 1689.64 [1662.7-1716.6] 1447.06 [1423.8-1470.3] 1446.73 [1417.8-1475.6]
80 1592.27 [1569.7-1614.9] 2171.1 [2140.3-2201.9] 1881.93 [1854.4-1909.4] 1882.43 [1850.8-1914.1]
100 1971.88 [1940.8-2002.91 2696.38 [2653.9-2738.81 2299.87 [2299.9-2373.71 2337.2 [2290.7-2383.61
20 150.95 [148.7-153.2] 180.53 [177.8-183.2] 163.47 [160.9-165.9] 165.17 [162.2-168.1]
40 284.52 [280.1-288.9] 334.96 [329.7-340.2] 308.19 [303.4-313] 310.54 [304.3-316.7]

4 60 426.16 [418.9-433.4] 493.45 [485.1-501.8] 458.92 [451.1-466.7] 462.22 [453.8-470.6]
80 554.71 [547.4-562] 635.53 [627.1-643.9] 594.67 [586.7-602.6] 599 [590.7-607.3]
100 691.09 [678.8-703.31 786.82 [772.8-800.81 739.32 [726.5-752.11 744.69 [730.5-758.9l
20 87.63 [86.4-88.9] 121.44 [119.7-123.2] 92.12 [90.8-93.4] 93.91 [92.2-95.6]
40 158.58 [156.3-160.8] 219.77 [216.6-222.9] 164.41 [162.1-166.8] 167.14 [164.4-169.8]

6 60 232.22 [228.1-236.3] 321.83 [316.1-327.5] 242.9 [238.6-247.2] 246.19 [241.3-251.1]
80 307.88 [302.9-312.8] 426.69 [419.8-433.6] 324.45 [319.2-329.7] 328.08 [321.9-334.3]
100 383.78 [377.2-390.3] 531.89 [522.8-540.91 401.76 [394.9-408.6l 406.58 [399.5-413.61
20 60.88 [60.1-61.6] 84.38 [83.3-85.4] 62 [61.3-62.8] 64.16 [63.2-65.1]
40 107.67 [106.1-109.2] 149.23 [147-151.4] 110.49 [108.8-112.1] 113.01 [111.1-114.9]

8 60 155.74 [153.3-158.2] 215.84 [212.4-219.2] 160.14 [157.6-162.6] 163.12 [160.2-166.1]
80 204.16 [201.1-207.2] 282.95 [278.7-287.2] 212.12 [208.8-215.4] 214.58 [211-218.1]
100 249.83 [245.5-254.21 346.24 [340.2-352.2l 257.59 r253.1-262.1l 261.02 [256.2-265.8l
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Table 10. Percentage of Variability of each rule from the Realized Schedule

Machine Job Cmaxsi CmaxosMH CmaxMcFji
20 -16.9235 19.91877348 0.109655803
40 -16.788 17.72143968 0.041766297

2 60 -16.6748 16.79027877 0.022810061
80 -15.4141 15.33496597 -0.026561413
100 -15.6307 15.36796166 -1.597210337
20 -8.60931 9.299509596 -1.029242599
40 -8.37895 7.86372126 -0.756746313

4 60 -7.80148 6.756522868 -0.71394574
80 -7.39399 6.098497496 -0.722871452
100 -7.19763 5.657387638 -0.721105426
20 -6.68725 29.31530188 -1.90608029
40 -5.12146 31.48857245 -1.633361254

6 60 -5.67448 30.72423738 -1.336366221
80 -6.15703 30.05669349 -1.106437454
100 -5.60775 30.82050273 -1.185498549
20 -5.11222 31.51496259 -3.366583541
40 -4.72525 32.05026104 -2.22989116

8 60 -4.52428 32.31976459 -1.82687592
80 -4.856 31.86224252 -1.146425576
100 -4.28703 32.64883917 -1.31407555

Figures 15-18 show the percentage of deviation of Si, OSMH, and MCFJI from CmaxR for 

the 2, 4, 6, and 8 machines.

From Figures 15-18 and Tables 9 and 10, it can be concluded that the proposed rule MCFJI 

outperformed the traditional scheduling strategy (initial schedule) and also OSMH. As it was 

expected, the initial schedule had the worst robustness as it does not account for machine 

breakdowns. OSMH performed better than the initial schedule, but in many instances it 

overestimated the idle time needed to smooth out the breakdowns, resulting in makespans 

that are far from the actual realized makespan. MCFJI reflected high robustness and a good 

degree of schedule prediction.
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2 Machines

-+— C m axSi 

■- - - C m axO S M H  

4 —  C m axM CFJI

Jobs

Figure 15. Relative Deviation percent from CmaxR (0 on the Y-axis) for 2 machines

4 Machines

-+— Cm axSi 

■- -- C m axO S M H  

^ — C m axM CFJI

Jobs

Figure 16. Relative Deviation percent from CmaxR (0 on the Y-axis) for 4 machines
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6 Machines

0 30

1  20

-io
Jobs

— *— C m axSi 

- - - - - - -  C m axO S M H

— A—  C m axM CFJI

Figure 17. Relative Deviation percent from CmaxR (0 on the Y-axis) for 6 machines

8 Machines

o 30

Jobs

— • — C m axSi 

- - --- - C m axO S M H  

— *—  C m axM CFJI

Figure 18. Relative Deviation percent from CmaxR (0 on the Y-axis) for 8 machines
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As can be seen, MCFJI almost overlapped with the realized schedule, indicating a superior 

robustness, in contrast to OSMH and the initial schedule which were far from CmaxR and laid 

on opposite sides. It is also worth noting that even though the predictable schedule reached 

through OSMH is always larger than CmaxR (i.e. the schedule has the ability of smoothing 

out the breakdown effects without any delay in CmaxosMH), the idle time inserted is 

overestimated, leading to an underutilized pre-schedule.
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SUMMARY

In this chapter, a learning parameter a  was introduced for the idle time insertion rule 

CFJI. a  readjusts the amount of idle time inserted in the schedule by using information from 

previous problem iterations. The computational tests indicate that this methodology will 

improve the performance of the proposed robust reactive scheduling system.
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CHAPTER VI 

REPAIR AND RESCHEDULING RULES

As previously explained in Chapter 1, a robust predictable-reactive scheduling 

construct will be implemented in this dissertation. The predictable schedule {discussed in 

Chapters 4 and 5) has the ability to absorb the disruptions without affecting planned external 

activities. If a disruption occurs during the schedule execution, repair rules and rescheduling 

will only be necessary if  the disruption duration exceeds the inserted idle time. We recall 

that two main alternatives will be used for the reaction process: schedule repair and complete 

rescheduling.

Schedule repair refers to a minimum modification of the pre-schedule, leading to a higher 

stability in the system, while complete rescheduling refers to a complete rescheduling of all 

jobs, which could result in better solutions but will jeopardize system stability. Moreover, 

complete rescheduling will lead to system nervousness and could be very costly, as all the 

pre-arranged plans have to be changed. In practice, most rescheduling has been done using 

schedule repair, except in some severe situations where complete rescheduling had to be 

done (Abumaizar and Svestka, 1997).

In this chapter, new and existing repair rules and rescheduling strategies are explained 

and tested under extensive computational tests to determine superiority and dominance 

among them. These rules are respectively Right Shift Repair, Fit Job Repair, Partial 

Rescheduling, and Complete Rescheduling. The performance measures used to evaluate the 

rules are also explained.
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PERFORMANCE MEASURES

The repair and rescheduling rules will be judged based on both the schedule quality 

and stability. The schedule quality is evaluated based on two performance measures: Cmax 

Difference and CPU Time. Cmax Difference refers to the difference between the realized and 

predictable schedules (i.e. Cmax Difference = CmaxR -  Cmaxp), and CPU Time refers to the 

time in seconds required by each rule during schedule execution. The schedule Stability is 

also assessed with two performance measures: Match-up Time and Shifted Jobs. Match-up 

Time refers to the time required by a rule to come back to the initial predictable schedule 

after a disruption, and Shifted Jobs refers to the number of jobs that will be shifted from one 

machine to another. The four performance measures are shown in Figure 19.

Schedule Quality

Schedule Performance -J

Match-up Time
Schedule Stability

Figure 19. Repair and Rescheduling Rules’ Performance Measures

Numerous publications used all or some of the above performance measures (e.g., Mendez 

and Cerda, 2004; Alagoz and Azizoglu, 2003; Raheja and Subramaniam, 2002; Akturk and 

Gorgulu, 1999).
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RIGHT SHIFT REPAIR (RSR)

Right Shift Repair rule implies delaying the entire schedule by the disruption 

duration. In other words, whenever a disruption occurs, the disrupted operation and the 

activities succeeding it are shifted to the right by the amount of down time. This rule is 

similar to what an operator would instinctively do in the case of disruptions if  no other 

strategies were in place. It should be noted that as preemption is not allowed, a disrupted job 

will have to be processed again from the beginning. RSR has been used frequently in the 

literature to compare with rescheduling and repair rules (Abumaizar, 1997; Akturk and 

Gorgulu, 1999; Bean et al., 1991; Alagoz and Azizoglu, 2003).

The RSR algorithm is described below, where S;j and Fjj refer respectively to the 

Start and Finish of job j  on machine i, RF; is the repair finish on machine i, D  and Dy are 

respectively the down machine and down job, and N, is the number of jobs scheduled on 

machine i.

If (SD Dj < RFd) I I Apply RSR as D j was scheduled to start before the repair finishes

Step 1: {Calculate the new start and finish time for the interrupted job Dj}
* ^D,D, — RFd;

* FD Dj — SD D̂ + p D>Dj;

Step 2: {Update the start and finish of the remaining jobs on the down machine D}
• Let an integer Q = 0;
• while (Fdd + q  > Sdd +q +1)

{
c = p

D ,D ,+ Q + 1 A D ,D ,+ Q ’

F d ,D j +Q+1 =  ^ D ,D ,+ Q + 1  P d ,D ,+ Q + 1  >
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If (Dj + Q + 1 = = ND)
Exit the while loop;

else
Q = Q +1;

}

Note: As can be seen from the algorithm, this is at the most 0(mn), assuming that time is 

incremented with integer values Q.
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FIT JOB REPAIR (FJR)

FJR is a new repair rule introduced in this dissertation. The rationale of FJR is to fit 

the down job (Dj), i.e. the job that needs to be rescheduled, on a residle of any machine, 

where residlei refers to the remaining idle time on machine i.

In other words, when a breakdown occurs, FJR determines the down job (Dj) and the 

positions of the jobs not processed yet on the up machines (the machines that did not incur a 

disruption). Next, the residle on each machine is calculated and D} is fitted on the machine i 

with the highest residle;. In the case Dj does not fit in any residle, each machine’s residle is 

increased by shifting to the right one job at a time. If after all jobs have been shifted (residle, 

cannot be increased anymore) D} still cannot be fitted on any machine, then it will be 

assigned at the end of the machine that will result in the smallest makespan, i.e. where C; is 

less than the completion time of the other machines.

FJR algorithm is described below, where JP;(k refers to the job in position k  on 

machine i, Jo is the position of the interrupted job Dj, and Path; is the processing location on 

machine i if  it is to process Dj

Let tempS, tempF, tempJP be temporary arrays equal respectively to S, F, and JP

Step 1: Determine on each machine the jobs’ locations (J,) following a breakdown; also 
determine the ES; on each machine, where ES; is the earliest start of a job on machin i after 
the occurrence of a breakdown.
P.S.: In the case of D, ES/> = RF/>

Step 2: Determine the down job Dj, i.e. the job that needs to be rescheduled or fitted:
* ~ JPd,Jd
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Step 3: Calculate the location on each machine assuming Dj will processed on it:
• Pathj = ESi + pi>DJ (i = 1, ... , m)
• Let an integer variable Count = 0;

While ((Jj + Count) <= Ni; for i = 1 , . . m)
{

Check if  the job can be fitted on any of the machines:
If (Path; < S; J( com ) (i = 1 , ,  m)

{
residle; = S ,, - Path;;

L J i+Cow»t 1 ?

Fit = true ; //The job can be fitted
•  Get the minimum fit cost over all the machines and determine the recipient 

machine RC
MAX (residle;) (i = 1 ,... , m)

• Update RC by increasing Nrc and shifting the jobs to the right so D j can 
be fitted.

• Fit Dj in the receiver machine after the breakdown
Src,.^ = ESrc ,
Frc,j/?c -  Src,jrc+ Prc,dj ;
JPrc,jrc = Df,

If (Count > 0) HSeveral jobs on RC need to be shifted fo r fitting 
For (s = Jrc, ..., J*c+ Count -1)

Src,s+i -  Frc,s;
Frc,s+i = Src,s+i + Prc,jp/?c,s+i;

• Update the sender machine SD by decreasing Nsd and shifting the jobs to 
the left as Dj location is available now.

} //end o f IF
Else // Need to shift more jobs in order to f it  D j
{

Count = Count +1;
Path; = Path; + p;,ji+count; (i = 1 ,..., m)

}
} //End o f  while

Step 4: If Dj did not fit on any machine, assign it to the machine that minimizes Cmax 
If ((J; + Count) > N; AND Fit = False)
{

Path; = 0; (i = l , . . . ,m )
Path; = ES; + p ;,dj (i = 1 ,... , m)
Path; = Path; + p ; ^ ;  (i = 1 , m ; j = J i , N i )
Let RC be the machine with the minimum Path;
• Update the receiver machine RC and the sender machine SD.

} HEnd o f  IF  
STOP; once all jobs have been processed.
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PARTIAL RESCHEDULING (PR)

Another rule introduced in this dissertation is the Partial Rescheduling rule. The 

rationale behind PR depends strongly on the concept of match up rescheduling. We recall 

that the match up strategy refers to trying to bring back the initial schedule as fast as possible 

once a perturbation occurs. Akturk and Gorgulu (1999) defined the match-up point as the 

schedule’s point following a disruption, where the state reached by the revised schedule is 

the same as that reached by the initial schedule, and the pre-schedule can be followed again.

It is advantageous to minimize the match-up point, i.e. the period of time where a new 

schedule is used instead of the pre-schedule, in order to ensure schedule’s stability as the 

resource planning was done according to the pre-schedule.

Consequently, the strategy of PR is to minimize the match-up time so the initial schedule can 

be used for the execution. By coming back to the initial optimal schedule, the final 

makespan will remain the same, i.e. the best possible makespan.

PR works as follows: first, once a disruption occurs, PR will generate a pool of jobs 

for each machine (ResJobSj) that need to be rescheduled in order to match up with the 

original schedule. The initial jobs included in the pool are the following:

• The down job Dj plus the value of the Match counter (Match) of succeeding jobs.

For example, if Match = 0, only the down job will be added, if  Match = 2, then Ds 

will be added plus the 2 jobs following it.

• For each of the up machines, the job that will start directly after the breakdown is 

added plus the Match counter of succeeding jobs. If the up machine was processing a
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job when the breakdown occurred, it would continue processing that job as the 

disruption did not hit its assigned machine, and the succeeding job is added to 

ResJobSj.

Next, the earliest start ES* and latest finish LFi on each machine are calculated. For the down 

machine D, the ES0 is the point where the repair finishes; and for the up machines, ES; is the 

exact point in time when the job that was being processed during the breakdown finishes.

The LFi on machine i is the scheduled start Sik of the job in the k1*1 position on machine i, 

where k in this case refers to the job right after the last one added to ResJobs;. Following 

this, the span on each machine (SpanO is calculated, where Span* is the time on machine i 

necessary to reschedule the jobs and is computed as Span; = LF; -  ES;. Now that we know 

the jobs that need to be rescheduled on each machine (ResJobsO and the minimum match-up 

time on each machine (Span;), we will try to optimally solve for the number of jobs that will 

be shifted from one machine to another. The following MIP is used:

m JobsNo

Min 0 = 2  2 ^ 0 , - X ,
i= l j= l

m

Subject to: = 1, for j = 1 ,..., JobsNo, (Cl)
i= l

JobsN o

*Pjj < Span^ for i = 1 ,..., m, (C2)
j= i

X s € {0,l}, ( i= l , . . . ,m ;j  = l„..JobsN o), (C3)

where,

G: objective function

Pij: processing time of job j  on machine i.
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Xy: binary decision variables = 1, if job j  is assigned to machine i, 0 otherwise.

XOjj: initial job machine assignment.

The objective is to minimize the total (XOij -  Xij); i.e. the number of jobs that will change 

their position or shift from one machine to another. Constraints (1) ensure that all the jobs 

will be assigned and each job will be assigned to only one machine. Constraints (2) 

guarantee that the completion time of jobs on each machine does not exceed the Span.

The disadvantage of the above MIP is that it is non linear as the objective function contains 

an absolute value. In order to change the optimization to a linear one, G is modified as 

follows:

Let X’ij = XOij -  Xij, and let Yij > |X’ij|, then G is replaced by:

m  JobsNo

° ’ =  Z  5 X
i=i j=i

fX'ij-Yy < 0 fXOjj -X ; -  Y{j < 0 
As X’ij < Yij => \ J J J J J

I -  x 'ij -Y ij -  0 l - X O ^ X j - Y ^ O

In summary, the MIP that will minimize the number of shifted jobs is described below 

(referred to as MIP [2]):
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m  JobsN o

MinG’ = £  £ ( Y s)
i=l j=l 

m
Subject to: X Xij = ^ f°r J = 1, • JobsNo, (Cl)

i=l

JobsNo

Z x ij *Pij ^Span;, f° ri = h  (C2)
j=i

Xy e {0,l}, (i = 1,...,m; j = 1,...,JobsNo), (C3)

X O y-X y-Y y^O  (C4)

-X O y + X y -Y y ^ O  (C5)

where,

G’: new objective function

Constraints (4) and (5) replace the absolute value in order for the model to be linear.

MIP [2] was implemented in Lingo 9.0 from Lindo Systems. The schedule execution was in 

fact done in Microsoft Visual C++ 6.0 running on Windows XP with a Pentium 4 processor, 

and whenever PR needs to minimize the number of shifted jobs, it sends the necessary 

information to Lingo where it gets solved optimally (if it is possible) and the new job 

locations are sent back to the C++ program to continue executing the schedule.

In the case where no feasible solution can be found, i.e. MIP [2] cannot fit the jobs within the 

Span time allocated for each machine, Match is increased by 1 (one job is added from each 

machine to the pool ResJobsO, then MIP [2] is run again.

Match will keep on increasing until a solution is found or no more jobs can be added to the 

pool. In the latter case, complete rescheduling will take place with the objective of 

minimizing both Cmax Difference and Shifted Jobs. This becomes a bicriteria optimization
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problem and two approaches exist in the literature to deal with such problems (Alagoz and 

Azizoglu. 2003): the hierarchical approach, i.e. minimizing the less important measure 

0Shifted Jobs) subject to the constraint that the more important measure (Cmax Difference) is 

kept at its optimum, and the simultaneous approach, i.e. generation of efficient schedules or 

optimization of a weighted combination of the two performance measures. Since we assume 

in this research that Cmax Difference is more important than Shifted Jobs, the hierarchical 

approach will be used in PR and CR.

Complete rescheduling works as follows: all the unprocessed jobs along with Dj are 

added to the pool ResJobs, then they are solved optimally using a MIP in order to minimize 

the makespan. In other words, as it is impossible to match up with the initial schedule, a new 

schedule will be generated for the remaining jobs that will reduce the makespan as much as 

possible. The MIP is described as follows (referred to as MIP [3]):

Min L

m
Subject to: ô rj = •••> J°bsNo, (Cl)

i= l

JobsN o

£ ( X S *Pij) +ES; <L , fori = 1, ...,m , (C2)
j= i

XyejOd}, ( i= l , . . . ,m ;j  = l , . .„  JobsNo), (C3)

where,

L: makespan CmaxR
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MIP [3] reshuffles the jobs in order to obtain the smallest CmaxR possible. However, as the 

number of shifted jobs is also a stability performance measure, we will attempt to reduce it.

In fact, there could be several possible solutions for the same CmaxR, and for this reason, an 

addition to MIP [3] is the following MIP [4], which will try to reduce Shifted Jobs while 

maintaining the same CmaxR. There is no guarantee that MIP [4] will be able to minimize 

Shifted Jobs because it is constrained by an optimal CmaxR.

m JobsNo

M i n f f - 2  £(Y t)
i= l j= l 

m

Subject to: = ^  ô rJ = •’ J°bsNo, (1)
i= l

JobsNo

^ (X jj *Pij ) + ES; < L, for i = 1 ,..., m, (2)
j= i

X(j e {0,l}, (i = l,...,m ; j = 1,...,JobsNo), (3)

X O j j <0  (4)

-X O , + X a <0  (5)

where,

L: CmaxR obtained from MIP [3]

Following this, the above two MIPs guarantee an optimal CmaxR while minimizing Shifted 

Jobs whenever possible.
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The PR algorithm is described as follows:

Let tempS, tempF, tempJP be temporary arrays equal respectively to S, F, and JP;
Let an integer variable Match = 0, and an integer variable array ResJobsi = 0; 
ProcJobs[][] is a double array used to send the jobs’ processing time to Lingo.

Step 1: Determine on each machine the jobs’ locations (Jj) following a breakdown; also 
determine the ESi on each machine.
P.S.: In the case of D, ESz> = RF/>

Step 2: Determine the number of jobs to be added to the rescheduling pool from each 
machine: Match = Match + Mlncrease;

If (Match + Ji < Ni) for any i = 1 ,..., m. //we can still match with the preschedule
{

LF; = S; J +Match, (i — 1 ,..., m)
Span; = LFj -  ESj; ( i= l , . . . ,m )
JobsNo = JobsNo +1;
ResJobs[JobsNo] = JP[i][J; + j -1]; > (i = l,...,m; j = 1,...,Match)
XO[i] [ JobsNo] = 1;
ProcJobs[i][j] = p[i][ResJobs[j]]; (i = l,...,m ; j = l,...,JobsNo)

Solve to optimality using MIP [2];
If (optimal solution is found)

Update job-machine assignment and continue schedule execution;

Else
Go back to Step 2;

}
Else //We ran out o f  jobs and still cannot match, i.e. start complete rescheduling
{

JobsNo = JobsNo +1;
ResJobs[JobsNo] = JP[i][ j]; > (i=  l,...,m ;j = Ji,...,Ni)
XO[i] [ JobsNo] = 1;
ProcJobs[i][j] =p[i][ResJobs[j]]; (i = l,...,m ; j = l,...,JobsNo)

Solve to optimality using MIP [3];
Try to reduce number of shifted jobs using MIP [4];
Update job-machine assignment and continue schedule execution;

}

STOP; once all jobs have been processed.
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PR Design of Experiments

After describing the PR algorithm, one important question arises. Every time PR 

attempts to reschedule the Job Pool and fails to match with the initial schedule, the Job Pool 

is increased by Mlncrease = 1 for each machine. But what if  Mlncrease was larger than 1, 

i.e. what if every time PR attempts to match, the Job Pool is increased by more than 1 job? It 

is important to note however that the larger Mlncrease, the more PR approaches the 

Complete Rescheduling (CR), as the time to match up is being increased.

It is not reasonable to determine the appropriate Mlncrease value by running replications of 

the same problem design (e.g. 4 machines and 20 jobs), as a single problem design is not 

sufficient to guarantee the best Mlncrease for all problem combinations. Therefore, Design 

of Experiments (DoE) was used to determine the appropriate levels (parameters) of 

Mlncrease that will contribute to better objective function values in the various problem 

configurations. Numerous publications provide a good review of DoE (e.g., Fisher, 1960; 

Taguchi, 1993; NIST/SEMATECH e-Handbook of Statistical Methods, 2006).

DoE Factors

The factors considered for the experiments along with their levels are shown in Table 

11. Three levels were considered because non-linearity was suspected.

As can be seen, four factors are to be studied at three levels. Three-factor interactions (and 

above) are not considered as they are known to have usually weak effects (Ross, 1996); 

however, all 2nd degree interactions will be considered. Quadratic terms are to be analyzed
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as well. If we want to conduct a full factorial experimental design for four factors, we will 

need 3k experiments, where 3 refers to the 3 levels that we want to analyze, and k refers to 

the number of main factors; this is a total of 34 = 81 experiments. As it can be observed, this 

is a large number o f trials given that for each experiment setting we will run 15 instances. 

Through a D-Optimal Design, we will be able to reduce this number dramatically.

Table 11. Pi? Design of Experiments Factors

________Factor_________Abbreviation_____Value_______ Setting_______ Level

[1,50] Low -1
Processing time Range A [1, 100] Medium 0

[1, 150] High 1

20 Low -1
Number of Jobs B 60 Medium 0

100 High 1

2 Low -1
Number of Machines C 5 Medium 0

8 High 1

1 Low -1
Mlncrease D 4 Medium 0

7 High 1

D-optimal designs are typically generated by a computer algorithm and they are mainly 

useful when classical designs do not apply (NIST/SEMATECH, 2006). In the case of the PR 

Experimental Design, a D-Optimal design was generated because of the large number of 

experiments required by a classical one.

JMP 6.0 from SAS was used to generate the D-Optimal design, and the following Design 

Diagnostics were reported.
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Table 12. PR D-Optimal Design Diagnostics

D Efficiency 76.40377
G Efficiency 100
A Efficiency 48.2308
Average Variance of Prediction 2.073364

The D-Optimal Design is presented in Table 13 and as can be seen, through DoE, we were 

able to reduce the number of experiments from 81 to 33 experiments.

For each of the 33 experiments, 15 replicates were run. The total number of replicates is 15 

x 33 = 495. The following four performance measures are reported: CPU, Cmax Difference, 

Shifted Jobs, and Match-up Time. Moreover, the minimum and maximum values of each 

performance measure are included to indicate the variability in the results. The results for the 

33 experiments are shown in Table 14.
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Table 13. PR D-Optimal Design

Run AB AC AD BC BD CD AA BB CC DD

20

22
23
24
25
26 
27

29
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Table 14. PR Rule's D-Optimal Design Results

Avg. Cmax Difference 
(min)

Avg. CPU Time 
(sec)

Avg. # Shifted  
Jo b s

Avg. Match-up Time 
(min)

Run Min Avg Max Min Avg Max. Min Avg Max Min Avg Max
1 7.92 49.34 99.25 1.53 3.43 6.1 2 11.45 26 476.88 1115.24 2342.01
2 -11.28 28.05 80.34 2.59 21.03 52.55 3 44.3 82 286.42 1483.28 2571.76
3 -7.52 15.4 39.13 0 1.67 5 0 5.15 22 0 149.83 592.45
4 -0.83 5.1 13.93 0 2.57 7.86 0 6.6 20 0 66.9 192.86
5 3.7 14.02 26.02 10.92 25.22 48.48 15 36.93 61 334.74 805.4 1364.02
6 -14.75 18.97 47.53 0 2.3864 6.36 0 6.8 25 0 235.52 667.75
7 -2.19 33.48 102.2 1.44 31.84 94.61 0 43.35 124 321.09 1798.54 3472.56
8 40.59 158.56 305.6 3 13.73 34.72 0 12.6 29 876.28 3149.75 7648.29
9 -1.62 6.66 18.21 47.89 348.27 1778 25 68.4 156 329.87 599.824 1090.04
10 423.24 795.34 1405 38.59 75.87 145.8 65 264.8 518 33324 70605.1 135537
11 -8.14 14.24 46.15 2.73 21.4 53.36 4 26.13 48 143.74 580.92 1235.36
12 40.6 157.67 268.5 1.56 3.83 7.2 2 12.47 26 876.29 3952.06 8780.64
13 0 5.1 13.93 0.02 4.09 12.56 0 6.6 20 0 66.9 192.86
14 -4.3 10.23 34.47 1.28 47.75 276.2 0 22.8 62 24 350.1 730.28
15 -13.88 45.77 145 6.84 50 109.7 38 85.8 162 2363.6 5217.4 7944.14
16 -6.18 32.74 52.77 9.56 55.84 118.4 34 100.6 169 1607.2 3271.71 5056.64
17 -15.05 22.5 67.27 0.015 3.58 6.98 0 5.47 16 0 357.23 812.56
18 -3.98 5.12 20.39 0.45 2.5 7.22 0 6.13 14 30.98 115.88 302.1
19 351.04 514.93 711.2 53.67 179.7 281.8 313 742.1 1630 16838 41192.1 54648.6
20 -12.25 33.78 95.94 7.59 73.07 212.4 9 120.5 277 609.81 2534.72 5898.8
21 -10.03 16 67.14 3.12 118.03 525.7 15 71.87 137 391.88 1421.09 2597.84
22 2.54 19.57 43.94 1.97 51.37 151.3 3 154.2 389 119.45 1365.81 3214.89
23 -2.65 7.49 19.07 11.23 57.02 274.1 17 34.13 59 84.1 267.06 537.57
24 -13.86 13.93 77.35 7.67 323.74 1313 25 79.6 143 731.07 1916.14 3140.31
25 76.1 245.33 362 9.39 15.91 23.3 17 80.6 237 9973.8 15828 22576.3
26 81.11 257.18 396.3 50.14 117.42 189.7 158 341.1 772 7532.4 22474.2 37705
27 -15.05 21.87 67.27 0.016 2.14 4.11 0 4.73 16 0 343.99 812.56
28 -0.41 15.43 40.92 47.16 257.91 818.2 20 68.87 130 553.69 1105.62 2008.1
29 -2.4 10,8 29.63 0.015 1.81 5.52 0 5.53 12 0 92.15 208.19
30 63.38 91.4 128.5 2.23 4.08 5.89 6 12.67 28 1268 2264.08 3350.87
31 206.12 444.88 800 25.15 41.03 74.44 46 123.3 246 14606 24419.3 42333.3
32 -2.4 10.8 29.63 0 2.96 8.14 0 5.53 12 0 92.15 208.19
33 64.69 145.67 218.4 31.56 75.87 128.9 41 161.5 295 3225.8 6789.81 12862.5

To be able to determine the significance of the factors and their interactions, 

statistical analyses are carried out for each performance measure.
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Cmax Difference Analysis

Table 15. Cmax Difference Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

Multiple R 0.94673398
R Square 0.89630524
Adjusted R Square 0.81565375
Standard Error 75.5293918
Observations 33

The regression statistics reported in Table 15 indicate a Multiple R = 0.947; this is a 

very good value, indicating the success of the regression in predicting the values of the 

dependent variable Cmax Difference within the sample. However, the smaller R Square 

(0.896) indicates that not all the factors have significant effects.

Table 16. Cmax Difference ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 14 887572 63398 11.11331372 3.86E-06
Residual 18 102684.4 5704.689
Total 32 990256.4

Based on the p-value listed for the whole model (Table 16), one can conclude the 

model is significant since the p-value is very small. This means that at least some of the 

factors used in the experiment, and/or their interactions have significant influence on Cmax 

Difference. To determine which factors and interactions are the most significant, further 

analysis is needed. Table 17 summarizes the effect test for all factors and their interactions.
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Table 17. Cmax Difference Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d  E r r o r t S t a t P - v a l u e

A 61.1911609 17.45448 3.505757 0 . 0 0 2 5 2 4 2 5

B 78.7776971 16.81677 4.684473 0 . 0 0 0 1 8 4 6 2 7

C -146.602623 17.45448 -8.39914 1 . 2 1 6 7 E - 0 7

D 13.4694165 17.26671 0.78008 0.445481078
AB 29.6004878 20.96409 1.411961 0.175015829
A C -63.8021371 20.8407 -3.06142 0 . 0 0 6 7 2 2 8 2 4

AD -12.1847602 20.70825 -0.5884 0.563574026
B C -108.049782 20.96409 -5.15404 6 . 6 5 9 9 5 E - 0 5

BD 3.5314943 20.41114 0.173018 0.864567999
CD -5.10584124 20.70825 -0.24656 0.808038158
AA 9.04774589 28.5484 0.316927 0.754945662
BB 2.1285494 29.70274 0.071662 0.943661359
CC 125.306665 28.5484 4.389271 0 . 0 0 0 3 5 3 7 6

DD -2.89895209 29.12558 -0.09953 0.921815345

At significance level of 5% (i.e. 95% Confidence Interval), the significant factors 

and/or interactions are bolded. These factors were determined to be significant due to a 

relatively large t-Stat and a small p-value (less than 0.05). One can conclude that choosing 

any value for Mlncrease (Factor D) within the limits addressed in this experiment does not 

affect the Cmax Difference.

CPU Time Analysis

From Tables 18 and 19, and based on the R-squared and p-value listed for the whole 

model, one can conclude that the model is significant since the p-value is very small. This 

means that at least some of the factors used in the experiment, and/or their interactions have 

significant influence on CPU. Following this, the effect test for all factors and their 

interactions is summarized in Table 20.
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Table 18. CPU Regression Statistics fox PR rule

R e g r e s s i o n  S t a t i s t i c s

Multiple R 0.898498
R Square 0.807298
Adjusted R Square 0.657418
Standard Error 52.99221
Observations 33

Table 19. CPU ANOVA Results for Pi? rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p  v a l u e )

Regression 14 211759.8 15125.7 5.386311 0.000588939
Residual 18 50547.13 2808.174
Total 32 262306.9

Table 20. Factors and Interactions Effect test for PR rule

C o e f f i c i e n t s S t a n d a r d  E r r o r t S t a t P - v a l u e

A -9.07562 12.24624 -0.74109 0.468195
B 71.19263 11.79882 6.033877 1 . 0 5 E - 0 5

C 20.33954 12.24624 1.66088 0.114056
D 3.56697 12.1145 0.294438 0.771792

AB -5.41185 14.70862 -0.36794 0.717211
AC 1.379783 14.62205 0.094363 0.925863
AD -14.5722 14.52912 -1.00296 0.329172
B C 33.16255 14.70862 2.254633 0 . 0 3 6 8 5 1

BD 15.63612 14.32067 1.091857 0.289295
CD 24.62712 14.52912 1.695018 0.107302
AA -0.90818 20.02985 -0.04534 0.964334
BB 39.31008 20.83975 1.886303 0.075495
CC 55.06732 20.02985 2.749262 0 . 0 1 3 1 9 3

DD -13.0209 20.43481 -0.63719 0.532021

At significance level of 5% (i.e. 95% Confidence Interval), the only significant factor with a 

small p-value in the model is Number o f Jobs (Factor B). One can conclude that choosing 

any value for Mlncrease (Factor D) within the limits addressed in this experiment does not 

affect the CPU.
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Shifted Jobs Analysis

From Tables 21 and 22, and based on the R-squared and p-value listed for the whole 

model, one can conclude that the model is significant since the p-value is very small. This 

means that at least some of the factors used in the experiment, and/or their interactions have 

significant influence on Shifted Jobs.

Table 21. Shifted Jobs R-Square for PR rule

R e g r e s s i o n  S t a t i s t i c s

Multiple R 0.911723
R Square 0.831239
Adjusted R Square 0.69998
Standard Error 77.29007
Observations 33

Table 22. Shifted Jobs ANOVA Results for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 14 529631.4 37830.81 6.332837 0.000207857
Residual 18 107527.6 5973.754
Total 32 637159

The effect test for all factors and their interactions is summarized in Table 23. At 

significance level of 5% (i.e. 95% Confidence Interval), the significant factors with a small 

p-value in the model are Number o f Jobs (Factor B) and Number o f  Machines (Factor C) 

along with their interaction and the interaction between Number o f  Machines and Mlncrease. 

We then solved for the significant factors/interactions’ levels of the regression model in 

Excel Solver with the objective of minimizing Shifted Jobs', i.e. solver determined the
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optimal combination of level settings of the factors that minimizes Shifted Jobs. Mlncrease 

was determined to be at level (-1); i.e. Mlncrease = 1 job will minimize Shifted Jobs.

Table 23. Factors and Interactions' Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d  E r r o r t S t a t P - v a l u e

A 6.939794 17.86136 0.388537 0.702176
B 94.18346 17.20879 5.472987 3 . 3 7 E - 0 5

C -80.2806 17.86136 -4.49465 0 . 0 0 0 2 8

D -25.337 17.66922 -1.43396 0.168727
AB 1.32434 21.45279 0.061733 0.951456
AC 2.377129 21.32652 0.111464 0.912482
AD -10.0374 21.19098 -0.47366 0.641434
S C -92.7491 21.45279 -4.3234 0 . 0 0 0 4 0 9

BD -35.2147 20.88695 -1.68597 0.109058
CD 47.5911 21.19098 2.245819 0 . 0 3 7 5 0 9

AA -20.6108 29.21389 -0.70551 0.489521
BB 45.12646 30.39514 1.48466 0.154936
CC 72.5657 29.21389 2.483945 0 . 0 2 3 0 6 4

DD 10.65194 29.80453 0.357393 0.724953

Match-up Time Analysis

From Tables 24 and 25, and based on the R-squared and p-value listed for the whole 

model, one can conclude that the model is significant since the p-value is very small. This 

means that at least some of the factors used in the experiment, and/or their interactions have 

significant influence on Match-up Time.

Table 24. Match-up Time Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

Multiple R 0.9274572
R Square 0.8601768
Adjusted R Square 0.7514254
Standard Error 7245.4466
Observations 33
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Table 25. Match-up Time ANOVA Results for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 14 5.81 E+09 4.15E+08 7.909569547 4.58E-05
Residual 18 9.45E+08 52496496
Total 32 6.76E+09

Table 26 summarizes the effect test for all factors and their interactions. At significance 

level o f 5% (i.e. 95% Confidence Interval), the significant factors/interactions with a small p- 

value in the model are bolded. One can conclude that choosing any value for Mlncrease 

(Factor D) within the limits addressed in this experiment does not affect the Match-up Time.

Table 26. Factors/Interactions' Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d  E r r o r t S t a t P - v a l u e

A 4341.0824 1674.388 2.592639 0 . 0 1 8 3 8 1 5 4 3

B 8206.4979 1613.213 5.087051 7 . 6 9 2 7 8 E - 0 5

C -10536.5 1674.388 -6.29275 6 . 2 2 2 5 4 E - 0 6

D 1962.029 1656.376 1.184532 0.251608203
AB 3157.969 2011.061 1.5703 0.133757204
AC -4152.892 1999.224 -2.07725 0.052368414
AD -1223.242 1986.518 -0.61577 0.545753373
B C -10657.35 2011.061 -5.29937 4 . 8 7 9 2 2 E - 0 5

BD 1007.1609 1958.017 0.514378 0.613245508
CD -1109.795 1986.518 -0.55866 0.583275264
AA 819.73818 2738.614 0.299326 0.768120085
BB 1877.7087 2849.349 0.658996 0.51824076
C C 8261.9759 2738.614 3.016845 0 . 0 0 7 4 0 8 8 3 5

DD 53.695233 2793.983 0.019218 0.984878492
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PR Experimental Design Conclusion

It can be concluded from the above statistical analyses that any value of Mlncrease 

within the tested range can be used in PR without significantly affecting the performance 

measures, except in the case of Shifted Jobs where Mlncrease = 1 will lead to a better 

performance measure.

Following this, and as the larger Mlncrease the closer PR gets to CR, Mlncrease = 1 will be 

used in PR.
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COMPLETE RESCHEDULING (CR)

In the complete rescheduling rule, all remaining jobs after a breakdown occurrence 

will be optimally rescheduled without trying to match up with the initial schedule; i.e. a new 

optimal schedule is generated for the remaining unprocessed jobs. CR was embedded in PR 

and used whenever the latter was not able to match up with the initial schedule. In the CR 

approach, the unprocessed jobs along with Dj are added to the pool ResJobsj, then they are 

solved optimally using MIP [3] in order to minimize the makespan. In other words, a new 

schedule will be generated for the remaining jobs in order to reduce the makespan as much as 

possible.

MIP [3] reshuffles the jobs in order to obtain the smallest CmaxR possible. However, 

as the number of shifted jobs is also a stability performance measure (Shifted Jobs), we will 

minimize it as well using MIP [4]. The latter attempts to reduce Shifted Jobs while 

maintaining the same CmaxR reported by MIP [3]. As such, the above two MIPs guarantee 

an optimal CmaxR while minimizing the number o f shifted jobs whenever possible.
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COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN

Following the description of the repair rules, computational tests are undertaken to 

prove superiority and dominance. However, there are several factors that could impact the 

dominance of a rule over another. Therefore, the computational tests will follow an 

experimental design (DoE) that will analyze 6 factors as shown in Table 27.

The studied factors are respectively Processing Time, Number o f Jobs, Number o f  Machines, . 

Repair Duration, Idle Time, and Breakdown. They are tested at 3 settings or levels as non- 

linearity is suspected and to investigate a broader combination of problem settings. We 

recall that the repair time follows a uniform distribution between PiE[Mi] and P2E[Mi], 

where (Pi, P2) are set to (0.1,0.2), (0.1,0.5), and (0.1,1) respectively for levels -1, 0, and 1 in 

the DoE. Furthermore, the idle time is calculated using CFJI insertion rule (Chapter 4), and 

the different levels of Idle Time in Table 27 refer to the value computed by CFJI multiplied 

by 80%, 100%, or 120%. Moreover, the time between breakdowns (TBBj) will follow an 

exponential distribution with mean 0*E[Mj], where 6 is 1, 5, and 10 respectively for the 

levels -1,0, and 1 in order to test different breakdown rates.

The factors presented in Table 27 are to be studied at three levels. Three-factor interactions 

and above are assumed insignificant; however, all 2nd degree interactions will be considered. 

Quadratic terms are to be analyzed as well. If we want to conduct full factorial DoE for six 

factors, we will need 3k experiments, where 3 refers to the 3 levels that we want to analyze, 

and k refers to the number of main factors; this is a total of 36 = 729 experiments for each of 

the 4 rules. As it can be observed, this is a large number of trials given that each setting will
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be run for 50 replicates. Thus, a D-Optimal Design will be used again to reduce the number 

of experiments.

Table 27. Factors analyzed in the Experimental Design of the Repair and Rescheduling rules

Factor__________ Abbreviation_____ Value_______ Setting_______ Level

[1,50] Low
Processing time Range A [1,100] Medium

[1,150] High

20 Low
Number of Jobs (n) B 60 Medium

100 High

2 Low
Number of Machines (m) C 5 Medium

8 High

(0.1,0.2) Low
Repair Duration (Pi, P2) D (0.1,0.5) Medium

(0.1, 1) High

80% Low
Idle Time (CFJI Levels) E 100% Medium

120% High

1 Low
Breakdown (0) F 5 Medium

10 High

JMP 6.0 from SAS was used to generate the D-Optimal design, and the following Design 

Diagnostics were reported.
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Table 28. Rules’ D-Optimal Design Diagnostics

D Efficiency 
G Efficiency 
A Efficiency

70.64045
100

39.79054
2.51316Average Variance of Prediction

The D-Optimal Design is presented in Table 29. As it can be seen, through DoE, we were 

able to reduce the number of experiments from 729 to 73 experiments.

For each of the experiments in Table 29, 51 replicates were run. The total number of 

replicates is 51 x 73 = 3723 for each of the 4 rules (i.e. a total of 14892 replicates for this 

DoE). The following four performance measures are reported: CPU, Cmax Difference, 

Shifted Jobs, and Matching Time. Moreover, the 95% Confidence Interval (Cl) attained from 

running » 50 iterations of each rule was also included. This Cl was determined using 

Equation 5 that was described by Law and Kelton (2000) using the t distribution:

As 51 iterations were run for each problem setting (i.e. n = 51), then the confidence intervals 

will be:

The performance measures’ averages along with the confidence intervals for the RSR, 

FJR, PR, and CR are presented respectively in Tables 30, 31, 32, and 33.

(5)
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Table 29. D-Optimal Design for the Rules' Experiments

Run 1  F |  AB AC AD AE AF BC BD BE BF CD &E CF DE DF EF
-1 -1
0 0

B C D AA BB CC DO EE FF
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 
61 
62
63
64
65
66 
67

70
71
72
73

-1 -1
0 -1

0 
-1 
0 
0 
1 
0 
1 
-1 
1 
0 
-1 
1 
0 
0 
1 
-1 
-1 
-1 
1 

-1 
-1 
0 
0 
0 
0 
0 
1 
0 
0 
-1 
0 
1 
1 
1 
1 
-1 
0 
1 
1 
0 
0 
-1 
1 
1

0 
1 
0 
0 
0 
0 
0 
-1 
1 
0 
0 
-1 
-1 
0 
1 
1 

-1 
0
-1 -1

-1  -1

-1 -1
-1 -1
-1 0

1
0
0
-1
0
0
0
0
1
-1
-1
0
-1
1
0
0
1
0
0
-1
1
0
1
0
0
0
0
0
0
0
0
-1
0
1
-1
-1
0
1
0
-1
0
0
0
1
1
-1
0
0
0
0
0
1
1

-1
0
0
1
0
1
-1
0
0
0
-1
1
1
0
0
0
0
1

-1
1

-1
0
-1
-1
1
0
0
-1
1
-1
0
0
0
-1
-1
1
0
0
0
1
1
0
0
1
-1
0
0
0
0
0
1
-1
0
-1
-1
0
0
0
1
1
0
0
0
-1
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
-1
0
0
0
1
-1
0
1
0
-1
0
-1
1
1

-1
0
-1
-1
0
0
0
1
1
0
1
0
1
1
-1
0
-1
0
0
0
1
0
1
-1
0
0
0
0
0
1
0
1
0
0
-1
0
0
1
1
-1
0
0
0
-1
0
1
0
-1
0
0
0
1
1
1
0
0
0
-1
0
1
1
0
0
-1
0
0
1
0
1
-1
-1
1
0

-1 -1

-1 -1
-1  1

0 0
-1 -1

0
0
0
-1
0
-1
0
-1
-1
0
0
-1
0
0
0
1
1
1
0
1
0
0
-1
1
-1
0
-1
1
0
-1
0
0
0
0
0
0
-1
0
0
-1
1
0
0
-1
0
0
1
0
-1
1
1
1
1
0
0
0
0
1
0
1
0
0
0
0
0
-1
1
0
1
0
-1 -1
0 -1

0
1
0
-1
0
0
1
0
1
0
0
0
1
0
0
0
-1
-1
-1
1
0
1
-1
0
0
0
0
0
0
0
0
0
0
1
-1
0
-1
0
0
1
-1
0
0
1
0
-1
1
0
1
1
0
-1
1
0
1
0
1
0
0
1
0
0
-1
1
0
-1
0
0
0
0
-1
0
0

0
1
0
-1
0
-1
-1
-1
1
0
0
0
0
0
1
1
0
1
0
-1
0
-1
0
-1
1
0
1
0
0
0
-1
0
1
-1
-1
0
0
0
0
-1
-1
0
0
-1
0
0
1
0
0
1
0
-1
0
0
0
0
1
0
0
1
0
0
1
-1
0
0
1
0
-1
0
1
0
0

1 1 1 1 1 0
0 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 1
1 0 1 0 0
0 1 0 1 1 1
0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
1 1 1 1 0 0
1 1 1 0 1 0
1 1 0 0 0 1
1 1 0 1 1
1 1 1 1 1 0
1 0 1 1 1
1 1 0 1 0 1
1 1 1 0 1 1
0 1 1 1 1 1
0 1 0 0 1
1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1
1 1 1 0 1 1
1 1 0 1 1 1
1 1 0 1 0 1
0 0 1 1 0
0 1 0 1 0 1
0 1 0 0 1 1
0 0 1 0 1 0
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1 0

0 1 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 1 0 0 0

1 1 0 1 1
1 0 1 0 1 0
1 0 1 1 0
1 1 1 1 1 1
0 1 1 1 1 1
0 0 0 1 1
0 1 0 0 0
1 1 1 1 1 1
1 1 1 1 0 0
1 0 1 0 1 1
0 1 1 1 1 1
1 1 1 1 0
0 1 1 0 1 1
0 1 1 1 0 1
1 1 0 0 1
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 1 1
1 0 1 0 0 0
1 1 1 1 1 1
1 1 0 1 0
0 1 1 1 1 0
0 0 1 1 0 1
1 0 1 1 1 1
1 1 1 1 0 0
1 1 1 0 0 1
1 1 0 1 1 1
0 1 0 1 1 0
1 1 0 1 1 1
1 0 0 0 1 1
1 1 1 1 1 1
1 0 1 1 1 0
1 1 1 1 0 0
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Table 30. Right Shift Rule Computational Results (Average Numbers)

R S R

Run Cm ax Cmax 
95% a

CPU
(sec)

CPU 
95% Cl Match

Match 
95% Cl

Shifted
Jobs

S. Jobs
95% a

1 17.57 [9.4-25.7] 0.02 [0.017-0.02] 139.69 [87.69-191.7] 0 0
2 642.81 [557.3-728.3] 0.22 [0.2-0.24] 19503.9 [17461.1-21546.7] 0 0
3 39.28 [24.9-53.6] 0.64 [0.4-0.8] 1018.53 [712.3-1324.7] 0 0
4 27.93 [12.7-43.2] 0.66 [0.5-0.8] 353.91 [176.8-531] 0 0
5 7.29 [4.2-10.3] 0.37 [0.2-0.5] 112.69 [67.2-158.1] 0 0
6 2.52 [0-5.04] 0.15 [0.1-0.2] 3.66 [0-7.32] 0 0
7 4.29 [1.1-7.5] 0.61 [0.2-1] 19.15 [0-45.3] 0 0
8 18.91 [3.7-34.1] 3.49 [2.5-45] 187.11 [0-375] 0 0
9 5.99 [0.2-11.8] 0.02 [0.01-0.03] 5.53 [0-11.551 0 0
10 256.39 [195.8-317] 0.099 [0.07-0.1] 10550.7 [7969.7-13131.8] 0 0
11 7.97 [5.6-10.3] 1.83 [1.3-2.4] 79.4 [57.6-101.2] 0 0
12 6.49 [0-13.04] 0.01 [0-0.01] 13.56 10-27] 0 0
13 680.8 [546.1-815.5] 0.211 [0.2-0.24] 14064.9 [11279.6-16850.2] 0 0
14 7.1 [1.2-13] 0.02 [0.01-0.02] 9.74 [0-21] 0 0
15 6.51 [3.6-9.4] 0.02 [0.01-0.03] 66.57 [37.5-95.6J 0 0
16 16.65 [8.6-24.7] 0.055 [0.04-0.07] 323.23 [171.4-475.1] 0 0
17 34.17 [19.5-48.8] 0.17 [0.1-0.2] 57.61 [0-132.3] 0 0
18 45.94 [28.1-63.8] 1.71 [1.1-2.3] 1019.03 [552.9-1485.1] 0 0
19 37.24 [25.2-49.2] 3.03 [2.5-3.5] 978.62 [716.1-1241.2] 0 0
20 259.69 [191.9-327.5] 0.08 [0.07-0.09] 2101.25 [1612.5-2590] 0 0
21 10.97 [5.9-16] 0.78 [0.2-1.3] 163.56 [88.2-238.9] 0 0
22 370.08 [272.3-467.9] 0.21 [0.17-0.25] 4739.92 [2250.2-7229.6] 0 0
23 14.97 [9.7-20.2] 0.014 [0.01-0.01] 82.91 [42.2-123.6] 0 0
24 50.07 [34.7-65.4] 1.74 [1.3-2.1] 201.18 [89.9-312.5] 0 0
25 2.59 [1.2-4] 0.58 [0.4-0.7] 6.13 [0.1-12.1] 0 0
26 18.37 [11.6-25.1] 0.83 [0.6-1.1] 232.22 [130.3-334.2] 0 0
27 106.35 [86.9-125.7] 4.56 [36-5.5] 2449.61 [1977.2-2922] 0 0
28 43.28 [30.8-55.7] 0.06 [0.03-0.09] 257.3 [187.1-327.5] 0 0
29 9.11 [5.6-12.6] 0.16 [0.1-0.2] 75.76 [42.9-108.6] 0 0
30 54.04 [33.3-74.7] 3.39 [2.44.4] 683.33 [245.3-1121.3] 0 0
31 60.69 [35.3-86] 0.49 [0.4-0.6] 632.38 [293.2-971.6] 0 0
32 121.44 [95.7-147.2] 0.08 [0.07-0.1] 3288 [2596-3979.9] 0 0
33 45.83 [24.6-67.1] 0.76 [0.6-0.9] 532.64 [304.9-760.4] 0 0
34 4.23 [0-8.5] 0.22 [0.1-0.3] 32.85 [0-69.6] 0 0
36 5.62 [1.9-9.3] 1.06 [0.8-1.3] 16.5 [0-39.4] 0 0
36 1.02 [0-2.3] 0.014 [0.01-0.02] 0.5 [0-1.5] 0 0
37 28.68 [13.9-43.4] 6.5 [4-9.1] 275.37 [120.7-430] 0 0
38 49.19 [33.4-64.9] 0.07 [0.06-0.08] 1089.29 [746.33-1432.2] 0 0
39 12.77 [6.9-18.6] 0.025 [0.02-0.03] 203.15 [86.5-319.7] 0 0
40 2.51 [0.14-4.9] 0.01 [0-0.01] 0.56 [0-5.14] 0 0
41 35.05 [18.5-51.6] 0.03 [0.03-0.04] 95.16 [42.9-147.4] 0 0
42 15.36 [8.6-22.1] 0.02 [0.016-0.02] 146.34 [93.9-198.7] 0 0
43 25 [14.4-35.6] 0.05 [0.04-0.06] 510.02 [315.5-704.5] 0 0
44 268.34 [171.6-365] 0.36 [0.3-0.4] 5586.18 [3157.1-8015.3] 0 0
45 19.76 [3.6-35.9] 0.016 [0.012-0.02] 21 [16.5-25.5] 0 0
46 13.26 [8.6-17.9] 0.06 [0.05-0.07] 101.16 [60.7-141.6] 0 0
47 266.05 [206.8-325.3] 0.1 [0.08-0.1] 2844.79 [2117.7-3571.9] 0 0
48 13.65 [8.7-18.6] 0 42 [0.2-0.7] 241.6 [170.1-313] 0 0
49 1041.83 [920.4-1163.2] 0.43 [0.4-0.5] 43751.8 [38410.8-49092.7] 0 0
50 10.62 [6.5-14.7] 1.41 [0.7-2.1] 90.52 [58.3-122.7] 0 0
51 9.4 [6.3-12.4] 0.09 [0.06-0.1] 193.66 [131.5-255.8] 0 0
52 39.36 [30.2-48.5] 0.05 [0.045-0.06] 1665.08 [1291.8-2038.4] 0 0
53 12.98 [7.9-18.1] 5.02 [4.3-57] 154.54 [95.79-213.3] 0 0
54 51.34 [35.6-67.1] 0.02 [0.01-0.02] 429.84 [290.2-569.4] 0 0
55 6.12 [2.8-94] 0.73 [0.5-1] 32.11 [14.1-50.1] 0 0
56 16.92 [11.8-22] 0.63 [0.5-0.8] 230.78 [169-292.5] 0 0
57 292.83 [262.5-323.1] 2.07 [1.9-2.2] 8964.24 [7960.6-9967.8] 0 0
58 20.16 [13-27.3] 1.25 [0.9-1.6] 99.01 [45.1-152.9] 0 0
59 10.41 [5.8-15] 1.31 [0.4-2.2] 90.11 [51.8-128.4] 0 0
60 5.03 [26-7.4] 0.26 [0.2-0.4] 61.77 [40.1-83.4] 0 0
61 6.72 [3.5-9.95] 0.15 [0.09-0.2] 20.78 [10.3-31.3] 0 0
62 32.37 [17.9-46.8] 041 [0.2-0.6] 271.76 [129.1-414.4] 0 0
63 27.39 [18.1-36.7] 3.25 [2.54] 324.81 [237.3-412.3] 0 0
64 949.77 [806.9-1092.7] 2.5 [1.54] 16425 [13041.2-19808.9] 0 0
65 53.84 [38.2-69.4] 2.36 [1.3-3.6] 1461.08 [1052-1870.1] 0 0
66 36.6 [16.6-56.6] 6.47 [54-7.5] 364.87 [112.9-616.8] 0 0
67 16.7 [12.7-20.7] 1.66 [1.2-2.1] 104.48 [72.1-136.9] 0 0
68 9.51 [3.2-15.8] 0.54 [0.3-0.8] 8.71 [0-23.9] 0 0
69 21.34 [13.8-28.9] 0.17 [0.1 -0.2] 560.38 [384.7-736.1] 0 0
70 23.1 [12.8-33.4] 0.74 [0.5-1] 262.2 [178.4-346] 0 0
71 77 [48.8-105.2] 4.45 [3.1-5.8] 1190 [936.5-1443.5] 0 0
72 5.38 [3.4-73] 0.3 [0.2-0.4] 39.17 [24.5-53.8] 0 0
73 19.6 [13.4-25.81 0.27 ro.2-0.31 203.75 (140.6-266.91 0 0
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Table 31. Fit Job Repair Computational Tests (Average Numbers)

F JR

Run Cmax Cmax 
95% Cl

CPU
(sec)

CPU
95% Cl Match Match

95% Cl
Shifted
Jobs

S. Jobs
95% C l

1 9.96 [5-14.9] 0.05 [0.04-0.06] 121.31 [64.9-177.7] 0.44 [0.2-0.7]
2 311.97 [284.1-339.8] 22.8 [15.1-30.5] 9688.87 [8768.6-10609.1] 5.78 [4.8-6.7]
3 26.79 [14.9-38.7] 6.2 [4.8-7.6] 572.7 [375-770.4] 0.75 [0.2-1.3]
4 23.4 [7.8-39] 0.59 [0.37-0.8] 256.28 [140.8-371.8] 0.05 [0-0.15]
5 5.32 [2.4-8.3] 1.78 [1.2-2.4] 79.82 [51.1-108.5] 0.2 [0-0.4]
6 2.14 [0-5.05] 2.5 [1.3-3.7] 7.62 [0-15.4] 0.05 [0-0.15]
7 2.09 [0-4.4] 1.51 [0.8-2.2] 15.55 [3.4-27.7] 0.2 [0-0.4]
8 6.29 [1.5-11.1] 1.42 [1.2-1.6] 448.81 [302.3-595.3] 7.05 [5.1-8.9]
9 5.43 [1.95-8.9] 0.02 [0.01-0.021] 11.73 [5.2-18.2] 0.08 [0-0.16]
10 163.16 [138.4-187.9] 0.77 [0.7-0.8] 5092.67 [4359-5826.3] 1.52 [1.1-1.9]
11 6.64 [4.5-8.7] 0.4 [0.22-0.6] 77.99 [57.9-98.1] 0.6 [0.3-0.9]
12 6.24 [1.1-11.4] 2.14 [1.4-2.8] 22.04 [9.5-34.6] 0.1 [0-0.2]
13 289.88 [248.2-331.5] 19.24 [5.8-32.7] 9037.92 [7594.9-10480.9] 8.68 [7.7-9.7]
14 3.76 [0.5-7] 0.024 [0.02-0.03] 16.12 [5.3-26.9] 0.24 [0.1-0.4]
15 3.57 [1.9-5.1] 11.57 [8.8-14.3] 35.3 [21.3-49.3] 0.38 [0.2-0.6]
16 18.86 [11.6-26.1] 0.65 [0.3-0.9] 269.81 [186.4-353.2] 0.72 [0.4-1]
17 8.59 [5-12.2] 6.41 [5-7.8] 109.04 [85.4-132.7] 1.22 [0.9-1.6]
18 17.29 [7.7-26.8] 20.77 [16-25.5] 629.89 [347.3-912.5] 1.1 [0.8-1.3]
19 30.33 [20.8-39.9] 7.23 [5.1-9.3] 620.71 [458.7-782.7] 0.64 [0.4-0.8]
20 109.97 [84.7-135.2] 4.59 [3.8-5.4] 1863.42 [1497.9-2228.9] 3.86 [3.2-45]
21 7.88 [4.1-11.7] 15.79 [9.4-22.1] 130.75 [83.9-177.6] 0.77 [0.4-1.1]
22 128.09 [95-161.2] 1.57 [1.4-1.7] 4106.68 [3185.9-5027.5] 8.88 [7.4-10.3]
23 9.32 [4.5-14.1] 0.03 [0.02-0.03] 107.31 [72.5-142.1] 0.125 [0-0.2]
24 20.63 [13.3-27.9] 0.08 [0.07-0.09] 246.7 [191.4-301.9] 1.525 [1.1-1.9]
25 1.3 [0.24-2.3] 0.02 [0.01-0.02] 6.24 [2.6-9.9] 0.075 [0-0.16]
26 12.73 [7.1-18.3] 0.12 [0.1-0.15] 180.48 [99.1-261.8] 0.367 [0.12-0.6]
27 41.27 [28.9-53.6] 2.21 [1.6-2.8] 1283.69 [909.4-1658] 5.3 [4.1-6.5]
28 18.01 [11.9-24.1] 0.12 [0.1-0.14] 191.77 [137.1-246.5] 1.2 [0.8-1.6]
29 6.97 [3.4-10.5] 0.14 [0.1-0.2] 64.11 [37.4-90.8] 0.23 [0.02-0.4]
30 6.91 [0-13.3] 3.6 [1.4-5.7] 837.09 [471.1-1203.1] 4.4 [2.9-5.9]
31 3.45 [0-8.3] 0.91 [0.8-1] 807.87 [614.3-1001.5] 4.87 [3.7-6]
32 100.9 [72.9-128.9] 0.4 [0.3-0.5] 2208.62 [1631.3-2785.9] 1.2 [0.8-1.6]
33 9.85 [3.4-16.3] 18.93 [13.9-23.9] 445.47 [302.8-588.1] 3.6 [2.7-4.5]
34 5.81 [1.9-9.7] 1.01 [0.6-1.4] 49.98 [26-73.9] 0.133 [0-0.29]
35 0.16 [0-0.95] 6.85 [4.6-9.1] 114.8 [87.3-142.3] 3.45 [2.7-4.2]
36 1.016 [0.2-1.8] 0.03 [0.02-0.03] 4.31 [1.9-6.7] 0.05 [0-0.12]
37 1.21 [0-2.6] 20.97 [18.5-23.4] 256.88 [186.9-326.9] 3.4 [2.6-42]
38 32.43 [25.1-39.7] 5.15 [3.9-6.4J 674.53 [513.9-835.1] 1.1 [0.8-1.4]
39 8.66 [4.4-12.9] 1.48 [0.9-2.1] 214.68 [153.9-275.4] 0.94 [0.6-1.2]
40 0.85 [0.02-1.7] 0.05 [0.04-0.06] 3.8 [0-7.6] 0.04 [0-0.1]
41 7.4 [4.6-10.2] 1.83 [1-2.7] 96.48 [73.5-119.4] 1.64 [1.2-2.1]
42 9.2 [4.6-13.8] 0.82 [0.5-1.1] 61.66 [40.9-82.4] 0.2 [0.1-0.3]
43 13.43 [8.8-18.1] 4.25 [2.97-5.5] 345.15 [257.4-432.9] 1.24 [0.8-1.6]
44 86.2 [60-112.4] 33.62 [30.8-36.4] 3620.11 [2388.5-4851.7] 12.6 [9.8-15.3]
45 3.21 [0.2-6.2] 0.026 [0.02-0.03] 13.59 [4.1-23.1] 0.27 [0.05-0.5]
46 5.22 [3.6-6.8] 15.51 [10.7-20.3] 129.49 [101.5-157.4] 2.64 [2.1-3.2]
47 100.89 [83.6-118.1] 11.87 [8.8-14.9] 1528.55 [1279.6-1777.5] 1.92 [1.5-2.3]
48 9.41 [6.4-12.4] 9.22 [7.1-11.3] 180.8 [135.5-226.1] 0.77 [0.4-1.1]
49 474.03 [422.2-525.8] 28.38 [21.2-35.6] 21779.3 [18620.5-24938] 13.08 [11.8-14.4]
50 8.14 [4.8-11.4] 4.51 [2.7-6.3] 63.41 [39.5-87.3] 0.4 [0.2-0.6]
51 4.79 [2.5-7.1] 0.52 [0.3-0.7] 80.85 [45.1-116.6] 0.4 [0.2-0.6]
52 36.21 [27.9-44.5] 15.92 [11.9-19.9] 1069.03 [824.2-1313.8] 0.82 [0.4-1.2]
53 11.67 [5.95-17.4] 20.17 [13.4-26.9] 112.8 [71.2-154.4] 0.32 [0.1-0.5]
54 43.13 [28.4-57.8] 2.02 [1.6-2.4] 379.56 [270.2-488.9] 0.325 [0.1-0.5]
55 4.64 [2.2-7.1] 2.28 [1.2-3.3] 29.4 [15.9-42.9] 0.14 [0.04-0.2]
56 11.38 [7.5-15.2] 11.57 [9.5-13.6] 152.88 [117.7-188] 0.47 [0.2-0.7]
57 142.8 [124.9-160.7] 26.32 [23.1-29.5] 4424.96 [3801.1-5048.8] 6.65 [5.8-7.5]
58 5.13 [3-1-7.1] 0.18 [0.1-0.2] 99.36 [79.7-119] 1.35 [0.9-1.7]
59 11.56 [5.7-17.4] 2.98 [1.9-4.1] 109.39 [66.6-152.2] 0.37 [0.2-0.6]
60 2.1 [0-4.3] 0.31 [0.1-0.5] 31.94 [12.6-51.3] 0.25 [0-0.5]
61 3.92 [1.7-6.1] 0.65 [0.3-1] 14.43 [8.9-19.9] 0.3 [0.1-0.4]
62 27.39 [17.7-37] 3.56 [2.8-4.3] 274.67 [205.2-344.1] 0.48 [0.3-0.7]
63 14.16 [9.7-18.6] 8.74 [6.4-11] 303.5 [236.6-370.4] 2.17 [1.6-2.7]
64 323.75 [266.5-381] 10.23 [7.03-13.4] 9305.8 [7399.1-11212.5] 9.17 [7.8-10.5]
65 38.45 [27.1-49.8] 39.21 [28.1-50.3] 1162.47 [793-1531.9] 3.37 [2-7-4.1]
66 7.72 [2-13.4] 7.69 [5-10.4] 567.18 [418.9-715.4] 4.467 [3.4-5.5]
67 10.14 [7.6-12.6] 6.01 [4.2-7.8] 101.47 [83.5-119.4] 0.75 [0.5-1]
68 3.57 [0.7-6.5] 0.95 [0.7-1.2] 11.88 [4.3-19.5] 0.15 [0-0.3]
69 15.1 [7.3-22.8] 4.49 [2.3-67] 296.81 [198.3-395.3] 0.37 [0.1-0.6]
70 22.33 [12-32.6] 0.1 [0.08-0.12] 183.4 [116.1-250.7] 0.4 [0.1-0.6]
71 36.94 [30.5-43.3] 10.16 [7.1-13.2] 924.64 [763.2-1086] 3.93 [3.2-4.7]
72 3.18 [1.4-5] 3.08 [1.7-4.4] 26.85 [16.6-37.1] 0.14 [0.02-0.3]
73 9.15 [5.6-12.61 0.82 [0.5-1.11 113.69 f77-150.31 0.18 ro.i-o.3i
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Table 32. Partial Rescheduling Computational Tests (Average Numbers)

P R

Run Cmax Cmax
95% C l

CPU
(sec)

CPU
95% C l Match Match

95% Cl
Shifted
Jobs

S. Jobs
95% C l

1 9.89 [4.7-15.05] 1.03 [0.6-1.4] 136.26 [75.74-196.8] 4.84 [2.7-6.9]2 316.54 [288.3-344.8] 88.87 [70.7-107] 14693.1 [13159-16227.2] 162.92 [137.6-188.2]
3 12.53 [3.8-21.2] 38.26 [18.6-57.9] 793.13 [572.3-1013.9] 21.5 [14.3-28.6]
4 23.13 [7.1-39.1] 1.01 [0.5-1.5] 357.73 [173.1-542.4] 1.2 [0-2.4]6 3.68 [2.2-5.12] 7.12 [5.15-9.1] 130.87 [105.4-156.4] 8.3 [6.2-10.4]6 2.78 [0.9-4.6] 0.17 [0.1-0.3] 13.82 [6.5-21.1] 0.48 [0.1-0.8]
7 3.78 [1.4-6.2] 23.58 [0-48] 34.25 [19.5-48.9] 2.78 [1.4-4.2]8 8.52 [0.5-16.6] 157.77 [55.3-260.2] 1057.91 [601.3-1514.5] 139.05 [82.1-196]
9 3.35 [0-8] 0.27 [0-0.54] 8.94 [0-18.8] 0.35 [0-0.7]10 187.13 [155.6-218.7] 66.01 [44.3-87.7] 7543.95 [5732.7-9355.2] 123.55 [87.9-159.2]11 2.47 [1-3.9] 42.73 [18-67.4] 83.35 [61.5-105.2] 11.04 [7.8-14.2]12 3.42 [0-7.5] 1.11 [0.5-1.7] 17.73 [5.5-30] 0.225 [0.01-0.4]
13 388.41 [326.5-450.3] 152.25 [83.2-221.3] 17681 [14171.9-21190.1] 223.02 [174.9-271.1]
14 4.35 [0.16-8.5] 0.25 [0.1-0.4] 25.26 [6.4-44.1] 1.23 [0.1-2.3]
15 2.97 [1-5] 1.58 [0.7-2.4] 48.51 [27.1-69.9] 4.47 [2.2-6.7]
16 4.63 [0-11.2] 4.03 [1-7.1] 211.6 [114.3-308.9] 12.35 [3-21.7]
17 9.71 [5.5-13.9] 3.9 [3.1-4.76] 111.38 [86.7-136.04] 5.12 [3.85-6.4]
18 28.97 [5.9-52] 3.64 [0.6-6.6] 813.84 [153.5-1474.1] 57.1 [29.9-84.3]
19 35.82 [21.5-50.1] 13.18 [9.8-16.6] 845.02 [607.2-1082.8] 24.83 [15.1-34.5]20 116.09 [86-146.1] 10.22 [7.8-12.6] 2430.62 [1865.9-2995.3] 21.55 [16.2-26.9]21 4.56 [1.4-7.7] 51.23 [29.4-73.1] 140.88 [95.2-186.6] 9.52 [5-14]22 206.26 [157.6-254.9] 49.94 [35.9-64] 8941.1 [6601.1-11281.1] 181.9 [130.2-233.6]
23 7.95 [4.1-11.8] 2.79 [1.9-3.6] 118.14 [83.86-152.4] 1.7 [1-2.3]
24 12.36 [4.9-19.7] 4.34 [3.4-5.3] 277.92 [211.7-344.1] 7.72 [5.8-97]
25 1.08 [0.04-2.1] 0.34 [0.1-0.5] 6.23 [2.5-9.9] 0.45 [0.1-0.7]
26 5.46 [0.9-10] 12.16 [6.3-18] 216.31 [138.7-293.9] 9.82 [6.4-13.3]
27 36.73 [27.9-45.6] 95.36 [64.7-126] 2378.51 [1881-2876] 116.77 [93.2-140.3]
28 11.5 [5.7-17.3] 5.09 [3.9-6.3] 207.53 [156.6-258.4] 5.62 [4.1-7.1]
29 2.43 [0-5] 7.05 [3.8-10.3] 64 [41.9-86.1] 5.43 [3.3-7.6]
30 22.85 [6.9-38.8] 70.67 [29.9-111.5] 2457.27 [1751.9-3162.6] 115.03 [75.7-154.4]
31 0.9 [0-2.1] 25.31 [16.7-33.9] 1135.44 [896.9-1374] 32.44 [24.8-40.1]
32 95.75 [75.6-115.9] 19.78 [15.5-24] 2681.13 [2151.9-3210.3] 29.42 [21.3-37.5]
33 9.99 [3.6-16.3] 24.15 [16-32.3] 903.33 [686.7-1119.9] 40.58 [29.7-51.5]
34 3.4 [1.4-5.3] 7.77 [3.1-12.4] 57.47 [34.8-80.1] 3.1 [1.7-4.5]
35 0 [0-0.1] 50.53 [33.3-67.7] 165.26 [115.7-214.8] 29.22 [20.8-37.6]
36 0.92 [0.1-1.7] 0.89 [0.4-1.3] 4.28 [1.8-6.7] 0.4 [0.1-0.7]
37 0 [0-1.5] 209.86 [176.5-243.2] 522.63 [387.7-657.5] 38.97 [28.4-49.5]
38 30.86 [22.7-39] 37.97 [25.5-50.4] 883.97 [628.1-1139.9] 34.8 [25.6-43.9]
39 3.1 [0-6.3] 8.89 [5.1-12.7] 258.47 [168.9-348] 9.75 [6.6-12.9]
40 0.82 [0-1.7] 0.35 [0-0.8] 3.95 [0-8.4] 0.52 [0-1.2]
41 6.24 [2.2-10.2] 9.36 [7.4-11.3] 104.77 [80.4-129.1] 8.35 [6.4-10.3]
42 3.89 [1.3-6.5] 4.57 [2.6-6.6] 85.71 [59.8-111.6] 2.52 [1.6-3.4]
43 7.85 [1.6-14.1] 14.96 [5.2-24.7] 375.46 [224.3-526.6] 25.57 [15.5-35.6]
44 196.05 [151.2-240.9] 238.13 [200.1-276.2] 13928.8 [10391.6-17465.9] 393.89 [300.3-487.5]
45 3.76 [0.1-7.4] 0.99 [0.5-1.5] 16.06 [4.8-27.3] 1.25 [0.2-2.3]
46 3.97 [2.1-5.9] 58.87 [33.7-84] 185.14 [144.2-226.1] 27.35 [20.9-33.8]
47 102.55 [87-118] 21.76 [18.1-25.4] 1952.4 [1631-2273.8] 15.78 [12.4-19.1]
48 7.17 [3.9-10.4] 38.39 [0-77.4] 216.54 [159.4-273.7] 14 [9.8-18.2]
49 554.15 [496.4-611.9] 303.82 [281.2-326.4] 39900.2 [34707.8-45092.7] 315.51 [250.7-380 3]
60 3.89 [0.8-7] 109.4 [0-223.6] 87.61 [58.5-116.7] 7.27 [4.5-10]
51 2.43 [0.7-4.1] 36.77 [20.6-52.9] 113.04 [63 7-162.3] 10.13 [5.5-14.8]
52 36.11 [26.6-45.6] 170.09 [102.8-237.3] 1643.03 [1268.9-2017.2] 48.54 [33.7-63.4]
53 3.86 [0.4-7.3] 135.85 [72.3-199.4] 141.53 [96.5-186.5] 6.42 [4-8.8]
54 35.06 [23.2-46.9] 11.65 [8.5-14.8] 474.75 [357.8-591.7] 2.38 [1.4-3.4]
55 3.08 [1.1-5.1] 3.24 [1.3-5.2] 29.63 [17-42.2] 2.94 [1.4-4.5]
56 7.17 [4.2-10.1] 231.52 [137.7-325.3] 203.02 [158.2-247.8] 14.32 [10.2-18.5]
57 148.72 [131.7-165.8] 140.31 [123.2-157.4] 6960.47 [6103.5-7817.4] 196.71 [164.1-229.3]
58 4.38 [2.3-6.5] 17.07 [12.9-21.2] 113.28 [92.4-134.2] 8.27 [6.6-9.9]
59 6.13 [1.4-10.9] 25.66 [12.1-39.2] 126.3 [81.1-171.4] 6.28 [3.8-88]
60 1.51 [0.6-2.4] 139.42 [100.1-178.7] 56.69 [38.6-74.7] 8.29 [5.5-11]
61 2.98 [0.8-5.1] 3.24 [1.9-4.6] 13.91 [8.2-19.6] 1 [0.5-1.5]
62 26.4 [17.2-35.6] 20.23 [15.4-25] 325.21 [242.5-407.9] 3.44 [2.3-4.5]
63 10.49 [6.5-14.4] 70.66 [48.7-92.6] 394.71 [320.1-469.3] 26.23 [20.1-32.4]
64 459.71 [376.2-543.3] 122.52 [71.5-173.5] 17884.6 [13503.9-22265.3] 206.4 [160.8-251.9]
65 47.08 [31.6-62.5] 15.81 [10.1-21.5] 1576.42 [1027.2-2125.6] 147.2 [109.9-184.5]
66 1 [0-2.1] 226.92 [106.1-347.7] 1085.26 [763.8-1406.7] 67.08 [43.9-90.2]
67 8.75 [6.4-11.1] 2.65 [2.1-3.2] 110.45 [85.1-135.8] 6.56 [4.5-8.6]68 4.96 [1.3-8.6] 0.44 [0 12-0.8] 10.31 [3.7-17] 0.7 [0.2-1.2]
69 4.84 [1.9-7.8] 14.36 [7.4-21.3] 503.94 [340.5-667.4] 9.13 [5.7-12.5]
70 11 76 [6.8-16.7] 4.31 [2.7-5.9] 197.96 [135.3-260.6] 4.05 [2.5-5.6]
71 18.77 [12-25.5] 269.14 [134.3-404] 1167.61 [954.9-1380.3] 48.24 [37.6-58.9]
72 2.74 [1.1-4.3] 4.69 [1.6-7.7] 31.1 [19.8-42.4] 4.3 [2.6-6]
73 9.03 [6-12] 1.63 n .1-2.21 147.95 T98-197.91 2.12 [1.1-3.1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Table 33. Complete Rescheduling Computational Tests (Average Numbers)

C R

Run Cmax Cmax 
95% C l

CPU
(sec)

CPU 
95% C l Match Match 

95% Cl
Shifted
Jobs

S. Jobs 
95% C l

1 8.53 [4.2-12.8] 0.58 [0.4-0.7] 181.58 [112.9-250.3] 2.9 [1.8-3.9]
2 298.48 [273.8-323.1] 44.24 [37-51.5] 20571.4 [19079.5-22063.2] 60.88 [56-65.7]
3 19.07 [11.8-26.3] 51.66 [27.01-76.3] 1118.05 [884.3-1351.8] 15.25 [11.2-19.3]
4 23.13 [7.1-39.1] 0.38 [0.2-0.5] 357.73 [173.1-542.4] 1.2 [0-2.4]
S 3.29 [1.5-5.1] 5.62 [2.9-83] 134.13 [82.7-185.6] 6.5 [3.9-9]
6 2.78 [0.9-4.6] 0.26 [0.1-0.4] 13.82 [6.5-21.1] 0.48 [0.1-0.8]
7 3.41 [1.21-5.6] 24.32 [0-50.1] 34.78 [20.3-49.3] 2.9 [1.5-4.3]
8 2.32 [0-7.6] 177.8 [127.6-227.9] 2179.87 [1782.4-2577.4] 108 [90.2-125.8]
9 4.28 [1.4-7.1] 0.95 [0.5-1.3] 10.58 [4.6-16.5] 0.64 [0.3-1]
10 195.29 [161.7-228.8] 20.36 [16.4-24.3] 13939.2 [11387.9-16490.4] 20.3 [17.2-24]
11 2.98 [1.5-4.5] 256.59 [91.4-421.7] 100.51 [75.6-125.4] 13.18 [9.8-16.6]
12 3.42 [0-7.5] 0.3 [0.1-0.5] 17.73 [5.5-30] 0.225 [0.01-0.4]
13 255.64 [211.9-299.3] 117.74 [88.3-147.2] 33103.1 [29683.1-36523] 71.25 [63.4-79.1]
14 2.64 [0-6] 0.71 [0,2-1.2] 15.94 [0-32.5] 1.08 [0-2.4]
15 2.98 [0.4-5.5] 3.07 [1.1-5.1] 59.92 [30-89.8] 4.12 [2.1-6.2]
16 6.4 [0-14.8] 18.01 [5.8-30.2] 460.19 [244.1-676.3] 8.25 [4.1-12.4]
17 9.71 [5.5-13.9] 9.85 [6.9-12.8] 111.38 [86.7-136] 5.12 [3.8-64]
18 14.78 [4.9-24.7] 4.32 [2.9-57] 3360.66 [2309.1-4412.2] 8.96 [6.3-11.6]
19 27.49 [16-39] 1.1 [0.8-1.4] 1311.79 [942-1681.6] 4.48 [3.1-5.9]
20 90.55 [67.2-113.8] 9.63 [7.8-11.4] 3734.3 [3175.9-4292.6] 16.36 [13.2-19.5]
21 3.75 [0.2-7.3] 184.1 [94.1-274.1] 277.8 [199.5-356.1] 16.3 [11.7-20.9]
22 125.22 [95-155.5] 27.63 [24.9-30.3] 21629.7 [18913-24346.4] 78.98 [69.7-88.2]
23 7.39 [4.2-10.6] 0.68 [0.5-0.8] 116.05 [84.4-147.7] 1.46 [0.9-2]
24 12.47 [5.3-19.6] 7 [5.5-85] 288.57 [228-349.1] 7.66 [6.1-9.2]
25 1.35 [0.1-2.6] 0.55 [0.3-0.8] 5.86 [2.6-9.1] 0.44 [0.2-0.7]
26 7.55 [3.3-11.8] 11.82 [8.1-15.6] 305.31 [228.5-382.1] 10.34 [8-12.7]
27 38.23 [30.9-45.5] 147.55 [119.4-175.7] 4466.79 [4030.2-4903.39] 99.72 [88.7-110.8]
28 12.24 [7-17.5] 2.86 [2.2-35] 215.02 [167.6-262.4] 6.34 [4.8-79]
29 2.61 [0.4-4.8] 13.14 [8.6-17.7] 58 [40.4-75.6] 4.86 [3.1-6.6]
30 3.55 [0-7.1] 255.24 [153.1-357.4] 6037.55 [4941.4-7133.7] 99.93 [81.7-118.1]
31 3 [0-6.1] 78.22 [62.4-94] 2308.3 [1961.9-2654.8] 55.62 [48.3-62.9]
32 84.5 [62.1-106.9] 9.56 [7.7-11.4] 3990.99 [3152.9-4829.1] 8.45 [6.5-10.4]
33 10.7 [5.1-16.3] 72.4 [58.9-85.8] 1443.49 [1190.8-1696.2] 43.35 [36.3-50.4]
34 3.91 [1.3-6.5] 8.01 [3.7-12.3] 57.6 [34.9-80.2] 2.87 [1.4-4.3]
35 0 [0-0] 94.5 [66.8-122.2] 222.25 [168.1-276.3] 47.6 [37.2-58]
36 0.92 [0.1-1.7] 0.26 [0.1-0.4] 4.28 [1.8-6.7] 0.4 [0.1 -0.7]
37 0 [0-1.3] 472.8 [400-545.6] 1193.98 [1021-1366.9] 78.2 [67.2-89.1]
38 32.14 [24.9-39.3] 22.9 [17.5-28.3] 1441.23 [1138.1-1744.4] 10.22 [8-12.4]
39 3.41 [0-6.8] 11.63 [7.8-15.5] 376.94 [263.2-490.6] 9.55 [6.7-12.4]
40 0.82 [0-1.7] 0.29 [0-0.6] 3.95 [0-8.4] 0.52 [0-1.2]
41 6.24 [2.2-10.2] 8.57 [6.7-10.4] 104.77 [80.4-129.1] 8.35 [6.4-10.3]
42 3.7 [1-6.4] 3.66 [2.4-4.9] 91.72 [64.1-119.3] 3.15 [2.1-4.2]
43 8.6 [1.8-15.4] 32.63 [21.7-43.5] 655.46 [450.2-860.7] 18.32 [11.6-25.1]
44 78.1 [50.3-105.9] 113.95 [98.3-129.6] 30368.2 [25741.9-34994.4] 140.4 [118.9-161.9]
45 4.29 [0.1-8.4] 1.14 [0.6-1.7] 18.36 [5.7-31] 1.43 [0.2-2.6]
46 4.99 [2.75-7.2] 81.34 [53.9-108.7] 240.66 [191.9-289.3] 37.23 [27.8-46.6]
47 96.97 [80.1-113.8] 34.49 [27.9-41.1] 2559.07 [2206.7-2911.5] 10.84 [8.9-12.7]
48 5.38 [3.1-7.7] 56.34 [18.4-94.2] 313.84 [239.9-387.7] 13.03 [9.7-16.3]
49 473.33 [414.6-532] 158.45 [121.6-195.3] 62882.9 [57233.6-68532.3] 126.17 [113.3-138.9]
50 2.96 [0.2-5.7] 279.45 [39.2-519.7] 105.81 [72.2-139.4] 9.35 [6.5-12.2]
51 1.87 [0.02-3.7] 13.12 [4.8-21.4] 123.59 [53.5-193.7] 5.9 [2.8-89]
52 36.71 [27.9-45.5] 12.17 [10-14.3] 2227.53 [1829.4-2625.7] 10.1 [8.4-11.8]
53 3.31 [0.04-6.6] 128.94 [67.7-190.2] 150.21 [102.7-197.7] 6.5 [4.1-8.8]
54 38.02 [26.3-49.8] 3.12 [2.5-37] 568.76 [436.6-700.9] 2.54 [1.9-3.1]
55 3.089 [1.1-5.1] 6.83 [3.2-10.5] 29.63 [17.05-42.2] 2.7 [1.3-4.1]
56 6.44 [4-8.9] 186.96 [128.4-245.5] 207.94 [164.7-251.1] 13.25 [10.2-16.3]
57 132.58 [115-150.1] 81.59 [71.5-91.6] 10322.7 [9333-11312.5] 56.45 [50.4-62.5]
58 3.3 [1.2-5.3] 5.75 [4.6-6.9] 119.96 [97-142.9] 9.17 [7.5-10.9]
59 7.31 [1.9-12.7] 27.6 [12.1-43] 137.71 [81.3-194.1] 7.5 [3.8-11.2]
60 0.7 [0-1.8] 313.28 [52.4-574.1] 56.58 [37.4-75.7] 9.15 [5.9-12.4]
61 3.27 [0.8-5.7] 3.03 [1.8-4.2] 14.38 [8.1-20.6] 1 [0.5-1.5]
62 19.17 [8.7-29.6] 5.8 [4.5-7.1] 375.03 [273.3-476.8] 2.75 [2-3.5]
63 10.56 [7.3-13.8] 70.1 [53.4-86.8] 433.26 [357.3-509.2] 32.2 [25.6-38.8]
64 297.94 [237.4-358.5] 176.4 [150.6-202.2] 29841.1 [26097.7-33584.4] 66.1 [58.2-74]
65 31.53 [19.1-44] 124 [98.8-149.2] 4958.36 [4184.1-5732.6] 24 [20.5-27.5]
66 7.42 [0-15.8] 512.97 [475.2-550.7] 1610.68 [1292.3-1929.1] 74.4 [61.2-87.6]
67 8.82 [6.4-11.2] 7.35 [5.7-9] 111.52 [85.9-137.2] 6.53 [4.5-86]
68 4.96 [1.3-8.6] 0.91 [0.3-1.5] 10.31 [3.7-16.9] 0.7 [0.2-1.2]
69 4.91 [1.5-8.3] 13.06 [5.4-20.7] 508.8 [289.9-727.7] 7.9 [4.6-11.2]
70 11.95 [6.2-17.7] 5.26 [3.1-7.4] 235.24 [157-313.5] 4.93 [3-6.8]
71 23.73 [16.6-30.9] 604.2 [539.1-669.3] 1791.8 [1505-2078.6] 77.72 [65.1-90.3]
72 3.29 [1.3-5.3] 5.42 [1.4-9.4] 33.25 [19.5-47] 4.67 [2.6-67]
73 9.41 [6-12.81 0.98 [0.7-1.3] 152.11 [96.1-208.2] 2.35 [1.2-3.5]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Performance Measures’ Statistical Analyses

To be able to determine the significance of the factors and their interactions, 

statistical analyses are carried out for each performance measure in the case of each of the 

four rules. Minitab 14.2 Statistical Software was used for the analyses.

Cmax Difference Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the four rules in the case of the Cmax Difference performance measure.

Cmax Difference in the RSR rule

The regression statistics reported in Table 34 indicate a R Square = 0.793; this is an 

acceptable value, indicating the success of the regression in predicting the values of the 

dependent variable Cmax Difference within the sample. However, it also indicates that not 

all the factors have significant effects (as R Square is not very big).

Table 34. Cmax Difference Regression Results for RSR rule

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.793
0.669

114.267
73
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Table 35. Cmax Difference ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 2254011 83482 6.39 0.000
Residual 45 587559 13057
Total 72 2841570

Based on the small p-value listed for the whole model (Table 35), one can conclude 

the significance of the model. This means that at least some of the factors used in the 

experiment, and/or their interactions have significant influence on Cmax Difference. To 

determine which factors and interactions are the most significant, further analysis is needed. 

Table 36 summarizes the effect test for all factors and their interactions. At significance 

level of 5% (i.e. 95% Confidence Interval), the significant factors and/or interactions are 

bolded. These factors were determined to be significant due to a relatively large t-Stat and a 

small p-value (less than 0.05). Factor C (Number o f  Machines) has a negative effect on 

Cmax Difference, i.e. when the number of machines increases, Cmax Difference decreases. 

This is logical because the jobs’ load will be split over the machines, meaning that more 

machines will lead to smaller loads. Interaction DF (Repair Duration and Breakdown) has a 

positive effect on Cmax Difference. This makes sense because if the repair durations and 

breakdown rate are higher, the delays will be more frequent and longer; i.e. CmaxR will 

increase.
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Table 36. Cmax Difference Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 37.41 54.93 0.68 0.499

A 32.21 17.75 1.81 0.076
B 22.89 38.47 0.6 0.555
C -119.61 40.91 -2.92 0.005
D -24.19 41.35 -0.59 0.561
E -3.9 39.89 -0.1 0.922
F -57.31 42.45 -1.35 0.184

AB 0.6936 0.9494 0.73 0.469
AC 0.117 0.9763 0.12 0.905
AD 0.758 1.024 0.74 0.463
AE -0.6894 0.9271 -0.74 0.461
AF -0.929 1.084 -0.86 0.396
BC -44.93 23.43 -1.92 0.062
BD 15.68 25.83 0.61 0.547
BE -19.41 22.22 -0.87 0.387
BF -18.49 23.65 -0.78 0.438
CD -4.24 23.37 -0.18 0.857
CE -21.44 22.33 -0.96 0.342
CF -19.48 24.41 -0.8 0.429
DE 37.17 24.47 1.52 0.136
DF 121.69 26.7 4.56 0
EF 42.59 22.07 1.93 0.06
AA -12.74 30.75 -0.41 0.681
BB -24.12 30.94 -0.78 0.44
CC 80.36 30.89 2.6 0.013
DD -53.62 29.98 -1.79 0.08
EE 27.5 31.62 0.87 0.389
FF 49.76 33.34 1.49 0.143

Cmax Difference in the FJR rule

The same approach implemented in analyzing Cmax Difference in the RSR rule was 

used here. The regression statistics are reported in Table 37, ANOVA test in Table 38, and 

Effect test in Table 39. The results indicate the success of the regression in predicting the 

values of Cmax Difference and that the model is significant since the p-value is very small.
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Table 37. Cmax Difference Regression Results for FJR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.788
Adjusted R Square 0.66
Standard Error 49.0274
Observations 73

Table 38. Cmax Difference ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 401059 14854 6.18 0.000
Residual 45 108166 2404
Total 72 509225

The factors were determined to be significant due to a relatively large t-Stat and a 

small p-value (less than 0.05). In addition to Factor C (Number o f  Machines) and interaction 

DF (Repair Duration and Breakdown) that were determined to have a significant effect on 

Cmax Difference from the RSR rule analysis, interaction EF (Idle Time and Breakdown) had 

also a positive effect on Cmax Difference. It was anticipated that EF interaction impacts 

Cmax Difference because if  the breakdown rate was high and the idle time inserted is low, 

then CmaxR would be much higher than Cmaxp. In other words, E and F are very 

interdependent as a larger Idle Time can absorb more Breakdowns.
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Table 39. Cmax Difference Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 24.61 23.57 1.04 0.302

A 14.413 7.617 1.89 0.065
B 11.43 16.5 0.69 0.492
C -63.18 17.55 -3.6 0.001
D -15.32 17.74 -0.86 0.392
E -3.83 17.11 -0.22 0.824
F -25.35 18.21 -1.39 0.171

AB 0.2492 0.4074 0.61 0.544
AC 0.2391 0.4189 0.57 0.571
AD 0.3036 0.4395 0.69 0.493
AE -0.2593 0.3978 -0.65 0.518
AF -0.2372 0.4651 -0.51 0.612
BC -19.66 10.05 -1.96 0.057
BD 2.72 11.08 0.25 0.807
BE -4.463 9.535 -0.47 0.642
BF -2.94 10.15 -0.29 0.773
CD -3.99 10.03 -0.4 0.692
CE -12.087 9.582 -1.26 0.214
CF -6.92 10.47 -0.66 0.512
DE 18.98 10.5 1.81 0.077
DF 48.49 11.46 4.23 0
EF 21.931 9.468 2.32 0.025
AA -6.78 13.19 -0.51 0.61
BB -8.33 13.28 -0.63 0.533
CC 37.66 13.25 2.84 0.007
DD -24.12 12.86 -1.87 0.067
EE 7.28 13.57 0.54 0.594
FF 14.22 14.3 0.99 0.325

Cmax Difference in the PR rule

The same approach implemented earlier was used here. The results indicate the 

success of the regression in predicting the values of Cmax Difference (Table 40) and that the 

model is significant since the p-value is very small (Table 41).

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 42; these factors are Number o f Machines and the interaction 

between Repair Duration and Breakdown.
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Table 40. Cmax Difference Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.784
Adjusted R Square 0.654
Standard Error 61.9666
Observations 73

Table 41. Cmax Difference ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 625407 23163 6.03 0.000
Residual 45 171794 3840
Total 72 798201

Table 42. Cmax Difference Effect Test for PR rule

Predictor Coefficients SE  C oef tS ta t P-value
Constant 13 29.79 0 .44 0.665

A 14.332 9.627 1.49 0 .144
B 17.58 20.86 0 .84 0 .404
C -69 .32 22.19 -3 .12 0 .003
D -18 .2 22.42 -0.81 0.421
E 5.39 21.63 0 .25 0 .804
F -27 .5 23.02 -1 .19 0.239

AB 0.2719 0 .5149 0 .53 0.6
AC 0.0814 0 .5295 0 .15 0.879
AD 0.5423 0 .5555 0 .98 0.334
AE -0.4851 0 .5027 -0 .96 0 .34
AF -0 .4187 0 .5878 -0.71 0 .48
BC -23 .98 12.71 -1 .89 0 .066
BD 4.59 14.01 0 .33 0.745
BE -8.73 12.05 -0 .72 0.473
BF -4 .73 12.83 -0 .37 0.714
C D -3.69 12.68 -0 .29 0.772
C E -6 .66 12.11 -0 .55 0.585
CF -14.31 13.24 -1 .08 0.285
DE 14.73 13.27 1.11 0.273
DF 63.66 14.48 4 .4 0
EF 21.76 11.97 1.82 0.076
AA -1.57 16.68 -0 .09 0.926
BB -11 .23 16.78 -0 .67 0.507
CC 49.79 16.75 2 .97 0.005
DD -28 .99 16.26 -1 .78 0.081
EE 14.24 17.15 0 .83 0.411
FF 22.29 18.08 1.23 0 .224
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Cmax Difference in the CR rule

The same approach implemented earlier was used here. The results indicate the 

success of the regression in predicting the values of Cmax Difference (Table 43) and that the 

model is significant since the p-value is very small (Table 44).

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 45; these factors are Number o f  Machines and the interactions 

between Repair Duration and Breakdown and Idle Time and Breakdown, and their analyses 

were discussed earlier.

Table 43. Cmax Difference Regression Results for CR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.773
Adjusted R Square 0.637
Standard Error 49.2828
Observations 73

Table 44. Cmax Difference ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 372252 13787 5.68 0.000
Residual 45 109296 2429
Total 72 481547
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Table 45. Cmax Difference Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 20.59 23.69 0.87 0.389

A 12.177 7.656 1.59 0.119
B 14.06 16.59 0.85 0.401
C -62.89 17.65 -3.56 0.001
D -18.45 17.83 -1.03 0.306
E -2.61 17.2 -0.15 0.88
F -23.7 18.31 -1.29 0.202

AB 0.1516 0.4095 0.37 0.713
AC 0.2838 0.4211 0.67 0.504
AD 0.3625 0.4418 0.82 0.416
AE -0.274 0.3998 -0.69 0.497
AF -0.2433 0.4675 -0.52 0.605
BC -18.56 10.11 -1.84 0.073
BD 1.71 11.14 0.15 0.879
BE -4.034 9.584 -0.42 0.676
BF -2.36 10.2 -0.23 0.818
CD -4.85 10.08 -0.48 0.633
CE -12.309 9.632 -1.28 0.208
CF -7.74 10.53 -0.74 0.466
DE 19.52 10.55 1.85 0.071
DF 45.77 11.52 3.97 0
EF 21.767 9.518 2.29 0.027
AA -7.97 13.26 -0.6 0.551
BB -5.25 13.34 -0.39 0.696
CC 37.96 13.32 2.85 0.007
DD -22.87 12.93 -1.77 0.084
EE 4.94 13.64 0.36 0.719
FF 13.81 14.38 0.96 0.342

Cmax Difference Analysis Summary

The factors and interactions’ effects on Cmax Difference were analyzed and it is 

concluded that the significant factors are Number o f Machines and the interactions between 

Repair Duration and Breakdown and Idle Time and Breakdown. Number o f  Machines has a 

negative effect on Cmax Difference, while the interactions between Repair Duration and 

Breakdown and Idle Time and Breakdown have a positive one, i.e. increases Cmax 

Difference.
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CPU Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the four rules in the case of the CPU performance measure. This analysis will follow 

the same approach used for the Cmax Difference Statistical Analysis.

CPU in the RSR rule

Table 46. CPU Regression Results for RSR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.656
Adjusted R Square 0.449
Standard Error 1.11545
Observations 73

The R Square reported in the regression statistics (Table 46) indicates that 65.6% of 

the variation in CPU can be predicted using the regression model.

Table 47. CPU ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 106.597 3.948 3.17 0.000
Residual 45 55.99 1.244
Total 72 162.587

Based on the p-value listed for the whole model (Table 47), one can conclude the 

model is significant since the p-value is very small. This means that at least some of the 

factors used in the experiment, and/or their interactions have significant influence on CPU.
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To determine which factors and interactions are the most significant, further analysis is 

needed. Table 48 summarizes the effect test for all factors and their interactions. At 

significance level of 5% (i.e. 95% Confidence Interval), the significant factors and/or 

interactions are bolded.

Table 48. CPU Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 0.3795 0.5212 0.73 0.47

A 0.1044 0.1687 0.62 0.539
B 0.706 0.1697 4.16 0
C 0.2217 0.1731 1.28 0.207
D 0.0545 0.1713 0.32 0.752
E 0.0921 0.1668 0.55 0.584
F -0.5646 0.1741 -3.24 0.002

AB 0.1047 0.2101 0.5 0.621
AC 0.2 0.2174 0.92 0.362
AD 0.1115 0.2286 0.49 0.628
AE -0.015 0.2165 -0.07 0.945
AF 0.1398 0.2217 0.63 0.532
BC 0.6398 0.2235 2.86 0.006
BD -0.0031 0.2198 -0.01 0.989
BE 0.0652 0.2198 0.3 0.768
BF -0.4901 0.2262 -2.17 0.036
CD -0.3574 0.2282 -1.57 0.124
CE 0.2746 0.2255 1.22 0.23
CF -0.569 0.2351 -2.42 0.02
DE -0.2904 0.2195 -1.32 0.192
DF 0.2921 0.2406 1.21 0.231
EF 0.0952 0.2203 0.43 0.668
AA -0.0035 0.2999 -0.01 0.991
BB 0.3088 0.2885 1.07 0.29
CC 0.282 0.2912 0.97 0.338
DD -0.1554 0.2907 -0.53 0.596
EE -0.3519 0.3118 -1.13 0.265
FF 0.8267 0.295 2.8 0.007

Factor B (Number o f Jobs) has a positive effect on CPU, i.e. when the number of jobs 

increases, CPU increases too. This is logical because more jobs will need to be shifted when 

a disruption occurs.
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Factor F {Breakdown) has a negative effect on CPU because the larger the time between 

breakdowns the less they will occur and less CPU will be required.

Interaction BC {Number o f  Jobs and Number o f Machines) has a positive effect on CPU 

because when the number of machines and jobs increases, the problem size becomes larger 

and more CPU is needed.

Interactions BF {Number o f  Jobs and Breakdown) and CF {Number o f  Machines and 

Breakdown) have a negative effect on CPU. This is because of their interaction with 

Breakdown, as the latter has a negative effect on CPU.

CPU in the FJR rule

The FJR regression statistics are reported in Table 49, ANOVA test in Table 50, and 

Effect test in Table 51. The results indicate the success of the regression in predicting the 

values of CPU and that the model is significant since the p-value is very small.

Table 49. CPU Regression Results for FJR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.688
Adjusted R Square 0.501
Standard Error 5.57668
Observations 73

Table 50. CPU ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 3089.1 114.41 3.68 0.000
Residual 45 1399.47 31.1
Total 72 4488.57
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Table 51. CPU Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -1.215 2.606 -0.47 0.643

A -1.012 0.8432 -1.2 0.236
B 4.2585 0.8485 5.02 0
C -2.3371 0.8654 -2.7 0.01
D -0.9629 0.8566 -1.12 0.267
E 1.022 0.8341 1.23 0.227
F -2.8425 0.8706 -3.26 0.002

AB -1.085 1.05 -1.03 0.307
AC 1.332 1.087 1.23 0.227
AD 1.08 1.143 0.95 0.35
AE -1.103 1.083 -1.02 0.314
AF 1.003 1.109 0.9 0.37
BC -1.157 1.117 -1.04 0.306
BD 0.042 1.099 0.04 0.97
BE 2.275 1.099 2.07 0.044
BF -0.498 1.131 -0.44 0.662
CD -0.142 1.141 -0.12 0.902
CE 0.585 1.127 0.52 0.606
CF 1.517 1.176 1.29 0.203
DE 1.633 1.097 1.49 0.144
DF 2.655 1.203 2.21 0.032
EF 0.571 1.101 0.52 0.607
AA -0.116 1.499 -0.08 0.939
BB -0.002 1.442 0 0.999
CC 5.238 1.456 3.6 0.001
DD -1.019 1.454 -0.7 0.487
EE 3.33 1.559 2.14 0.038
FF 3.377 1.475 2.29 0.027

The factors were determined to be significant due to a relatively large t-Stat and a 

small p-value (less than 0.05). Factors B and F were explained earlier.

Factor C (Number of Machines) has a negative effect on CPU in the case of FJR because the 

larger the number of machines, the easier for FJR to fit a job as there are more options.

BE positive effect can be attributed to the interaction of factor E with B, as the latter has a 

strong positive effect on CPU.

DF interaction in FJR has a positive effect; this is logical because for example if  the repair 

duration and breakdown rate are both high, FJR will require more time to fit the down jobs.
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CPU in the PR rule

The PR regression statistics are reported in Table 52, ANOVA test in Table 53, and 

Effect test in Table 54. The results indicate the success of the regression in predicting the 

values of CPU and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 54; these factors are Number o f  Jobs, Breakdown, and the 

interaction between Number o f  Jobs and Breakdown.

Table 52. CPU Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.783
Adjusted R Square 0.653
Standard Error 43.54
Observations 73

Table 53. CPU ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 307954 11406 6.02 0.000
Residual 45 85308 1896
Total 72 393262
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Table 54. CPU Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -23.66 20.35 -1.16 0.251

A -3.006 6.584 -0.46 0.65
B 53.166 6.624 8.03 0
C -2.055 6.756 -0.3 0.762
D -2.762 6.688 -0.41 0.682
E -10.877 6.513 -1.67 0.102
F -30.948 6.797 -4.55 0

AB 0.477 8.202 0.06 0.954
AC 12.294 8.485 1.45 0.154
AD 1.588 8.921 0.18 0.86
AE -1.455 8.452 -0.17 0.864
AF -3.278 8.655 -0.38 0.707
BC 9.934 8.723 1.14 0.261
BD -8.847 8.58 -1.03 0.308
BE -15.928 8.581 -1.86 0.07
BF -25.264 8.828 -2.86 0.006
CD 2.852 8.908 0.32 0.75
CE 2.28 8.802 0.26 0.797
CF 13.714 9.178 1.49 0.142
DE 3.555 8.567 0.41 0.68
DF -2.11 9.392 -0.22 0.823
EF 0.9 8.599 0.1 0.917
AA -1.17 11.71 -0.1 0.921
BB 25.13 11.26 2.23 0.031
CC 39.09 11.37 3.44 0.001
DD -8.71 11.35 -0.77 0.447
EE 15.89 12.17 1.31 0.198
FF 39.07 11.52 3.39 0.001

CPU in the CR rule

The CR regression statistics are reported in Table 55, ANOVA test in Table 56, and 

Effect test in Table 57. The results indicate the success of the regression in predicting the 

values of CPU and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 57; these factors are Number o f Jobs, Number o f Machines,
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Breakdown, and the interactions between Processing Time and Breakdown, Number o f Jobs 

and Number o f  Machines, and Number o f Jobs and Breakdown.

Table 55. CPU Regression Results for CR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.864
Adjusted R Square 0.783
Standard Error 56.911
Observations 73

Table 56. CPU ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 926954 34332 10.60 0.000
Residual 45 145749 3239
Total 72 1072703

AF has a negative effect on CPU which is attributed to the interaction between factors A and 

F, as the latter has a strong negative effect on CPU.

Note that factor C has a positive effect on CPU in the case of CR (versus a negative one in 

the other rules); this is because CR uses a MIP to obtain optimal new schedules every time a 

disruption occurs, leading to a higher CPU especially as the problem size increases, i.e. when 

B and C increase.
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Table 57. CPU Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -37.09 26.59 -1.39 0.17

A 9.342 8.605 1.09 0.283
B 76.294 8.659 8.81 0
C 39.618 8.831 4.49 0
D 11.854 8.742 1.36 0.182
E -6.984 8.512 -0.82 0.416
F -47.834 8.885 -5.38 0

AB 6.31 10.72 0.59 0.559
AC 8.85 11.09 0.8 0.429
AD -2.65 11.66 -0.23 0.821
AE -6,85 11.05 -0.62 0.538
AF -29.5 11.31 -2.61 0.012
BC 61.9 11.4 5.43 0
BD 12.37 11.22 1.1 0.276
BE -13.4 11.22 -1.19 0.238
BF -50.94 11.54 -4.41 0
CD 2.99 11.64 0.26 0.799
CE -2.79 11.51 -0.24 0.81
CF -10.8 12 -0.9 0.373
DE -11.63 11.2 -1.04 0.304
DF 19.98 12.28 1.63 0.111
EF 0.31 11.24 0.03 0.978
AA 16.25 15.3 1.06 0.294
BB 42.44 14.72 2.88 0.006
CC 41.43 14.86 2.79 0.008
DD -0.78 14.83 -0.05 0.958
EE 13.9 15.91 0.87 0.387
FF 43.4 15.05 2.88 0.006

CPU Analysis Summary

The factors and interactions’ effects on CPU were analyzed and it is concluded that 

the significant factors and interactions differ among the rules. For example, factor C was 

significant in rules FJR and CR but insignificant in RSR and PR.
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Match-up Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the four rules in the case o f the Match-up Time performance measure. This analysis 

will follow the same approach used earlier.

Match-up in the RSR rule

The RSR regression statistics are reported in Table 58, ANOVA test in Table 59, and 

Effect test in Table 60. The results indicate the success of the regression in predicting the 

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 60; these factors are Number o f Jobs, Number o f Machines, Idle 

Time, and Breakdown, and the interactions between Number o f  Machines and Idle Time, and 

Number o f Machines and Breakdown.

Table 58. Match-up Regression Results for RSR rule

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.74
0.584

3974.41
73
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Table 59. Match-up ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 2022849784 74920362 4.74 0.000
Residual 45 710817562 15795946
Total 72 2733667346

Table 60. Match-up Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 1542 1857 0.83 0.411

A 842.4 601 1.4 0.168
B 1847.5 604.7 3.06 0.004
C -3165.4 616.7 -5.13 0
D -176 610.5 -0.29 0.774
E -1444.1 594.5 -2.43 0.019
F -2115.6 620.5 -3.41 0.001

AB 807.8 748.7 1.08 0.286
AC -1335.3 774.6 -1.72 0.092
AD -102 814.3 -0.13 0.901
AE -669.6 771.5 -0.87 0.39
AF -397.2 790 -0.5 0.618
BC -2627 796.2 -3.3 0.002
BD -106 783.2 -0.14 0.893
BE -933.7 783.3 -1.19 0.24
BF -1379 805.9 -1.71 0.094
CD 1164.8 813.1 1.43 0.159
CE 1666.2 803.5 2.07 0.044
CF 3537.7 837.8 4.22 0
DE 622 782 0.8 0.431
DF 749.6 857.4 0.87 0.387
EF 1488.5 784.9 1.9 0.064
AA -1333 1069 -1.25 0.219
BB 105 1028 0.1 0.919
CC 2793 1038 2.69 0.01
DD -2348 1036 -2.27 0.028
EE 863 1111 0.78 0.442
FF 828 1051 0.79 0.435

Table 61 describes the factors effects on Match-up Time in the case of RSR and lists the 

causes of these effects.
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Table 61. Factors Effects on Match-up Time in the case of RSR

M a t c h - u p  E f f e c t s  D i a g n o s i s  f o r  R S R  r u l e

Factor1 

Interaction Cause o f Effect

B + When the number of jobs increases, RSR will shift more jobs 
to the right, i.e. longer time to match.

C When there are more machines, the jobs on each machine 
will be less, i.e. time to match will be less.

E
It is easier for RSR to match-up with the initial schedule when 
the idle time is larger as it will compensate the shifting of the 
jobs.

F When the time between breakdowns is larger, less delay will 
occur, hence, it is easier to match-up with initial schedule.

BC

BC effect is negative because C (number of machines) effect 
is stronger than B (number of jobs). It is obvious that B and C 
interact as the number of jobs on each machine depends on 
both of them.

CE +
C (number of machines) and E (Idle Time) interact because 
the higher the number of machines, the fewer jobs assigned 
to each machine, i.e. the less idle time.

CF +

C (number of machines) and F (Breakdown) interact because 
more machines lead to fewer breakdowns on each machine 
as no more than one breakdown can occur at a time over the 
machines.

Match-up in the FJR rule

The FJR regression statistics are reported in Table 62, ANOVA test in Table 63, and 

Effect test in Table 64. The results indicate the success of the regression in predicting the 

values of Match-up and that the model is significant since the p-value is very small.

Table 62. Match-up Regression Results for FJR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.762
Adjusted R Square 0.62
Standard Error 1957.36
Observations 73
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Table 63. Match-up ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 552765280 20472788 5.34 0.000
Residual 45 172406102 3831247
Total 72 725171382

Table 64. Match-up Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 771.2 914.7 0.84 0.404

A 501.4 296 1.69 0.097
B 965.8 297.8 3.24 0.002
C -1702.4 303.7 -5.6 0
D -8.6 300.7 -0.03 0.977
E -670.7 292.8 -2.29 0.027
F -1190.4 305.6 -3.9 0

AB 409.9 368.7 1.11 0.272
AC -706.5 381.5 -1.85 0.071
AD -34 401.1 -0.08 0.933
AE -252.6 380 -0.66 0.51
AF -301.1 389.1 -0.77 0.443
BC -1331.9 392.1 -3.4 0.001
BD -41.5 385.7 -0.11 0.915
BE -438.4 385.8 -1.14 0.262
BF -715.4 396.9 -1.8 0.078
CD 457.8 400.4 1.14 0.259
CE 737.9 395.7 1.86 0.069
CF 1858.3 412.6 4.5 0
DE 342.2 385.1 0.89 0.379
DF 272.3 422.2 0.64 0.522
EF 635.2 386.5 1.64 0.107
AA -576.3 526.3 -1.1 0.279
BB -61.7 506.2 -0.12 0.904
CC 1476.4 511 2.89 0.006
DD -1161.8 510.2 -2.28 0.028
EE 451.4 547.1 0.83 0.414
FF 557.6 517.7 1.08 0.287

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 64; these factors are Number ofJobs, Number o f Machines, Idle
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Time, and Breakdown, and the interactions between Number o f  Machines and Idle Time, and 

Number o f Machines and Breakdown. Their diagnosis is the same as in RSR (Table 61).

Match-up in the PR rule

The PR regression statistics are reported in Table 65, ANOVA test in Table 66, and 

Effect test in Table 67. The results indicate the success of the regression in predicting the 

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 67; these factors are Number o f Jobs, Number o f Machines, and 

Breakdown, and the interactions between Number o f  Machines and Number o f  Jobs, Number 

o f  Jobs and Breakdown, and Number o f  Machines and Breakdown. Their diagnosis is the 

same as in RSR (Table 61).

The negative effect of BF can be attributed to the interaction between factors B (Number o f  

Jobs) and F (Breakdown), as the latter has a stronger negative effect on Match-up Time.

Table 65. Match-up Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.757
0.611

3690.9
73
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Table 66. Match-up ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 1906312712 70604175 5.18 0.000
Residual 45 613023257 13622739
Total 72 2519335969

Table 67. Match-up Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 769 1725 0.45 0.658

A 726.1 558.1 1.3 0.2
B 1943.8 561.6 3.46 0.001
C -3015.1 572.7 -5.26 0
D 248.1 566.9 0.44 0.664
E -1063.7 552.1 -1.93 0.06
F -2273.3 576.2 -3.95 0

AB 645.6 695.3 0.93 0.358
AC -1032.5 719.3 -1.44 0.158
AD 5.5 756.3 0.01 0.994
AE -585.8 716.5 -0.82 0.418
AF -388.6 733.7 -0.53 0.599
BC -2681.6 739.4 -3.63 0.001
BD 63 727.4 0.09 0.931
BE -461.7 727.4 -0.63 0.529
BF -1706.6 748.4 -2.28 0.027
CD 479.5 755.1 0.64 0.529
CE 934.7 746.2 1.25 0.217
CF 3729.6 778 4.79 0
DE 665.4 726.3 0.92 0.364
DF 185.1 796.2 0.23 0.817
EF 796.2 728.9 1.09 0.281
AA -851.7 992.4 -0.86 0.395
BB 147.9 954.5 0.15 0.878
CC 2683.3 963.5 2.78 0.008
DD -2241.7 962 -2.33 0.024
EE 1156 1032 1.12 0.268
FF 1221.4 976.3 1.25 0.217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 4 0

Match-up in the CR rule

The CR regression statistics are reported in Table 68, ANOVA test in Table 69, and 

Effect test in Table 70. The results indicate the success of the regression in predicting the 

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 69; these factors are Number o f Jobs, Number o f  Machines and 

Breakdown, and the interactions between Number o f  Machines and Number o f  Jobs, Number 

ofJobs and Breakdown, and Number o f  Machines and Breakdown. The effects can be 

explained in similar fashion like previous rules.

Table 68. Match-up Regression Results for CR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.784
Adjusted R Square 0.654
Standard Error 5870.32
Observations 73

Table 69. Match-up ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 5616516513 208019130 6.04 0.000
Residual 45 1550728815 34460640
Total 72 7167245328
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Table 70. Match-up Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 876 2743 0.32 0.751

A 1147.8 887.6 1.29 0.203
B 3493.9 893.1 3.91 0
C -5136.1 910.9 -5.64 0
D 815.7 901.7 0.9 0.37
E -1341.2 878.1 -1.53 0.134
F -3896.8 916.5 -4.25 0

AB 1100 1106 0.99 0.325
AC -1606 1144 -1.4 0.167
AD -77 1203 -0.06 0.949
AE -832 1140 -0.73 0.469
AF -629 1167 -0.54 0.593
BC -4982 1176 -4.24 0
BD 261 1157 0.23 0.823
BE -166 1157 -0.14 0.886
BF -3084 1190 -2.59 0.013
CD 186 1201 0.16 0.877
CE 749 1187 0.63 0.531
CF 6465 1237 5.22 0
DE 1316 1155 1.14 0.261
DF -85 1266 -0.07 0.947
EF 636 1159 0.55 0.586
AA -1226 1578 -0.78 0.441
BB 406 1518 0.27 0.79
CC 4640 1532 3.03 0.004
DD -3520 1530 -2.3 0.026
EE 1928 1641 1.17 0.246
FF 2153 1553 1.39 0.172

Shifted Jobs Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the four rules in the case of the Shifted Jobs performance measure. This analysis will 

follow the same approach used earlier.
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Shifted Jobs in the RSR rule

No analysis has been done for the Shifted Jobs in the case of RSR as the latter will 

always have zero jobs shifted from one machine to another. Recall that RSR only shifts jobs 

to the right and is not equipped with a mechanism that allows jobs to be shifted from one 

machine to another.

Shifted Jobs in the FJR rule

The FJR regression statistics are reported in Table 71, ANOVA test in Table 72, 

Effect test in Table 73, and the factors effects diagnosis in Table 74. The results indicate the 

success of the regression in predicting the values of Shifted Jobs and that the model is 

significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 73 and explained in Table 74; these factors are Number o f  Jobs, 

Number o f Machines, Repair Duration, and Breakdown, and the interactions between 

Number ofJobs and Number ofMachines, Number o f Machines and Breakdown, and Number 

o f Jobs and Breakdown.

Table 71. Shifted Jobs Regression Results for FJR rule

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.935
0.897

0.935038
73
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Table 72. Shifted Jobs ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 569.658 21.098 24.13 0.000
Residual 45 39.343 0.874
Total 72 609.001

Table 73. Shifted Jobs Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 0.5975 0.4369 1.37 0.178

A 0.0081 0.1414 0.06 0.955
B 1.2207 0.1423 8.58 0
C -1.1051 0.1451 -7.62 0
D 0.5173 0.1436 3.6 0.001
E -0.1174 0.1399 -0.84 0.406
F -2.1328 0.146 -14.61 0

AB -0.0172 0.1761 -0.1 0.923
AC 0.0532 0.1822 0.29 0.772
AD -0.0013 0.1916 -0.01 0.995
AE -0.0429 0.1815 -0.24 0.814
AF 0.0763 0.1859 0.41 0.683
BC -0.7411 0.1873 -3.96 0
BD 0.1791 0.1843 0.97 0.336
BE -0.0562 0.1843 -0.31 0.762
BF -1.2268 0.1896 -6.47 0
CD -0.1801 0.1913 -0.94 0.351
CE -0.0739 0.189 -0.39 0.698
CF 1.2385 0.1971 6.28 0
DE 0.1307 0.184 0.71 0.481
DF -0.3752 0.2017 -1.86 0.069
EF 0.021 0.1847 0.11 0.91
AA 0.008 0.2514 0.03 0.975
BB -0.1815 0.2418 -0.75 0.457
CC 0.7258 0.2441 2.97 0.005
DD -0.2386 0.2437 -0.98 0.333
EE 0.0492 0.2613 0.19 0.852
FF 1.6665 0.2473 6.74 0
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Table 74. Factors' Effects on Shifted Jobs in the case of FJR

S h i f t e d  J o b s  E f f e c t s '  D i a g n o s t i c  f o r  F J R  r u l e

Factor/ „  
Interaction tTTecl Cause o f Effect

B + 

C

D + 

F

BC

BF

CF +

A higher number of jobs logically indicated a higher number 
of shifts between the machines
When there are more machines, the jobs on each machine 
will be less, i.e. fewer jobs will be shifted.
Larger repair durations lead to longer delays; hence, more 
jobs need to be shifted in order to accommodate the delays. 
When the time between breakdowns is larger, less delay will 
occur, hence, less shifting is required.
BC effect is negative because C (number of machines) effect 
is stronger than B (number of jobs). It is obvious that B and C 
interact as the number of jobs on each machine depends on 
both of them.
BF effect is negative because F (Breakdown) effect is 
stronger than B. B and F interact because the higher the 
number of jobs, the more they will be hit by a breakdown.

C and F interact because more machines lead to fewer 
breakdowns on each machine as no more than one 
breakdown can occur at a time over the machines.

Shifted Jobs in the PR rule

The PR regression statistics are reported in Table 75, ANOVA test in Table 76, and 

Effect test in Table 77. The results indicate the success of the regression in predicting the 

values of Shifted Jobs and that the model is significant since the p-value is very small.

Table 75. Shifted Jobs Regression Results for PR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.929
Adjusted R Square 0.886
Standard Error 25.7356
Observations 73
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Table 76. Shifted Jobs ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 388875 14403 21.75 0.000
Residual 45 29804 662

Total 72 418680

Table 77. Shifted Jobs Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 7.49 12.03 0.62 0.537

A -3.481 3.891 -0.89 0.376
B 38.775 3.916 9.9 0
C -38.457 3.994 -9.63 0
D 7.949 3.953 2.01 0.05
E -4.733 3.849 -1.23 0.225
F -40.09 4.018 -9.98 0

AB -0.677 4.848 -0.14 0.89
AC 3.082 5.015 0.61 0.542
AD -5.504 5.273 -1.04 0.302
AE -3.227 4.996 -0.65 0.522
AF 4.671 5.116 0.91 0.366
BC -37.293 5.156 -7.23 0
BD 4.972 5.072 0.98 0.332
BE 8.828 5.072 1.74 0.089
BF -33.152 5.218 -6.35 0
CD -2.306 5.265 -0.44 0.663
CE -5.042 5.203 -0.97 0.338
CF 42.493 5.425 7.83 0
DE 6.647 5.064 1.31 0.196
DF -2.442 5.552 -0.44 0.662
EF -1.013 5.082 -0.2 0.843
AA 3.537 6.92 0.51 0.612
BB 2.199 6.655 0.33 0.743
CC 30.035 6.718 4.47 0
DD -8.616 6.708 -1.28 0.206
EE 2.493 7.193 0.35 0.731
FF 23.766 6.807 3.49 0.001

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 77; these factors are Number o f Jobs, Number o f Machines, 

Repair Duration, and Breakdown, and the interactions between Number o f  Jobs and Number
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ofMachines, Number o f  Machines and Breakdown, and Number ofJobs and Breakdown. 

Their diagnosis is the same as in FJR (Table 74).

Shifted Jobs in the CR rule

The CR regression statistics are reported in Table 78, ANOVA test in Table 79, and 

Effect test in Table 80. The results indicate the success of the regression in predicting the 

values of Shifted Jobs and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 80; these factors are Number o f  Jobs, Number o f  Machines, 

Repair Duration, and Breakdown, and the interactions between Number o f  Jobs and Number 

ofMachines, Number o f  Machines and Breakdown, and Number ofJobs and Breakdown. 

Their diagnosis is the same as in FJR (Table 74).

Table 78. Shifted Jobs Regression Results for CR rule

R e g r e s s i o n  S t a t i s t i c s

R Square 0.955
Adjusted R Square 0.928
Standard Error 8.93576
Observations 73

Table 79. Shifted Jobs ANOVA Test for CR rule 

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 76742.8 2842.3 35.6 0.000
Residual 45 3593.1 79.8
Total 72 80335.9
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Table 80. Shifted Jobs Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 7.608 4.176 1.82 0.075

A -0.61 1.351 -0.45 0.654
B 19.127 1.36 14.07 0
C -5.858 1.387 -4.22 0
D 4.008 1.373 2.92 0.005
E 0.303 1.337 0.23 0.821
F -25.266 1.395 -18.11 0

AB 0.564 1.683 0.34 0.739
AC 1.875 1.741 1.08 0.287
AD -1.511 1.831 -0.83 0.414
AE 2.026 1.735 1.17 0.249
AF 0.818 1.776 0.46 0.647
BC -4.382 1.79 -2.45 0.018
BD 1.353 1.761 0.77 0.446
BE -0.413 1.761 -0.23 0.816
BF -21.516 1.812 -11.88 0
CD -0.692 1.828 -0.38 0.707
CE -1.01 1.807 -0.56 0.579
CF 7.505 1.884 3.98 0
DE 0.631 1.758 0.36 0.721
DF -2.989 1.928 -1.55 0.128
EF -1.022 1.765 -0.58 0.565
AA -1.064 2.403 -0.44 0.66
BB 2.169 2.311 0.94 0.353
CC 1.716 2.333 0.74 0.466
DD -0.898 2.329 -0.39 0.702
EE 0.777 2.497 0.31 0.757
FF 19.931 2.364 8.43 0
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Repair and Rescheduling Rules Comparisons

Following the analysis of factor and interaction significance, this section will 

compare the rules based on each performance measure as well as the overall performance. 

Conclusions are drawn regarding dominance among the rules.

Eigenvalue Normalization Procedure

As our objective is to determine the best rule for both schedule quality (Cmax 

Difference and CPU) and stability {Shifted Jobs and Matching Time), we need to compute the 

overall performance for each rule. However, since the performance measures are not 

expressed in commensurate terms, a unique measure is desired. The eigenvalue 

normalization procedure explained by Akturk and Gorgulu (1999) will be used to have a 

common unit of measure for each objective (Equation 7).

and Nij is the normalized value of the Ay value, Ny is between 0 and 1, where 0 indicates the

(7)

where Ay is the value of the ith performance measure in th e /h rule, p  is the number of rules,

best value and 1 the worst among the rules (because for all measures in our case, the lower

their values, the better the performance is).
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Before judging the rules by their overall performance, they will be compared for each 

of the objectives to determine superiority.

Cmax Difference Comparison

Following the normalization of the performance measures, the Cmax Difference 

performance of the four rules is presented in Table 81. The boxplot of the rules is also 

shown in Figure 20. It is obvious that RSR performed the worst in the case of Cmax 

Difference; this was expected as RSR only shifts the jobs to the right which will eventually 

increase Cmax. From Figure 20, it is apparent that CR performed the best, followed by PR, 

then FJR; however, this can not be validated unless tests are undertaken to determine that the 

differences are statistically significant.

Boxplot of RSR, FJR, PR, CR

1 .0 -

0 .8 -

0 .6 -

0 .4 - ■
0 . 2 -

■
0 . 0 -

RSR FJR PR CR

Figure 20. Cmax Difference Boxplot
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Table 81. Cmax Difference Performance among the rules

C m a x  D iffe re n c e
Run RSR FJR PR CR
1 0.730513 0.41411 0.411199 0.354654
2 0.768405 0.372924 0.378387 0.356798
3 0.744815 0.507984 0.23759 0.361599
4 0.570399 0.477886 0.472372 0.472372
S 0.708693 0.51718 0.357749 0.319835
6 0.490577 0.416601 0.541192 0.541192
7 0.614813 0.299524 0.541724 0.488698
8 0.867536 0.288567 0.390873 0.106435
9 0.614866 0.557382 0.343873 0.439336
10 0.63021 0.401049 0.459968 0.480025
11 0.719826 0.599705 0.223083 0.269145
12 0.635023 0.610561 0.334635 0.334635
13 0.77902 0.331701 0.444447 0.292522
14 0.746584 0.395374 0.457414 0.277603
15 0.762846 0.418335 0.348027 0.349198
16 0.631426 0.715236 0.175586 0.24271
17 0.903619 0.227161 0.256779 0.256779
18 0.780199 0.293636 0.491998 0.251009
19 0.564924 0.4601 0.543383 0.417018
20 0.816294 0.345673 0.36491 0.28463
21 0.744193 0.53457 0.309345 0.254396
22 0.804542 0.278463 0.448402 0.272224
23 0.722946 0.45009 0.383929 0.356885
24 0.879522 0.362383 0.217114 0.219046
25 0.76753 0.385246 0.320051 0.400064
26 0.758648 0.525726 0.225488 0.311801
27 0.845429 0.328076 0.291985 0.303909
28 0.869156 0.36168 0.230945 0.245806
29 0.758403 0.580249 0.202296 0.217281
30 0.913078 0.116754 0.386081 0.059982
31 0.997066 0.056679 0.014786 0.049286
32 0.598025 0.496877 0.471516 0.416116
33 0.933229 0.200574 0.203425 0.217882
34 0.477434 0.655767 0.383753 0.441316
35 0.999595 0.028458 0 0
36 0.525644 0.523582 0.47411 0.47411
37 0.999111 0.042152 0 0
38 0.665905 0.439018 0.417765 0.435093
39 0.79302 0.537788 0.192511 0.211762
40 0.867718 0.293849 0.283477 0.283477
41 0.950029 0.200577 0.169135 0.169135
42 0.821741 0.492189 0.20811 0.197945
43 0.814999 0.437818 0.25591 0.28036
44 0.76212 0.244819 0.556807 0.221814
45 0.949272 0.154209 0.180631 0.206092
46 0.849342 0.334357 0.25429 0.319624
47 0.837642 0.317646 0.322872 0.305304
48 0.724238 0.499274 0.380424 0.285451
49 0.767789 0.349342 0.408387 0.348826
50 0.745492 0.571404 0.273066 0.207783
51 0.855586 0.435985 0.221178 0.170207
52 0.530155 0.487727 0.48638 0.494462
53 0.713958 0.641902 0.212317 0.182065
54 0.606282 0.509329 0.414029 0.448984
55 0.692899 0.525335 0.348714 0.349733
56 0.750207 0.504572 0.317907 0.28554
57 0.766801 0.373934 0.389436 0.347172
58 0.9371 0.238458 0.203596 0.153394
59 0.570452 0.63347 0.335915 0.400577
60 0.882578 0.368472 0.264949 0.122824
61 0.750859 0.438001 0.33297 0.365373
62 0.605023 0.511942 0.493438 0.358303
63 0.799978 0.41357 0.306381 0.308425
64 0.830776 0.283188 0.402114 0.260612
65 0.618083 0.441406 0.540478 0.361964
66 0.959439 0.202374 0.026214 0.194509
67 0.721287 0.437955 0.37792 0.380943
68 0.77038 0.289196 0.401796 0.401796
69 0.789321 0.558517 0.179021 0.18161
70 0.637417 0.61617 0.324503 0.329746
71 0.849857 0.407711 0.207166 0.26191
72 0.710182 0.419773 0.361691 0.434294
73 0.775989 0.36226 0.357509 0.372554
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The first test is the One-Way ANOVA, which will determine if  there is significant difference 

between the means of the rules. The ANOVA results are shown in Table 82.

Table 82. One-Way ANOVA for Cmax Difference

Anova: Single Factor 

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

55.35
29.55
23.75
21.78

0.758193
0.404816
0.325307
0.298301

0.015432
0.021721
0.016712
0.013518

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e  F  c r i t

Between Groups 
Within Groups

Total

9.894449
4.851586

14.74604

3
288

291

3.29815
0.016846

195.7849 3.35E-69 2.63595107

As the p-value in Table 82 is less than 0.05, we can reject the hypothesis that all the means 

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR -  PR to determine if  the 

difference between them is statistically significant (Table 83). The t-test evaluates 

Ho: m i - m 2 = do versus Hi: m i - m 2 # d o , where m i and m 2 are the population means 

and d 0 is the hypothesized difference between the two population means. As the p-value is 

less than 0.05, we can reject the hypothesis that the means are equal and conclude that the 

difference between FJR and PR is statistically significant. Moreover, as the difference is 

greater than zero, we conclude that PR performed better than FJR in the case of Cmax 

Difference.
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Table 83. t test for FJR — PR in the case of Cmax Difference

Tw o-sam ple T  fo r FJR vs PR

N Mean StDev SE Mean
FJR 73 0.405 0.147 0.017
PR 73 0.325 0.129 0.015

Difference = mu (FJR) - mu (PR)
Estimate for difference: 0.079509
95% Cl for difference: (0.034148, 0.124869)
T-Test of difference = 0 (vs not =): T-Value = 3.47 P-Value = 0.001 DF = 141

The next t test is for PR -  CR (Table 84). Even though the CR mean is smaller than PR mean 

(indicating that CR performed better), this difference is not statistically significant as the 95% 

Confidence Interval overlaps with zero. Moreover, the p-value is greater than 0.05.

Based on these tests, we conclude that for the Cmax Difference, the best performance 

was achieved by CR and PR, followed by FJR, then finally RSR that had the worst 

performance.

Table 84. t test for PR -  CR in the case of Cmax Difference

Two-sam ple T  fo r PR vs CR

N Mean StDev SE Mean
PR 73 0.325 0.129 0.015
CR 73 0.298 0.116 0.014

Difference = mu (PR) - mu (CR)
Estimate for difference: 0.027006
95% Cl for difference: (-0.013221, 0.067234)
T-Test of difference = 0 (vs not =): T-Value = 1.33 P-Value = 0.187 DF = 142
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CPU Comparison

The CPU performance of the four rules is presented in Table 85. The boxplot of the rules is 

also shown in Figure 21. It is visually noticeable that RSR performed the best, followed by 

FJR, then PR and CR. The same tests implemented in the Cmax Difference comparison will 

be used here to determine if  the differences are statistically significant. The ANOVA results 

are shown in Table 86.

Boxplot of RSR, FJR, PR, CR

Figure 21. CPU Boxplot
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Table 85. CPU Performance among the rules

CPU
Run RSR FJR PR CR

1 0.0169 0.04225 0.870447 0.490154
2 0.00216 0.22384 0.872494 0.434332
3 0.00991 0.096 0.592383 0.799856
4 0.47285 0.4227 0.72361 0.272249
6 0.03999 0.19241 0.769633 0.607491
6 0.05944 0.99061 0.067362 0.103024
7 0.01799 0.04452 0.695297 0.717117
8 0.01468 0.00597 0.663635 0.747888
9 0.02024 0.02024 0.273272 0.961511
10 0.00143 0.01115 0.955518 0.294718
11 0.00703 0.00154 0.164264 0.98639
12 0.00412 0.88089 0.45691 0.123489
13 0.00109 0.09947 0.787129 0.608713
14 0.02655 0.03186 0.331839 0.942424
15 0.00166 0.95824 0.130857 0.254261
16 0.00298 0.0352 0.218228 0.975258
17 0.01373 0.51763 0.314937 0.795417
18 0.07919 0.96192 0.168578 0.200071
19 0.19708 0.47026 0.857262 0.071547
20 0.00542 0.31069 0.691774 0.651838
21 0.00407 0.08235 0.267174 0.960115
22 0.00368 0.0275 0.87467 0.483924
23 0.00487 0.01045 0.971495 0.23678
24 0.20669 0.0095 0.515537 0.831511
25 0.66755 0.02302 0.391322 0.633021
26 0.04888 0.00707 0.716185 0.69616
27 0.02595 0.01257 0.54257 0.839516
28 0.01027 0.02055 0.871574 0.489725
29 0.01073 0.00939 0.472732 0.881091
30 0.0128 0.01359 0.266791 0.963574
31 0.00596 0.01107 0.307835 0.951357
32 0.00364 0.0182 0.9002 0.435081
33 0.00966 0.24072 0.307104 0.920677
34 0.01963 0.09012 0.693304 0.714719
35 0.00987 0.06379 0.470549 0.88001
36 0.01509 0.03233 0.959268 0.280236
37 0.01255 0.0405 0.405332 0.913185
38 0.00157 0.11537 0.850598 0.513002
39 0.0017 0.10059 0.604217 0.790443
40 0.02186 0.10932 0.765222 0.634041
41 0.00234 0.14272 0.729994 0.668381
42 0.00338 0.1387 0.772987 0.619066
43 0.00138 0.11758 0.413869 0.90271
44 0.00135 0.12633 0.894815 0.428187
45 0.01059 0.01722 0.655553 0.754879
46 0.00059 0.15266 0.579433 0.800595
47 0.00235 0.27947 0.512324 0.812043
48 0.0061 0.13402 0.55801 0.818918
49 0.00125 0.08254 0.683636 0.460839
50 0.0047 0.01503 0.364499 0.931071
51 0.00231 0.01332 0.941754 0.33603
52 0.00029 0.09295 0.993131 0.071059
53 0.02664 0.10703 0.720887 0.684219
54 0.00164 0.16519 0.952688 0.25514
55 0.09206 0.28753 0.408598 0.861335
56 0.00212 0.03885 0.777413 0.627786
57 0.01259 0.16006 0.853254 0.496166
58 0.06923 0.00997 0.945359 0.318442
59 0.03463 0.07878 0.678373 0.72966
60 0.00076 0.0009 0.406587 0.913611
61 0.03344 0.1449 0.722259 0.675446
62 0.01921 0.16676 0.947632 0.271689
63 0.03251 0.08743 0.706819 0.701218
64 0.01163 0.04757 0.569774 0.820341
65 0.01881 0.08155 0.126032 0.988489
66 0.01153 0.01371 0.404485 0.914369
67 0.16607 0.60124 0.265105 0.735292
68 0.36277 0.6382 0.295588 0.611331
69 0.00853 0.22536 0.720742 0.655494
70 0.10817 0.01462 0.630011 0.768877
71 0.00673 0.01536 0.406847 0.913342
72 0.03843 0.39452 0.600745 0.694251
73 0.12927 0.39259 0.780396 0.469195
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Table 86. One-Way ANOVA for CPU Time

Anova: Single Factor 

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

3.314858
12.34003
43.97871
46,79539

0.045409
0.169042
0.602448
0.641033

0.011485
0.056456
0.063979
0.066292

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e  F  c r i t

Between Groups 19.93723 3 6.645742 134.1141 2.21 E-54 2.635951
Within Groups 14.27123 288 0.049553

Total 34.20846 291

As the p-value in Table 86 is less than 0.05, we can reject the hypothesis that all the means 

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR -  RSR to determine if  the 

difference between them is statistically significant (Table 87). As the p-value is less than 

0.05, we can reject the hypothesis that the means are equal and conclude that the difference 

between FJR and RSR is statistically significant. Moreover, as the difference is greater than 

zero, we conclude that RSR performed better than FJR in the case of CPU. This is expected 

as RSR is very simple and requires very little computation. It is evident from Figure 21 that 

FJR performs better than both PR and CR in the case of CPU. On the other hand, a t test is 

needed to check if the difference between CR and PR is statistically significant. This is 

shown in Table 87.
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Table 87. t test for FJR - RSR in the case of CPU

Two-sample T for FJR vs RSR

N Mean StDev SE Mean
FJR 73 0.169 0.238 0.028
RSR 73 0.045 0.107 0.013

Difference = mu (FJR) - mu (RSR)
Estimate for difference: 0.123633
95%  Cl for difference: (0.063107, 0.184158)
T-Test of difference = 0 (vs not =): T-Value = 4.05 P-Value = 0.000 DF = 100

From Table 88, even though the PR mean is smaller than CR mean (indicating that PR 

performed better), this difference is not statistically significant as the 95% Confidence 

Interval overlaps with zero. Moreover, the p-value is greater than 0.05.

Table 88. t test for CR -  PR in the case of CPU

Two-sample T for CR vs PR

N Mean StDev SE Mean
CR 73 0.641 0.257 0.03
PR 73 0.602 0.253 0.03

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.038585
95% Cl for difference: (-0.044918, 0.122087)
T-Test of difference = 0 (vs not =): T-Value = 0.91 P-Value = 0.363 DF = 143

Based on the previous tests, we conclude that for the CPU, the best performance was 

achieved by RSR, followed by FJR, then finally PR and CR that had the worst performance.
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This conclusion was expected as both RSR and FJR are heuristics that do not involve MIP 

solutions.

Match-up Comparison

The Match-up performance of the four rules is presented in Table 89. The boxplot of 

the rules is also shown in Figure 22. Visually it seems that FJR performed the best, followed 

by PR and RSR, then CR. The same tests applied earlier will be used to determine if  the 

differences are statistically significant. The ANOVA results are shown in Table 90.

Figure 22. Match-up Boxplot
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Table 89. Match-up Performance among the rules

Match-Up Time
Run RSR FJR PR CR

1 0.476967 0.414145 0.465358 0.620023
2 0.584529 0.290375 0.44035 0.616522
3 0.565442 0.317947 0.440307 0.620737
4 0.529429 0.383421 0.535114 0.535114
5 0.484146 0.342812 0.562331 0.576078
6 0.17397 0.357344 0.648861 0.648861
7 0.35057 0.284838 0.626279 0.635408
8 0.075708 0.181602 0.428067 0.88207
9 0.290396 0.617752 0.469914 0.559673
10 0.535309 0.258388 0.382759 0.707231
11 0.462723 0.454564 0.486034 0.585688
12 0.377845 0.61122 0.491754 0.491754
13 0.342341 0.219983 0.430357 0.805732
14 0.274775 0.456071 0.716682 0.450405
15 0.617782 0.327443 0.449887 0.555633
16 0.490707 0.409631 0.321267 0.698711
17 0.287933 0.544873 0.55687 0.55687
18 0.278456 0.172129 0.222382 0.918357
19 0.503486 0.319348 0.434749 0.674916
20 0.398961 0.353793 0.461483 0.709009
21 0.435842 0.34846 0.375367 0.740079
22 0.195617 0.169484 0.369001 0.892663
23 0.387313 0.501311 0.55177 0.542426
24 0.393181 0.482097 0.543067 0.563977
25 0.499899 0.508094 0.508094 0.483509
26 0.487907 0.379273 0.454497 0.641507
27 0.424763 0.222595 0.412435 0.774548
28 0.586789 0.437412 0.473217 0.490321
29 0.576056 0.48714 0.48638 0.440782
30 0.103413 0.12669 0.371898 0.913755
31 0.228346 0.291716 0.409969 0.833478
32 0.527821 0.354545 0.430396 0.640673
33 0.28962 0.242256 0.491201 0.784954
34 0.325656 0.494918 0.569156 0.570146
35 0.054941 0.382258 0.550411 0.740208
36 0.066983 0.576054 0.576054 0.576054
37 0.202995 0.189359 0.385204 0.880088
38 0.513499 0.317961 0.41672 0.679385
39 0.373324 0.394452 0.474922 0.692449
40 0.087706 0.55547 0.584705 0.584705
41 0.473982 0.480454 0.521778 0.521778
42 0.722842 0.304849 0.423428 0.453073
43 0.523265 0.354178 0.385266 0.672549
44 0.163978 0.106265 0.408867 0.89143
45 0.600311 0.388773 0.460239 0.525987
46 0.293105 0.375071 0.536105 0.697139
47 0.623908 0.335245 0.428191 0.56125
48 0.496903 0.371854 0.445279 0.645398
49 0.491164 0.244498 0.447926 0.705933
50 0.513367 0.35964 0.496916 0.600157
51 0.721324 0.301265 0.420803 0.460277
52 0.489386 0.314187 0.48289 0.654679
53 0.549074 0.400877 0.502873 0.533792
54 0.458744 0.405163 0.506774 0.607105
55 0.531535 0.486826 0.490138 0.490138
56 0.575065 0.380968 0.505798 0.518007
57 0.561421 0.277135 0.435931 0.646503
58 0.457051 0.458897 0.523069 0.554001
59 0.38419 0.466486 0.538548 0.587158
60 0.582519 0.300685 0.534447 0.533504
61 0.644804 0.446403 0.430903 0.446403
62 0.432074 0.436684 0.516963 0.596128
63 0.441529 0.412574 0.53655 0.589023
64 0.414962 0.235102 0.451838 0.753907
65 0.264317 0.210299 0.285175 0.896987
66 0.177481 0.275877 0.527872 0.783418
67 0.48795 0.473942 0.515967 0.520636
68 0.419805 0.574216 0.497011 0.497011
69 0.585874 0.310291 0.526805 0.531928
70 0.590883 0.413303 0.446205 0.530037
71 0.454848 0.353405 0.446286 0.68487
72 0.595284 0.408498 0.472279 0.505687
73 0.646088 0.360452 0.46919 0.482188
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Table 90. One-Way ANOVA for Match-up Time

Anova: Single Factor 

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

31.23218
26.80359
34.62358
45.99258

0.427838
0.367172
0.474296
0.630035

0.025998
0.012805
0.006026
0.016247

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e F  c r i t

Between Groups 
Within Groups

Total

2.765779
4.397386

7.163165

3
288

291

0.921926
0.015269

60.38014 2.59E-30 2.635951

As the p-value in Table 90 is less than 0.05, we can reject the hypothesis that all the means 

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR -  RSR to determine if the 

difference between them is statistically significant (Table 91). As the p-value is less than 

0.05, we can reject the hypothesis that the means are equal and conclude that the difference 

between FJR and RSR is statistically significant. Moreover, as the difference is greater than 

zero, we conclude that FJR performed better than RSR in the case of Match-up Time.

Another t test is conducted for RSR -  PR and the results are shown in Table 92. The small p- 

value and the negative difference indicate that RSR outperformed PR in the Match-up Time 

and the difference is statistically significant. Finally, a t test was carried out for CR -  PR, 

and the results indicate that PR outperformed CR in the Match-up Time (Table 93).
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Table 91. t test for RSR -  FJR in the case of Match-up Time

Two-sample T for RSR vs FJR

N Mean StDev SE Mean
RSR 73 0.428 0.161 0.019
FJR 73 0.367 0.113 0.013

Difference = mu (RSR) - mu (FJR)
Estimate for difference: 0.060666
95% Cl for difference: (0.015051, 0.106281)
T-Test of difference = 0 (vs not =): T-Value = 2.63 P-Value = 0.010 DF = 129

Table 92. t test for RSR -  PR in the case of Match-up Time

Two-sample T for RSR vs PR

N Mean StDev SE Mean
RSR 73 0.428 0.161 0.019
PR 73 0.4743 0.0776 0.0091

Difference = mu (RSR) - mu (PR)
Estimate for difference: -0.046458
95%  Cl for difference: (-0.087996, -0.004919)
T-Test of difference = 0 (vs not =): T-Value = -2.22 P-Value = 0.029 DF = 103

Table 93. t test for CR -  PR in the case of Match-up Time

Two-sample T for CR vs PR

N Mean StDev SE Mean
CR 73 0.63 0.127 0.015
PR 73 0.4743 0.0776 0.0091

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.155740
95%  Cl for difference: (0.121150, 0.190330)
T-Test of difference = 0 (vs not =): T-Value = 8.92 P-Value = 0.000 DF = 118
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Based on the previous tests, we conclude that for the Match-up Time, the best 

performance was achieved by FJR, followed by RSR, then PR, and finally CR that had the 

worst performance.

Shifted Jobs Comparison

The Shifted Jobs performance of the four rules is presented in Table 94. The boxplot 

of the rules is also shown in Figure 23. RSR performed the best as the number of shifted jobs 

in this rule is always zero (no shifting allowed). Visually it is evident that FJR performed the 

best after RSR; however, a t test is conducted for PR -  CR. The results shown in Table 95 

indicate that CR performed better than PR and the difference is statistically significant.

Boxplot o f RSR, FJR, PR, CR

1.0 -

0.8 -

0.6 -

0.4-

0.2 -

0.0 -

RSR FJR PR CR

Figure 23. Shifted Jobs Boxplot
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Table 94. Shifted Jobs Performance among the rules

Sh ifted  J o b s
Run RSR FJR PR CR
1 0 0.077746 0.855209 0.512419
2 0 0.033215 0.936218 0.349846
3 0 0.028441 0.815322 0.578309
4 0 0.02945 0.7068 0.7068
5 0 0.018968 0.787163 0.616453
6 0 0.073458 0.705196 0.705196
7 0 0.049724 0.691157 0.720992
8 0 0.04001 0.789133 0.612918
9 0 0.109018 0.476953 0.872142
10 0 0.012139 0.986696 0.16212
11 0 0.034877 0.641737 0.766131
12 0 0.299813 0.674579 0.674579
13 0 0.037049 0.951914 0.304116
14 0 0.145071 0.743491 0.652821
15 0 0.062388 0.733875 0.676413
16 0 0.048421 0.830557 0.554825
17 0 0.166148 0.697279 0.697279
18 0 0.019028 0.987732 0.154993
19 0 0.025358 0.983794 0.177503
20 0 0.141235 0.788499 0.5986
21 0 0.040758 0.503913 0.862792
22 0 0.044734 0.916349 0.397874
23 0 0.055695 0.757449 0.650515
24 0 0.138866 0.702982 0.697519
25 0 0.118331 0.709983 0.694206
26 0 0.025728 0.688411 0.724864
27 0 0.034495 0.759989 0.64902
28 0 0.140238 0.656782 0.740925
29 0 0.031546 0.744763 0.666583
30 0 0.028864 0.754603 0.655546
31 0 0.075419 0.502378 0.861353
32 0 0.039173 0.960403 0.275847
33 0 0.060516 0.682145 0.728708
34 0 0.031467 0.733441 0.679024
35 0 0.061652 0.522163 0.850614
36 0 0.088045 0.704361 0.704361
37 0 0.038885 0.445686 0.894345
38 0 0.030314 0.959039 0.281649
39 0 0.068712 0.712707 0.698088
40 0 0.054313 0.706063 0.706063
41 0 0.137561 0.700385 0.700385
42 0 0.049518 0.623929 0.779911
43 0 0.03939 0.812264 0.581958
44 0 0.030118 0.941523 0.335601
45 0 0.140741 0.651581 0.745409
46 0 0.057054 0.591075 0.804596
47 0 0.099789 0.820141 0.563392
48 0 0.040228 0.731418 0.680741
49 0 0.038465 0.927824 0.37103
50 0 0.033754 0.613474 0.788993
51 0 0.034101 0.863616 0.502995
52 0 0.016537 0.978897 0.203685
53 0 0.035005 0.702284 0.711035
54 0 0.092965 0.680789 0.726556
55 0 0.035051 0.736077 0.675989
56 0 0.024084 0.733784 0.678955
57 0 0.032477 0.960697 0.275692
58 0 0.108679 0.665758 0.738211
59 0 0.037797 0.641534 0.766163
60 0 0.020244 0.671285 0.740923
61 0 0.207514 0.691714 0.691714
62 0 0.108348 0.776492 0.620742
63 0 0.052179 0.630711 0.774262
64 0 0.042274 0.951503 0.304721
65 □ 0.02259 0.986716 0.160878
66 0 0.044548 0.668962 0.741961
67 0 0.080763 0.70641 0.70318
68 0 0.149813 0.699127 0.699127
69 0 0.030632 0.755853 0.654024
70 0 0.062571 0.633529 0.771185
71 0 0.042923 0.526877 0.848857
72 0 0.022048 0.677199 0.73547
73 0 0.056781 0.668756 0.74131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

Table 95. t test for PR -  CR in the case of Shifted Jobs

Two-sample T for PR vs CR

N Mean StDev SE Mean
PR 73 0.744 0.133 0.016
CR 73 0.621 0.192 0.022

Difference = mu (PR) - mu (CR)
Estimate for difference: 0.123220
95%  Cl for difference: (0.069133, 0.177308)
T-Test of difference = 0 (vs not =): T-Value = 4.51 P-Value = 0.000 DF = 128

Based on the previous tests, we conclude that for the Shifted Jobs, the best 

performance was achieved by RSR, followed by FJR, then CR, and finally PR that had the 

worst performance.

Overall Performance Comparison

The overall performance including all the performance measures for each rule is 

presented in Table 96 and computed by summing for each rule its performance values for the

4

four performance measures, then dividing by 4; i.e. overall performance of rule j = —----- .
4

The boxplot of the rules is also shown in Figure 24. Visually it seems that FJR performed 

the best, followed by RSR, then PR and CR. The same tests implemented earlier will be used 

to determine if  the differences are statistically significant. The ANOVA results are shown in 

Table 97. As the p-value is less than 0.05, we can reject the hypothesis that all the means are 

equal, i.e. there is a significant difference between the performances of the rules.
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Next, a two-tailed two-sample t test was conducted for RSR -  FJR (Table 98). As the p- 

value is less than 0.05, we can reject the hypothesis that the means are equal and conclude 

that the difference between FJR and RSR is statistically significant. Moreover, as the 

difference is greater than zero, we conclude that FJR performed better than RSR in the case 

of Overall Performance. Another t test is conducted for CR -  PR and the results are shown 

in Table 99. Even though the difference was positive indicating that PR outperformed CR, 

this difference was not statistically significant.

Boxplot Of RSR, FJR, PR, CR
0.8 H

0 .7 -

0.6 -

0.5-

0. 1 -

0.0-1
RSR FJR PR CR

Figure 24. Overall Performance Boxplot
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Table 96. Overall Performance among the rules

Overall Perform ance
Run RSR FJR PR CR

1 0.306095 0.237064 0.650553 0.494312
2 0.338774 0.230089 0.656862 0.439375
3 0.330042 0.237592 0.5214 0.590126
4 0.393171 0.328365 0.609474 0.496634
5 0.308208 0.267842 0.619219 0.529964
6 0.180996 0.459504 0.490653 0.499568
7 0.245843 0.169653 0.638614 0.640554
8 0.239481 0.129038 0.567927 0.587328
9 0.231376 0.326099 0.391003 0.708165
10 0.291738 0.17068 0.696235 0.411024
11 0.297396 0.272671 0.378779 0.651839
12 0.254246 0.600621 0.489469 0.406114
13 0.280613 0.172051 0.653462 0.502771
14 0.261977 0.257093 0.562357 0.580813
15 0.345571 0.441602 0.415661 0.458876
16 0.281278 0.302122 0.386409 0.617876
17 0.30132 0.363952 0.456466 0.576586
18 0.284462 0.361677 0.467673 0.381107
19 0.316372 0.318766 0.704797 0.335246
20 0.305168 0.287847 0.576667 0.561019
21 0.296026 0.251534 0.36395 0.704345
22 0.250959 0.130045 0.652106 0.511671
23 0.278783 0.254386 0.666161 0.446651
24 0.369848 0.248212 0.494675 0.578013
25 0.483745 0.258673 0.482363 0.5527
26 0.32386 0.234449 0.521145 0.593583
27 0.324034 0.149435 0.501745 0.641748
28 0.366555 0.239969 0.55813 0.491694
29 0.336297 0.277081 0.476543 0.551434
30 0.257322 0.071475 0.444843 0.648214
31 0.307843 0.10872 0.308742 0.673868
32 0.282372 0.2272 0.690629 0.441929
33 0.308128 0.186017 0.420969 0.663055
34 0.20568 0.318068 0.594913 0.601301
35 0.266102 0.134039 0.385781 0.617708
36 0.151929 0.305004 0.678448 0.50869
37 0.303665 0.077724 0.309055 0.671904
38 0.295243 0.225666 0.66103 0.477282
39 0.292011 0.275385 0.496089 0.598186
40 0.244322 0.253237 0.584867 0.552072
41 0.356588 0.240329 0.530323 0.51492
42 0.386991 0.246313 0.507113 0.512499
43 0.334912 0.237241 0.466827 0.609394
44 0.231863 0.126884 0.700503 0.469258
45 0.390045 0.175235 0.487001 0.558092
46 0.28576 0.229785 0.490226 0.655489
47 0.365976 0.258038 0.520882 0.560497
48 0.306812 0.261343 0.528783 0.607627
49 0.315051 0.178711 0.666943 0.471657
50 0.315889 0.244956 0.436989 0.632001
51 0.394804 0.196167 0.611838 0.367377
52 0.254958 0.227851 0.735325 0.355971
53 0.322418 0.296204 0.534591 0.527778
54 0.266665 0.293161 0.63857 0.509446
55 0.329124 0.333686 0.495882 0.594299
56 0.331847 0.237119 0.583725 0.527572
57 0.335203 0.210901 0.65983 0.441383
58 0.365844 0.204001 0.584445 0.441012
59 0.247319 0.304134 0.548592 0.62089
60 0.366464 0.172576 0.469317 0.577716
61 0.357275 0.309204 0.544462 0.544734
62 0.264076 0.305934 0.683631 0.461716
63 0.318504 0.241438 0.545115 0.593232
64 0.314341 0.152035 0.593807 0.534895
65 0.225303 0.188961 0.4846 0.60208
66 0.287113 0.134126 0.406883 0.658564
67 0.343826 0.398475 0.46635 0.585013
68 0.388238 0.412857 0.473381 0.552316
69 0.345932 0.281199 0.545605 0.505764
70 0.334117 0.276665 0.508562 0.599961
71 0.327858 0.204849 0.396794 0.677245
72 0.335973 0.31121 0.527978 0.592425
73 0.387836 0.293021 0.568963 0.516312
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Table 97. One-Way ANOVA for the Overall Performance

Anova: Single Factor 

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

22.47377
18.34526
39.1697

39.97448

0.30786
0.251305
0.536571
0.547596

0.002995
0.007835
0.010081
0.007287

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e  F  c r i t

Between Groups 5.151378 3 1.717126 243.5784 1.13E-78 2.635951
Within Groups 2.030279 288 0.00705

Total 7.181657 291

Table 98. t test for RSR -  FJR in the case of Overall Performance

Two-sample T for RSR vs FJR

N Mean StDev SE Mean
RSR 73 0.3079 0.0547 0.0064
FJR 73 0.2513 0.0885 0.01

Difference = mu (RSR) - mu (FJR)
Estimate for difference: 0.056555
95% Cl for difference: (0.032440, 0.080671)
T-Test of difference = 0 (vs not =): T-Value = 4.64 P-Value = 0.000 DF = 120

Following this, we conclude that for the Overall Performance, the best performance 

was achieved by FJR, followed by RSR, then PR and CR.
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Table 99. t test for CR -  PR in the case of Overall Performance

Tw o-sam ple T  fo r CR vs PR

N Mean StDev SE Mean
CR 73 0.5476 0.0854 0.01
PR 73 0.537 0.1 0.012

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.011024
95% Cl for difference: (-0.019471, 0.041520)
T-Test of difference = 0 (vs not =): T-Value = 0.71 P-Value = 0.476 DF = 140

Computational Tests Summary

In this chapter, new repair and rescheduling rules have been introduced for the 

unrelated parallel machine problem. The rules have been compared to existing ones and 

evaluated based on four performance measures: Cmax Difference, CPU Time, Match-up 

Time, and Shifted Jobs. Extensive computational tests indicated the following conclusions 

about each rule:

Right Shift Repair (RSR)

RSR has been used frequently in the literature to compare with rescheduling and 

repair rules. RSR had the worst Cmax Difference performance among all rules, the best CPU 

and Shifted Jobs performances, and was the second best in the Match-up Time and overall 

performances. Recall that RSR performed the best in the case of Shifted Jobs because it does
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not shift jobs between machines. Moreover, RSR was the finest in CPU Time as it is a simple 

heuristic with a computational complexity of 0(mn) at the most.

From the experimental design and its factor analyses, the following was determined 

about RSR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of 

jobs decreases.

•  Match-up Time decreases when the number o f machines, idle time, and time between 

breakdowns increase and the number of jobs decreases.

• Shifted Jobs is always zero when using RSR.

Fit Job Repair (FJR)

FJR is a new repair rule introduced in this Dissertation. It ranked 3rd between the
j

rules in the case of Cmax Difference (after CR and PR), 2 for CPU Time and Shifted Jobs 

(after RSR), and was the best in the case of Match-up Time and Overall Performance.

The following was determined from the DoE factor analyses about FJR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns and the number o f machines 

increase and the number of jobs decreases.
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• Match-up Time decreases when the number o f machines, idle time, and time between 

breakdowns increase and the number of jobs decreases.

•  Shifted Jobs declines when the number of jobs and repair durations decrease and the 

number of machines and the time between breakdowns increase.

Partial Rescheduling (PR)

PR is a new repair rule introduced in this Dissertation. It ranked 1st among all rules in 

case of Cmax Difference (tied with CR), 3rd for Match-up Time (after FJR and RSR), and was 

the worst in the case of CPU Time (tied with CR), Shifted Jobs, and Overall Performance 

(tied with CR).

The following was determined from the experimental design factor analyses about PR 

performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of 

jobs decreases.

• Match-up Time decreases when the number of machines and time between 

breakdowns increase and the number of jobs decreases.

• Shifted Jobs declines when the number of jobs and repair durations decrease and the 

number of machines and the time between breakdowns increase.
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Complete Rescheduling (CR)

CR ranked 1st among all rules in the case of Cmax Difference (tied with PR), 3rd for 

Shifted Jobs, and was the worst in the case of CPU Time (tied with PR), Match-up Time, and 

Overall Performance (tied with PR).

The following was determined from the DoE factor analyses about CR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of 

jobs and machines decreases.

• Match-up Time decreases when the number of machines and time between 

breakdowns increase and the number of jobs decreases.

• Shifted Jobs declines when the number of jobs and repair durations decrease and the 

number of machines and the time between breakdowns increase.

Finally, as it is obvious that the superiority of each of the four rules strongly depends 

on which performance measure is being evaluated, Table 100 below summarizes the ranks of 

the rules for all possible combinations of the four performance measures addressed in this 

dissertation (15 alternatives). All necessary ANOVA and t tests were carried out to make 

sure that the reported results are statistically significant. Note that the rules are ranked 

between 1 and 4, where 1 indicates the best performance and 4 the worst one.
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Table 100. Ranks of the Rules for all combinations of Performance Measures 
(4 is worst and 1 is best)

Performance Measures Repair Rules
Cmax Difference CPU Time Match-up Time Shifted Jobs RSR FJR PR CR

• 4 3 1 1
• 1 2 4 4

• 2 1 3 4
• 1 2 4 3

• • 2 1 4 4
• • 4 1 1 3
• • 2 1 4 3

• • 1 1 3 4
• • 1 4 4

• • 1 1 4 4
• • • 2 1 3
• • • 2 1 4 4
• • • 2 1 4 4

• • • 1 2 4 4
• • • • 2 1 3 3
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CHAPTER VII 

ROBUST REACTIVE SCHEDULING SYSTEM

The proposed robust scheduling system is presented in this chapter. The system is a 

combination of the repair rules described in chapter 6, with the objective of delivering 

superior performance measures, i.e. better schedule quality and stability.

The rationale o f the system is very simple. Following the creation of a predictable 

schedule using MCFJI (explained in Chapter 5), the schedule is executed under a dynamic 

environment subject to breakdowns. Upon the occurrence of any disruption, the system will 

check its Tidle, where Tidle is the total idle time in the predictable schedule. If Tidle > 0, the 

system attempts to shift Dj (down job) to the right without impacting its successor. It repeats 

this operation one more time if  necessary for the next job to start on time (this is actually 

RSR). After shifting two jobs, if  the schedule is still not repaired, apply FJR; i.e. try to fit Dj 

on any machine while maximizing residlej (idle time left on each machine). In case all jobs 

have been shifted and Dj was not fitted on any machine, then apply PR (which includes CR 

in case matching up with the initial schedule is not possible).

The system’s architecture is presented in Figure 25. Note that the reason only PR is used 

when Tidle = 0 is because both RSR and FJR are not able to repair the schedule in the 

absence of idle time; RSR shifts the jobs to the right and FJR attempts to fit the jobs in the 

idle time between the machines.
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Figure 25. Robust Reactive Scheduling System Architecture
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COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN

Following the description of the robust system, the same computational tests applied 

in chapter 6 to test the repair rules will be used here. The D-Optimal design experiments 

shown in Table 29 are carried out and the factors in Table 27 are analyzed to see how they 

impact the system performance. The Robust System is tested both with and without the 

learning parameter (explained in Chapter 5). The computational tests are shown in Tables 

101 and 102.

Performance Measures Statistical Analyses

Similarly to chapter 6 approach, Minitab 14.2 Statistical Software was used to 

determine the significance of the factors and their interactions for each performance measure.

Cmax Difference Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

the Robust System with and without Learning in the case of the Cmax Difference 

performance measure.
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Table 101. Computational Tests for the Robust System w/o Learning
(Average Numbers)

R o b u st (no learning)

Run Cmax Cmax 
95% C/

CPU
(sec)

CPU 
95% Cl Match Match 

95% a
Shifted
Jobs

S.Jobs 
95% Cl

1 9.4 [4.5-14.3] 0.52 [0.2-0.8] 202.22 [125.5-278.9] 1.24 [0.35-2.1]
2 291.58 [264.7-318.5] 76.63 [62.3-91] 9299.75 [8498.7-10100.8] 29.66 [24-35.3]
3 13.67 [5.2-22.1] 7.72 [0.05-15.4] 969.45 [754.1-1184.8] 8.4 [4.1-12.7]
4 20.07 [6.8-33.3] 0.49 [0.1-0.9] 511.85 [281.3-742.3] 0.65 [0-1.3]
5 2.57 [0.8-4.3] 1.74 [0.4-3.05] 147.55 [104.1-190.9] 3.1 [1.3-4.9]
6 2.77 [0.9-4.6] 0.17 [0 1-0.2] 14.69 [7-22.3] 0.48 [0.14-0.8]
7 3.43 [1.3-5.6] 2.23 [0.3-4.2] 45.76 [26.1-65.4] 1.9 [0.8-3]8 2.28 [0-4.6] 18.19 [8.4-28] 426.24 [367.6-484.9] 7.58 [4.8-10.4]
9 4.28 [1.4-7.1] 1.29 [0.7-1.9] 10.58 [4.6-16.5] 0.64 [0.3-1]
10 174.51 [137.5-211.5] 79.45 [45.6-113.3] 7892.24 [6382.5-9402] 9.9 [6-13.8]
11 2.67 [1.4-3.9] 32.94 [8.3-57.6] 105.28 [81.1-129.4] 7.54 [4.8-10.2]
12 4.82 [0.6-9.1] 1.19 [0.7-1.7] 28 [12.2-43.8] 0.38 [0.05-0.7]
13 271.73 [231-312.4] 26.67 [20.8-32.6] 9588.46 [8215-10961.9] 18.56 [14.5-22.6]
14 4.13 [1-7.3] 1.09 [0.6-1.5] 19.65 [6.3-33] 0.96 [0.2-1.7]
15 2.65 [1-4.2] 1.46 [0.6-2.3] 72.14 [43.7-100.6] 2.15 [1-3.3]
16 3.63 [0-7.4] 4.84 [0-10.9] 504.05 [298.9-709.1] 5.6 [0.9-10.3]
17 8.49 [4.4-12.5] 1.4 [1-1.7] 113.75 [85.7-141.8] 4.64 [3.4-5.8]
18 26.5 [7.5-45.5] 5.62 [1.8-9.4] 2068.88 [1369.1-2768.6] 1.9 [1-2.8]
19 25.78 [13.2-38.4] 8.35 [4.8-11.9] 1402.04 [1110.6-1693.5] 3.87 [0.4-7.3]20 92.16 [67.9-116.4] 21.3 [14.8-27.8] 1921.2 [1543.3-2299.1] 5.12 [38-6.4]21 3.94 [0.7-7.2] 11.3 [5-17.6] 243.53 [173.9-313.2] 3.72 [1.9-5.5]
22 116.7 [86.7-146.7] 5.48 [3.8-7.2] 4478.6 [3545.8-5411.4] 12.3 [8.9-15.6]
23 7.63 [3.1-12.2] 1.95 [1.2-2.7] 142.95 [95.9-190] 1.43 [0.6-2.2]
24 15.19 [6.3-24.05] 7.62 [3.9-11.3] 215.88 [141.2-290.6] 4.77 [2.8-6.7]
25 0.93 [0-2] 0.37 [0.1-0.6] 8.71 [1.1-16.3] 0.27 [0-0.57]
26 7.93 [1.4-14.4] 2.51 [0.4-4.7] 291.41 [160.6-422.2] 4.95 [1.8-8.1]
27 27.55 [18.4-36.6] 16.98 [7.1-26.8] 1403.05 [1078-1728] 22.25 [11.4-33.1]
28 15.55 [9.2-21.9] 2.99 [2.1-3.9] 182.73 [124.8-240.6] 4.7 [2.7-6.6]
29 2.68 [0.01-5.3] 2.99 [1.3-4.7] 85.74 [53.6-117.9] 4 [1.8-6.2]
30 0 [0-1.3] 1.46 [0.4-2.5] 1064.13 [815.8-1312.4] 5.15 [2.1-8.2]
31 1.53 [0-4.4] 2.96 [1.4-4.5] 742.19 [583.4-900.9] 4.9 [3.2-65]
32 94.32 [71-117.6] 10.28 [6.7-13.9] 3398.15 [2755.5-4040.8] 5.71 [3.5-7.9]
33 5.42 [1.3-9.5] 2.2 [0.5-3.9] 507.97 [404.4-611.6] 5.56 [3.5-74]
34 2.44 [0.7-4.1] 2.7 [0.8-4.6] 84.78 [40.6-129] 2.07 [0.8-3.3]
35 0 [0-0.1] 4.71 [2.5-69] 87.06 [62.8-111.3] 5.1 [3.1-7.1]
36 1.18 [0.3-2] 1.68 [1-2.4] 5.46 [2.8-8.1] 0.64 [0.2-1]
37 0.82 [0-2.87] 17.65 [6.5-28.8] 282.23 [233.9-330.6] 5.48 [3.2-7.7]
38 30.44 [24.5-36.4] 29.16 [22.2-36.1] 1071.34 [902.9-1239.8] 6.11 [2.7-9.51
39 5.46 [0-11.6] 3.68 [2.2-5.1] 399.57 [289.5-509.6] 2.95 [1.7-4.2]
40 0.82 [0-1.7] 0.36 [0-0.75] 3.95 [0-8.4] 0.52 [0-1.2]
41 5.71 [2-9.4] 8.44 [6.1-10.8] 103.85 [77.2-130.4] 7.8 [5.5-10]
42 3.11 [0.9-5.3] 2.87 [1.3-4.5] 118.84 [82.4-155.3] 1.34 [0.8-1.9]
43 9.82 [5.3-14.3] 9.4 [3.6-15.1] 656.6 [530.5-782.7] 6.65 [3.6-9.7]
44 86.9 [63-110.7] 65.28 [60.6-70] 4511.1 [3417.9-5604.2] 18.87 [14-23.7]
45 4.59 [0.8-8.4] 1.31 [0.6-2] 18.07 [5.3-30.8] 1.022 [0.2-1.8]
46 4.05 [2.3-58] 11.31 [6.4-16.2] 144.72 [115-174.4] 12.84 [9.1-16.5]
47 96.62 [79.5-113.7] 4.21 [3.3-5.1] 1740.15 [1476.5-2003.8] 5.66 [4.4-6.9J
48 5.57 [3.4-7.7] 36.09 [14.8-57.4] 310.02 [266.2-353.8] 8.02 [5.6-10.4]
49 455.99 [416.66-495.3] 103.6 [85.8-121.5] 21145.8 [18940.9-23350.8] 30.38 [25.9-34.9]
50 4.06 [1.3-6.8] 33.8 [12.8-54.8] 131.86 [93.6-170.1] 4.02 [2.1-5.9]
51 3.53 [1.8-5.3] 6.52 [3.4-9.6] 185.71 [135.4-236] 4.2 [2.1-6.3]
52 29.4 [22.5-36.3] 31.48 [18-45] 1747.11 [1484.6-2009.6] 6.6 [3.5-96]
53 4.05 [1-7.1] 39.01 [23.5-54.5] 186.52 [133.8-239.2] 3.86 [23-5.4]
54 36.42 [24.7-48.1] 7.82 [4.7-10.9] 647.88 [499.2-796.5] 1.42 [0.9-1.9]
55 3.41 [1.3-5.5] 1.97 [0.6-3.3] 39.7 [22.3-57.1] 2.16 [0.8-3.5]
56 4.6 [2.8-64] 62.68 [45.3-80.1] 228.39 [185.1-271.6] 7.2 [4.8-9.6]
57 135.65 [122-149.3] 73.32 [55.6-91] 4568.32 [4077-5059.6] 25.84 [21.1-30.6]
58 4.92 [2.7-72] 8.48 [6.4-10.5] 92.36 [70.1-114.7] 5.22 [3.9-65]
59 5.19 [1.3-9] 8.88 [4.4-13.3] 147.63 [100.8-194.4] 4.33 [2.4-62]
60 1.45 [0.2-2.7] 44.63 [33-56.26] 73.33 [53.5-93.1] 4.47 [27-6.2]
61 3.69 [1.4-5.9] 1.22 [0.8-1.6] 18.33 [11.3-25.3] 0.98 [0.6-1.4]
62 24.47 [15.8-33.2] 8.22 [5.2-11.2] 466.44 [358.1-574.8] 1.94 [1.2-2.7]
63 11.89 [8.7-15.1] 35.53 [24.1-47] 356.91 [296.9-416.8] 16.98 [12.1-21.8]
64 305.59 [252.3-358.8] 65.82 [47.2-84.5] 9863.87 [8247.1-11480.7] 18.78 [15.9-21.7]
65 34.62 [25-44.2] 47.73 [31.7-63.8] 1955.56 [1630.3-2280.8] 7.06 [5.2-89]
66 1.82 [0-5] 59.03 [38.2-79.8] 514.32 [417.3-611.3] 9.311 [6.3-12.3]
67 8.74 [6.6-10.8] 5.04 [3.9-62] 106.26 [85.3-127.2] 5.18 [3.8-65]
68 3.91 [1.5-6.4] 0.23 [0.1-0.4] 20.03 [8.9-31.1] 0.56 [0.2-0.9]
69 5.62 [1.9-9.3] 9.52 [3.1-15.9] 585.99 [428.6-743.38] 3.87 [1.8-5.9]
70 11.15 [6-16.3] 19.65 [12.4-26.9] 235.42 [160.5-310.3] 2.49 [1.5-3.4]
71 19.87 [13.8-25.9] 82.58 [45.7-119.5] 1048.32 [902.8-1193.8] 22.55 [18.9-26.2]
72 2.58 [1.2-4] 15.6 [6-25.1] 40.07 [26.5-53.6] 2.95 [1.6-4.3]
73 7.86 [4.5-11.2] 6.31 [3.9-87] 166.75 [114.7-218.8] 1.12 [0.4-1.8]
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Table 102.Computational Tests for the Robust System with Learning
(Average Numbers)

R o b u st (with learning)

Run Cmax Cmax CPU CPU Match Match Shitted S. Jobs
95% c ; (sec) 95% Cl 95% Cl Jobs 95% Cl

1 7.86 [3.7-12] 0.86 [0.4-1.4] 169.86 [98.5-241.2] 1.28 [0.3-2.2]
2 23.75 [10.2-37.3] 0.98 [0.5-1.4] 1688.4 [1326.5-2050.29] 2.62 [0.95-4.3]
3 12.73 [2.2-23.2] 0.98 [0.5-1.5] 1206.96 [986-1427.9] 2.4 [0.6-4.1]
4 10.26 [1.5-19] 0.29 [0-0.6] 262.36 [122.4-442.3] 0.45 [0-0.9]
5 6.56 [3.4-9.7] 2.35 [1.1-3.6] 189 [136.4-241.6] 4.45 [2.2-67]
6 2.33 [0.7-3.9] 0.89 [0.4-1.3] 14.11 [6.4-21.8] 0.46 [0.1-0.8]
7 1.56 [0-3.2] 4.07 [0.6-7.6] 39.79 [22.1-57.5] 1.54 [0.4-2.6]
8 1.63 [0-3.9] 10.5 [8.3-12.7] 380.8 [308-453.6] 6.62 [4.1-9.1]
9 1.83 [0-3.8] 0.26 [0.03-0.5] 11.07 [4.8-17.4] 0.78 [0.3-1.2]
10 31.71 [9-54.4] 6.18 [1.5-10.8] 3615.09 [2496.9-4733.2] 2.55 [0.9-4.2]
11 0.52 [0-1.04] 11.53 [0.9-22.2] 93.53 [71.3-115.8] 6 [3.6-84]
12 2.92 [0-6.1] 0.16 [0.1-0.3] 24.58 [8.54-40.6] 0.34 [0.1-0.6]
13 134.02 [94.7-173.4] 20.93 [12.9-28.9] 5792.28 [4362-7222.5] 9.24 [6.4-12.1]
14 1.9 [0-4.8] 0.94 [0.1-1.8] 17.52 [5.2-29.8] 0.87 [0.03-1.7]
15 1.09 [0-2.6] 6.36 [2.7-10] 59.3 [29.4-89.1] 1.63 [0.6-2.6]
16 2.73 [0-6.6] 2.38 [0.6-4.1] 526.19 [325.8-726.5] 6.4 [1.4-11.4]
17 0.38 [0-1.6] 2.1 [0.2-4] 72.97 [31.9-114] 3.1 [1.1-5]
18 10.92 [0-23.8] 18.55 [2.7-34.4] 1837.92 [1278.3-2397.6] 1.6 [0.8-2.4]
19 12.95 [4.2-21.7] 11.55 [4.8-18.2] 1171.79 [873.4-1470.1] 1.3 [0.6-1.9]
20 60.05 [36.7-83.4] 5.76 [4.3-72] 1426.21 [1037.1-1815.3] 3.47 [2.3-4.6]
21 3.11 [0-7.8] 28.69 [13.3-44] 238.31 [168.1-308.6] 2.8 [1.42-4.2]
22 85.46 [54.9-116] 4.4 [2.7-6.1] 4234.2 [3225.3-5243] 10.8 [7.3-14.3]
23 6.09 [1.8-10.3] 4.62 [1.5-7.7] 144.31 [81.7-206.9] 0.87 [0.3-1.4]
24 2.85 [0-6.1] 2.19 [1.4-2.9] 283.74 [197-370.4] 5.6 [37-7.5]
25 0.7 [0-1.7] 0.12 [0.01-0.2] 8.55 [1.2-15.9] 0.27 [0-0.6]
26 4.42 [0.4-8.4] 5.76 [3.7-78] 201.9 [134.5-269.3] 1.43 [0.6-2.3]
27 14.72 [4.9-24.5] 6.42 [1.33-11.5] 1139.7 [822-1457.4] 11.05 [6.2-15.9]
28 6.84 [1.7-11.9] 1.68 [1.1-2.2] 160.23 [107.2-213.2] 3.3 [2.3-43]
29 3.42 [0.5-6.33] 2.2 [0.7-3.7] 95.59 [56.2-135] 3.57 [1.4-5.7]
30 3.97 [0-10.4] 1.47 [0.6-2.3] 1056.9 [796.3-1317.5] 5.6 [3.1-8.1]
31 1.47 [0-6] 2.55 [1.4-3.6] 788.11 [578.5-997.7] 5.23 [3.1-7.3]
32 25.31 [10.3-40.3] 1.82 [0.9-2.8] 2028.14 [1490.6-2565.7] 3.03 [1.1-5]
33 6.21 [0.1-12.3] 9.83 [4.2-15.5] 565.08 [448.4-681.8] 9 [5.2-12.8]
34 4.18 [0.8-7.5] 3.65 [1.3-6] 57.34 [25.2-89.5] 1.71 [0.6-2.8]
35 0 [0-0.24] 2.32 [0.8-3.9] 76.2 [55.8-96.6] 3.48 [1.6-5.4]
36 2.13 [0.6-3.7] 1.28 [0.3-2.2] 6.56 [2.8-10.3] 0.63 [0.2-1]
37 0.23 [0-2.5] 27.26 [15.2-39.3] 313.31 [254.6-372] 5.38 [3.5-72]
38 16.77 [10.4-23.1] 1.75 [0.8-2.6] 778.22 [582.6-973.8] 3.47 [1.9-5]
39 2.18 [0-6.5] 1.25 [0.5-2] 342.7 [235.9-449.5] 3.5 [1.4-5.6]
40 0.156 [0-0.6] 0.43 [0.1 -0.7] 3.47 [0.7-6.3] 0.325 [0-0.6]
41 1.08 [0-3.35] 6.93 [4.7-9.2] 69 [51.3-86.7] 5.54 [4.1-7]
42 2.41 [0.2-4.6] 2.96 [1.5-4.4] 141.86 [97.8-185.9] 1.2 [0.6-1.8]
43 4.3 [0.5-8.1] 5.36 [3-7.7] 439.35 [334.5-544.1] 3.6 [1.97-5.2]
44 49.44 [30.5-68.3] 22.28 [16.3-28.3] 3041.59 [2286.9-3796.3] 11.52 [8.1-14.9]
45 2.82 [0-5.9] 1.51 [0.8-2.2] 19.38 [10.6-28.2] 1 [0.4-1.5]
46 1.78 [0.21-3.3] 17.58 [10.6-24.5] 115.03 [92.6-137.5] 9.2 [6.5-11.9]
47 44.09 [32.2-55.9] 13.78 [10.7-16.8] 970.74 [748.2-1193.3] 3.18 [2.3-4.1]
48 2.67 [0.6-4.7] 7.56 [4.5-10.6] 222.19 [169.5-274.9] 5.3 [2.7-79]
49 159.45 [130.4-188.5] 23.39 [18.4-28.4] 7813.32 [6311.9-9314.7] 10.04 [8-12.1]
50 1.88 [0.05-3.7] 7.61 [3.4-11.8] 116.94 [77.6-156.3] 3.67 [1.8-5.5]
51 1.76 [0.2-3.3] 10.41 [3.1-17.7] 197.38 [142-252.7] 5.77 [2.5-9.1]
52 8.74 [4.5-13] 13.28 [7.2-19.4] 887.81 [652.2-1123.4] 3.75 [1.3-6.1]
53 6.12 [1.7-10.5] 30.73 [25.5-36] 202.98 [142.5-263.4] 4.44 [2.2-67]
54 20.98 [11.7-30.3] 2.92 [2-3.8] 601.21 [471.8-730.6] 1.34 [0.6-2]
55 1.8 [0-3.6] 1.26 [0.3-2.2] 45.35 [26.7-64] 1.62 [0.7-2.5]
56 2.64 [0.9-4.3] 23.06 [15.4-30.7] 205.68 [162.8-248.5] 5.95 [4-7.9]
57 67.53 [52.2-82.9] 22.63 [18.9-26.4] 2488.1 [2005-2971.2] 13.4 [10-16.8]
58 1.99 [0.02-3.9] 14.59 [10.6-18.6] 75.11 [55.6-94.6] 2.91 [1.9-3.9]
59 3.43 [0.3-6.5] 13.99 [6.9-21.1] 150.1 [102.1-198] 3.93 [2.4-54]
60 0.33 [0-1] 23.19 [4.5-41.9] 72.8 [51.9-93.6] 4.09 [1.8-6.4]
61 1.52 [0-3.2] 1.06 [0.6-1.5] 11.48 [6.2-16.8] 0.49 [0.15-0.8]
62 16.56 [9.3-23.8] 1.24 [0.7-1.8] 397.62 [296.3-498.9] 1 [0.5-1.5]
63 8.37 [4.7-12] 11.87 [8.6-15.1] 206.36 [155 9-256.8] 8.73 [5.9-11.5]
64 196.04 [144-248] 22.43 [10.1-34.8] 7669.65 [5833.5-9505.8] 9.84 [7-12.7]
65 9.95 [3.7-16.2] 3.95 [0.2-7.7] 1033.58 [813.3-1253.8] 2.4 [1.3-3.4]
66 2.06 [0-5] 39.16 [24.4-54] 437.46 [341.3-533.6] 8.95 [5.7-12.1]
67 4.19 [1.7-6.7] 1.25 [0.9-1.6] 78.74 [58.7-98.8] 3.51 [2.3-4.7]
68 1.63 [0-3.5] 0.19 [0.05-0.3] 22.66 [7.1-38.2] 0.244 [0.05-0.4]
69 4.8 [1.4-8.2] 17.79 [10.3-25.3] 535.34 [405 2-665.4] 3.24 [1.9-4.6]
70 4.83 [0.4-9.3] 6.61 [2.7-10.5] 218.76 [146.8-290.7] 2.18 [1.2-3.2]
71 10.53 [5.9-15.2] 27.73 [16.7-38.8] 687.69 [568.4-806.9] 11.5 [10.2-12.8]
72 1.999 [0.7-3.3] 7.48 [3.8-11.2] 32.04 [19.6-44.4] 2.13 [1-3.2]
73 7.07 [2.9-11.2] 3.07 [1.6-4.5] 151.74 [91.8-211.6] 1.42 [0.65-2.2]
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Cmax Difference in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 103, 

ANOVA test in Table 104, and Effect test in Table 105. The results indicate the success of 

the regression in predicting the values of Cmax Difference and that the model is significant 

since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 105; these factors are Number o f  Machines, and the interaction 

between Repair Duration and Breakdown and Idle Time and Breakdown.

Factor C (Number o f  Machines) has a negative effect on Cmax Difference, i.e. when the 

number of machines increases, Cmax Difference decreases. This is logical because the jobs’ 

load will be distributed over the machines. Interaction DF {Repair Duration and Breakdown) 

has a positive effect on Cmax Difference. This makes sense too because if  the repair 

durations and breakdown rate are higher, the delays will be more frequent and longer; i.e. 

CmaxR will increase.

Factors E and F interact because a larger idle time is able to absorb a higher rate of 

breakdowns, and vice versa.

Table 103. Cmax Difference Regression Results for Robust 
System w/o Learning

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.777
0.643

48.3152
73
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Table 104. Cmax Difference ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 365150 13524 5.79 0.000
Residual 45 105046 2334
Total 72 470196

Table 105. Cmax Difference Effect Test for Robust System w/o 
Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 19.45 23.23 0.84 0.407

A 11.856 7.506 1.58 0.121
B 11.45 16.26 0.7 0.485
C -61.18 17.3 -3.54 0.001
D -16.99 17.48 -0.97 0.336
E -1.36 16.87 -0.08 0.936
F -22.45 17.95 -1.25 0.217

AB 0.1971 0.4014 0.49 0.626
AC 0.2386 0.4128 0.58 0.566
AD 0.36 0.4331 0.83 0.41
AE -0.2779 0.392 -0.71 0.482
AF -0.2658 0.4583 -0.58 0.565
BC -19.047 9.908 -1.92 0.061
BD 1.86 10.92 0.17 0.865
BE -3.923 9.396 -0.42 0.678
BF -2.7 10 -0.27 0.789
CD -3.425 9.883 -0.35 0.731
CE -10.238 9.443 -1.08 0.284
CF -6.78 10.32 -0.66 0.515
DE 17.59 10.35 1.7 0.096
DF 46.14 11.29 4.09 0
EF 21.813 9.331 2.34 0.024
AA -6.67 13 -0.51 0.611
BB -6.81 13.08 -0.52 0.605
CC 38.33 13.06 2.94 0.005
DD -22.93 12.68 -1.81 0.077
EE 6.48 13.37 0.48 0.63
FF 13.06 14.1 0.93 0.359
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Cmax Difference in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 106, 

ANOVA test in Table 107, and Effect test in Table 108. The results indicate the success of 

the regression in predicting the values of Cmax Difference and that the model is significant 

since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 108; these factors are Processing Time Range, and the 

interactions between Repair Duration and Breakdown, Number o f  Jobs and Number o f  

Machines, and Processing Time Range and Breakdown.

Factor A (Processing Time Range) has a positive effect on Cmax Difference, i.e. when the 

processing time increases, Cmax Difference increases. This is attributed to the fact that a 

wider processing time range will create a larger variability, i.e. it is harder for the learning 

parameter to predict CmaxR. Interaction DF (Repair Duration and Breakdown) was 

discussed earlier. Interaction BC (Number o f  Jobs and Number o f  Machines) is evident as 

both the number of jobs and number of machines determine the size of the problem, i.e. the 

difficulty to attain solutions. Factors A and F interact because the time between breakdowns 

is a function of the processing time; the larger the processing time, the longer is the time 

between breakdowns.

Table 106. Cmax Difference Regression Results for Robust 
System with Learning

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.77
0.631

21.2020
73
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Table 107. Cmax Difference ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 67538.5 2501.4 5.56 0.000
Residual 45 20228.6 449.5
Total 72 87767.1

Table 108. Cmax Difference Effect Test for Robust System with 
Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 8.21 10.19 0.81 0.425

A 7.107 3.294 2.16 0.036
B 2.727 7.137 0.38 0.704
C -11.262 7.592 -1.48 0.145
D 3.679 7.672 0.48 0.634
E 2.626 7.401 0.35 0.724
F 1.758 7.876 0.22 0.824

AB 0.1546 0.1762 0.88 0.385
AC -0.2513 0.1812 -1.39 0.172
AD -0.0265 0.1901 -0.14 0.89
AE -0.2 0.172 -1.16 0.251
AF -0.4156 0.2011 -2.07 0.045
BC -11.317 4.348 -2.6 0.012
BD 1.885 4.792 0.39 0.696
BE -3.756 4.123 -0.91 0.367
BF -3.813 4.389 -0.87 0.39
CD -2.667 4.337 -0.61 0.542
CE -1.409 4.144 -0.34 0.735
CF -1.064 4.528 -0.23 0.815
DE 3.472 4.541 0.76 0.448
DF 22.255 4.955 4.49 0
EF 1.691 4.095 0.41 0.682
AA 1.497 5.706 0.26 0.794
BB -6.263 5.741 -1.09 0.281
CC 15.231 5.731 2.66 0.011
DD -10.753 5.563 -1.93 0.06
EE 3.935 5.867 0.67 0.506
FF 6.079 6.186 0.98 0.331
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CPU Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the two systems in the case of the CPU performance measure. This analysis will 

follow the same approach used earlier.

CPU Time in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 109, 

ANOVA test in Table 110, and Effect test in Table 111. The results indicate the success of 

the regression in predicting the values of CPU Time and that the model is significant since 

the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 111. These factor effects on CPU Time in the case of Robust 

System w/o Learning are described in Table 112.

Table 109. CPU Time Regression Results for Robust System 
w/o Learning

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.761
0.618

15.1293
73
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Table 110. CPU Time ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 32792.6 1214.5 5.31 0.000
Residual 45 10300.3 228.9
Total 72 43092.9

Table 111. CPU Time Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant -0.695 7.07 -0.1 0.922

A -0.163 2.288 -0.07 0.944
B 16.426 2.302 7.14 0
C -6.55 2.348 -2.79 0.008
D -2.88 2.324 -1.24 0.222
E -7.961 2.263 -3.52 0.001
F -8.272 2.362 -3.5 0.001

AB -0.216 2.85 -0.08 0.94
AC -0.206 2.948 -0.07 0.945
AD -0.493 3.1 -0.16 0.874
AE -5.834 2.937 -1.99 0.053
AF 0.767 3.007 0.25 0.8
BC -1.105 3.031 -0.36 0.717
BD -4.166 2.982 -1.4 0.169
BE -1.552 2.982 -0.52 0.605
BF -4.103 3.068 -1.34 0.188
CD 0.975 3.095 0.32 0.754
CE 2.868 3.059 0.94 0.353
CF 9.774 3.189 3.06 0.004
DE 0.814 2.977 0.27 0.786
DF 6.299 3.264 1.93 0.06
EF 4.672 2.988 1.56 0.125
AA 4.669 4.068 1.15 0.257
BB 4.268 3.913 1.09 0.281
CC 18.858 3.95 4.77 0
DD -1.597 3.943 -0.4 0.687
EE 0.02 4.229 0 0.996
FF 2.5 4.002 0.62 0.535
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Table 112. Factors' Effects on CPU Time in the case of Robust System w/o Learning

C P U  T i m e  E f f e c t s '  D i a g n o s t i c  f o r  R o b u s t  S y s t e m  w / o  L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

B +
A higher number of jobs leads to a higher possibilities of 
assignments to the machines; the MIP will require more time 
to attain a solution.

C -
When there are more machines, the jobs on each machine 
will be less, i.e. the problem becomes a little easier for the 
MIP to solve.

E -
A larger repair duration leads to longer but fewer delays as no 
more than one breakdown can occur until the repair finishes, 
i.e. less rescheduling

F - When the time between breakdowns is larger, less delay will 
occur, hence, less shifting is required.

CF +

C (number of jobs) and F (breakdown) interact because more 
machines lead to fewer breakdowns on each machine as no 
more than one breakdown can occur at a time over the 
machines.

CPU Time in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 113, 

ANOVA test in Table 114, and Effect test in Table 115. The results indicate the success of 

the regression in predicting the values of CPU Time and that the model is significant since 

the p-value is very small.

Table 113. CPU Time Regression Results for Robust System 
with Learning

R e g r e s s i o n  S t a t i s t i c s

R Square 0.658
Adjusted R Square 0.453
Standard Error 6.82670
Observations 73
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Table 114. CPU Time ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 4033.32 149.38 3.21 0.000
Residual 45 2097.17 46.60
Total 72 6130.49

Table 115. CPU Time Effect Test for Robust System with Learning

Predictor Coefficients SE Coef tS tat P-value
Constant -1.758 3.19 -0.55 0.584

A 0.117 1.032 0.11 0.91
B 6.399 1.039 6.16 0
C 0.274 1.059 0.26 0.797
D 0.289 1.049 0.28 0.784
E 0.675 1.021 0.66 0.512
F -2.032 1.066 -1.91 0.063

AB 1.48 1.286 1.15 0.256
AC 1.882 1.33 1.41 0.164
AD 2.117 1.399 1.51 0.137
AE -0.405 1.325 -0.31 0.761
AF 0.685 1.357 0.5 0.616
BC 3.124 1.368 2.28 0.027
BD 0.009 1.345 0.01 0.995
BE -0.601 1.345 -0.45 0.657
BF -0.274 1.384 -0.2 0.844
CD -0.371 1.397 -0.27 0.792
CE -1.301 1.38 -0.94 0.351
CF -0.896 1.439 -0.62 0.537
DE -1.665 1.343 -1.24 0.221
DF 0.359 1.473 0.24 0.808
EF 0.468 1.348 0.35 0.73
AA 1.823 1.836 0.99 0.326
BB 1.708 1.765 0.97 0.338
CC 6.404 1.782 3.59 0.001
DD -2.084 1.779 -1.17 0.248
EE 2.259 1.908 1.18 0.243
FF 5.075 1.806 2.81 0.007

The factors that were determined to be significant due to a relatively large t-Stat and a 

small p-value are bolded in Table 115; these factors are Number o f  Jobs, and the interaction 

between Number o f  Jobs and Number o f Machines.
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Interaction BC is logical as both the number of jobs and number of machines determine the 

size of the problem, i.e. the difficulty to attain solutions.

Shifted Jobs Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the two systems in the case of the Shifted Jobs performance measure.

Shifted Jobs in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 116, 

ANOVA test in Table 117, Effect test in Table 118, and the factor effects diagnosis in Table 

119. The results indicate the success of the regression in predicting the values of Shifted 

Jobs and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 118 and explained in Table 119; these factors are Number o f  

Jobs, Number o f  Machines, Repair Duration, Idle Time and Breakdown, and the interactions 

between Repair Duration and Breakdown, Idle Time and Breakdown, Number o f Machines 

and Breakdown, and Number o f Jobs and Breakdown.

Table 116. Shifted Jobs Regression Results for Robust System 
w/o Learning

R e g r e s s i o n  S t a t i s t i c s

R Square
Adjusted R Square 
Standard Error 
Observations

0.858
0.773

3.28318
73
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Table 117. Shifted Jobs ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 2933.01 108.63 10.08 0.000
Residual 45 485.07 10.78
Total 72 3418.07

Table 118. Shifted Jobs Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 3.891 1.534 2.54 0.015

A -0.0502 0.4964 -0.1 0.92
B 3.4753 0.4995 6.96 0
C -2.1223 0.5095 -4.17 0
D -1.1446 0.5043 -2.27 0.028
E -1.6311 0.4911 -3.32 0.002
F -4.5305 0.5126 -8.84 0

AB -0.0535 0.6185 -0.09 0.931
AC -0.0844 0.6398 -0.13 0.896
AD -0.008 0.6727 -0.01 0.991
AE -0.9125 0.6373 -1.43 0.159
AF 0.4475 0.6526 0.69 0.496
BC -1.1854 0.6577 -1.8 0.078
BD -1.244 0.647 -1.92 0.061
BE -0.2874 0.647 -0.44 0.659
BF -1.675 0.6657 -2.52 0.015
CD 0.4626 0.6717 0.69 0.495
CE 0.3526 0.6638 0.53 0.598
CF 2.4411 0.6921 3.53 0.001
DE 0.5797 0.646 0.9 0.374
DF 2.0618 0.7083 2.91 0.006
EF 1.3537 0.6484 2.09 0.042
AA -0.2858 0.8828 -0.32 0.748
BB -1.3525 0.8491 -1.59 0.118
CC 2.8488 0.8571 3.32 0.002
DD -0.285 0.8558 -0.33 0.741
EE -0.1199 0.9176 -0.13 0.897
FF 2.9012 0.8684 3.34 0.002
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Table 119. Factors' Effects on Shifted Jobs in the case of Robust System w/o Learning

S h i f t e d  J o b s  E f f e c t s '  D i a g n o s t i c  f o r  R o b u s t  S y s t e m  w / o  L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

B + A higher number of jobs logically indicates a higher number of shifts 
between the machines

C - When there are more machines, the jobs on each machine will be less, 
i.e. fewer jobs will be shifted.

D - A larger repair duration leads to longer but fewer delays as no more than 
one breakdown can occur until the repair finishes

E -
The higher the idle time the easier it will be to fix the schedule by just 
shifting the jobs on the same machine; i.e. less jobs will be shifted to 
another machine

F - When the time between breakdowns is larger, less delay will occur, 
hence, less shifting is required.

BF -
BF effect is negative because F effect is stronger than B. B and F 
interact because the higher the number of jobs, the more they will be hit 
by a breakdown.

CF +
C and F interact because more machines lead to fewer breakdowns on 
each machine as no more than one breakdown can occur at a time over 
the machines.

DF +
D and F interact because if the repair durations and breakdown rate are 
higher, the delays will be more frequent and longer; i.e. CmaxR will 
increase.

EF + E and F interact because a higher idle time will absorb more frequent 
breakdowns, and vice versa

Shifted Jobs in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 120, 

ANOVA test in Table 121,' and Effect test in Table 122. The results indicate the success of 

the regression in predicting the values of Shifted Jobs and that the model is significant since 

the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 122; these factors are Number o f  Jobs and Breakdown, and the
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interactions between Repair Duration and Processing Time Range, and Number o f  Machines 

and Idle Time. The effects of B and F are explained in Table 119.

Processing Time Range and Repair Duration interact because the repair duration depends on 

the processing time. If the latter increases, the repair time will increase too.

Number o f Machines and Idle Time interact because the larger the number of machines, the 

smaller the number of jobs on each machine, hence, the smaller the idle time on each 

machine.

Table 120. Shifted Jobs Regression Results for Robust System 
with Learning

R e g r e s s i o n  S t a t i s t i c s

R Square 0.808
Adjusted R Square 0.693
Standard Error 1.82045
Observations 73

Table 121. Shifted Jobs ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 2 7 628.148 23.265 7.02 0.000
Residual 45 149.131 3.314
Total 72 777.279
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Table 122. Shifted Jobs Effect Test for Robust System with Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 2.1224 0.8507 2.49 0.016

A -0.1905 0.2753 -0.69 0.492
B 2.036 0.277 7.35 0
C -0.2405 0.2825 -0.85 0.399
D -0.0989 0.2796 -0.35 0.725
E -0.1247 0.2723 -0.46 0.649
F -2.2 0.2842 -7.74 0

AB -0.1548 0.3429 -0.45 0.654
AC 0.4019 0.3548 1.13 0.263
AD 0.902 0.373 2.42 0.02
AE -0.1265 0.3534 -0.36 0.722
AF 0.4664 0.3619 1.29 0.204
BC 0.1875 0.3647 0.51 0.61
BD -0.5196 0.3588 -1.45 0.154
BE -0.042 0.3588 -0.12 0.907
BF -0.6985 0.3691 -1.89 0.065
CD -0.4441 0.3724 -1.19 0.239
CE -0.8139 0.368 -2.21 0.032
CF 0.2897 0.3837 0.75 0.454
DE -0.5489 0.3582 -1.53 0.132
DF 0.3717 0.3927 0.95 0.349
EF -0.1357 0.3595 -0.38 0.708
AA 0.6357 0.4895 1.3 0.201
BB -0.6806 0.4708 -1.45 0.155
CC 0.6272 0.4752 1.32 0.194
DD 0.1195 0.4745 0.25 0.802
EE -0.1705 0.5088 -0.34 0.739
FF 2.2159 0.4815 4.6 0

Match-up Statistical Analysis

In this section, the significance of the factors and their interactions is determined for 

each of the two systems in the case of the Match-up Time performance measure. This 

analysis will follow the same approach used earlier.
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Match-up in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 123, 

ANOVA test in Table 124, and Effect test in Table 125. The results indicate the success of 

the regression in predicting the values of Match-up and that the model is significant since the 

p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 125 and explained in Table 126; these factors are Processing 

Time Range, Number ofJobs, Number o f Machines, Idle Time, and Breakdown, and the 

interactions between Number o f  Machines and Processing Time Range, Number o f Jobs and 

Number o f Machines, and Number ofMachines and Breakdown.

Table 123. Match-up Regression Results for Robust System w/o 
Learning

R e g r e s s i o n  S t a t i s t i c s

R Square 0.802
Adjusted R Square 0.683
Standard Error 1811.28
Observations 73

Table 124. Match-up ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 597666764 22135806 6.75 0.000
Residual 45 147632323 3280718
Total 72 745299087
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Table 125. Match-up Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 829.8 846.4 0.98 0.332

A 602.9 273.9 2.2 0.033
B 1133.9 275.6 4.11 0
C -1957 281.1 -6.96 0
D -25.6 278.2 -0.09 0.927
E -610.3 270.9 -2.25 0.029
F -1093.2 282.8 -3.87 0

AB 503.9 341.2 1.48 0.147
AC -853.3 353 -2.42 0.02
AD -106.7 371.1 -0.29 0.775
AE -251 351.6 -0.71 0.479
AF -292.8 360 -0.81 0.42
BC -1579.9 362.9 -4.35 0
BD -66.8 356.9 -0.19 0.852
BE -339.7 357 -0.95 0.346
BF -656.5 367.3 -1.79 0.081
CD 463.4 370.6 1.25 0.218
CE 630.3 366.2 1.72 0.092
CF 1739.4 381.8 4.56 0
DE 310.7 356.4 0.87 0.388
DF 296.1 390.7 0.76 0.453
EF 579.7 357.7 1.62 0.112
AA -507.4 487 -1.04 0.303
BB -20.2 468.4 -0.04 0.966
CC 1726.1 472.8 3.65 0.001
DD -1042.6 472.1 -2.21 0.032
EE 386.3 506.2 0.76 0.449
FF 410 479.1 0.86 0.397
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Table 126. Factors' Effects on Match-up Time in the case of Robust System w/o Learning

M a t c h - u p  E f f e c t s '  D i a g n o s t i c  f o r  R o b u s t  S y s t e m  w / o  L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

A + It is logical that the larger the processing time, the larger the match­
up time will be.

B + When the number of jobs increases, more jobs will be shifted, i.e. 
longer time to match.

C - When there are more machines, the jobs on each machine will be 
less, i.e. time to match will be less.

E - It is easier to match-up with the initial schedule when the idle time is 
larger as it will absorb the shifting of the jobs better.

F - When the time between breakdowns is larger, less delay will occur, 
hence, it is easier to match-up.

AC -

A (processing) and C (number of machines) interact in the case of 
Match-up time because for example a larger processing time with a 
small number of machines will increase the match-up dramatically; 
on the other hand, a smaller processing time with a large number of 
machines will decrease the match-up time.

BC -
BC effect is negative because C effect is stronger than B (number of 
jobs). It is obvious that B and C interact as the number of jobs on 
each machine depends on both of them.

CF +
C and F (breakdown) interact because more machines lead to fewer 
breakdowns on each machine as no more than one breakdown can 
occur at a time over the machines.

Match-up in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 127, 

ANOVA test in Table 128, and Effect test in Table 129. The results indicate the success of 

the regression in predicting the values of Match-up and that the model is significant since the 

p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small 

p-value are bolded in Table 129; these factors are Processing Time Range, Number o f  Jobs, 

Number o f Machines, and Breakdown, and the interactions between Number o f  Jobs and
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Number o f Machines, and Number o f Machines and Breakdown. The factor effects are 

explained in Table 126.

Processing Time Range and Number o f  Jobs interact in the case of Match-up Time because 

for example a large processing time with a high number of jobs will lead to a large Match-up 

Time, and vice versa.

Table 127. Match-up Regression Results for Robust System 
with Learning

R e g r e s s i o n  S t a t i s t i c s

R Square 0.816
Adjusted R Square 0.706
Standard Error 844.630
Observations 73

Table 128. Match-up ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e  F  ( p - v a l u e )

Regression 27 142671841 5284142 7.41 0.000
Residual 45 32102993 713400
Total 72 174774834
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Table 129. Match-up Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 249.3 394.7 0.63 0.531

A 403.3 127.7 3.16 0.003
B 615.4 128.5 4.79 0
C -1029.3 131.1 -7.85 0
D 160.1 129.7 1.23 0.224
E -183.2 126.3 -1.45 0.154
F -492.8 131.9 -3.74 0.001

AB 329.8 159.1 2.07 0.044
AC -458.9 164.6 -2.79 0.008
AD 140.4 173.1 0.81 0.421
AE -136.8 164 -0.83 0.408
AF -150.3 167.9 -0.9 0.375
BC -710 169.2 -4.2 0
BD -28.1 166.5 -0.17 0.867
BE -96.7 166.5 -0.58 0.564
BF -287.6 171.3 -1.68 0.1
CD -91.9 172.8 -0.53 0.597
CE 76.7 170.8 0.45 0.655
CF 712.3 178 4 0
DE -8.2 166.2 -0.05 0.961
DF 13 182.2 0.07 0.943
EF 48.8 166.8 0.29 0.771
AA 11.5 227.1 0.05 0.96
BB -152.9 218.4 -0.7 0.488
CC 861.6 220.5 3.91 0
DD -322 220.2 -1.46 0.151
EE 230.8 236.1 0.98 0.334
FF 304.1 223.4 1.36 0.18

Repair and Rescheduling Rule Comparisons

Following the analysis of factors and interaction significance, this section will 

compare the systems to the rules described in chapter 6 based on each performance measure 

as well as an overall performance. The Eigenvalue Normalization Procedure explained in 

chapter 6 (Equation 7) will also be used here to attain a unique measure for the four 

performance measures. Conclusions are drawn regarding dominance among the rules.
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Cmax Difference Comparison

Following the normalization of the performance measures, the Cmax Difference 

performance of the four rules and the two systems is presented in Table 130. The boxplot of 

the rules is also shown in Figure 26. It is visually noticeable that Robust with Learning 

performed the best, followed by Robust w/o Learning, CR, and PR, then FJR, and finally 

RSR that had the worst performance; however, this can not be validated unless tests are 

undertaken to determine that the differences are statistically significant. It is obvious though 

that no tests are needed for RSR and Robust with Learning as the boxplot indicates clearly 

that their performances are significantly far from the rest.

Boxplot of RSR, HR, PR, CR, Robust w /o  Learning, Robust with Leamfeig
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Figure 26. Cmax Difference Boxplot for the Rules and Systems
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Table 130. Cmax Difference Performance among the rules and systems

Cmax Difference

Run
RSR FJR PR CR

ROBUST
w/o

Learning

Robust
with

Learning
1 0.650911 0 368985 0.366392 0.316008 0.348239 0.291187
2 0.725332 0.35202 0.357177 0.336798 0.329012 0.026799
3 0.702077 0.478835 0.223957 0.340851 0.244333 0.227532
4 0.518137 0.4341 0.429091 0.429091 0.372324 0.190336
5 0.584696 0.426692 0.295155 0.263875 0.206127 0.526146
6 0.401019 0.340548 0.442394 0.442394 0.440802 0.370783
7 0.540974 0.263551 0.476662 0.430005 0.432527 0.196718
8 0.860452 0.286211 0.387681 0.105566 0.103746 0.074169
9 0.554789 0.502922 0.310274 0.39641 0.39641 0.169493
10 0.577695 0.36763 0.421639 0.440025 0.393204 0.071449
11 0.699039 0.582386 0.216641 0.261372 0.234183 0.045609
12 0.556085 0.534664 0.293037 0.293037 0.412994 0.250195
13 0.73604 0.313401 0.419926 0.276383 0.293778 0.144894
14 0.673579 0.356712 0.412686 0.250457 0.391814 0.180253
15 0.723169 0.396576 0.329925 0.331036 0.294377 0.121084
16 0.622262 0.704856 0.173037 0.239188 0.135664 0.102029
17 0.881628 0.221633 0.25053 0.25053 0.219052 0.009804
18 0.701506 0.264019 0.442373 0.225691 0.404656 0.166749
19 0.517531 0.421502 0.497797 0.382034 0.35827 0.179969
20 0.771481 0.326696 0.344877 0.269004 0.273787 0.178395
21 0.70447 0.506037 0.292833 0.240817 0.253018 0.199717
22 0.767491 0.26564 0.427752 0.259688 0.242018 0.177231
23 0.653916 0.407114 0.34727 0.322808 0.333292 0.266022
24 0.848799 0.349725 0.20953 0.211394 0.257505 0.048314
25 0.725576 0.364189 0.302557 0.378196 0.260535 0.196102
26 0.710361 0.492264 0.211136 0.291955 0.30665 0.17092
27 0.820512 0.318406 0.283379 0.294952 0.212554 0.113568
28 0.822603 0.342308 0.218575 0.23264 0.295552 0.130005
29 0.713181 0.54565 0.190234 0.204325 0.209805 0.267736
30 0.911031 0.116492 0.385216 0.059848 0 0.066928
31 0.99646 0.056645 0.014777 0.049257 0.025121 0.024136
32 0.538943 0.447787 0.424932 0.375005 0.418586 0.112324
33 0.920355 0.197807 0.200619 0.214877 0.108844 0.124709
34 0.41899 0.575493 0.336777 0.387294 0.241687 0.414038
35 0.999595 0.028458 0 0 0 0
36 0.327591 0.326306 0.295474 0.295474 0.378978 0.684087
37 0.998672 0.042134 0 0 0.028553 0.008009
38 0.60255 0.397249 0.378018 0.393697 0.372873 0.205423
39 0.744925 0.505173 0.180835 0.198919 0.318504 0.127168
40 0.833701 0.282329 0.272365 0.272365 0.272365 0.051816
41 0.938459 0.198134 0.167075 0.167075 0.152884 0.028917
42 0.80412 0.481635 0.203648 0.193701 0.162813 0.126167
43 0.769369 0.413305 0.241582 0.264663 0.302208 0.132332
44 0.733137 0.235509 0.535632 0.213378 0.237421 0.135076
45 0.918996 0.14929 0.17487 0.199519 0.213471 0.131152
46 0.817168 0.321691 0.244658 0.307517 0.249588 0.109695
47 0.794408 0.301251 0.306208 0.289546 0.288501 0.13165
48 0.688221 0.474444 0.361505 0.271255 0.280834 0.134619
49 0.723321 0.329109 0.384735 0.328623 0.316584 0.110703
50 0.711238 0.545149 0.26052 0.198236 0.271905 0.125907
51 0.805261 0.41034 0.208169 0.160196 0.302401 0.150772
52 0.489988 0.450774 0.449529 0.456998 0.365997 0.108803
53 0.662054 0.595236 0.196882 0.168829 0.206573 0.312155
54 0.543066 0.456222 0.370859 0.402169 0.385245 0.221923
55 0.635023 0.481455 0.319587 0.320521 0.353828 0.186771
56 0.730286 0.491173 0.309465 0.277958 0.198541 0.113945
57 0.712742 0.347572 0.361981 0.322697 0.330169 0.164367
58 0.909823 0.231518 0.19767 0.148929 0.22204 0.089809
59 0.53994 0.599587 0.317947 0.379151 0.269192 0.177905
60 0.853986 0.356535 0.256366 0.118845 0.246179 0.056027
61 0.685769 0.400032 0.304106 0.3337 0.376561 0.155114
62 0.529625 0.448145 0.431947 0.313652 0.400369 0.270948
63 0.736327 0.380664 0.282003 0.283885 0.31964 0.225011
64 0.791806 0.269905 0.383252 0.248387 0.254765 0.163435
65 0.571173 0.407905 0.499458 0.334493 0.367273 0.105557
66 0.956958 0.20185 0.026146 0.194006 0.047586 0.053862
67 0.66534 0.403985 0.348606 0.351395 0.348208 0.166933
68 0.72867 0.273539 0.380042 0.380042 0.29959 0.124893
69 0.761384 0.538749 0.172685 0.175183 0.200514 0.171258
70 0.60435 0.584205 0.307669 0.31264 0.29171 0.126364
71 0.824831 0.395705 0.201066 0.254198 0.212849 0.112798
72 0.652225 0.385516 0.332174 0.398851 0.312777 0.242341
73 0.715817 0.33417 0.329787 0.343665 0.287057 0.258205
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The first test is the One-Way ANOVA, which will determine if there is significant difference 

between the means of the 6 alternatives. The ANOVA results are shown in Table 131.

Table 131. One-Way ANOVA for Cmax Difference

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 52.063 0.713192 0.020635
FJR 73 27.40544 0.375417 0.018262
PR 73 21.93136 0.30043 0.013141
CR 73 20.07717 0.27503 0.010126
ROBUST w/o Learning 73 19.89701 0.272562 0.010589
Robust with Learning 73 11.83726 0.162154 0.012348

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e F  c r i t

Between Groups 
Within Groups

13.27976
6.127351

5
432

2.655953
0.014184

187.2541 9.7E-106 2.23488

Total 19.40711 437

As the p-value in Table 131 is less than 0.05, we can reject the hypothesis that all the means 

are equal, i.e. there is a significant difference between the performances of the rules.

It was previously determined in Chapter 6 that the difference between PR and CR is not 

statistically significant (Table 84) and that both rules outperformed FJR (Table 83), and the 

latter outperformed RSR. Following this, a t test is conducted for Robust w/o Learning -  CR 

(Table 132). Even though the Robust w/o Learning mean is smaller than CR mean 

(indicating that Robust w/o Learning performed better), this difference is not statistically 

significant as the 95% Confidence Interval overlaps with zero. Moreover, the p-value is 

greater than 0.05.
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Table 132. t test for Robust w/o Learning -  CR in the case of Cmax Difference

Two-sample T for Robust w/o Learning vs CR

Robust w/o Learn 
CR

N
73
73

Mean StDev SE
0.273 0.103 0.012
0.275 0.101 0.012

Difference = mu (Robust w/o Learning) - mu (CR)
Estimate for difference: -0.002468
95% Cl for difference: (-0.035766, 0.030830)
T-Test of difference = 0 (vs not =): T-Value = -0.15 P-Value = 0.884 DF = 143

The next t test is for Robust w/o Learning — Robust with Learning (Table 133). As p-value is 

less than 0.05, we conclude that Robust with Learning outperformed Robust w/o Learning 

and the difference is statistically significant.

Table 133. t test for Robust w/o Learning -  Robust with Learning in the case of Cmax 
Difference

Two-sample T for Robust w/o Learning vs Robust with Learning

Difference = mu (Robust w/o Learning) - mu (Robust with Learning)
Estimate for difference: 0.110408
95% Cl for difference: (0.075369, 0.145446)
T-Test of difference = 0 (vs not =): T-Value = 6.23 P-Value = 0.000 DF = 143

Based on previous tests, we conclude that for the Cmax Difference, the best 

performance was achieved by Robust with Learning, then Robust w/o Learning, CR and PR, 

followed by FJR, then finally RSR that had the worst performance.

N
Robust w/o Learn 73
Robust with Lear 73

Mean StDev SE Mean 
0.273 0.103 0.012
0.162 0.111 0.013
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CPU Comparison

The CPU performance is presented in Table 134. The boxplot of the rules and systems is 

also shown in Figure 26. It is known from chapter 6 that RSR performed the best (Table 87), 

followed by FJR, then PR and CR (Table 88). The ANOVA results shown in Table 135 

indicate that the means are not equal.

Boxplot of RSR, FIR, PR, CR, Robust w /o  Learning, Robust with Learning

✓ s f

Figure 27. CPU Boxplot of the rules and systems
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Table 134. CPU Performance among the rules and systems

CPU Time

Run RSR FJR PR CR
Robust

w/o
Learning

Robust
with

Learning
1 0.01288 0.03221 0.663454 0.373595 0.334948 0.553952
2 0.00173 0.17887 0.697195 0.347068 0.601171 0.007688
3 0.00984 0.09531 0.588129 0.794112 0.118671 0.015064
4 0.43783 0.39139 0.670006 0.252082 0.325053 0.192378
6 0.03814 0.18346 0.733848 0.579245 0.179339 0.242211
6 0.05594 0.93234 0.063399 0.096964 0.063399 0.331914
7 0.01782 0.04411 0.688876 0.710495 0.065148 0.118903
8 0.01462 0.00595 0.66106 0.744987 0.076217 0.043995
9 0.01215 0.01215 0.164077 0.577308 0.783923 0.158
10 0.00094 0.0073 0.625893 0.193049 0.753328 0.058597
11 0.00697 0.00152 0.162805 0.977631 0.125504 0.04393
12 0.00369 0.7897 0.409611 0.110706 0.439132 0.059043
13 0.00107 0.09798 0.77531 0.599573 0.135813 0.106583
14 0.01231 0.01477 0.153885 0.437035 0.670941 0.578609
15 0.00146 0.843 0.115121 0.223684 0.106377 0.463398
16 0.00286 0.03379 0.209477 0.936148 0.25158 0.123711
17 0.01345 0.5072 0.308593 0.779394 0.110777 0.166165
18 0.05893 0.71582 0.125449 0.148884 0.193688 0.639307
19 0.14453 0.34487 0.628688 0.05247 0.398296 0.550937
20 0.00301 0.17285 0.384873 0.362654 0.802132 0.216915
21 0.00402 0.0813 0.263785 0.947936 0.058184 0.147726
22 0.00365 0.02729 0.868119 0.480299 0.09526 0.076486
23 0.00242 0.00519 0.482799 0.117672 0.33744 0.799474
24 0.15046 0.00692 0.375297 0.605318 0.658932 0.189378
25 0.60928 0.02101 0.357163 0.577764 0.388678 0.126058
26 0.04585 0.00663 0.67167 0.65289 0.138643 0.31816
27 0.02581 0.01251 0.539699 0.835073 0.0961 0.036335
28 0.00886 0.01772 0.751557 0.422289 0.441484 0.248058
29 0.01041 0.00911 0.458734 0.855002 0.194555 0.143151
30 0.0128 0.01359 0.266783 0.963544 0.005512 0.005549
31 0.00595 0.01106 0.307488 0.950285 0.035961 0.03098
32 0.00329 0.01644 0.813091 0.39298 0.422577 0.074814
33 0.00959 0.23877 0.304615 0.913215 0.02775 0.12399
34 0.01819 0.08353 0.642579 0.662427 0.22329 0.301855
35 0.00986 0.06371 0.469988 0.87896 0.043808 0.021579
36 0.00607 0.013 0.385806 0.112707 0.728263 0.554867
37 0.01253 0.04042 0.404537 0.911394 0.034023 0.052548
38 0.00131 0.09654 0.71174 0.429256 0.546598 0.032803
39 0.00164 0.09725 0.58418 0.764231 0.24182 0.08214
40 0.01382 0.06909 0.483645 0.400734 0.497463 0.594193
41 0.00178 0.10866 0.555744 0.508838 0.501119 0.411464
42 0.00277 0.11377 0.634039 0.507786 0.398162 0.410669
43 0.00133 0.11264 0.396485 0.864793 0.249128 0.142056
44 0.00131 0.12229 0.866192 0.41449 0.237454 0.081043
45 0.00639 0.01038 0.395153 0.455024 0.522879 0.602708
46 0.00058 0.14953 0.567544 0.78417 0.109036 0.169482
47 0.00223 0.26466 0.485166 0.768997 0.093867 0.307242
48 0.00538 0.11812 0.491823 0.721785 0.462358 0.096853
49 0.00119 0.07886 0.844254 0.440301 0.287967 0.064996
50 0.00467 0.01493 0.362094 0.924929 0.111872 0.025188
51 0.0022 0.0127 0.898347 0.320542 0.159294 0.254332
52 0.00029 0.09116 0.97394 0.069686 0.180255 0.076042
53 0.02576 0.1035 0.697089 0.661632 0.200173 0.157685
54 0.00135 0.13643 0.786845 0.210726 0.528166 0.197218
55 0.0883 0.27579 0.391911 0.826158 0.238292 0.15241
56 0.00206 0.03791 0.758571 0.612571 0.20537 0.075556
57 0.01141 0.14504 0.773216 0.449624 0.404049 0.124709
58 0.05058 0.00728 0.69068 0.232654 0.343114 0.590335
59 0.03172 0.07216 0.621366 0.668344 0.215032 0.338773
60 0.00075 0.00089 0.402283 0.903939 0.128776 0.066913
61 0.03146 0.13632 0.679505 0.635463 0.255863 0.222307
62 0.0179 0.15539 0.883044 0.253171 0.358805 0.054126
63 0.03044 0.08187 0.661876 0.656631 0.332812 0.111187
64 0.01106 0.04527 0.542132 0.780543 0.291244 0.099249
65 0.01758 0.07619 0.117743 0.923474 0.355463 0.029417
66 0.01144 0 0136 0.401298 0.907166 0.104392 0.069253
67 0.14737 0.53354 0.235256 0.652503 0.447431 0.11097
68 0.35569 0.62576 0.289825 0.599411 0.1515 0.125152
69 0.006 0.15834 0.506414 0.460569 0.335728 0.627375
70 0.0339 0.00458 0.197421 0.240936 0.900074 0.302773
71 0.00667 0.01523 0.403365 0.905525 0.123764 0.041559
72 0.01581 0.16227 0.247096 0.285556 0.821896 0.394089
73 0.03688 0.112 0.222634 0.133853 0.861851 0.419316
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Table 135. One-Way ANOVA for CPU Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 2.770214 0.037948 0.009458
FJR 73 10.43274 0.142914 0.042783
PR 73 36.95338 0.506211 0.051319
CR 73 40.95285 0.560998 0.074862
Robust w/o Learning 73 22.66898 0.310534 0.05257
Robust with Learning 73 15.58389 0.213478 0.037854

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e F  c r i t

Between Groups 
Within Groups

15.43636
19.35692

5
432

3.087272
0.044808

68.90051 7.08E-53 2.23488

Total 34.79328 437

The t test for PR - Robust w/o Learning shown in Table 136 indicates that Robust w/o 

Learning outperformed PR and the difference is statistically significant. Furthermore, a t test 

for Robust with Learning - Robust w/o Learning shown in Table 137 indicates that Robust 

with Learning outperformed Robust w/o Learning.

Table 136. t test for PR - Robust w/o Learning in the case of CPU Time

Two-sample T for PR vs R obust w/o Learning

N Mean StDev SE Mean
PR 73 0.506 0.227 0.027

Robust w/o Learn 73 0.311 0.229 0.027

Difference = mu (PR) - mu (Robust w/o Learning)
Estimate for difference: 0.195677
95%  Cl for difference: (0.121107, 0.270246)
T-Test of difference = 0 (vs not =): T-Value = 5.19 P-Value = 0.000 DF = 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0 2

Table 137. t test for Robust with Learning - Robust w/o Learning in the case of CPU

Two-sample T for Robust with Learning vs Robust w/o Learning

N Mean StDev SE Mean
Robust with Lear 73 0.213 0.195 0.023
Robust w/o Learn 73 0.311 0.229 0.027

Difference = mu (Robust with Learning) - mu (Robust w/o Learning)
Estimate for difference: -0.097056
95% Cl for difference: (-0.166638, -0.027474)
T-Test of difference = 0 (vs not =): T-Value = -2.76 P-Value = 0.007 DF = 140

Finally, a t test was carried out for Robust with Learning -  FJR in Table 138, which proved 

that FJR outperformed Robust with Learning and the difference is statistically significant.

Table 138. t test for Robust with Learning -  FJR in the case of CPU Time

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.213 0.195 0.023

FJR 73 0.143 0.207 0.024

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.070564
95% Cl for difference: (0.004867, 0.136261)
T-Test of difference = 0 (vs not =): T-Value = 2.12 P-Value = 0.035 DF = 143

Based on the previous tests, we conclude that for the CPU Time, the best performance 

was achieved by RSR, followed by FJR, then Robust with Learning, then Robust w/o 

Learning, and finally PR and CR that had the worst performance. This conclusion was 

expected as both RSR and FJR are heuristics that do not involve MIP solutions.
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Match-up Comparison

The Match-up performance of the rules and systems is presented in Table 139. The 

boxplot is also shown in Figure 27. It is known from Chapter 6 that FJR performed the best 

between the 4 rules (Table 91), followed by RSR, then PR (Table 92), and finally CR (Table 

93). The ANOVA results shown in Table 140 indicate that there is a significant difference 

between the performances of the rules.

Boxplot of RSR, FJR, PR, CR, Robust w /o  Leaning, Robust with Leaning

■

Figure 28. Match-up Boxplot for the rules and systems
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Table 139. Match-up Performance among the rules and systems

Match-Up Time

Run RSR FJR PR CR
Robust

w/o
Leamina

Robust
with

Leamina
1 0.354241 0.307584 0.345619 0.460488 0.512724 0.430718
2 0.562401 0.279382 0.42368 0.593182 0.268162 0.048686
3 0.428822 0.241125 0.333921 0.470756 0.408191 0.508169
4 0.398521 0.288615 0.4028 0.4028 0.576443 0.317961
5 0.337217 0.238775 0.391674 0.401249 0.441644 0.565519
6 0.125621 0.258033 0.468534 0.468534 0.499091 0.479059
7 0.234909 0.190864 0.419655 0.425772 0.560356 0.466824
8 0.073761 0.176932 0.417059 0.859388 0.168022 0.150124
9 0.225741 0.480213 0.36529 0.435064 0.435064 0.454355
10 0.489898 0.236468 0.350289 0.647235 0.366457 0.167859
11 0.357672 0.351365 0.37569 0.452721 0.474343 0.421323
12 0.262525 0.424673 0.341669 0.341669 0.540493 0.474475
13 0.330283 0.212235 0.415199 0.777353 0.225165 0.136019
14 0.220157 0.365415 0.574223 0.360876 0.447123 0.397644
15 0.467017 0.247533 0.340095 0.420035 0.505585 0.415828
16 0.329043 0.274677 0.215425 0.468519 0.513213 0.535702
17 0.238568 0.451456 0.461396 0.461396 0.471337 0.302227
18 0.2221 0.137292 0.177375 0.732493 0.450934 0.40059
19 0.366837 0.232675 0.316756 0.49174 0.525552 0.439256
20 0.363236 0.322112 0.420159 0.64552 0.332103 0.246538
21 0.322724 0.258021 0.277945 0.547999 0.480338 0.4701
22 0.18958 0.164254 0.357614 0.865115 0.179129 0.169354
23 0.280917 0.3636 0.400197 0.393419 0.484573 0.489013
24 0.322599 0.395553 0.445578 0.462734 0.346169 0.454942
25 0.353546 0.359342 0.359342 0.341954 0.504238 0.495544
26 0.391279 0.30416 0.364486 0.51446 0.491037 0.340221
27 0.405319 0.212405 0.393554 0.739091 0.232161 0.188578
28 0.513242 0.382588 0.413905 0.428865 0.364436 0.319614
29 0.41232 0.348677 0.348133 0.315495 0.466171 0.519969
30 0.100848 0.123547 0.362672 0.891088 0.15705 0.155988
31 0.212675 0.271696 0.381833 0.776278 0.249601 0.26504
32 0.44552 0.299263 0.363286 0.540776 0.460452 0.274811
33 0.26767 0.223896 0.453974 0.725463 0.255307 0.283994
34 0.228752 0.347647 0.399794 0.40049 0.58961 0.398682
35 0.051267 0.356691 0.513598 0.690701 0.270625 0.236758
36 0.044022 0.378589 0.378589 0.378589 0.484241 0.577568
37 0.193848 0.180826 0.367847 0.840431 0.198634 0.220532
38 0.435603 0.269728 0.353505 0.576326 0.428405 0.311205
39 0.268349 0.283536 0.341379 0.49774 0.527718 0.452575
40 0.069356 0.439252 0.462371 0.462371 0.462371 0.401107
41 0.402662 0.40816 0.443266 0.443266 0.43946 0.291845
42 0.533495 0.224994 0.312512 0.334392 0.433214 0.517304
43 0.406494 0.275141 0.299292 0.522465 0.523342 0.350183
44 0.161926 0.104935 0.40375 0.880274 0.130762 0.088166
45 0.478395 0.309818 0.36677 0.419165 0.412331 0.441491
46 0.258402 0.330663 0.472631 0.614598 0.369474 0.293715
47 0.571699 0.307192 0.39236 0.514284 0.349716 0.195083
48 0.390966 0.292577 0.350348 0.507803 0.501653 0.359556
49 0.476153 0.237025 0.434236 0.664358 0.230131 0.085033
60 0.363019 0.254314 0.351386 0.424391 0.529084 0.469076
61 0.507712 0.212049 0.296187 0.323971 0.486743 0.517358
52 0.424072 0.272255 0.418443 0.567305 0.444955 0.22611
53 0.392229 0.286365 0.359226 0.381312 0.473467 0.515305
54 0.333688 0.294714 0.368625 0.441605 0.503016 0.466767
55 0.376223 0.344578 0.346922 0.346922 0.465297 0.531517
56 0.456561 0.302462 0.401568 0.411261 0.451813 0.406869
57 0.533806 0.263503 0.414489 0.614703 0.272036 0.148163
58 0.400519 0.402138 0.458372 0.485478 0.373818 0.303869
59 0.285902 0.347144 0.40077 0.436944 0.468359 0.476292
60 0.417339 0.215422 0.382898 0.362223 0.494999 0.491622
61 0.53576 0.370911 0.358032 0.370911 0.471366 0.295699
62 0.309474 0.312776 0.370276 0.426979 0.531048 0.452735
63 0.385167 0.359908 0.468058 0.513832 0.423233 0.244714
64 0.395714 0.224197 0.430879 0.718938 0.237643 0.184779
65 0.2454 0.195248 0.264765 0.83279 0.328454 0.173595
66 0.168622 0.262105 0.501521 0.74431 0.23766 0.202152
67 0.415138 0.40322 0.438974 0.442946 0.422289 0.312804
68 0.237404 0.324725 0.281065 0.281065 0.545757 0.618342
69 0.450864 0.238787 0.405408 0.40935 0.47146 0.430702
70 0.478569 0.334743 0.361391 0.429288 0.429653 0.399282
71 0.410182 0.318701 0.402461 0.617617 0.361339 0.23704
72 0.469506 0.322186 0.372491 0.39884 0.480285 0.383749
73 0.5256 0.293232 0.381692 0.392266 0.430177 0.391338
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Table 140. One-Way ANOVA for Match-up Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 25.09667 0.34379 0.016737
FJR 73 21.32688 0.292149 0.006023
PR 73 28.00718 0.38366 0.004064
CR 73 38.02203 0.52085 0.024933
Robust w/o Learning 73 30.0783 0.412032 0.012922
Robust with Learning 73 25.90672 0.354887 0.018727

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups 
Within Groups

2.22014
6.00523

5
432

0.444028
0.013901

31.94217 1.06E-27 2.23488

Total 8.22537 437

The following t tests were carried out to determine superiority: Robust with Learning -  FJR 

(Table 141), Robust with Learning -  RSR (Table 142), Robust with Learning -  PR (Table 

143), Robust w/o Learning -  PR (Table 144), and Robust w/o Learning -  CR (Table 145).

Table 141. t test for Robust with Learning -  FJR in the case of Match-up Time

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

FJR 73 0.2921 0.0776 0.0091

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.062738
95% Cl for difference: (0.026258, 0.099217)
T-Test of difference = 0 (vs not =): T-Value = 3.41 P-Value = 0.001 DF = 113
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Table 142. t test for Robust with Learning -  RSR in the case of Match-up Time

Two-sample T for Robust with Learning vs RSR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

RSR 73 0.344 0.129 0.015

Difference = mu (Robust with Learning) - mu (RSR)
Estimate for difference: 0.011097
95%  Cl for difference: (-0.032471, 0.054665)
T-Test of difference = 0 (vs not =): T-Value = 0.50 P-Value = 0.615 DF = 143

Table 143. t test for Robust with Learning -  PR in the case of Match-up Time

Two-sample T for Robust with Learning vs PR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

PR 73 0.3837 0.0638 0.0075

Difference = mu (Robust with Learning) - mu (PR)
Estimate for difference: -0.028773
95%  Cl for difference: (-0.063825, 0.006278)
T-Test of difference = 0 (vs not =): T-Value = -1.63 P-Value = 0.107 DF = 101

Table 144. t test for Robust w/o Learning — PR in the case of Match-up Time

Two-sample T for PR vs Robust w/o Learning

N Mean StDev SE Mean
PR 73 0.3837 0.0638 0.0075

Robust w/o Learn 73 0.412 0.114 0.013

Difference = mu (PR) - mu (Robust w/o Learning)
Estimate for difference: -0.028372
95%  Cl for difference: (-0.058593, 0.001849)
T-Test of difference = 0 (vs not =): T-Value = -1.86 P-Value = 0.065 DF = 113
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Table 145. t test for Robust w/o Learning -  CR in the case of Match-up Time

Tw o-sam ple T  fo r R obust w ith Learning vs PR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

PR 73 0.3837 0.0638 0.0075

Difference = mu (Robust with Learning) - mu (PR)
Estimate for difference: -0.028773
95%  Cl for difference: (-0.063825, 0.006278)
T-Test of difference = 0 (vs not =): T-Value = -1.63 P-Value = 0.107 DF = 101

Following the above tests, we conclude that for the Match-up Time, the best 

performance was achieved by FJR, followed by RSR and Robust with Learning, then PR and 

Robust w/o Learning, and finally CR that had the worst performance.

Shifted Jobs Comparison

The Shifted Jobs performance of the rules and systems is presented in Table 146. The 

boxplot is shown in Figure 28. It is known from chapter 6 that RSR performed the best 

between the four rules as the number of shifted jobs in this rule is always zero (no shifting 

allowed), followed by FJR, then CR, and finally PR.

It is clear from Figure 28 that the two systems perform worse than FJR but better than CR. 

Next, a t test is carried out for Robust w/o Learning - Robust with Learning in Table 147.

The results indicated that Robust with Learning outperformed Robust w/o Learning and the 

difference is statistically significant.
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Boxpiot of RSR, HR, PR, CR, Robust w /o  Learning, Robust with Learning

&

&

Figure 29. Shifted Jobs Boxpiot for the rules and systems

Table 147. t test for Robust w/o Learning - Robust with Learning in the case of Shifted 
Jobs

Two-sample T for Robust w/o Learning vs Robust with Learning

N Mean StDev SE Mean
Robust w/o Learn 73 0.291 0.159 0.019
Robust with Lear 73 0.229 0.152 0.018

Difference = mu (Robust w/o Learning) - mu (Robust with Learning)
Estimate for difference: 0.061561
95% Cl for difference: (0.010623, 0.112499)
T-Test of difference = 0 (vs not =): T-Value = 2.39 P-Value = 0.018 DF = 143
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Table 146. Shifted Jobs Performance for the rules and systems

Shifted  Jo b s

Run RSR FJR PR CR
Robust

w/o
Lsaming

Robust
with

Lsaming
1 0 0.074157 0.815722 0.486759 0.208987 0.215728
2 0 0.032739 0.922807 0.344835 0.167999 0.01484
3 0 0.026998 0.773955 0.548968 0.302382 0.086395
4 0 0.026698 0.640741 0.640741 0.347068 0.240278
5 0 0.016867 0.699998 0.548191 0.261445 0.3753
6 0 0.05255 0.504481 0.504481 0.504481 0.483461
7 0 0.042486 0.590554 0.616046 0.403616 0.327142
8 0 0.039945 0.787849 0.611921 0.042948 0.037509
9 0 0.064123 0.280539 0.512986 0.512986 0.625202
10 0 0.012099 0.983424 0.161582 0.078801 0.020297
11 0 0.030429 0.55989 0.66842 0.382389 0.304288
12 0 0.164122 0.369274 0.369274 0.623664 0.558015
13 0 0.036905 0.948209 0.302932 0.078911 0.039285
14 0 0.114216 0.585356 0.513971 0.456863 0.414032
15 0 0.057042 0.670993 0.618455 0.322737 0.24468
16 0 0.042032 0.720974 0.481622 0.326919 0.373622
17 0 0.132283 0.555157 0.555157 0.503111 0.33613
18 0 0.019011 0.986622 0.15485 0.032836 0.027652
19 0 0.025032 0.971171 0.175225 0.151366 0.050847
20 0 0.137751 0.769051 0.583836 0.182717 0.123833
21 0 0.039574 0.489273 0.837726 0.191187 0.143904
22 0 0.044583 0.913249 0.396528 0.061754 0.054223
23 0 0.044646 0.607181 0.521461 0.510746 0.310734
24 0 0.115374 0.584057 0.579518 0.360875 0.423668
25 0 0.101358 0.60815 0.594635 0.36489 0.36489
26 0 0.024198 0.647469 0.681755 0.326372 0.094285
27 0 0.034052 0.750245 0.640699 0.142956 0.070996
28 0 0.116445 0.545348 0.615215 0.456074 0.320222
29 0 0.025414 0.600001 0.537017 0.441989 0.394476
30 0 0.028828 0.753665 0.654731 0.033742 0.036691
31 0 0.074958 0.499312 0.856096 0.07542 0.080499
32 0 0.038329 0.939709 0.269903 0.182384 0.096782
33 0 0.059581 0.671608 0.717452 0.092019 0.148952
34 0 0.026561 0.61909 0.573157 0.413392 0.341498
35 0 0.06128 0.519013 0.845484 0.090588 0.061813
36 0 0.047057 0.376455 0.376455 0.602328 0.592917
37 0 0.038735 0.443977 0.890915 0.062432 0.061293
38 0 0.029762 0.941548 0.276512 0.165312 0.093884
39 0 0.065161 0.675877 0.662012 0.204496 0.242622
40 0 0.041739 0.542602 0.542602 0.542602 0.339126
41 0 0.107287 0.546246 0.546246 0.510266 0.36242
42 0 0.045235 0.569959 0.712449 0.303074 0.271409
43 0 0.038301 0.789797 0.565861 0.205403 0.111195
44 0 0.030076 0.940211 0.335133 0.045042 0 027498
45 0 0.112845 0.522433 0.597663 0.427141 0.417946
46 0 0.053995 0.559379 0.761452 0.262612 0.188164
47 0 0.094552 0.777096 0.533823 0.27873 0.156601
48 0 0.035949 0.653618 0.608331 0.37443 0.247441
49 0 0.038295 0.923744 0.369398 0.088946 0.029395
50 0 0.030673 0.557477 0.716976 0.308261 0.281423
51 0 0.029133 0.737787 0.429708 0.305894 0.42024
52 0 0.016346 0.967624 0.201339 0.131568 0.074755
53 0 0.029436 0.590554 0.597913 0.355068 0.40842
54 0 0.081165 0.594376 0.634334 0.354628 0.334649
55 0 0.029039 0.609817 0.560036 0.448029 0.336021
56 0 0.021724 0.66188 0.612424 0.332789 0.275013
57 0 0.032154 0.951135 0.272948 0.124942 0.064792
58 0 0.097934 0.599936 0.665225 0.378678 0.211102
59 0 0.032449 0.550752 0.657745 0.379738 0.344658
60 0 0.018174 0.602661 0.665181 0.324957 0.297332
61 0 0.165383 0.551276 0.551276 0.54025 0.270125
62 0 0.097193 0.696549 0.556834 0.392821 0.202485
63 0 0.04742 0.573192 0.703652 0.371056 0.190773
64 0 0.042073 0.946991 0.303276 0.086165 0.045147
65 0 0.022562 0.985485 0.160677 0.047266 0.016068
66 0 0.044183 0.663481 0.735882 0.092094 0.088523
67 0 0.066978 0.585832 0.583153 0.462593 0.313456
68 0 0.127891 0.596824 0.596824 0.477459 0.208036
69 0 0.028263 0.697418 0.603461 0.295619 0.247495
70 0 0.055566 0.562609 0.684855 0.3459 0.302836
71 0 0.041371 0.507826 0.818164 0.237386 0.121061
72 0 0.01913 0.587566 0.638124 0.403098 0.29105
73 0 0.04932 0.580874 0.643894 0.306877 0.389076
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Based on the previous tests, we conclude that for the Shifted Jobs, the best 

performance was achieved by RSR, followed by FJR, then Robust with Learning, then Robust 

w/o Learning, then CR, and finally PR that had the worst performance.

Overall Performance Comparison

The overall performance including all the performance measures is presented in 

Table 148. The boxpiot is shown in Figure 29. It is known from chapter 6 that FJR 

performed the best among the four rules (Table 98), followed by RSR, then PR and CR 

(Table 99). The ANOVA results shown in Table 149 indicate that there is a significant 

difference between the performances of the rules and systems.

Table 149. One-Way ANOVA for the Overall Performance

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 79.92988 1.09493 0.042709
FJR 73 63.15228 0.8651 0.077417
PR 73 135.9991 1.863002 0.154734
CR 73 139.1484 1.906143 0.150971
Robust w/o Learning 73 93.85687 1.285711 0.200583
Robust with Learning 73 70.04649 0.959541 0.205709

ANOVA
S o u r c e  o f  V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups 
Within Groups

74.9431
59.91292

5
432

14.98862
0.138687

108.0749 7.83E-74 2.23488

Total 134.856 437
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Boxpiot o f RSR, FIR, PR, CR, ROBUST w /o  Learning, Robust vuith Learning

I
&

✓ >?

Figure 30. Overall Performance Boxpiot for the rules and systems

The following t tests were carried out to determine superiority: Robust with Learning -  FJR 

(Table 150), Robust with Learning -  RSR (Table 151), Robust w/o Learning -  PR (Table 

152), and Robust w/o Learning -  RSR (Table 153).

Based on these tests, we conclude that for the Overall Performance, the best 

performance was achieved by FJR and Robust with Learning, followed by RSR, then Robust 

w/o Learning, and finally PR and CR.
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Table 148. Overall Performance among the rules and systems

Overall Performance

Run
RSR FJR PR CR

Robust
w/o

Learning

KODUSt
with

Learning
1 1.018034 0.782932 2.191187 1.63885 1.404897 1.491585
2 1.289459 0.84301 2.400859 1.621883 1.366345 0.098013
3 1.140737 0.842265 1.919961 2.154687 1.073577 0.83716
4 1.354484 1.140803 2.142639 1.724714 1.620887 0.940953
5 0.960048 0.865796 2.120676 1.792561 1.088556 1.709177
6 0.582581 1.583474 1.478808 1.512373 1.507774 1.665218
7 0.793703 0.541015 2.175748 2.182318 1.461647 1.129586
8 0.948836 0.509037 2.253649 2.321862 0.390932 0.305797
9 0.792683 1.059411 1.12018 1.921768 2.128383 1.407049
10 1.068532 0.623498 2.381245 1.441892 1.59179 0.318202
11 1.063683 0.965704 1.315026 2.360143 1.216419 0.81515
12 0.8223 1.913159 1.413591 1.114686 2.016282 1.341729
13 1.067398 0.660517 2.558644 1.956241 0.733667 0.426782
14 0.906046 0.851116 1.72615 1.562339 1.966741 1.570539
15 1.191643 1.544156 1.456134 1.59321 1.229077 1.244989
16 0.954164 1.055353 1.318913 2.125477 1.227377 1.135064
17 1.133647 1.312572 1.575676 2.046477 1.304277 0.814327
18 0.982539 1.136139 1.732019 1.261919 1.082115 1.234298
19 1.0289 1.024081 2.414412 1.101469 1.433485 1.221008
20 1.137729 0.959413 1.91896 1.861014 1.590738 0.765681
21 1.03121 0.884935 1.323836 2.574478 0.982727 0.961447
22 0.960721 0.501768 2.566735 2.00163 0.578161 0.477294
23 0.937255 0.82055 1.837447 1.35536 1.666052 1.865242
24 1.321863 0.867569 1.614462 1.858964 1.62348 1.116302
25 1.6884 0.845898 1.627212 1.89255 1.51834 1.182593
26 1.147486 0.82725 1.894762 2.14106 1.262702 0.923586
27 1.251638 0.577372 1.966878 2.509816 0.683771 0.409477
28 1.344705 0.859059 1.929386 1.69901 1.557546 1.0179
29 1.135912 0.928851 1.597101 1.911839 1.312521 1.325332
30 1.024676 0.282458 1.768336 2.569211 0.196304 0.265156
31 1.215088 0.414354 1.20341 2.631915 0.386102 0.400655
32 0.987752 0.801822 2.541018 1.578665 1.483999 0.558731
33 1.197611 0.720057 1.630816 2.571008 0.48392 0.681645
34 0.665936 1.033228 1.99824 2.023367 1.467979 1.456072
35 1.060721 0.510142 1.502599 2.415144 0.405021 0.32015
36 0.377682 0.764956 1.436324 1.163225 2.19381 2.409438
37 1.20505 0.302118 1.216361 2.64274 0.323643 0.342382
38 1.039465 0.793274 2.384811 1.67579 1.513188 0.643315
39 1.014917 0.951124 1.782271 2.122903 1.292538 0.904506
40 0.916875 0.832412 1.760983 1.678072 1.774801 1.386241
41 1.342902 0.822236 1.712332 1.665426 1.60373 1.094646
42 1.34039 0.86563 1.720158 1.748328 1.297283 1.325549
43 1.177189 0.839384 1.727155 2.217782 1.280081 0.735766
44 0.896372 0.492811 2.745785 1.843276 0.65068 0.331783
45 1.403778 0.582332 1.459225 1.671372 1.575822 1.593297
46 1.076149 0.855875 1.844212 2.467736 0.990709 0.761057
47 1.368337 0.967651 1.96083 2.10665 1.010814 0.790576
48 1.084568 0.92109 1.857294 2.109174 1.619275 0.838469
49 1.200669 0.683292 2.586969 1.822679 0.923628 0.290127
50 1.078924 0.845062 1.531477 2.264531 1.221122 0.901593
51 1.315172 0.664227 2.14049 1.234417 1.254332 1.342703
52 0.914345 0.830534 2.809536 1.295328 1.122776 0.485709
53 1.080042 1.014536 1.843751 1.809686 1.235281 1.393565
54 0.878105 0.968532 2.120705 1.688834 1.771054 1.220557
55 1.099547 1.130861 1.668237 2.053637 1.505446 1.20672
56 1.188911 0.853268 2.131484 1.914213 1.188513 0.871383
57 1.257956 0.788273 2.500821 1.659972 1.131197 0.50203
68 1.36092 0.738872 1.946658 1.532287 1.31765 1.195114
59 0.857564 1.051342 1.890836 2.142185 1.332321 1.337628
60 1.272075 0.591026 1.644208 2.070188 1.194911 0.911894
61 1.252988 1.072646 1.892919 1.89135 1.64404 0.943245
62 0.856996 1.013509 2.381815 1.550637 1.683043 0.980294
63 1.151937 0.86986 1.98513 2.158 1.44674 0.771685
64 1.198583 0.581441 2.303254 2.051144 0.869817 0.49261
65 0.834148 0.701901 1.867451 2.251434 1.098456 0.324637
66 1.137022 0.521737 1.592447 2.581365 0.481732 0.41379
67 1.227846 1.407726 1.608668 2.029998 1.68052 0.904162
68 1.321769 1.351914 1.547756 1.857342 1.474305 1.076423
69 1.218243 0.964142 1.781924 1.648562 1.303323 1.476831
70 1.116814 0.979094 1.429089 1.667719 1.967338 1.131255
71 1.241682 0.771004 1.514718 2.595505 0.935338 0.51246
72 1.137536 0.889104 1.539326 1.721372 2.018056 1.311229
73 1.278295 0.788721 1.514987 1.513678 1.885963 1.457935
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Table 150. t test for Robust with Learning — FJR in the case of Overall Performance

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.96 0.454 0.053

FJR 73 0.865 0.278 0.033

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.094441
95%  Cl for difference: (-0.028874, 0.217756)
T-Test of difference = 0 (vs not =): T-Value = 1.52 P-Value = 0.132 DF = 119

Table 151. t test for Robust with Learning — RSR in the case of Overall Performance

Two-sample T for R obust with Learning vs RSR

N Mean StDev SE Mean
Robust with Lear 73 0.96 0.454 0.053

RSR 73 1.095 0.207 0.024

Difference = mu (Robust with Learning) - mu (RSR)
Estimate for difference: -0.135389
95%  Cl for difference: (-0.251124, -0.019654)
T -Test of difference = 0 (vs not =): T-Value = -2.32 P-Value = 0.022 DF = 100

Table 152. t test for Robust w/o Learning -  PR in the case of Overall Performance

Two-sample T for ROBUST w/o Learning vs PR

N Mean StDev SE Mean
ROBUST w/o Learn 73 1.286 0.448 0.052

PR 73 1.863 0.393 0.046

Difference = mu (RO BUST w/o Learning) - mu (PR)
Estimate for difference: -0.577291
95%  Cl for difference: (-0.715215, -0.439367)
T-Test of difference = 0 (vs not =): T-Value = -8.27 P-Value = 0 .000 DF = 141
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Table 153. t test for Robust w/o Learning -  RSR in the case of Overall Performance

Tw o-sam ple T  fo r ROBUST w /o  Learning vs RSR

N Mean StDev SE Mean
ROBUST w/o Learn 73 1.286 0.448 0.052

RSR 73 1.095 0.207 0.024

Difference = mu (ROBUST w/o Learning) - mu (RSR)
Estimate for difference: 0.190781
95% Cl for difference: (0.076259, 0.305302)
T-Test of difference = 0 (vs not =): T-Value = 3.30 P-Value = 0.001 DF = 101

Computational Tests Summary

In this chapter, a robust reactive scheduling system has been introduced for the 

unrelated parallel machine problem. The system with and without the learning capability 

was compared to the rules introduced in chapter 6 and evaluated based on four performance 

measures: Cmax Difference, CPU Time, Match-up Time, and Shifted Jobs. Extensive 

computational tests indicated the following conclusions about the system:

Robust Scheduling System w/o Learning

j

The Robust w/o Learning ranked 2 among the 6 alternatives (4 rules and 2 systems) 

in the case of Cmax Difference (after Robust with Learning and tied with CR and PR), and 4th 

for CPU Time, Shifted Jobs, Match-up Time, and Overall Performance (after RSR, FJR, and 

Robust with Learning).
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The following was determined from the DoE factor analyses of Robust w/o Learning 

performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns, the idle time, and the 

number of machines increase and the number of jobs decreases.

•  Match-up Time decreases when the number of machines, idle time, and time between 

breakdowns increase and the number of jobs and processing time range decreases.

• Shifted Jobs declines when the number of jobs decreases and the number o f machines, 

repair duration, idle time, and the time between breakdowns increase.

Robust Scheduling System with Learning

Robust with Learning ranked 1st among the 6 alternatives in the case of Cmax 

Difference and Overall Performance (tied with FJR), 2nd for Match-up Time (after FJR and 

tied with RSR), and 3rd for CPU Time and Shifted Jobs (after RSR and FJR).

The following was determined from the experimental design factor analyses of 

Robust with Learning performance:

• Cmax Difference improves when the processing time range decreases.

• CPU Time improves when the number of jobs decreases.

•  Match-up Time decreases when the number of machines and time between 

breakdowns increase and the number of jobs and processing time range decrease.
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• Shifted Jobs declines when the number of jobs decreases and the time between 

breakdowns increases.

Furthermore, the average usage of each of the three rules (RSR, FJR, and PR) 

incorporated in both Robust with Learning and Robust w/o Learning was recorded for all 

problem replications (14892 replicates). The results indicated the following: FJR usage is 

almost the same in both systems, RSR usage is 37.31% higher in Robust with Learning, and 

PR usage is 12.82% less in Robust with Learning. This observation is extremely important 

because it explains the reason why the CPU time is smaller in Robust with Learning, as the 

latter utilizes more the simple heuristic RSR and less the PR rule which requires a high CPU 

time.

Finally, as the superiority of each of the 6 alternatives depend strongly on which 

performance measure is being evaluated, Table 154 below summarizes the ranks of the 

alternatives for all possible combinations of the four performance measures addressed in this 

dissertation (15 alternatives). All necessary ANOVA and t tests were carried out to make 

sure that the reported results are statistically significant. Note that the alternatives are ranked 

between 1 and 6, where 1 indicates the best performance and 6 the worst one.
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Table 154. Ranks of the Rules and Systems for all combinations of Performance Measures 
(1 = Best, 6 = Worst)

Performance Measures Repair Rules and Systems

Cmax
Difference

CPU
Time

Match­
up

Time

Shifted
Jobs RSR FJR PR CR

Robust
w/o

Learning

Robust
with

Learning
• 6 5 2 2 2 1

• 1 2 6 6 4 3
• 2 1 4 6 4 2

• 1 2 6 5 4 3
• • 4 2 6 6 2 1
• • 6 2 2 5 2 1
• • 4 1 6 5 3 1

• • 1 1 5 6 4 3
• • 1 2 6 6 4 3

• • 1 1 6 6 4 3
• • • 4 1 5 6 3 1
• • • 3 1 6 6 4 1
• • • 3 1 6 6 3 1

• • 1 2 6 6 4 3
• • • • 3 1 6 6 4 1
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CHAPTER VIII 

GENERALIZABILITY, CONCLUSIONS, AND FUTURE RESEARCH

In this chapter, conclusions are summarized based on the results of the computational 

study performed in previous chapters. What makes the problem addressed in this research 

unique is that up to our knowledge, no published work was found on the generation of 

predictable schedules in parallel machine environments. Furthermore, most of the literature 

that addressed schedule repair and rescheduling strategies were designed for either a flow 

shop or a job shop, which require different recovery rules than the one necessary for a 

parallel machine environment. The research gap extends to an absence of publications 

tackling schedule repair and rescheduling strategies for unrelated parallel machines.

Finally, no previous literature was found on designing a robust scheduling system that 

combines schedule repair, rescheduling, system response, and learning in a parallel 

scheduling environment.

This chapter includes three sections. The first section lists the contributions of this 

research and its generalizability. In the second section, conclusions on the performance of 

the repair and rescheduling rules and the robust systems are presented. Finally, future 

research is discussed in the third section.
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RESEARCH CONTRIBUTIONS AND GENERALIZABILITY

Research Contributions

The main contributions of this research are the following:

1. New and improved heuristics (FJR and PR) for scheduling repair and rescheduling in 

unrelated parallel machine environments.

2. An analysis of six repair and rescheduling alternatives with four performance measures, 

and a comparison study that allows readers to choose the rule that will optimize the 

performance measure(s) they desire.

3. An idle time insertion rule (MCFJI) equipped with a learning parameter that guarantees 

robust predictable schedules.

4. A robust predictable-reactive scheduling construct, which will react according to an event 

driven policy and attempt to overcome the perturbations using schedule repair as long as 

possible, otherwise it will use complete rescheduling.

Research Generalizability

Even though the developed rules and systems in this research were only tested on

unrelated parallel machines subjects to breakdowns, they can be generalized to the following:

1. The environment must be a parallel machine one; however, it does not have to be the 

unrelated machines (which is the hardest case), i.e. the rules can be applied also to 

uniform and identical machines. The rules were developed for the parallel machine
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environment independent of which generalization of the problem is used. As can be seen 

from the previous chapters, the rationale of all the rules is to shift the jobs upon a 

disruption either on the same machine or to another machine, i.e. the only requirement is 

to have parallel machines.

2. The machine breakdowns can be replaced by almost any other disruption type causing a 

delay, such as new job arrivals, absenteeism, the closing of a processing unit, etc... For 

example, in the case of a new job arrival, the latter’s time of arrival will be considered as 

the start of a breakdown, and its processing time as the delay of a breakdown. Following 

this, any of the rules or systems can be implemented to repair the schedule.

3. The approach followed in this research can be adapted to environments other than 

parallel machines. The rules will have to change or be modified; however, the system 

architecture can still be utilized.
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RESEARCH CONCLUSIONS

Based on the results discussed in previous chapters, the following conclusions can be

drawn:

1. Robust with Learning ranked 1st among the 6 alternatives (4 rules and 2 systems) in the 

case of Cmax Difference and Overall Performance (tied with FJR), 2nd for Match-up 

Time (after FJR and tied with RSR), and 3rd for CPU Time and Shifted Jobs (after RSR 

and FJR). Moreover, the processing time range had a significant effect on Robust with 

Learning in the case of Cmax Difference, as the latter improves when the processing 

range decreases. Furthermore, CPU Time improves when the number of jobs decreases; 

Match-up Time decreases when the number of machines and time between breakdowns 

increase and the number of jobs and processing time range decreases, and Shifted Jobs 

declines when the number of jobs decreases and the time between breakdowns increases.

2. Robust w/o Learning ranked 2nd among the 6 alternatives in the case of Cmax Difference 

(after Robust with Learning and tied with CR and PR), and 4th for CPU Time, Shifted 

Jobs, Match-up Time, and Overall Performance (after RSR, FJR, and Robust with 

Learning). Furthermore, in the case of Robust w/o Learning, Cmax Difference improves 

when the number of machines increases, CPU Time decreases when the time between 

breakdowns, the idle time, and the number of machines increase and the number of jobs 

decreases; Match-up Time decreases when the number of machines, idle time, and time 

between breakdowns increase and the number of jobs and processing time range 

decreases, and Shifted Jobs declines when the number of jobs decreases and the number 

of machines, repair duration, idle time, and the time between breakdowns increase.
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3. FJR ranked 5th among the rules in the case of Cmax Difference (after Robust with 

Learning, Robust w/o Learning, CR and PR), 2nd for CPU Time and Shifted Jobs (after 

RSR), and was the best in the case of Match-up Time and Overall Performance (tied with 

Robust with Learning). In addition, FJR performance is impacted as follows: Cmax 

Difference improves when the number of machines increases, CPU Time improves when 

the time between breakdowns and the number of machines increase and the number of 

jobs decreases, Match-up Time decreases when the number of machines, idle time, and 

time between breakdowns increase and the number of jobs decreases, and Shifted Jobs 

declines when the number of jobs and repair durations decrease and the number of 

machines and the time between breakdowns increase.

4. PR ranked 2nd among the rules in the case of Cmax Difference (after Robust with 

Learning and tied with Robust w/o Learning and CR), 4th for Match-up Time (after FJR, 

Robust with Learning, and RSR and tied with Robust w/o Learning), and was the worst in 

the case o f CPU Time (tied with CR), Shifted Jobs, and Overall Performance (tied with 

CR). In addition, PR performance is impacted as follows: Cmax Difference improves 

when the number o f machines increases, CPU Time improves when the time between 

breakdowns increases and the number of jobs decreases, Match-up Time decreases when 

the number of machines and time between breakdowns increase and the number of jobs 

decreases, and Shifted Jobs declines when the number of jobs and repair durations 

decrease and the number of machines and the time between breakdowns increase.

5. RSR had the worst Cmax Difference performance among the 6 alternatives, the best CPU 

and Shifted Jobs performances, the second best Match-up Time (after FJR and tied with 

Robust with Learning), and ranked 3rd for overall performance (after FJR and Robust
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with Learning). Recall that RSR performed the best in the case of Shifted Jobs because it 

does not shift jobs between the machines. Moreover, RSR was the finest in CPU Time as 

it is a simple heuristic with a computational complexity of 0(mn) at the most. In 

addition, RSR performance is impacted as follows: Cmax Difference improves when the 

number of machines increases, CPU Time improves when the time between breakdowns 

increases and the number of jobs decreases, and Match-up Time decreases when the 

number of machines, idle time, and time between breakdowns increase and the number of 

jobs decreases. Shifted Jobs is always zero when using RSR.

6. CR ranked 2nd among the rules in the case of Cmax Difference (after Robust with 

Learning and tied with PR and Robust w/o Learning), 5th for Shifted Jobs (after RSR,

FJR, Robust with Learning, and Robust w/o Learning), and was the worst in the case of 

CPU Time (tied with PR), Match-up Time, and Overall Performance (tied with PR). In 

addition, CR performance is impacted as follows: Cmax Difference improves when the 

number of machines increases, CPU Time improves when the time between breakdowns 

increases and the number of jobs and machines decreases, Match-up Time decreases 

when the number o f machines and time between breakdowns increase and the number of 

jobs decreases, and Shifted Jobs declines when the number of jobs and repair durations 

decrease and the number of machines and the time between breakdowns increase.

7. A new idle time insertion rule, CFJI, was introduced and compared to the traditional 

initial schedule where no idle time is built-in, and to Mehta’s rule OSMH. CFJI 

outperformed the other rules; however, as the problem size increased, it overestimated the 

idle time needed for insertion.
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8. The learning parameter was successful in predicting the realized schedule and was 

determined to be an essential addition to the robust system. In fact, MCFJI (which is 

CFJI with the learning parameter) performed much better than CFJI alone. Furthermore, 

Robust with Learning outperformed Robust w/o Learning and delivered the finest 

performances for almost all performance measure combinations.
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FUTURE RESEARCH

In this research, repair and rescheduling rules and systems were developed and 

compared for the unrelated parallel machine problem. This dissertation is innovative in the 

sense that no previous work was found on rescheduling in unrelated parallel machine 

environments. The extensions listed below can be considered in future research:

1. Extending this dissertation results to unrelated parallel machine environments with 

machine eligibility restrictions. Scheduling in the presence of machine eligibility 

restrictions when not all machines can process all the jobs is a practical problem into 

which there has been little research (Centeno and Armacost, 2004).

2. Extending the problem to include sequence dependent setup times. This will increase the 

problem’s complexity and the proposed rules will need to be modified to account for this 

extension.

3. Extending the results to identical and uniform parallel machine environments to verify if 

the rules would dominance hold.

4. Extending the problem to different environments other than the parallel one. Such 

environments include the flow shop and job shop problems where more work has been 

done on schedule repair and rescheduling. This extension can also be beneficial to 

compare the rules and systems developed in this dissertation to existing ones for the flow 

shop or job shop problems.

5. Altering the proposed rules and systems to be able to absorb more than one overlapping 

event (disruption). Such extension can be a great addition to the current literature and
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will provide the rules with the ability to handle a broader variety of problems, such as for 

example the case where several jobs can arrive after time 0.

6. Modifying and testing the rules for different quality measures such as tardiness, earliness, 

or weighted tardiness and earliness.

7. In the case of PR, we are dealing with bicriteria optimization problem (minimizing 

Shifted Jobs and Cmax Difference). The hierarchical approach followed by Alagoz and 

Azizoglu (2003) was used in this research, i.e. minimizing the less important measure 

{Shifted Jobs) subject to the constraint that the more important measure {Cmax 

Difference) is kept at its optimum. An extension to the PR rule is to investigate the 

simultaneous approach for bicriteria problems, i.e. generation of efficient schedules or 

optimization of a weighted combination of the two performance measures.

8. The learning parameter used with CFJI proved to be effective in predicting the realized 

schedule CmaxR and has aided the robust system in reaching superior performance 

measures. However, as the literature and findings on machine learning are almost 

abundant, it is worthy to investigate other intelligent parameters. The fields that can be 

explored are brain models, adaptive control theory, artificial intelligence, and 

evolutionary models.
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This is the C++ Main Function that implements the Robust System (with or w/o Learning). 
The program calculates the 95% confidence intervals for each of the Performance measures

and the averages of usages of each of the rules

#ifndef for
#define for if (0) {} else for 
#endif

# include <iostream>
# include <conio.h>
# include <fstream>
# include <time.h>
# include <string>
# include <math.h>
# include <windows.h>
# include "lingd90.h" 
using namespace std;

// Global Inputs needed for the problem
const int nom=8,noj=100,Mincrease=l, iteration =45,Teta=l;
float betal=0.1,beta2=0.2, alpha=0.8*(l);
int maxpro=150,minpro=l;
ifstream fm;
ofstream fout;

// Functions Prototypes
void inputdata (double[][500]);
void LINGO 1 (double[][500],double[][500]);
void sort(double[][500],double[][500], int[][500], int[]);
void assign(double[][500],int[],int[][500], int[],float[][500],float[][500],float[][500],float&, float&, 

int&,int&,int&,int&,float&); 
int jobposit (int[],int[],int,float[],float[3,float, double[][500],int[][500]); 
int jobposup (float[],int[],int[],int,float[],float[], double[][500],int[][500]); 
void RepairRulel (int,float[][500], float[][500], float[], int[],int[],double[][500], int[][500], float&, 

int&, float[]);
void RepairRule2 (float[],float[],int,float[][500],float[][500],float[],int[],int[],double[][500], 

int[][500],float&, int&, float[],int&); 
void RepairRule5 (float[],float[],int,float[][500],float[][500],float[],int[],int[],double[][500], 

int[][500],float&,int&,float[]); 
void LING02 (double[][500],double[10][500],double[10][500],double[],int,double&); 
void LING03 (double [][500],double[10][500],double[10][500],double [],int ,double&,double&); 
void LING04 (double [] [500],double [10][500],double [10][500],double [],int ,double& ,double);
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// Main Function 
void main()
{
int countlter=0;
float CmaxDiffCount=0,MatchCount=0,Tidle=0;
double CPUtime=0,CPUCount=0,JobsCounter=0,RSRcounter=0,FJRcounter=0,PRcounter=0; 
float Record[10][1000]={0};
float varCmax=0,varCPU=0,varMatch=0,varSJobs=0,avgCmax=0,avgSJobs=0,avgCPU=0, 

avgMatch=0,avgTidle=0,avgRSR=0,avgFJR=0,avgPR=0;

fout.open("results.txt");

cout«"Output Failure"«endl 
«"Press any Key"«endl; 

getch(); 
return;

}// end of error check

while (countlter < iteration) 11 Run the appropriate iterations number
{
clockt starti=0,endi=0;
double data[ 10] [500]={0} ,Xdecisions[ 10] [500]= {0}; 
int place[10][500]={0}, number[nom]={0} jobposi[nom]={0}; 
float idles[l0][500]={0}, start[10][500]={0},finito[10][500]={0}; 
float matchcounter=0,CmaxDifference=0; 
int jobsc=0,RSRC=0,FJRC=0,PRC=0;

inputdata(data);

LINGO 1 (data,Xdecisions);

sort(data,Xdecisions, place, number);

starti=clock(); IIRecord the start of CPU time

assign(data,number,place jobposi,idles,start,finito,matchcounter,CmaxDifferencejobsc,RSRC,FJRC,

if(!fout)

PRC,Tidle);

endi=clock(); 11 Record the end of CPU time
CPUtime=double ((endi-starti)/double(CLOCKS_PER_SEC));

countIter=countIter +1;

Record[ 1 ] [countIter]=(CmaxDifference); 
Record[2] [countIter]=CPUtime; 
Record[3][countIter]=matchcoimter;

I/record cmax 
llrecord the CPU 
I/record the matching time

Record[4] [countIter]=j obsc; 
Record[5] [countIter]=RSRC; 
Record[6] [countIter]=FJRC;

llrecord the shifted jobs 
11 record the use of RSR 
llrecord the use of FJR
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Record[7][countIter]=PRC;
Record[8] [countIter]=T idle;
} 11 end of while loop

for(int i=l;i<(countIter+l);i-H-)
{

avgCmax=avgCmax + Record[l][i]; 
avgCPU=avgCPU + Record[2][i]; 
avgMatch=avgMatch + Record[3][i]; 
avgS Jobs=avgS Jobs+Record[4] [i]; 
avgRSR=avgRSR+Record[5][i]; 
avgF JR=avgF JR+Record[6] [i]; 
avgPR=avgPR+Record[7] [i]; 
avgTidle=avgTidle+Record[8] [i];

}

avgCmax=avgCmax/countIter; 
avgCPU=avgCPU/countIter; 
avgMatch=avgMatch/countIter; 
avgSJobs=avgSJobs/countIter; 
avgRSR=avgRSR/countIter; 
avgFJR=avgFJR/countIter; 
avgPR=avgPR/countIter; 
avgT idle=avgT idle/countlter;

for(int i=l;i<(countIter+l);i++)
{

varCmax=varCmax+(pow((avgCmax-Record[l ] [i]),2)); 
varCPU=varCPU+(pow((avgCPU-Record[2][i]),2)); 
varMatch=varMatch+(pow((avgMatch-Record[3][i]),2)); 
varSJobs=varSJobs+(pow((avgSJobs-Record[4][i]),2));

}

varCmax=(varCmax/(countIter-l)); 
varCPU=(varCPU/(countIter-1)); 
varMatch=(varMatch/(countIter-l)); 
varSJobs=(varS Jobs/(countIter-l));

varCmax=2.009 * pow((varCmax/countIter),0.5); 
varCPU=2.009 * pow((varCPU/countIter),0.5); 
varMatch=2.009 * pow((varMatch/countIter),0.5); 
varSJobs=2.009 * pow((varSJobs/countIter),0.5);

cout«"Required iterations "«countIter«endl;
cout«"Cmax average is "«avgCm ax«" and the LCI is "«avgCmax - varCmax«" and UCI 

"«avgCmax + varCmax«endl; 
cout«"CPU average is "«avgCPU «" and the LCI is "«avgCPU - varCPU«" and the UCI 

"«avgCPU + varCPU«endl; 
cout«"Match average is "«avgM atch«" and the LCI is "«avgMatch - varMatch«" and the UCI 

"«avgMatch + varMatch«endl;

11 record the use o f PR 
IIrecord the Tidle

IIGet the averages

l/AVGCmax 
HA VG CPU 
l/AVG Match 
l/AVGSJobs 
l/AVG RSR 
l/AVG FJR 
HA VG PR 
HAVG Tidle

I/Get the variance for each rule
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cout«"SJobs average is "«avgSJobs«"  and the LCI is "«avgSJobs - varSJobs«" and the UCI 
"«avgSJobs + varSJobs«endl; 

cout«"RSR average is "«avgR SR «endl; 
cout«"FJR average is "«avgFJR «endl; 
cout«"PR average is "«avgP R «endl;

alpha= 1 +((nom*(avgCmax))/avgTidle); IIDetermine the learning parameter

fout.close();

getch();

}// End o f  main function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 4 3

inputdata Function will input the processing time o f jobs on the unrelated parallel machines. 
The processing time will be randomly generated from a uniform distribution 

between minpro and maxpro

void inputdata (double datas[][500])
{

for(int i=l ;i<(nom+l );i++) I/input jobs processing time
{

for(int j= l ;j<(noj+l);j++)
{

datas[i][j] = rand() % (maxpro - minpro) +minpro ;
}

}
for(int i=l ;i<(nom+l );i++) //Display jobs processing time
{

for(int j= l ;j<(noj+l);j++)
{

cout«datas[i][j]«" " ;
}
cout«endl;

}
} // The end o f input data
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Below is the C++ LINGO 1 function that interfaces with LINGO. Information is passed to LINGO so ;'■> 
the latter can generate the optimal initial schedule. The LINGO file that contains MIP[1] -

is called LINGOl.Lng (Appendix E)

void LINGO 1 (double datak[][500],double X[10][500])
{
char cScript[256]; //LINGO interface
double dObjective, dStatus=-l.;
double dnoj[]= {noj};
double dnom[] = {nom};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM =l;

// create the LINGO environment object 
pLSenvLINGO pLINGO; 

pLINGO = LScreateEnvLng(); 
if  ( IpLINGO)
{

printf( "Can"t create LINGO environment!\n"); 
goto FinalExit;

}
// Open LINGO'S log file
nError = LSopenLogFileLng( pLINGO, "LINGO.log"); 
if  ( nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

H @POINTER(l)
nError = LSsetPointerLng( pLINGO, dnoj, &nPointersNow); 
if  ( nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng( pLINGO, dnom, &nPointersNow); 
if  ( nError) goto ErrorExit;

// @POINTER(3) 
double datas2[1000];

for ( int i = 0; i<(nom); i++) 
for ( int j = 0; j < (noj); j++) 

datas2[ i * noj + j] = datak[i+l][j+l]; 
nError = LSsetPointerLng( pLINGO, datas2, &nPointersNow); 
if  ( nError) goto ErrorExit;

// @POINTER(4)
nError = LSsetPointerLng( pLINGO, &dObjective, &nPointersNow); 
if  ( nError) goto ErrorExit;
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// @POINTER(5)
nError = LSsetPointerLng( pLINGO, &dStatus, &nPointersNow); 
if  ( nError) goto ErrorExit;

// @POINTER(6)
nError = LSsetPointerLng( pLINGO, dX, &nPointersNow); 
if  ( nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy( cScript, "SET ECHOIN 1 \n TAKE LINGOl .Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng( pLINGO, cScript); 
if  ( nError) goto ErrorExit;

II Close the log file 
LScloseLogFileLng( pLINGO);

// Any problems?
if  ( nError || dStatus != LS_STATUS_GLOBAL_LNG)
{

// Had a problem 
printf( "Unable to solve!");

}

// Output the decision variables 
for ( int i = 1; i<(nom+l); i++)
{

for ( int j = 1; j < (noj+1); j++)
{

X[i][j]=dX[index];
index++;

}
}
for (int i=l;i<nom+l;i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j= l ;j<noj+l ;j++)

cout«"  "«X[i][j];
}

cout«"the objective is "«dO bjective«" and status is "«dStatus«endl; 

goto NormalExit;
ErrorExit:

printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng( pLINGO);

FinalExit:;
}
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Below is the C++ Sort function. It will assign the jobs to the machines according to the Optimal |
solution obtained via LINGO 1 .Lng (i.e. MIP[ 1 ]) <£

void sort(double thedataf][500],double XI[][500], int places[][500], int numbers[])
{

for (int i=l; i<10;i++)
{

numbers[i]=l;
}

for (int i=l; i< (nom+1); i++)
{

for (int j = l ; j <(noj+l); j++)
{

if(XI[i][j] == 1)
{

places[i] [numbers[i]]=j; 
numbers[i]=numbers[i] +1;

}
}

}

for (int i= l; i< (nom+1); i++) I/Get the accurate number ofjobs on each machine
{

numbers[i]=numbers[i]-l;
}

for (int i= l; i< (nom+1); i++)
{

for(intj= l;j <numbers[i]+l; j++)
{
cout«"  "«places[i][j];
}
cout«endl;

}
}
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The Assign Function executes the initial optimal schedule subject to breakdowns, then applies |
the appropriate repair and rescheduling rules to repair the schedule |

void assign(double dataw[][500],int thenumbers[],int theplaces[][500], int jobpos[],float idle[][500], 
float S[][500], float F[][500], float& matchcount,float& CmaxDiff,int& jobct,int& RSR, int& 
FJR, int& PR,float& Totalidle)

{
int 1=1 ,state=0, imakespan=0,Mtotal [nom]={0};
float pmakespan=0,rmakespan=0,residle=0,Rmatchcount=0,Pmatchcount=0,Fmatchcount=0; 
float procomp[nom]={0},lamda[nom]={0},Mexpected[nom]={0},tidle[nom]={0}; 
double r,rk;
float comp[nom]={0},leftl=0,left2=0,breakdown=0,repair[nom]= {0} ,repairs=0 ,fmdpos [nom]={0};

// This part will calculate the expected processing time on each machine 
for (int i=l; i<(nom +1); i++)
{

for(int j=l ;j <(thenumbers [i]+1) ;j ++)
{

Mtotal[i] = Mtotalfi] + dataw[i][theplaces[i][j]];
}

}

for (int i=l; i<(nom +1); i++)
{

Mexpected[i]=(float(Mtotal[i])/float(thenumbers[i])); 
cout«"Mexpected of machine " « i « "  is "«Mexpected[i]«endl;

}

// This part will calculate the objective function Cmaxsi 
for(int i=l;i<(nom +l);i++)
{

if(Mtotal[i] > imakespan)
{

imakespan = Mtotal[i];
}

}

// This part will calculate the repair time and lamda for each machine 
for(int i=l; i<(nom +l);i++)
{

lamda[i]=(((( 1 /((-T eta*Mexpected[i])*log(0.1)))+(l/((-T eta*Mexpected[i])*log(0.2)))+ 
(l/((-Teta*Mexpected[i])*log(0.3)))+(l/((-Teta*Mexpected[i])*log(0.4)))+ 
(l/((-Teta*Mexpected[i])*log(0.5)))+(l/((-Teta*Mexpected[i])*log(0.6)))+ 
(l/((-Teta*Mexpected[i])*log(0.7)))+(l/((-Teta*Mexpected[i])*log(0.8)))+
(1 /((-T eta*Mexpected[i])*log(0.9))))/9)); 

repair[i]= (betal *Mexpected[i])+(((beta2*Mexpected[i])-(betal *Mexpected[i]))*(0.5));
}
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// This part will add idle time to jobs and calculate Cmaxp using CFJI rule (Chapter 4) 
for(int i=l; i<(nom +1); i++)
{

for(int j=l ;j <thenumbers [i]+1 ;j++)
{

idle[i][j]= alpha * repair[i] * lamda[i] * dataw[i][theplaces[i][j]]*
(1 -(float(j)/float(thenumbers[i])));

tidle[i]=tidle[i]+idle[i] [j ];
S[i]Q]=F[i][j-l ]-t-idle[i][j-l ]; // Start time ofjob j  on machine i
F[i]D]=S[i][j] + dataw[i][theplaces[i][j]]; // Finish time ofjob j  on machine i

}
}

for (int i=l; i<(nom +1); i++)
{

residle=residle+tidle[i];
for(int j=l ;j <(thenumbers [i]+1 );j ++)
{

procomp[i] = procomp[i] + dataw[i][theplaces[i][j]] + idle[i][j];
}

}

Totalidle = residle;

for(int i=l ;i<(nom +l);i++)
{

if(procomp[i] > pmakespan)
{

pmakespan = procomp[i];
}

}

// This part will generate the events (breakdowns) and calculate the realized schedule makespan
int j=l ,re=l ,nM=l ,nM2=l, machine=0;
intrm[noj]={0};
bool karen=false,hobbi=true;
float residuel=0,RepairF[nom]={0};
float location[nom]={0} ,findposition[nom]={0} ,finish[nom]={0} ,fmish2=0,Match[nom][500]= {0}; 
float matching[10][500]={0};

for (int i=l; i <(nom +1); i++) I/Finish ofjobs
{

finish[i]=F[i] [thenumbers[i]];
}

while (hobbi)
{

// Generate breakdowns
r =((double)rand()/((double)(RAND_MAX)+(double)(l))); 
breakdown =(-Teta*Mexpected[ 1 ])* log(r); 
cout«endl«"breakdown is: "«breakdown«endl;
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rk = (randO % nom) + 1; 11 Determine on which machine the breakdown will occur
machine=rk;

I/Determine the location of the breakdown on each machine 
for (int i=l; i<(nom +1); i++)
{

location[i]=location[i]+breakdown;
}

karen=false;

for (int i= l; i<(nom +1); i++) //Exit the while loop if  all jobs are processed
{

if(location[i] < finish[i])
{

karen=true;
}

}
if(karen — false)
{

break;
hobbi=false;

}

if(location[machine] < finish[machine])
{

if (RepairF[machine] > location[machine]) //Ensure Breakdown after repair 
{

for(int z=l;z<(nom +l);z++)
{ //Assume the breakdown did not occur

location[z]=location[z]-breakdown;
}
continue;

} //Determine the repair time
r =((double)rand()/((double)(RAND_MAX)+(double)(l)));
repairs= (betal * Mexpected[machine])+ (((beta2*Mexpected[machine])-

(betal *Mexpected[machine]))*r);
RepairF[machine]=location[machine] + repairs; 
residle=residle-repairs;

//Determine the job position on the machine upon the breakdown 
jobpos[machine]=jobposit(thenumbersjobpos,machine,location,findposition,repairs,

dataw,theplaces);
if  (S[machine][jobpos[machine]] < RepairF[machine])
{

state=0;
if(residle>0) //Still able to apply RSR and FJR
{

RepairRule 1 (machine, S ,F, RepairF, thenumbers j obpos,dataw,
theplaces,Rmatchcoimt,state,finish);
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if(state =  1)
{

RSR=RSR+1;
matchcount=matchcount+Rmatchcount;
Rmatchcount=0;

}
else
{
RepairRule2 (location,findposition,machine,S,F,RepairF, 

thenumbersjobpos,dataw,theplaces,
Fmatchcountjobct,finish,state);

if(state=l)
{

FJR=FJR +1;
matchcount=matchcount+Fmatchcount;
F matchcount=0;

}
}

}
if(state!=l)
{

RepairRule5 (location,findposition,machine,S,F,RepairF,thenumbers, 
jobpos,dataw,theplaces,Pmatchcountjobct,finish);

PR=PR+1;
matchcount=matchcount+Pmatchcount;
Pmatehcount=0;

}
}

}
} //End o f while

for(int i=l;i<(nom +l);i++)
{

if(F[i] [thenumbers[i]] >rmakespan)
{

rmakespan = F[i][thenumbers[i]];
}

}
} HEnd of Function
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jobposit function will calculate the job position on down machine when the breakdown occurs

int jobposit (int num[],int jobp[],int mtype,float locat[],float findposf],float rep, double datak[][500],
int jplaces[][500])

{

int status=0;

while (jobp[mtype] < (num[mtype]+l) && status=0)
{

findposfmtype] = findpos[mtype] + datak[mtype][jplaces[mtype][jobp[mtype]]];

if (findpos[mtype] =  locat[mtype])
{

jobp[mtype]=jobp[mtype] + 1; 
status=l;

}
else if (findpos[mtype] > locat[mtype])
{

jobp[mtype] = jobp[mtype]; 
status=l;

}
if(jobp[mtype] > num[mtype]) //in case of the last job 
{

jobp[mtype]=jobp[mtype]+l;
}
jobp[mtype]=jobp[mtype] +1;

}
jobp[mtype]=jobp[mtype] -1; 
fmdpos[mtype]=locat[mtype] + rep; 
cout«"Job "«jobp[mtype]«endl; 
return j obp [mtype];

} 11 End of Function
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jobposup function will calculate the job position on the up machines when the breakdown occurs

int jobposup (float trackpos[],int nemra[],int jobpup[],int matype,float locate[],float findpose[],
double dataz[][500],int jplac[][500])

{

int status=0jobpos=0;

trackpos[matype]=fmdpose[matype]; 
j obpos=j obpup [matype];

while ((jobpos < nemra[matype]+l) && status=0)
{

trackpos[matype] = trackpos[matype]+ dataz[matype][jplac[matype][jobpos]];

if (trackpos[matype] =  locate[matype])
{

jobpos=jobpos + 1; 
status=l;

}
else if (trackpos[matype] > locate[matype])
{

jobpos = jobpos +1; 
status=l;

}
jobpos=jobpos +1;
}
jobpos=jobpos -1; 
return jobpos;

} I I End ofFunction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



253

This is the RSR rule when implemented as the first rule in the Robust System

void RepairRulel (int mach,float SI[][500], float FI[][500], float ReF[], int thenumero[],int jobpi[], 
double datam[][500], int joplaces[][500], float& matchc, int& statusl, float finisia[])

{

float awal[ 10] [500]={0}, ekher[ 10] [500]={0} ,petit=0,finitio[l 0] [500]={0}; 
int index=0,matchsignal=0;

status 1=0;
for(int i=l; i<(nom +1); i++) // Use temporary S and F arrays so the original won't b modified
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

awal[i] [j]=SI[i] [j]; 
ekher[i] [j ]=FI[i] [j]; 
finitio[i][j]=FI[i]D];

}
}

int k = 0, lecmax=0;
awal[mach][jobpi[mach]]=ReF[mach]; 11 Shift 1 job to the right
ekher[mach][jobpi[mach]]= awal[mach][jobpi[mach]] + datam[mach][joplaces[mach][jobpi[mach]]];

if(ekher[mach][jobpi[mach]] <= awal[mach][(jobpi[mach] +1)]) //RSR Successful
{

status 1=1;
for(int i=l; i<(nom +1); i++) HReupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l );j++)
{

SI[i][j] =awal[i][j];
FI[i][j]= ekher[i][j];

}
}

}
else //Shift 2 jobs to the right
{

awal[mach][jobpi[mach]+l]=ekher[mach][jobpi[mach]]; 
ekher[mach][jobpi[mach]+l]= awal[mach][jobpi[mach]+l] +

datam[mach][joplaces[mach][jobpi[mach]+l]];
}

//RSR Successful
if((statusl=0) && (ekher[mach][jobpi[mach]+l] <= awal[mach][(jobpi[mach] +2)]))
{

status 1=1;
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for(int i=l; i<(nom +1); i++) //Reupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

SI[i][j] =awal[i][j];
FI[i]D]=ekher[i]D];

}
}

}
} IIEnd of function
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This is FJR when implemented as the second rule in the Robust System

void RepairRule2 (float locati[],float fmdposiQ, int machi,float SE[][500], float FE[][500],
float RepF[], int lenumero[],int jobsp[], double datap[][500], int jplas[][500], float& mathc, 

int& jobcount, float fini[],int& status2)
{

float awal[ 10][500]= {0}, ekher[10][500]={0},awil[10][500]={0}, ekhir[10][500]={0},
track[nom]={0} ,path[nom]={0} ,wpath[nom]= {0} ,residle[nom]={0} ,compi[nom]={0}; 

int joblocat[nom]={0}, ma7al[10][500]={0}, ma7il[10][500]={0}; 
int fitsignal=0,k=0,states=0,petitindex=0jindex=0; 
bool hobbi=true, karen=false; 
float petit=0,makespani=0;

for(int i=l; i<(nom +1); i++) HUse temporary S andFarrays so the original won't b modified
{

for(int j=l ;j<(lenumero[i]+l );j++)
{

awal[i][j]=SE[i][j]; 
awil[i] [j]=SE[i] [j ]; 
ekher[i] [j ]=FE[i] [j]; 
ekbir[i] [j]=FE[i] [j]; 
ma7al[i]|j]=jplas[i][j]; 
ma7il[i][j]=jplas[i][j];

}
}

for(int i=l; i<(nom +1); i++) 11 Get the jobs "on the right" locations on each machine
{

j oblocat [i] =j obposup (track,lenumerojobsp,i,locati,findposi,datapjplas); 
if(i =  machi) llfor the down machine, locate the job after the down job
{

joblocat[i] =jobsp[i]+l; 
cout«"jobloc " « j  oblocat[i]«endl; 
cout«"machi "«machi«endl;
track[i]=RepF[i]; //Because it can only start once the repair finishes

}
}

jindex=jplas[machi][jobsp[machi]];

for(int i=l; i<(nom +1); i++) //assume the down job on each machine to see which one is
//more appropriate

{
path[i]=track[i]+datap[i] [jindex];
wpath[i]=path[i]; //Use it in case we couldn’t fit the job on any machine

}
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while(hobbi)
{

karen=false;
for(int i=l ;i<(nom +1); i++) //Check if we still have jobs to shift in order to fit the down job 
{

if((lenumero[i]) >= (joblocat[i]+k))
{

karen=true;
}
else
{

path[i]=1000000; //assigned a large number so this path is not chosen
}

}
if(karen=false)
{

hobbi=false;
break;

}

for(int i=l; i<(nom +1); i++)
{ 11 check if  the job can be fitted on any or all the machines

if(path[i] <= SE[i][joblocat[i]+k])
{

residle[i]=SE[i][joblocat[i]+k] - path[i]; 
fitsignal=l;

}
} Hin case the job has been fitted on a machine, check where it'll b most economical
if(fitsignal = 1 )
{

status2=l;
petit=0; I/Locate the machine where the job can be processed with minimal cost
for(int i=l; i<(nom +1); i++)
{

if (residle[i] > petit)
{

petit = residle[i]; 
petitindex = i;

}
}

if(petitindex != machi) //Update the number o f shifted jobs
{

j obcount=j obcount+1;
}

//Update the match-up time 
mathc=mathc+(SE[petitindex][joblocat[petitindex]+k] - RepF[machi]);

lenumero[petitindex]=lenumero[petitindex] +1;
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I I shifts the job on recipient machine 
for(int j=joblocat[petitindex]+l ; j<  lenumero [petitindex] +1; j++)
{

awal [petitindex] [j]=awil[petitindex] [j-1 ]; 
ekher[petitindex] [j ]=ekhir[petitindex] [j -1 ]; 
ma7al[petitindex] [j]=ma7il[petitindex] [j -1 ];

}
//Start updating the recipient machine 

awal[petitindex][joblocat[petitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitindex]]=track[petitindex]+ datap[petitindex][jindex]; 
ma7al[petitindex][joblocat[petitindex]] = jindex; 
if(k > 0)
{ //update the shiftedjobs required for fitting

for(int j=joblocat[petitindex]; j <(joblocat[petitindex] +k);j++)
{

awal[petitindex][j +1] = ekher[petitindex][j]; 
ekher[petitindex][j +1] = awal[petitindex][j +1]+

datap[petitindex][jplas[petitindex]|j+l]];
}

}

for(int j=l; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j];
FE[petitindex][j] = ekher[petitindex][j]; 
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; HStart updating the giver machine

for(int j=jobsp[machi]; j <(lenumero[machi] +l);j++)
{

awal[machi][j] = SE[machi][j+l]; 
ekher[machi][j] = FE[machi][j+l]; 
ma7al[machi][j] = jplas[machi][j+l];

}

for(int j=l; j<(lenumero[machi] +1); j++)
{

SE[machi][j] = awal[machi][j];
FE[machi][j] = ekher[machi][j]; 
jplas[machi][j] = ma7al[machi][j];

} HFinished updating the giver machine

hobbi=false;

else //Need to Shift more jobs in order to fit the down job
{

k=k+l;
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for(int i=l; i<(nom +1); i++) //update the tracking variable "path"
{

path[i]=path[i]+datap[i][jplas[i][joblocat[i]+k]];
}

} IIEnd o f while loop

} IIEnd of the function
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This is the C++ Function that imiThis is the C++ Function that implements PR rule as standalone or implemented in the |
Robust System

void RepairRule5 (float locatOQ,float findpO[], int machO,float SO[][500], float FO[][500], float 
RepFO[], int lenumeroO[],int jobspO[], double datapO[][500], int jplasO[][500], float& 
mathcO, int& jobcount, float finiO[])

{

float awal[10][500]={0}, ekher[10][500]={0},track[nom]={0},residle[nom]={0},
ES[nom] = {0},LF[nom] = {0}; 

float petit=0, makespan=0,LatestS=0;
int states=0, joblocat[nom]={0},ma7al[10][500]={0}, ResJobs[noj]={0} jindex=0, Njob[noj]={0}, 

c[nom]={0}; 
int JobsNo = 0;
bool jiji=true,karen=true,lello=true;
double SPANS[nom]={0}, Xjobs[10][500]={0},Xnew[10][500]={0},Xnewer[10][500]={0}, 

ProcJobs[ 10] [500]={0}, status= 10,ESt[nom]={0} ,obj ect=0,statu=8;

for(int i=l; i<(nom +1); i++) 11 Use temporary jplas arrays so the original won't be modified
{

for(int j=l ;j <(lenumeroO [i]+l );j ++)
{

awal[i][j]=SO[i][j]; 
ekher[i] [j]=FO[i] [j]; 
ma7al[i][j]=jplasO[i][j];

for(int i=l; i<(nom +1); i++) II Get the jobs locations on each machine

joblocat[i]=jobposup (track,lenumeroOjobspO,i,locatO,findpO,datapOjplasO);
if(i =  machO) IIfor the down machine, locate the down job

joblocat[i] = jobspO[i];

for(int i=l; i<(nom +1); i++) 11 Get the ES on each machine

ES[i]= track[i]; 
if(i =  machO) 11 for the down machine, ES is just after the repair

ES[i] = RepFO[i];

ESt[i-l ]=double(ES [i]); 11 Keep a double array for Lingo
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int matchlncrease=0; I/This is used to increase the match-up when it's not enough

while (jiji)
{

jiji=true; //reinitialize jiji
matchlncrease = matchlncrease + (Mincrease * 1); I I Increment the match-up

I I Check if the match increase has exceeded the nb ofjobs on any machine 
for (int i=l; i<(nom +1); i++)
{

if((matchlncrease + joblocat[i]-1) >= lenumeroO[i])
{

lello=false;
}

}

if(lello=false) I/Apply complete rescheduling
{

for(int j=l; j<(JobsNo +l);j++) //Reinitialize the arrays
{

for(int i=l; i<(nom +l);i++)
{

ProcJobs[i][j]=0;
Xjobs[i][j]=0;

}
}
JobsNo = 0; //This is the number o f jobs that need to be rescheduled

for(int i=l;i<(nom +1); i ++)
{

for(int j=joblocat[i];j<(lenumeroO[i] +1); j++)
{

JobsNo = JobsNo +1; HIncrement nb o f jobs
ResJobs[JobsNo]=jplasO[i][ j]; //these are the jobs located

Hafter the breakdown
Xjobs[i][JobsNo]=l;

}
}

for(int i =1; i<(nom+l );i++) //Get the processing time array
{

for(int j= l; j<(JobsNo +l);j++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}
LING03 (ProcJobs,Xjobs,Xnew,ESt,JobsNo,status,object); 
if(status=0) //LINGO! found an optimal solution
{

LENG04 (ProcJobs,Xjobs,Xnewer,ESt,JobsNo,statu,object);
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if(statu==0) I I we were able to min nb of shifted jobs
{

for(int i=l;i<nom +l;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

Xnew[i][j]=Xnewer[i][j];
}

}
}

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=l ;j<JobsNo+l ;j++)

cout«" "«Xnew[i][j];
}
jiji=false;

for (int i=l; i< (nom+1); i++) //Update the new places o f the jobs
{

for (int j= l; j <(JobsNo+l); j++)
{

if((Xnew[i][j] - Xjobs[i][j])<0) IIMachine i lost the
I I job (joblocat[i]+j-l)

{
lenumeroO[i]=lenumeroO[i]-l;

}
if((Xnew[i][j] - Xjobs[i][j]) > 0) IIMachine won the job

//(ResJobsjjj)
{

lenumeroO[i]=lenumeroO[i]+1; 
j obcount=j obcount+1; // update the shifted jobs

)
}

}

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

if(Xnew[i][j]=l)
{

Njob[i]=Njob[i]+l;
jplasO [i] [j oblocat [i] +Nj ob [i] -1 ]=Res J obs [j ]; 
if(Njob[i]=1)
{

SO [i] [j oblocat[i]+Nj ob [i] -1 ]=ES [i];
}
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else
{

SO[i][joblocat[i]+Njob[i]-l] =
FO[i][joblocat[i]+Njob[i]-2];

}
FO[i][joblocat[i]+Njob[i]-l]=

SO[i][joblocat[i]+Njob[i]-l] +ProcJobs[i][j];
}

}
}

}
makespan=0;
for(int i=l;i<(nom +l);i++)
{

if(FO[i][lenumeroO[i]] > makespan)
{

makespan = FO[i][lenumeroO[i]];
}

}
mathcO = mathcO + (makespan - RepFO[machO]); //Match-up time required

} IIEnd o f Complete rescheduling

if(jiji=true)

{ for (int i=l; i<(nom +1); i++) //calculate the span on each machine
{

LF[i] = SO[i][joblocat[i]+ matchlncrease]; 
if(joblocat[i] >= lenumeroO[i])
{

LF[i]=FO[i] [lenumeroO[i]];
}
SPANS[i-l] = double(LF[i] - ES[i]);

JobsNo = 0; //This is the number of jobs that need to be rescheduled

for(int i=l;i<(nom +1); i ++)
{

for(int j=lj<(matchlncrease +1); j++)
{

JobsNo = JobsNo +1; HIncrement nb of jobs
ResJobs[JobsNo]=jplasO[i][joblocat[i]+j - 1]; Uthese r the jobs located

//after the breakdown
Xjobs[i][JobsNo]=l;
cout«"these r the "«ResJobs[JobsNo]«"

}
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for(int j= l; j<(JobsNo +l);j++) //Get the processing time array
{

for(int i=l; i<(nom+l);i++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}

LING02 (ProcJobs,Xjobs,Xnew,SPANS,JobsNo,status); Usend info to LINGO to try to find
Ha solution

if(status = 0 )
{

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=l J<JobsNo+l ;j++)

cout«" ”«Xnew[i][j];
}
jiji=false;
for (int i=l; i< (nom+1); i++) HUpdate the new places o f the jobs
{

for (int j= l; j <(JobsNo+l); j++)
{ IIMachine i lost the job (joblocatjij+j  - 1)

if((Xnew[i][j] - Xjobs[i][j])<0)
{

lenumeroO[i]=lenumeroO[i]-l;
for(int k?=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

jplasO[i] [k]=jplasO[i] [k+1 ];
}

}
if((Xnew[i][j] - Xjobs[i][j]) > 0) IIMachine won the job (ResJobsjjj) 
{

for(int k=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

ma7al[i][k+l]=jplasO[i][k];
j obcount=j obcount+1; llupdate the shifted jobs

}
for(int k=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

jplasO[i] [k+1 ]=ma7al[i] [k+1 ];
}
jplasO[i][joblocat[i]+j - l]=ResJobs[j]; 
lenumeroO[i]=lenumeroO[i]+1;
Njob[i]=Njob[i]+l;

} I/Machine kept the same job
if((Xnew[i][j] =  Xjobs[i][j]) && (Xjobs[i][j] =  1))
{ //Increment the nb. o f jobs assigned to this machine

Njob[i]=Njob[i]+l;
}

}
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}
for (int i=l; i< (nom+1); i++) I I Get the Start on all machines
{

SO[i][joblocat[i]] = ES[i];
FO[i][joblocat[i]] = SO[i][joblocat[i]] + datapO[i][jplasO[i][joblocat[i]]];

}for (int i=l; i< (nom+1); i++) //Update the start and finish o f the jobs
{

for(int j= l; j <(Njob[i]); j++)
{

SO[i][joblocat[i]+j]=FO[i][joblocat[i]+j-l]; 
FO[i][joblocat[i]+j]=SO[i][joblocat[i]+j] + 

datapO[i] [jplasO[i] [joblocat[i]+j]];
}

}

for(int i=l;i<(nom+l);i++)
{

if(FO[i][joblocat[i]+Njob[i]-l] - ES[i] > LatestS)
{

LatestS = FO[i]Uoblocat[i]+Njob[i]-l] - ES[i];
}

}
mathcO=mathcO + (LatestS); //update the match-up time

} II End of I f

for(int j= l; j<(JobsNo +l);j++) 11 Reinitialize the arrays
{

for(int i=l; i<(nom +l);i++)
{

ProcJobs[i][j]=0;
Xjobs[i][j]=0;

}
}
jiji=true;

}
} IIEnd of IF 

} IIEnd of while 

} I I End of function
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This function will generate an optimal reschedule by interfacing with LING02.Lng (MIP[2]) 
in order to match with the initial schedule, with objective of minimizing # of jobs 

that will be shifted to other machines I

void LING02 (double processing^[500],double Xold[ 10][500],double Xnews[10][500], 
double SPAN[],int JobNo,double& stat)

{
char cScript[256]; IILINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]={0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object 
pLSenvLINGO pLINGO; 

pLINGO = LScreateEnvLng(); 
if ( '.pLINGO)
{

printf( "Can"t create LINGO environment!\n"); 
goto FinalExit;

}

// Open LINGO'S log file
nError = LSopenLogFileLng( pLINGO, "LING02.log"); 
if ( nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

II @POINTER(l)
JobsNo[0]=(double)JobNo; 11 Assign the nb ofjobs
nError = LSsetPointerLng( pLINGO, JobsNo, &nPointersNow);
if ( nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng( pLINGO, dnom, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(3) 
double datas3[1000];

for ( int i = 0; i<(nom); i++) I/Transfer the "processing" double array to "datasS " single array
for ( int j = 0; j < (JobNo); j++) 

datas3[ i * JobNo + j] = processing[i+l][j+l]; 
nError = LSsetPointerLng( pLINGO, datas3, &nPointersNow); 
if ( nError) goto ErrorExit;
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// @P0INTER(4) 
double datas4[1000];
for ( int i = 0; i<(nom); i++) //Transfer the "Xold" double array to "datas4" single array

for ( int j = 0; j < (JobNo); j++) 
datas4[ i * JobNo + j] = Xold[i+l][j+l]; 

nError = LSsetPointerLng( pLINGO, datas4, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(5)
nError = LSsetPointerLng( pLINGO, SPAN, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(6)
nError = LSsetPointerLng( pLINGO, &dObjective, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng( pLINGO, &dStatus, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng( pLINGO, dX, &nPointersNow); 
if ( nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy( cScript, "SET ECHOIN 1 \n TAKE LING02.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng( pLINGO, cScript); 
if ( nError) goto ErrorExit;

// Close the log file 
LScloseLogFileLng( pLINGO);

// Any problems?
if ( nError || dStatus != LS STATUS GLOBAL LNG)
{

// Had a problem 
printf( "Unable to solve!");

}
stat=dStatus;

// Output the decision variables 
for ( int i = 1; i<(nom+l); i++)
{

for ( int j = 1; j < (JobNo+1); j++)
{

Xnews[i] [j]=dX[index]; 
index++;

}
}
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for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=l ;j<(JobNo+l);j++)

cout«" "«Xnews[i] [j ];
}

cout«"the objective is "«dObjective«" and status is "«dStatus«endl; 
goto NonnalExit;

ErrorExit:
printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng( pLINGO);

FinalExit:;

}
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This function will generate an optimal reschedule by interfacing with LING03.Lng (MIP[3])
with the objective of minimizing CmaxR

void LING03 (double processingK[][500],double XoldK[ 10][500],double XnewsK[10][500], 
double ESK[],int JobNoK,double& statK,double& dobj)

{
char cScript[256]; //LINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]= {0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object 
pLSenvLINGO pLINGO; 

pLINGO = LScreateEnvLng(); 
if ( IpLINGO)
{

printf( "Can"t create LINGO environment!\n"); 
goto FinalExit;

}

// Open LINGO's log file
nError = LSopenLogFileLng( pLINGO, "LING03.log"); 
if ( nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

H @POINTER(l)
JobsNo[0]=(double)JobNoK; HAssign the nb o f jobs 
nError = LSsetPointerLng( pLINGO, JobsNo, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng( pLINGO, dnom, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(3) 
double datas3[1000];

for ( int i = 0; i<(nom); i++) //Transfer the "processing" double array to "datas3" single array
for ( int j = 0; j < (JobNoK); j++) 

datas3[ i * JobNoK + j] = processingK[i+l][j+l]; 
nError = LSsetPointerLng( pLINGO, datas3, &nPointersNow); 
if ( nError) goto ErrorExit;
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// @POINTER(4) 
double datas4[1000];
for ( int i = 0; i<(nom); i++) I I Transfer the "Xold" double array to "datas4" single array

for ( int j = 0; j < (JobNoK); j++) 
datas4[ i * JobNoK + j] = XoldK[i+l][j+l]; 

nError = LSsetPointerLng( pLINGO, datas4, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(5)
nError - LSsetPointerLng( pLINGO, ESK, &nPointersNow); 
if ( nError) goto ErrorExit;

II @POINTER(6)
nError = LSsetPointerLng( pLINGO, &dObjective, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng( pLINGO, &dStatus, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng( pLINGO, dX, &nPointersNow); 
if ( nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy( cScript, "SET ECHOIN 1 \n TAKE LING03.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng( pLINGO, cScript); 
if ( nError) goto ErrorExit;

// Close the log file 
LScloseLogFileLng( pLINGO);

// Any problems?
if ( nError || dStatus != LS_STATUS_GLOBAL_LNG)
{

// Had a problem 
printf( "Unable to solve!");

}
statK=dStatus;

// Output the decision variables 
for ( int i = 1; i<(nom+l); i++)
{

for ( int j = 1; j < (JobNoK+1); j++)
{

XnewsK[i] [j]=dX[index]; 
index++;

}
}
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for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=l;j <(JobNoK+1) J ++)

cout«" "«XnewsK[i][j];
}

cout«"the objective is "«dObjective«" and status is "«dStatus«endl; 
dobj=dObjective;

goto NormalExit;
ErrorExit:

printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng( pLINGO);

FinalExit:;

}
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This function will generate an optimal reschedule by interfacing with LING04.Lng (MIP[4])with 
the objective of minimizing the number of shifted jobs while CmaxR is constrained 

to be at its optimum (the value obtained using LING03.Lng (MIP[3]))

void LING04 (double processingZ[][500],double XoldZ[10][500],double XnewsZ[10][500], 
double ESZ[],int JobNoZ,double& statZ,double dobjZ)

{
char cScript[256]; 11 LINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]= {0} ,Obj ecta[]={0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object 
pLSenvLINGO pLINGO; 

pLINGO = LScreateEnvLng(); 
if ( IpLINGO)
{

printf( "Can"t create LINGO environment!\n"); 
goto FinalExit;

}

// Open LINGO's log file
nError = LSopenLogFileLng( pLINGO, "LING04.log"); 
if ( nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

// @POINTER(l)
JobsNo[0]=(double)JobNoZ; //Assign the nb o f fobs 
nError = LSsetPointerLng( pLINGO, JobsNo, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng( pLINGO, dnom, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(3) 
double datas3[1000];

for ( int i = 0; i<(nom); i++) //Transfer the "processing" double array to "datas3" single array
for ( int j = 0; j < (JobNoZ); j++) 

datas3[ i * JobNoZ + j] = processingZ[i+l][j+l]; 
nError = LSsetPointerLng( pLINGO, datas3, &nPointersNow); 
if ( nError) goto ErrorExit;
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// @P0INTER(4) 
double datas4[1000];
for ( int i = 0; i<(nom); i++) t/Transfer the "Xold" double array to "datas4"single array

for ( int j = 0; j < (JobNoZ); j++) 
datas4[ i * JobNoZ + j] = XoldZ[i+l][j+l]; 

nError = LSsetPointerLng( pLINGO, datas4, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(5)
nError = LSsetPointerLng( pLINGO, ESZ, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(6)
Obj ecta[0]=dobj Z;
nError = LSsetPointerLng( pLINGO, Objecta, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng( pLINGO, &dStatus, &nPointersNow); 
if ( nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng( pLINGO, dX, &nPointersNow); 
if ( nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy( cScript, "SET ECHOIN 1 \n TAKE LING04.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng( pLINGO, cScript); 
if ( nError) goto ErrorExit;

// Close the log file 
LScloseLogFileLng( pLINGO);

II Any problems?
if ( nError || dStatus != LS STATUS GLOBAL LNG)
{ // Had a problem

printf( "Unable to solve!");
}

statZ=dStatus;

// Output the decision variables 
for ( int i = 1; i<(nom+l); i++)
{

for ( int j = 1; j < (JobNoZ+1); j++)
{

XnewsZ[i] [j]=dX[index]; 
index++;

}
}
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for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=l ;j<(JobNoZ+l );j++)

cout«" "«XnewsZ[i][j];
}

cout«"status is "«dStatus«endl; 
goto NormalExit;

ErrorExit:
printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng( pLINGO);

FinalExit:;

}
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The main function used for Robust System (Appendix A) can be used for the RSR implementation 
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGOl, sort, jobposit, jobposup, and assign functions are described in Appendix A. The 
only change needed is for the assign function where only RSR should be applied.

The RSR rule function is shown below

void RepairRulel (int mach,float SI[][500], float FI[][500], float ReF[], int thenumero[],int jobpi[], 
double datam[][500], int joplaces[][500], float& matchc, int& nschedule, float finisia[])

{

float awal[ 10] [500]={0}, ekher[ 10][500]= {0} ,petit=0,finitio[l 0] [500]={0}; 
int index=0,matchsignal=0;

for(int i=l; i<(nom +1); i++) //Use temporary S andFarrays so the original won't b modified 
{

for(int j=l ;j<(thenumero[i]+l );j++)
{

awal[i][j]=SI[i][j]; 
ekher[i] [j]=FI[i] [j]; 
finitio[i][j]=FI[i][j];

}
}

int k = 0, lecmax=0;
awal[mach] [jobpi[mach]]=ReF[mach];
ekher[mach][jobpi[mach]]= awal[mach][jobpi[mach]] + datam[mach][joplaces[mach][jobpi[mach]]];

while((ekher[mach][jobpi[mach] + k] > awal[mach][(jobpi[mach] +k+l)]) && ((jobpi[mach]+k) 
<thenumero[mach]))

{
if((jobpi[mach] + k+1) =  thenumero[mach]) //if the next job is the last, we need to stop 
{

awal[mach][(jobpi[mach] +k +1)] = ekher[mach][jobpi[mach] + k]; 
ekher[mach][jobpi[mach] + k +1] = awal[mach][(jobpi[mach] +k +1)] +

datam[mach][joplaces[mach][jobpi[mach] + k+1]]; 
finisia[mach] = ekher[mach][jobpi[mach] + k +1]; //update the finish time of the

//machine
matchsignal=l; 
nschedule=l; 
break;

}
awal[mach][(jobpi[mach] +k+l)] = ekher[mach][jobpi[mach] + k]; 
ekher[mach][jobpi[mach] + k +1] = awal[mach][(jobpi[mach] +k +1)] +

datam[mach][joplaces[mach][jobpi[mach] + k+1]];
k = k+1;

}
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if(jobpi[mach]+k =  thenumero[mach]) lllf this is the last job
{

fmisia[mach] = ekher[mach][jobpi[mach] + k];
}

for(int i=l; i<(nom +1); i++) IIReupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

SI[i][j]=awal[i][j];
FI[i][j]= ekher[i][j];

}
}

for(int i=l ;i<(nom +1); i++) IIget the makespan
{

if(FI[i][thenumero[i]] > lecmax)
{

lecmax=FI[i] [thenumero[i]];
}

}

if(nschedule = 1 )  11 in the case o f the last job
{

matchc = matchc + (lecmax - ReF[mach]);
cout«"match current "«m atchc«" because of "«lecmax - ReF[mach]«endl;

}
else llif not last job
{

matchc = matchc + (awal[mach][jobpi[mach] + k+1] - ReF[mach]); 
cout«"match current "«m atchc«" because of "«ekher[mach][jobpi[mach] + k] -

ReF[mach]«endl;
}
} IIEnd of function
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The main function used for Robust System (Appendix A) can be used for the FJR implementation 
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGO 1, sort, jobposit, jobposup, and assign functions are described in Appendix A. The 
only change needed is for the assign function where only FJR should be applied.

The FJR mle function is shown below

void RepairRule2 (float locati[],float findposi[], int machi,float SE[][500], float FE[][500], float
RepF[], int lenumero[],int jobsp[], double datap[][500], int jplas[][500], float& mathc, int& 
jobcount, float fini[])

{

float awal[10][500]={0}, ekher[10][500]={0},awil[10][500]={0},
ekhir[l 0][500]= {0} ,track[nom]={0} ,path[nom]={0} ,wpath[nom]={0} ,residle[nom]={0}, 
compi[nom]={0}; 

int joblocat[nom]={0}, ma7al[10][500]={0}, ma7il[10][500]={0}; 
int fitsignal=0,k=0,states=0,petitindex=0jindex=0; 
bool hobbi=true, karen=false; 
float petit=0,makespani=0;

for(int i=l; i<(nom +1); i++) // Use temporary S and F arrays so the original job-machine
IIassignment won't be modified

{
for(int j=l ;j <(lenumero [i]+1 );j ++)
{

awal[i][j]=SE[i][j]; 
awil[i][j]=SE[i][j]; 
ekherfi] D']=FE[i] □ ]; 
ekhir [i] [j ] =FE [i] [j]; 
ma7al[i]|j]=jplas[i][j]; 
ma7il[i][j]=jplas[i][j];

}
}

for(int i=l; i<(nom +1); i++) IIGet the jobs "on the right" locations on each machine
{

joblocat[i]=jobposup (track,lenumerojobsp,i,locati,findposi,datapjplas); 
if(i =  machi) llfor the down machine, locate the job after the down job
{

joblocat[i] = jobsp[i]+l;
track[i]=RepF[i]; I I Because it can only start once the repair finishes

}
}

jindex=jplas[machi] [jobsp[machi]];
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for(int i=l; i<(nom +1); i++) I I assume the down job will be fitted on each machine to determine
I/which one is more appropriate

{
path[i]=track[i]+datap[i][jindex];
wpath[i]=path[i]; //Use it in case we can not fit the job on any machine

)

while(hobbi)
{

karen=false;
for(int i=l ;i<(nom +1); i++) //Check if we still have jobs to shift in order to fit the down job 
{

if((lenumero[i]) >= (joblocat[i]+k))
{

karen=true;
}
else
{

path[i]=l 000000; //assigned a large number so this path is not chosen
}

}
if(karen=false)
{

hobbi=false;
break;

}

for(int i=l; i<(nom +1); i++)
{

if(path[i] <= SE[i][joblocat[i]+k]) //check if the job can be fitted on any or all the
//machines

{
residle[i]=SE[i][joblocat[i]+k] - path[i]; 
fitsignal=l;

}
}
if(fitsignal =  1) //in case the job has been fitted on a machine, check where it'll be more 

//economical
{

petit=0;
for(int i=l; i<(nom +1); i++) //Locate the machine where the job can be

//processed with minimal cost
{

if (residle[i] > petit)
{

petit = residle[i]; 
petitindex = i;

}
}
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if(petitindex != machi) I/Update the number of shifted jobs
{

j obcount=j obcount+1;
}

//Update the matchup time 
mathc=mathc+(SE[petitindex][joblocat[petitindex]+k] - RepF[machi]);

lenumero[petitindex]=lenumero[petitindex] +1;

for(int j=joblocat[petitindex]+l ; j <  lenumero[petitindex] +1; j++) //shift the jobs on
//recipient machine

{
awal[petitindex] [j]=awil[petitindex] [j-1 ]; 
ekher[petitindex] [j]=ekhir[petitindex] [j-1 ]; 
ma7al[petitindex][j]=ma7il[petitindex][j-l];

}
HStart updating the recipient machine 

awaltpetitindex][joblocat[petitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitmdex]] = track[petitindex] +datap[petitindex][jindex]; 
ma7al[petitindex][joblocat[petitindex]] =jindex; 
if(k > 0)
{ //update the shiftedjobs requiredfor fitting

for(int j=joblocat[petitindex]; j <(joblocat[petitindex] +k);j++)
{

awal[petitindex][j +1] = ekher[petitindex][j]; 
ekher[petitindex][j +1] = awal [petitindex] [j +1]+ 

datap[petitindex] [jplas[petitindex] [j+1 ]];
}

}

for(int j = l ; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j3;
FE[petitindex][j] = ekher[petitindex][j]; 
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; //Start updating the giver machine

for(int j=jobsp[machi]; j <(lenumero[machi] +l);j++)
{

awal[machi][j] = SE[machi][j+l]; 
ekher[machi][j] = FE[machi][j+l]; 
ma7al[machi][j] = jplas[machi][j+l];

}

for(int j = l ; j<(lenumero[machi] +1); j++)
{

SE[machi]0] = awal[machi][j];
FE[machi][j] = ekher[machi][j];
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jplas [machi] [j ] = ma7al[machi][j];
} //Finished updating the giver machine

hobbi=false;
}
else IINeed to Shift more jobs in order to fit the down job
{

k=k+l;
for(int i=l; i<(nom +1); i++) /'/update the tracking variable "path "
{

path[i]=path[i]+datap[i][jplas[i][joblocat[i]+k]];
}

}

} HEnd o f while loop

if(karen =  false) lli.e. we ran out ofjobs and couldn't jit the down job on any machine 
{ llln this case, we will just jit it to the machine with the smallest path

petit=l000000000; 
petitindex=0;

for(int i=l; i<(nom +1); i++) HUse temporary S andFarrays so the original won't be
IImodified

{
for(int j=l ;j<(lenumero[i]+l);j++)
{

awal[i]0']=SE[i][j]; 
ekher[i] [j]=FE[i] [j]; 
ma7al [i] [j ] =jplas[i] [j ];

}
}
for(int i=l; i<(nom +1); i++) I/update the tracking variable "wpath"
{

for(int j =j oblocat [i] ;j <(lenumero [i]+1) ;j ++)
{

wpath[i]=wpath[i]+datap[i] [jplas[i] [j]];
}

}
I/Locate the machine where the job can be processed with minimal cost 

for(int i=l; i<(nom +1); i++)
{

if (wpath[i] < petit)
{

petit = wpath[i]; 
petitindex = i;
cout«"chosen machine "«petitindex«endl;

}
}
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if(petitindex != machi) I/Update the number o f shiftedjobs
{

jobcount=jobcount+l;
}

lenumero[petitindex]=lenumero[petitindex] +1; I/Start updating the recipient machine
Hshifts the job on recipient machine 

for(int j=lenumero[petitindex]; j > joblocatfpetitindex]; j —)
{

ma7 al [petitindex] [j ]=ma7al [petitindex] [j -1 ];
}

awal[petitindex][joblocattpetitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitindex]] = track[petitindex] + datap[petitindex][jindex]; 
ma7al[petitindex][joblocat[petitindex]] = jindex;

for(int j =j oblocat [petitindex] ;j <lenumero [petitindex] ;j ++)
{

awal[petitindex] [j+1 ]=ekher[petitindex] [j]; 
ekher[petitindex] [j+1 ]=awal[petitindex] [j+1 ] +

datap[petitindex][ma7al[petitindex] [j+1 ]];
}

for(int j= l; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j];
FE[petitindex][j] = ekher[petitindex][j]; 
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; //Start updating the giver machine

ma7al[machi][jobsp[machi]] =jplas[machi][jobsp[machi]+l]; 
awal[machi][jobsp[machi]] = track[machi]; 
ekher[machi][jobsp[machi]] = awal[machi][jobsp[machi]] 

+datap[machi][ma7al[machi][jobsp[machi]]];

for(int j=jobsp[machi]+l; j <(lenumero[machi] +l);j++)
{

ma7al[machi][j] = jplas[machi][j+l]; 
awal[machi][j] = ekher[machi][j-l];
ekher[machi][j] = awal[machi][j] +datap[machi][ma7al[machi][j]];

}
for(int j= l; j<(lenumero[machi] +1); j++)
{

SE[machi][j] = awal[machi][j];
FE[machi][j] = ekher[machi][j]; 
jplas[machi][j] = ma7al[machi][j];

} //Finished updating the giver machine
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makespani=0;

for(int i=l;i<(nom +l);i++) HGet the new makespan
{

if(FE[i][lenumero[i]] > makespani)
{

makespani = FE[i][lenumero[i]];
}

}

mathc=mathc+(makespani - RepF[machi]); //Update the matchup time 
cout«"the new makespan is "«makespani«endl;

} I I End of I f

} I/End of the function
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The main function used for Robust System (Appendix A) can be used for the CR implementation 
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGOl, LING02, LING03, LING04, sort, jobposit, jobposup, and assign functions are 
described in Appendix A. The only change needed is for the assign function where only CR

should be applied.

The CR rule function is shown below.

void RepairRule5 (float locatO[],float findpO[], int machO,float SO[][500], float FO[][500], float 
RepFO[], int lenumeroO[],int jobspO[], double datapO[][500], int jplasO[][500], float& 
mathcO, int& jobcount, float finiO[])

{

float awal[10][500]={0}, ekher[10][500]={0},track[nom]={0},residle[nom]={0},ES[nom] = {0}, 
LF[nom] = {0}; 

float petit=0, makespan=0,LatestS=0;
int states=0, joblocat[nom]={0}, ma7al[10][500]={0},ResJobs[noj]={0} jindex=0,Njob[noj]={0}, 

c[nom]={0}; 
int JobsNo = 0;
bool jiji=true,karen=true,lello=true;
double SPANS[nom]={0}, Xjobs[10][500]={0},Xnew[10][500]={0},Xnewer[10][500]={0}, 

ProcJobs[l 0] [500]={0} ,status=l 0,ESt[nom]={0} ,obj ect=0,statu=8;

for(int i=l; i<(nom +1); i++) //Use temporary jplas arrays so the original won't b modified
{

for(int j=l ;j<(lenumeroO[i]+l);j++)
{

awal[i][j]=SO[i][j];
ekher[i][j]=FO[i][j];
ma7al[i][j]=jplasO[i][j];

}
}

for(int i=l; i<(nom +1); i++) //Get the jobs locations on each machine
{

joblocat[i]=jobposup (track,lenumeroOjobspO,i,locatO,fmdpO,datapOjplasO); 
if(i =  machO) //for the down machine, locate the down job
{

joblocat[i] = jobspO[i];
}

}

for(int i=l; i<(nom +1); i++) //Get the ES on each machine
{

ES[i]= track[i];
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if(i =  machO) 11 for the down machine, ES is just after the repair
{

ES[i] = RepFO[i];
}
ESt[i-l]=double(ES[i]); I/Keep a double array for Lingo

}

int matchlncrease=0; //This is used to increase the match-up when it's not enough

for(int i=l;i<(nom +1); i ++)
{

for(int j=joblocat[i] J<(lenumeroO[i] +1); j++)
{

JobsNo = JobsNo +1; //Increment nb o f jobs
ResJobs[JobsNo]=jplasO[i][ j]; //these r the jobs located after the breakdown
Xjobs[i][JobsNo]=l;

}
}

for(int i =1; i<(nom+l);i++) //Get the processing time array
{

for(int j=l; j<(JobsNo +l);j++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}
LING03 (ProcJobs,Xjobs,Xnew,ESt,JobsNo,status,object);
if(status=0) HLING03 found an optimal solution
{

LING04 (ProcJobs,Xjobs,Xnewer,ESt, JobsNo,statu,obj ect);
if(statu=0) Hwe were able to min nb o f shifted jobs
{

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

Xnew[i] [j]=Xnewer[i] [j];
}

}
}

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « "  are: "«endl; 
for(int j=1 ;j <JobsNo+1 ;j ++)

cout«" "«Xnew[i][j];
}
jiji=false;
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for (int i=l; i< (nom+1); i++) //Update the new places o f the jobs
{

for(intj=l;j <(JobsNo+l); j++)
{

if((Xnew[i][j] - Xjobs[i][j])<0) t/Machine i lost the job (joblocatjij+j  - 1)
{

lenumeroO[i]=lenumeroO[i]-l;
}

if((Xnew[i][j] - Xjobs[i][j]) > 0) //Machine won the job (ResJobsjjj)
{

lenumeroO[i]=lenumeroO[i]+l;
j obcount=j obcount+1; //update the shifted jobs

}
}

}

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

if(Xnew[i][j]==l)
{

Njob[i]=Njob[i]+l;
jplasO[i][joblocat[i]+Njob[i]-l]=ResJobs[j];
if(Njob[i]=l)
{

SO [i] [j oblocat[i]+Nj ob [i] -1 ]=ES [i];
}
else
{

SO[i][joblocat[i]+Njob[i]-l]=FO[i][joblocat[i]+Njob[i]-2];
}
FO[i][j°blocat[i]+Njob[i]-l]=SO[i][joblocat[i]+Njob[i]-l] +

ProcJobs[i][j];
}

}
}

}

for(int i=l;i<(nom +l);i++)
{

if(FO[i][lenumeroO[i]] > makespan)
{

makespan = FO[i][lenumeroO[i]];
}

}
mathcO = mathcO + (makespan - ES [machO]); HMatch-up time required 

} //End o f Complete rescheduling
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LING01 .Lng where MIP[1] is implemented. The objective function is to minimize the 
makespan in order to attain optimal initial schedules 

for the unrelated parallel machine problem

/>
■>>

I

MODEL:

DATA:
N_OJ=@pointer( 1); 
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1. .N_0_J/;
MACHINES/1.. N_0_M/;
LINKS(MACHINES,JOBS):PROCESSING,XI;
ENDSETS

1DEFINE NUMBER OF JOBS; 
IDEFINE NUMBER OF MACHINES;

[robj] MIN=C; ! OBJECTIVE FUNCTION;

@FOR(JOBS(J):
@SUM(M ACHINES(I): (XI(I, J)))=1);

@FOR(MACHINES(I):

IFIRST CONSTRAINT;

! SECOND CONSTRAINT;
@SUM(JOBS(J):XI(I,J)* PROCESSING(I,J)) < C);

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); !THIS FUNCTION WILL MAKE THE 
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3); 
@pointer(4) - rObj; 
@pointer(5) = @status(); 
@pointer (6) = XI;

enddata

END
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This is LING02.Lng where MIP[2] is implemented. The objective function is to minimize the 
number of shifted jobs at a minimal match-up time in the PR rule J.

MODEL:

DATA:
N_OJ=@pointer( 1);
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ..N O J/; 1DEFINE NUMBER OF JOBS;
MACHINES/1.. N O M/: SPAN; IDEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=(@SUM(LINKS(I,J): Y(I,J))); !OBJECTIVE FUNCTION;

@FOR(JOBS(J): lEnsure that every job will be assigned to only 1 machine;
@SUM(MACfflNES(I):(XI(I,J)))=l);

@FOR(MACHINES(I): ! SECOND CONSTRAINT;
@SUM(JOBS(J):XI(I,J)* PROCESSING(I,J)) < SPAN(I));

@FOR (LINKS(I,J):
XO(I,J) - XI(I,J)-Y(I,J) < 0); IConstraint 1 for absolute value;

@FOR (LINKS(I,J):
-XO(I,J) + XI(I,J)-Y(I,J) < 0); IConstraint 2 for absolute value;

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); 1THIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3); 
XO=@pointer(4); 
SPAN=@pointer(5); 
@pointer(6) = rObj; 
@pointer(7) = @status(); 
@pointer (8) = XI;

enddata

END
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This is LING03.Lng where MIP[3] is implemented. The objective function is to minimize the
makespan in CR rule

MODEL:

DATA:
N_OJ=@pointer( 1);
NO_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ..N_OJ/; !DEFINE NUMBER OF JOBS;
MACHINES/1.. N_0_M/: ES; !DEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=C; ! OBJECTIVE FUNCTION;

@FOR(JOBS(J): lEnsure that every job will be assigned to only 1 machine;
@SUM(MACHINES(I): (XI(I, J)))= 1);

@FOR(MACHINES(I): !SECOND CONSTRAINT;
@SUM(JOBS(J):(XI(I,J)* PROCESSING(I,J))) +ES(I) < C );

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); !THIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCES SING=@pointer(3);
XO=@pointer(4);
ES=@pointer(5);
@pointer(6) = rObj; 
@pointer(7) = @status(); 
@pointer (8) = XI;

enddata

END
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This is LING04.Lng where MIP[4] is implemented. The objective function is to minimize the 
number of shifted jobs, while the makespan is constrained to be at its optimum, 

i.e. the value obtained from MIP[3]

MODEL:

DATA:
N_0_J=@pointer( 1);
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ,.N_OJ/; !DEFINE NUMBER OF JOBS;
MACHINES/1.. N_0_M/: ES; !DEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=(@SUM(LINKS(I,J): Y(I,J))); '.OBJECTIVE FUNCTION;

@FOR(JOBS(J): !Ensure that every job will be assigned to only 1 machine;
@SUM(MACHINES(I): (XI(I, J)))= 1);

@FOR(MACHINES(I): !SECOND CONSTRAINT;
@SUM(JOBS(J):(XI(I,J)* PROCESSING(I,J))+ES(I)) < jiji);

@FOR (LINKS(I,J):
XO(I,J) - XI(I,J)-Y(I,J) < 0); IConstraint 1 for absolute value;

@FOR (LINKS(I,J):
-XO(I,J) + XI(I,J)-Y(I,J) < 0); IConstraint 2 for absolute value;

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); ITHIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3);
XO=@pointer(4);
ES=@pointer(5);
jiji=@pointer(6);
@pointer(7) = @status(); 
@pointer (8) = XI;

enddata

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	A Robust Reactive Scheduling System with Application to Parallel Machine Scheduling
	Recommended Citation

	tmp.1552566314.pdf.nfBGo

