
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Winter 2006

A Robust Reactive Scheduling System with Application to Parallel A Robust Reactive Scheduling System with Application to Parallel

Machine Scheduling Machine Scheduling

Jean-Paul M. Arnaout
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Arnaout, Jean-Paul M.. "A Robust Reactive Scheduling System with Application to Parallel Machine
Scheduling" (2006). Doctor of Philosophy (PhD), Dissertation, Engineering Management & Systems
Engineering, Old Dominion University, DOI: 10.25777/bdbx-c203
https://digitalcommons.odu.edu/emse_etds/35

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/35?utm_source=digitalcommons.odu.edu%2Femse_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

NOTE TO USERS

Page(s) missing in num ber only; text follows. Page(s) were

scanned as received.

page 78

This reproduction is the best copy available.

®

UMI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ROBUST REACTIVE SCHEDULING SYSTEM WITH

APPLICATION TO PARALLEL MACHINE SCHEDULING

by

Jean-Paul M. Amaout
B.S. July 2002, University of Balamand

M.E. December 2003, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT AND SYSTEMS ENGINEERING

OLD DOMINION UNIVERSITY
December 2006

Approved by:

laith Rabadi (Director)

Resit Unal (Member)

Bowling (Member

iteve Cotti ember)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3244860

IN F O R M A T IO N TO U S E R S

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a com plete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be rem oved, a note will indicate the deletion.

®

UMI
UMI Microform 3244860

Copyright 2007 by ProQ uest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Com pany
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 4 81 06 -1 34 6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

A ROBUST REACTIVE SCHEDULING SYSTEM WITH APPLICATION
TO PARALLEL MACHINE SCHEDULING

Jean-Paul Amaout
Old Dominion University, 2006

Director: Dr. Ghaith Rabadi

In this turbulent world, scheduling role has become crucial in most manufacturing

production, and service systems. It allows the allocation o f limited resources to activities

with the objective of optimizing one performance measure or more. Resources may be

machines in a factory, operating rooms in a hospital, or employees in a company, while

activities can be jobs in a manufacturing plant, surgeries in a hospital, or paper work in a

company. The goal of each schedule is to optimize some performance measures, which

could be the minimization of the schedule makespan, the jobs’ completion times, jobs’

earliness and tardiness, among others.

Until very recently, research has concentrated on scenarios that assume a predefined

schedule that is failure free. Initial schedules produced in advance are being followed hoping

no delays will occur, because once they do, the whole schedule may be compromised as it is

not designed to adapt to change. Researchers focused on the generation of good schedules in

the presence of complex constraints while assuming fixed processing times, known job

arrival times, unbreakable machines, and immune employees. However, this is not the case

in the real world, where processing times are stochastic, job arrival times could be unknown,

machines do break down, and employees get sick. In fact, most environments including

manufacturing are dynamic by nature and not static, vulnerable to many unpredictable

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

events, which leads the initial schedule to become obsolete once it is executed. The reason

these deterministic schedules fail is because they do not account for variability, scheduling

the activities directly after each other, so when a certain activity is delayed, all its successors

will be delayed too.

In this dissertation, new repair and rescheduling algorithms, and robust systems

equipped with learning capability are developed for the unrelated parallel machine

environment, a known NP-hard problem. The introduced rules and algorithms were

subjected to different stochastic rates of breakdowns and delays and were judged based on

several performance measures to ensure the optimization of both the schedule quality and

stability. Schedule quality is assessed based on the schedule Makespan (time to finish all

jobs) and CPU, while schedule stability is based on the number of shifted jobs from one

machine to another and the time to match up with the original schedule after the occurrence

of a breakdown. The extensive computational tests and analyses show the superiority of the

proposed algorithms and systems compared to existing methods in the literature, especially

when implemented with the learning capability. Moreover, the rules were ranked based on

their performance for different performance measure combinations, allowing the decision

maker to easily determine the most appropriate repair/rescheduling rule depending on the

performance measure(s) desired.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Copyright, 2006, by Jean-Paul M. Amaout, All Rights Reserved.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To Karen George, the optimal solution of my life

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

v i

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Ghaith Rabadi, without

whom this dissertation would not have been possible. His valuable feedback contributed

greatly to this work. I can only wish for any PhD student to be as fortunate as I was in

finding not only a mentor, but also a friend who helped me deliver my best through his

constant motivation and reinforcement.

I am also very grateful for having an exceptional doctoral committee and wish to

thank Dr. Resit Unal, Dr. Shannon Bowling, and Dr. Steve Cotter for their continual support

and commitment. I thank as well the Engineering Management and Systems Engineering

Department at Old Dominion University for the financial support during my graduate work.

My appreciation is extended to my parents in Lebanon, Michel and Mayda, for their

unconditional love and encouragement from day one. Thank you mom for calling me doctor

even when I was still in High School, and thank you dad for being my idol; you gave me so

much confidence (and sometimes arrogance) by showing me that nothing is unattainable if I

put my mind to it. I can only hope that one day I can provide my children with the same

happiness and security you gave me. I also want to thank my beautiful sister Christelle and

my brother Georgy for their support and motivation throughout this experience.

Finally, I owe the most to my fiancee Karen, who deserves this PhD as much as I do.

She had to commit three years of her life in library imprisonment, accompanied by my

frequent bad temper. Thank you so much my love for picking me up every time I was down.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

Page

LIST OF TABLES.. x

LIST OF FIGURES..xvii

INTRODUCTION...1
AREA OF RESEARCH.. 3

On-line Scheduling.. 3
Predictive-reactive scheduling.. 4
Robust Scheduling... 4

BACKGROUND AND SCOPE OF RESEARCH.. 6

System’s Time Response...6

. Reactive Approach... 7
Scheduling Techniques9
Learning Capability ..13
Problem Environment.. 14

PURPOSE OF THIS RESEARCH..18

LITERATURE REVIEW... 19
ROBUST SCHEDULING... 19

Predictable Scheduling..20
Reactive Scheduling.. 21

LEARNING CAPABILITY............................. 23
UNRELATED PARALLEL MACHINES...23
RESEARCH G A P..25
PROBLEM NOTATIONS... 27

OPTIMAL SOLUTIONS FOR THE UNRELATED PARALLEL MACHINE PROBLEM
USING INTEGER PROGRAMMING..28

INTEGER PROGRAM... 29
Upper Bound...30

LOWER BOUND...34
Initial Schedule Lower Bound.. 34
Predictable Schedule Lower Bound..38
Reactive Schedule Lower Bound..39

MODELS VALIDATION... 41
COMPUTATIONAL TESTS..43
SUMMARY.. 47

PREDICTABLE SCHEDULING.. 48
PROBLEM FORMULATION AND ANALYSIS.. 50

Problem statement... 50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Initial schedule (Si).. 51
Mehta’s predictive rule..52
CFJI Insertion Rule.. 52

COMPUTATIONAL TESTS..54
SUMMARY.. 62

LEARNING PARAMETER FOR THE PREDICTABLE SCHEDULE................... 63
MACHINE LEARNING FOUNDATIONS...65
LEARNING APPLICATIONS...6 6

PROPOSED LEARNING METHODOLOGY... 67
The Learning Capability..69
Determining the number of iterations ... 71

COMPUTATIONAL TESTS..76
SUMMARY...83

REPAIR AND RESCHEDULING RULES... 84
PERFORMANCE MEASURES...85
RIGHT SHIFT REPAIR (RSR)...8 6

FIT JOB REPAIR (FJR).. 8 8

PARTIAL RESCHEDULING (PR)... 90
PR Design of Experiments...97

COMPLETE RESCHEDULING (CR)... 109
COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN............................ 110

Performance Measures’ Statistical Analyses... 118
Repair and Rescheduling Rules’ Comparison... 148
Computational Tests Summary... 167

ROBUST REACTIVE SCHEDULING SYSTEM..172
COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN............................ 174

Performance Measures’ Statistical Analyses... 174
Repair and Rescheduling Rules’ Comparison... 194
Computational Tests Summary... 214

GENERALIZABILITY, CONCLUSIONS, AND FUTURE RESEARCH...........................218
RESEARCH CONTRIBUTIONS AND GENERALIZABILITY.............................219

Research Contributions..219
Research Generalizability... 219

RESEARCH CONCLUSIONS... 221
FUTURE RESEARCH.. 225

REFERENCES.. 227

APPENDICES

ROBUST SYSTEM IMPLEMENTATION CODE
IN VISUAL C++.................................. 238

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ix

RSR IMPLEMENTATION CODE IN VISUAL C++..274

FJR IMPLEMENTATION CODE IN VISUAL C++...277

CR IMPLEMENTATION CODE IN VISUAL C++..284

LINGO MODELS..288

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

X

LIST OF TABLES

Table Page

1. Jobs processing times on unrelated machines.. 15

2. Jobs' Processing Times...31

3. Pj and values... 32

4. Sorted Jobs in the Decreasing Order of e^j)... 32

5. Upper Bound Jobs Assignment... 33

6 . Computational Tests for MIP [1]...44

7. Computational Tests for the Predictable Schedules...56

8 . Rules' Relative Deviation percent from CmaxR..58

9. Computational Tests with a Learning Parameter..77

10. Percentage of Variability of each rule from the Realized Schedule................................... 79

11. PR Design of Experiments Factors..98

12. PR D-Optimal Design Diagnostics..99

13. PR D-Optimal Design... 100

14. PR Rule's D-Optimal Design Results..101

15. Cmax Difference Regression Results for FT? rule...102

16. Cmax Difference ANOVA Test for PR rule... 102

17. Cmax Difference Effect Test for PR rule...103

18. CPU Regression Statistics for PR ru le ..104

19. CPU ANOVA Results for PR ru le .. 104

20. Factors and Interactions Effect test for PR rule.. 104

21. Shifted Jobs R-Square for PR rule...105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22. Shifted Jobs ANOVA Results for PR rule.. 105

23. Factors and Interactions' Effect Test for PR rule..106

24. Match-up Time Regression Results for PR ru le ...106

25. Match-up Time ANOVA Results for FT? rule... 107

26. Factors/Interactions' Effect Test for PR ru le .. 107

27. Factors analyzed in the Experimental Design of the Repair and Rescheduling rules I l l

28. Rules’ D-Optimal Design Diagnostics..112

29. D-Optimal Design for the Rules' Experiments...113

30. Right Shift Rule Computational Results (Average Numbers)..114

31. Fit Job Repair Computational Tests (Average Numbers)... 115

32. Partial Rescheduling Computational Tests (Average Numbers)......................................116

33. Complete Rescheduling Computational Tests (Average Numbers)................................. 117

34. Cmax Difference Regression Results for RSR rule...118

35. Cmax Difference ANOVA Test for RSR rule... 119

36. Cmax Difference Effect Test for RSR rule.. 120

37. Cmax Difference Regression Results for FJR rule...121

38. Cmax Difference ANOVA Test for FJR ru le... 121

3.9. Cmax Difference Effect Test for FJR rule.. 122

40. Cmax Difference Regression Results for PR rule...123

41. Cmax Difference ANOVA Test for PR rule... 123

42. Cmax Difference Effect Test for PR rule...123

43. Cmax Difference Regression Results for CR rule...124

44. Cmax Difference ANOVA Test for CR rule... 124

45. Cmax Difference Effect Test for CR ru le ... 125

46. CPU Regression Results for RSR rule...126

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x ii

47. CPU ANOVA Test for RSR ru le ..126

48. CPU Effect Test for RSR rule.. 127

49. CPU Regression Results for FJR rule...128

50. CPU ANOVA Test for FJR ru le ... 128

51. CPU Effect Test for FJR rule.. 129

52. CPU Regression Results for PR rule.......................... 130

53. CPU ANOVA Test for PR rule... 130

54. CPU Effect Test for PR rule...131

55. CPU Regression Results for CR rule...132

56. CPU ANOVA Test for CR rule... 132

57. CPC/Effect Test for CR rule...133

58. Match-up Regression Results for RSR ru le .. 134

59. Match-up ANOVA Test for RSR rule..135

60. Match-up Effect Test for RSR ru le .. 135

61. Factors Effects on Match-up Time in the case of RSR..136

62. Match-up Regression Results for FJR rule... 136

63. Match-up ANOVA Test for FJR rule..137

64. Match-up Effect Test for FJR rule... 137

65. Match-up Regression Results for PR ru le ..138

6 6 . Match-up ANOVA Test for PR rule..139

67. Match-up Effect Test for PR ru le .. 139

6 8 . Match-up Regression Results for CR rule.. 140

69. Match-up ANOVA Test for CR ru le ...140

70. Match-up Effect Test for CR rule..141

71. Shifted Jobs Regression Results for FJR rule... 142

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x ii i

72. Shifted Jobs ANOVA Test for FJR rule..143

73. Shifted Jobs Effect Test for FJR rule...143

74. Factors' Effects on Shifted Jobs in the case of FJR ..144

75. Shifted Jobs Regression Results for PR rule... 144

76. Shifted Jobs ANOVA Test for PR rule..145

77. Shifted Jobs Effect Test for PR ru le ..145

78. Shifted Jobs Regression Results for CR ru le.. ..146

79. Shifted Jobs ANOVA Test for CR rule..146

80. Shifted Jobs Effect Test for CR ru le..147

81. Cmax Difference Performance among the rules... 150

82. One-Way ANOVA for Cmax Difference..151

83. t test for FJR - PR in the case of Cmax Difference..152

84. t test for PR - CR in the case of Cmax Difference..152

85. CPU Performance among the rules... 154

8 6 . One-Way ANOVA for CPU Time... 155

87. t test for FJR - RSR in the case of CPU ...156

8 8 . t test for CR - PR in the case of CPU..156

89. Match-up Performance among the rules..158

90. One-Way ANOVA for Match-up Time....................... 159

91. t test for RSR - FJR in the case of Match-up Time...160

92. t test for RSR - PR in the case of Match-up Time..160

93. t test for CR — PR in the case of Match-up Time..160

94. Shifted Jobs Performance among the rules... 162

95. t test for PR - CR in the case of Shifted Jobs ... 163

96. Overall Performance among the rules...165

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x iv

97. One-Way ANOVA for the Overall Performance...166

98. t test for RSR - FJR in the case of Overall Performance.. 166

99. t test for CR - PR in the case of Overall Performance.. 167

100. Ranks of the Rules for all combinations of Performance Measures............................... 171

101. Computational Tests for the Robust System w/o Learning...175

102.Computational Tests for the Robust System with Learning...176

103. Cmax Difference Regression Results for Robust System w/o Learning......................... 177

104. Cmax Difference ANOVA Test for Robust System w/o Learning................................. 178

105. Cmax Difference Effect Test for Robust System w/o Learning.......................................178

106. Cmax Difference Regression Results for Robust System with Learning........................179

107. Cmax Difference ANOVA Test for Robust System with Learning................................ 180

108. Cmax Difference Effect Test for Robust System with Learning......................................180

109. CPU Time Regression Results for Robust System w/o Learning....................................181

110. CPU Time ANOVA Test for Robust System w/o Learning... 182

111. CPU Time Effect Test for Robust System w/o Learning... 182

112. Factors' Effects on CPU Time in the case of Robust System w/o Learning....................183

113. CPU Time Regression Results for Robust System with Learning...................................183

114. CPU Time ANOVA Test for Robust System with Learning..184

115. CPU Time Effect Test for Robust System with Learning.. 184

116. Shifted Jobs Regression Results for Robust System w/o Learning................................. 185

117. Shifted Jobs ANOVA Test for Robust System w/o Learning..186

118. Shifted Jobs Effect Test for Robust System w/o Learning... 186

119. Factors' Effects on Shifted Jobs in the case of Robust System w/o Learning.................187

120. Shifted Jobs Regression Results for Robust System with Learning................................ 188

121. Shifted Jobs ANOVA Test for Robust System with Learning...188

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XV

122. Shifted Jobs Effect Test for Robust System with Learning.. 189

123. Match-up Regression Results for Robust System w/o Learning......................................190

124. Match-up ANOVA Test for Robust System w/o Learning.. 190

125. Match-up Effect Test for Robust System w/o Learning... 191

126. Factors' Effects on Match-up Time in the case of Robust System w/o Learning........... 192

127. Match-up Regression Results for Robust System with Learning.....................................193

128. Match-up ANOVA Test for Robust System with Learning...193

129. Match-up Effect Test for Robust System w/o Learning... 194

130. Cmax Difference Performance among the rules and systems..196

13.1. One-Way ANOVA for Cmax Difference... 197

132. t test for Robust w/o Learning - CR in the case of Cmax Difference............................. 198

133. t test for Robust w/o Learning - Robust with Learning in the case of
Cmax Difference...198

134. CPU Performance among the rules and systems... 200

135. One-Way ANOVA for CPU Time...201

136. t test for PR - Robust w/o Learning in the case of CPU Time...201

137. t test for Robust with Learning - Robust w/o Learning in the case of CPU 202

138. t test for Robust with Learning - FJR in the case of CPU Time.................................... 202

139. Match-up Performance among the rules and systems...204

140. One-Way ANOVA for Match-up Time.. 205

141. t test for Robust with Learning - FJR in the case of Match-up Time.............................205

142. t test for Robust with Learning - RSR in the case of Match-up Time.............................206

143. t test for Robust with Learning - PR in the case of Match-up Time...............................206

144. t test for Robust w/o Learning - PR in the case of Match-up Time................................ 206

145. t test for Robust w/o Learning - CR in the case of Match-up Time............................... .207

146. Shifted Jobs Performance for the rules and systems.. 209

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x v i

147. t test for Robust w/o Learning - Robust with Learning in the case of Shifted Jobs 208

148. Overall Performance among the rules and systems.. 212

149. One-Way ANOVA for the Overall Performance.. 210

150. t test for Robust with Learning — FJR in the case of Overall Performance.................. 213

151. t test for Robust with Learning - RSR in the case of Overall Performance.................. 213

152. t test for Robust w/o Learning - PR in the case of Overall Performance......................213

153. t test for Robust w/o Learning - RSR in the case of Overall Performance................... 214

154. Ranks of the Rules and Systems for all combinations of Performance Measures.........217

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

Figure Page

1. Predictable Schedule subject to Disruptions... 9

2. Scope of Research.. 17

3. Average CPU Time comparison for 2 and 4 machines... 45

4. Average CPU Time comparison for 6 and 8 machines... 45

5. Average Iterations' Comparison for 2 and 4 machines.. 46

6 . Average Iterations' Comparison for 6 and 8 machines.. 46

7. Relative Deviation percent from CmaxR for all machines... 58

8 . Relative Deviation percent from CmaxR for 2 machines... 59

9. Relative Deviation percent from CmaxR for 4 machines.. 59

10. Relative Deviation percent from CmaxR for 6 machines... 60

11. Relative Deviation percent from CmaxR for 8 machines... 60

12. Cmax with Unbalanced and Balanced Load... 70

13. Graphical Illustration of the Sum of Uniform Distributions...73

14. The CmaxR Distribution...74

15. Relative Deviation percent from CmaxR (0 on the Y-axis) for 2 machines........................80

16. Relative Deviation percent from CmaxR (0 on the Y-axis) for 4 machines........................80

17. Relative Deviation percent from CmaxR (0 on the Y-axis) for 6 machines........................81

18. Relative Deviation percent from CmaxR (0 on the Y-axis) for 8 machines........................81

19. Repair and Rescheduling Rules’ Performance Measures.. 85

20. Cmax Difference Boxplot...149

21. CPU Boxplot...153

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x v i i i

22. Match-up Boxplot................................ 157

23. Shifted Jobs Boxplot......................... 161

24. Overall Performance Boxplot... 164

25. Robust Reactive Scheduling System Architecture...173

26. Cmax Difference Boxplot for the Rules and Systems..195

27. CPU Boxplot of the rules and systems..199

28. Match-up Boxplot for the rules and systems..203

29. Shifted Jobs Boxplot for the rules and systems..208

30. Overall Performance Boxplot for the rules and systems...211

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

CHAPTER I

INTRODUCTION

Scheduling is one of the most crucial factors in manufacturing and production

systems. It allows the allocation of scarce resources to activities with the objective of

optimizing one or more performance measures (Leung, 2004). Resources may be machines

in a factory, operating rooms in a hospital, or employees in a company, while activities can

be jobs in a manufacturing plant, surgeries in a hospital, or paper work in a company. The

goal of each schedule is to optimize some performance measures, such as the minimization

of makespan, jobs’ completion time, jobs’ earliness and tardiness, among others. Scheduling

is a hard problem both in theory and practice (Dorn et al., 1993). Its difficulty in theory is

revealed through the excessive combinatorial complexity due to the search for optimal

solutions for NP-hard problems. Scheduling is also difficult in practice due to the high

number and variety of the constraints required in the real world. Scheduling dates back to

1950s, when researchers in operations research, industrial engineering, and management

were faced with the problem of managing various activities occurring in a workshop (Leung,

2004). Until the 1980s, most of the algorithms developed were exact with a goal of reaching

optimal solutions. However, the problems’ complexity kept on increasing, which made it

infeasible to reach optimal solutions. This is when researchers started investing time in

approximation algorithms, heuristics, and meta-heuristics, with the goal of finding good

solutions at a reasonable computational cost. Nowadays, the scheduling field has acquired an

outstanding body of knowledge.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Until very recently, most of the literature dealing with production scheduling has

primarily been oriented towards static deterministic environments where complete

knowledge of the problem is available without consideration of any kind of failures.

Researchers focused on the generation of good schedules in the presence of complex

constraints, while assuming fixed processing times, known jobs’ arrival times, unbreakable

machines, and immune employees. However, this is not the case in the real world, where

processing times are stochastic, jobs’ arrival times could be unknown, machines do break

down, and employees get sick. As a matter of fact, most manufacturing environments are

dynamic by nature and not static. They are subject to many unpredictable disruptions that

may cause the predefined deterministic schedule to become obsolete once it hits the shop

floor (MacCarthy and Liu, 1993). After a disruption, the predefined schedule can become

inappropriate to the new conditions. The reason these deterministic predictive schedules fail

is because they do not account for variability, scheduling the activities directly after each

other; consequently, when a certain activity is delayed, all its successors will be delayed too.

The purpose of this research is to develop a robust scheduling system, which will be

capable of coping with new events through inherent rules and rescheduling in order to reduce

the variability in the system and maintain the schedule’s quality.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3

AREA OF RESEARCH

Motivated by the obsolescence of deterministic schedules in practical manufacturing

problems, this research was oriented towards dynamic scheduling. The latter’s growing

popularity is revealed through the increasing number of journal articles and conference

papers tackling this topic. Most of this literature defines dynamic scheduling as consisting of

three constructs: on-line scheduling, predictive-reactive scheduling, and robust scheduling

(Mehta and Uzsoy, 1999; O’Donovan et a l, 1999; Ouelhadj, 2003).

On-line Scheduling

To overcome the shortfalls of the deterministic preplanned schedule, many

researchers have suggested online scheduling for dynamic scenarios (Feldman et al., 1991;

Anderson and Potts, 2004), which is a completely reactive scheduling method where no

deterministic schedule is produced in advance, and decisions are made locally in real-time.

That is scheduling on the fly following some predefined rules such as priority dispatching

rules. While online scheduling could be easily implemented, it is very disadvantageous in

practice as it is unable to neither predict system performance nor provide any resource

planning for the activities, because no initial schedule exists on which basis a scheduler can

allocate resources and predict performance.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

Predictive-reactive scheduling

This strategy is considered one of the most common in the literature, where a

predictive schedule is generated in advance with an aim of minimizing the objective function

without considering any possible perturbations. Once perturbations occur during the

schedule’s execution, reactive scheduling modifies the predictive schedule in an attempt to

improve performance and maintain schedule quality. The importance of a predictive

schedule is to enable basic planning for the other activities in the system such as labor

allocation and material purchase (Shafaei and Brunn, 1999). A predictive schedule can also

identify resource conflicts, control the release of jobs to the shop, and ensure that required

raw materials are ordered in time. The disadvantage of predictive-reactive scheduling lies in

its instability and high variability; since predictive schedules still do not account for

variability and disruptions, the reactive process will have to reschedule the initial schedule

whenever new events occur, no matter how small the disruption is, resulting in a high

rescheduling frequency and a realized schedule that is far from the pre-planned one. This, of

course, may lead to resource conflicts and system instability.

Robust Scheduling

The predictive-reactive scheduling is a good strategy for rescheduling but still does

not resolve the main weakness of the pre-schedule (predictive schedule), which lies in its

inability to cope with disturbances, because rescheduling is still a must upon the occurrence

of any disruption. From here came the need for robust predictable-reactive scheduling,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which mainly differs from the original predictive- reactive schedule by its predictable

schedule. The predictable schedule is a predictive schedule but with added ability of

absorbing the disruptions without affecting planned external activities as well as maintaining

high shop performance (Mehta and Uzsoy, 1999). A predictable schedule is generated by

inserting idle time between the pre-schedule’s activities, enabling the disruptions to be

smoothed out through the system in order to maintain the schedule quality. If a disruption

occurs during the execution of the predictable schedule, rescheduling will only be necessary

if the disruption’s duration exceeds the inserted idle time.

Following the description of the three dynamic scheduling constructs, it can be

realized that robust predictable-reactive scheduling should be a superior construct for the

proposed reactive system as it ensures both system stability as well as schedule’s quality.

Previous literature also agrees with this realization (Mehta and Uzsoy, 1999; Vieira et al.,

2003).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

BACKGROUND AND SCOPE OF RESEARCH

This section summarizes the building blocks of the proposed system: system’s time

response, reactive approach, scheduling techniques, learning capability, and the problem

environment.

System’s Time Response

There are different policies to determine the appropriate time for rescheduling, i.e. the

time when reactive scheduling starts. The literature defines three alternatives: periodic,

event-driven, and hybrid (Church and Uzsoy, 1992; Sabuncuoglu and Bayiz, 2000; Vieira et

al., 2000; Chong et al., 2003).

In a periodic policy, schedules are generated at regular intervals and the dynamic

scheduling problem is decomposed into a series of static problems that can be solved by

using classical scheduling algorithms. The schedule will be executed and not revised until

the next period interval. Rescheduling occurs regularly with a constant time interval (the

rescheduling period) between consecutive rescheduling events and no other events trigger

rescheduling (Vieira et al., 2000). This will lead to more stability in the system, but leaves

the system totally vulnerable to new events that could occur dining execution, which might

result in a poor performance or even a total system failure.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

In an event-driven policy, rescheduling will only take place if an event that can

change the system status occurs. Several studies compared periodic and event-driven

policies; the latest showed that in turbulent environments, a periodic policy can increase the

system ability to react to new events but will demand a lot of set-ups, and much better results

were obtained when event-driven policy was used (Vieira et al., 2000).

In a hybrid policy, rescheduling occurs periodically and also when an exceptional

event takes place (Church and Uzsoy, 1992). In this policy, you can define which events not

to react to, and by rescheduling the system periodically, it stays up to date so it can easily

respond to perturbations. The disadvantage of this policy is the large number of set-ups and

computational time.

It is worth reminding here that the proposed system will be equipped with a robust

predictable schedule that can overcome by itself some of the disruptions. In an event-driven

policy, such disruptions will not trigger the system to react; on the other hand, if the

disruption durations are larger than the inserted idle time, rescheduling will take place.

Reactive Approach

The literature shows two main alternatives for the reaction process: schedule repair

and complete rescheduling (Vieira et al., 2003; Cowling et al., 2003; Ouelhadj, 2003).

Schedule repair refers to a minimum modification of the pre-schedule, leading to more

stability in the system, while complete rescheduling refers to rescheduling from scratch,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

which could result in better solutions but will jeopardize system stability. Moreover,

complete rescheduling will lead to system nervousness and could be very costly, as all the

pre-arranged plans have to be changed. In practice, most rescheduling has been done using

schedule repair, except in some severe situations where complete rescheduling had to be

done (Abumaizar and Svestka, 1997). In their experimental tests, Cowling et al. (2003)

showed that the schedule repair strategies attain better performance levels in terms of both

stability and utility measures. They stated that even in environments where significant

changes in stability are tolerated and improvements in utility are required, schedule repair

strategies remained competitive. However, the results indicated that complete rescheduling

becomes a superior strategy when a large number of real time events occur.

As the proposed system in this research will be equipped with a robust predictable

schedule, some of the disruptions will be smoothed out through the inserted idle time, and in

such a case, schedule repair is suitable (Figure 1). On the other hand, when disruption

durations become too large for the inserted idle time to maintain the schedule stability and

quality, complete rescheduling becomes necessary.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

Idle Time

Mi
V

Idle Delay

Delay

m2
Y

Idle
Time

Idle
Time

Figure 1. Predictable Schedule subject to Disruptions

Figure 1 shows how disruptions can be smoothed out in a predictable schedule. Mi and M2

refer to Machine 1 and Machine 2 respectively, and Ji, h refer respectively to Job 1,

Job 2,..., Job 7. As one can see, while being processed on Mi, J2 encountered a delay, but as

this delay’s duration was smaller than the inserted idle time, no modification was necessary

to the schedule. On the other hand, in M2 , J5 encountered a delay larger than its allocated

idle time; in this case, the start time of J6 was delayed until the finish time of J5 . Then when

J6 was processed, it was delayed because it had a late start; however, there is enough idle

time inserted after Je, i.e. J7 could start right on time.

Scheduling Techniques

This section describes the possible dynamic scheduling techniques that can be used in

the proposed reactive scheduling system. The literature divides the scheduling techniques

into seven main categories: Heuristics based approaches, Dispatching rules and Simulation

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

techniques, Multi agents, Knowledge based scheduling, Constraint based scheduling, Fuzzy

logic, and Neural networks (Ouelhadj, 2003; Subramaniam et a l, 2005).

Heuristics-Metaheuristics

Crama (2005) proposed the following definition: “A heuristic for an optimization

problem P is an algorithm which is based on intuitively appealing principles, but which does

not guarantee to provide an optimal solution of P”. A clearer definition was provided by

Reeves (1995): “A heuristic is a technique that seeks good solutions at a reasonable

computational cost without being able to guarantee either feasibility or optimality, or even in

many cases to state how close to optimality a particular feasible solution is”. The advantage

of heuristics lies in their ease of implementation and reduction of computational time in

complex problems; they will be used in the proposed system for schedule repair. Popular

repair heuristics include right-shift rule, affected operations, and match-up rescheduling.

Many investigations compared these three heuristic types, and the results indicated that

match-up scheduling outperformed the other two (Bean et al., 1991; Abumaizar and Svestka,

1997). One main disadvantage in heuristics is that they can easily fall into local optima, but

in our proposed work, an improved match-up scheduling method will be used to avoid local

optima as much as possible.

Meta-heuristics differ from heuristics by their ability to avoid local optima as they

search in different neighborhoods (Reeves, 1995). Three main meta-heuristics are used in

dynamic scheduling: tabu search, genetic algorithms, and simulated annealing. The literature

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

shows in many cases that tabu search outperformed the other two under machine scheduling

environment (Jozefowska et a l, 1998; Youssef et al., 2001; Lee, 2001).

Dispatching rules and Simulation techniques

Despite their ease of implementation, dispatching rules most often lead to poor

solutions caused by both their local nature and their large dependency upon the system and

job characteristics, i.e. any changes in the system could render the once suitable dispatching

rule inappropriate. On the other hand, simulation was used especially under dynamic and

stochastic scenarios to compare different rules in order to find which one had the highest

effectiveness for a specific scenario, after which the scheduler can choose the most efficient

dispatching rule (Amaout and Rabadi, 2005; Amaout et al., 2006). “Computer simulation

provides a mechanism in which one can capture the essence of a real manufacturing system

in the form of a detailed model which can be run, tested, and analyzed in many different

ways” (O’kane, 2000). However, the problem with simulation is that it requires a large

amount of CPU time, especially in optimization problems, where many runs are needed to

obtain gradient information for the decision variables (Kouikoglu and Phillis, 1997).

Moreover, it is difficult to find optimal solutions using simulation as the only way to attempt

to optimize is to make changes in the variables, rerun the simulation program to check if

these changes improved the solution, then repeat this process as long as it takes until reaching

the best solution (Beasley, 2006). This of course becomes tedious in complex problems such

as the one addressed in this research.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

For the reasons just stated, dispatching rules and simulation techniques will not be

used in the implementation of the proposed system.

M ulti agents

Before multi-agent scheduling, most of the scheduling designs were centralized and

hierarchical, which resulted in a very poor reactivity to new events and perturbations. From

here came the idea of multi-agent systems, which aims to decentralize the control in the

schedules’ design, and assumes the presence of many agents with autonomous capabilities.

These agents interact and cooperate in order to obtain a global optimal solution. The

literature shows two main multi-agent architectures: autonomous and mediator architectures.

The autonomous architectures possess high flexibility and robustness, but unfortunately do

not always guarantee a global optimum and can become unpredictable in complex systems.

On the other hand, mediator architectures can overcome this disadvantage with the help of a

mediator that will supervise the agents’ coordination to make sure that the schedule is in the

direction of global optima. The disadvantage of multi agents lies mainly in the difficulty

encountered in the implementation, use, and complexity of coordinating the agents

(Subramaniam et al., 2005).

Knowledge-based Scheduling

The main feature of a knowledge-based scheduling system is the identification and

application of problem-specific knowledge to solve the addressed problem (Sauer and Bruns,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

1997). Some of the branches of knowledge-based systems are constraint-based scheduling,

fuzzy logic, and neural networks (Miyashita, 1995; Schmidt, 1994; Gamer and Ridley,

1994).

Even though knowledge-based systems can automate human expert reasoning and heuristics

to run a production schedule, it is difficult for them to optimize the schedule and upgrade

themselves with the needed features to accommodate the new changes. Moreover, they

require an extensive database, leading to a large search time (Subramaniam et al., 2005).

Following the above, heuristics will be the scheduling technique used in this research

due to its several benefits such as ease of implementation, reduction of computational time,

and ability to optimize the schedule and attain good solutions.

Learning Capability

It is important to note the importance of equipping the proposed system with a

learning capability. Selfridge (1993) stated: “If an expert system, brilliantly designed,

engineered and implemented, cannot learn not to repeat its mistakes, it is not as intelligent as

a worm or a sea anemone or a kitten.” He then followed: “Find a bug in a program, and fix it,

and the program will work today. Show the program how to find and fix a bug, and the

program will work forever.” Machine learning studies the mechanisms through which

intelligent systems improve their performance over time (Shavlik and Dietterich, 1990).

Over the past decade, machine learning has evolved from a field of laboratory

demonstrations to a field of significant commercial value. Machine-learning algorithms have

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

now learned to detect credit card fraud by mining data on past transactions, learned to steer

vehicles driving autonomously on public highways at 70 miles an hour, and learned the

reading interests of many individuals to assemble personally customized electronic news

(Mitchell, 1997).

As the proposed scheduling system will be subject to dynamic environments, a

learning capability becomes crucial in order to stay up to date with the environment. Also

the system needs to learn from its mistakes so they would not happen again. For example,

suppose that the system assigns 1 0 minutes of idle time after each job, and after running the

schedule for several problem instances, the system detects that this idle time is not sufficient

and the jobs are being delayed; in this case, the system should be capable of learning from its

past and start assigning larger idle times.

Problem Environment

The rules and policies that are developed for the proposed system will be tested on

unrelated parallel machines. The literature defines unrelated parallel machines as machines

having different processing times for the same job (Liaw et al., 2003). They are unrelated in

the sense that the processing speed depends on the job being executed and not the machine;

each job will have different processing times for each of the available machines. Table 1 is

an example of jobs’ processing times difference over various machines. The processing time

is represented by py, i.e. processing time of job j on machine i, where j = 1 , ..., n, and

/=!,.. .,m. The objective of the problem is to find the optimal combination of jobs to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

machines that will minimize certain performance measure(s), subject to the following

constraints:

• Each job j can be processed on any of the machines but needs to be processed by one

machine only.

• Each machine i is capable of processing one job at a time.

• Job preemption is not allowed.

Table 1. Jobs processing times on unrelated machines

Jobs
1 2 n

M
ac

hi
ne

s 1

2

P n

P21

Pl2

P22

Pin

P2n

m Pml Pm2 Pmn

The reason for developing the proposed scheduling system for the unrelated parallel

machine problem is because the latter is the most general parallel machine scheduling

problem. The parallel machine environment includes three main classes: identical machines,

uniform machines, and unrelated machines, with the unrelated case being the most difficult

(Hoogeveen et al., 2001). Following this, once the proposed rules and policies are developed

for the unrelated parallel machine problem, they can be easily transformed with minor

modifications to other parallel machine scenarios and environments. Much emphasis in this

research is given to the parallel machine problem because most of the findings on reactive

scheduling and rescheduling were tested on either a job shop or a flow shop, with very few

papers addressing the parallel machine problems, which require a different rescheduling

approach. Furthermore, up to our knowledge, no previous literature has discussed the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

generation of robust predictable or reactive schedules for unrelated parallel machines

scenarios, which makes this dissertation innovative and clearly contributing to the body of

knowledge.

Many performance measures were defined for the robust reactive scheduling; the

most used one is bi-criteria, which minimizes both the makespan and the impact on schedule

change (Wu et al., 1991,1993). Robustness is achieved by reducing the schedule variability

from the predictable schedule (schedule change minimization), while ensuring at the same

time an output that is close to the best or optimal solution (makespan minimization). This bi­

criteria performance measure will be used in this research.

The scope of research that was presented in this chapter is illustrated and summarized

in Figure 2. Bolded are the areas of research that are addressed in this dissertation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

I
System’s
Response

Hybrid
Policy

s
Event-
driven

I
Reactive

Approach
— r

Dynamic
Scheduling

Periodic

I• 1r
Robust

Scheduling

Predictive-
Reactive

Scheduling

On-Line
Scheduling

Scheduling
Techniques

Heuristics-
Metaheuristics

f
Learning

Capability
Problem

Environment

Multi
Agents

Dispatching
Rules/

Simulation

I
Unrelated

Parallel
Machine

Knowledge
Based

Scheduling

I
Objective
Function

Partial Complete
Repair Rescheduling

Makespan System’s
Stability

Figure 2. Scope of Research

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

PURPOSE OF THIS RESEARCH

The purpose of this research is to develop a robust scheduling system, which will be

capable of coping with the new events through inherent rules and rescheduling in order to

reduce the variability in the system and maintain the schedule’s quality.

The mechanisms of the proposed system are described as follows:

• A robust predictable-reactive scheduling construct, which will react according to an

event driven policy and attempt to overcome the perturbations using schedule repair

as long as possible, otherwise it will use complete rescheduling.

• New and improved heuristics for scheduling repair and rescheduling in unrelated

parallel machine environments.

• An objective and cost function that will aim at improving both the schedule’s quality

and stability.

• A schedule repair / rescheduling approach that can be applicable to different

environments and not only the unrelated parallel machine environment.

• Finally, the proposed system will be equipped with a learning capability.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

CHAPTER II

LITERATURE REVIEW

In this chapter, a review of the previous literature on the different areas of research

(Figure 2) addressed in this dissertation is given.

The literature review is organized as follows. First, the literature on robust scheduling is

summarized. Next, the learning research is addressed, followed by the literature on unrelated

parallel machines. Finally, an indication of the gap in the literature that will be covered in

the proposed research is presented.

ROBUST SCHEDULING

“Even though the need to create robust schedules was recognized over a decade ago

by Graves (1981), from literature viewpoint there is no clear research explaining how a

robust schedule can be generated in a dynamic environment” (Ouelhadj, 2003). Robustness

is considered a concept that is not easy to measure or even define (Pinedo, 2002). A robust

predictable-reactive schedule should ensure that the performance of the schedule remains

high when subjected to disruptions and variability (Leon et al., 1994). The robust schedule

consists of two parts: predictable scheduling, and reactive scheduling (Mehta and Uzsoy,

1999; O’Donovan et al., 1999).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 0

Predictable Scheduling

Mehta and Uzsoy (1998) presented a predictable scheduling (PS) approach for a job

shop with random machine breakdowns and an objective of minimizing Lmax, where Lmax is

the maximum lateness across all jobs in terms of their completion time and their due-date.

The authors presented two strategies for idle time insertion and reported that both heuristics

did better than the traditional predictive-reactive schedule. O’Donovan et al. (1999)

presented a PS for a single machine with breakdowns and an objective of minimizing

tardiness between the predictable schedule and the realized schedule. Their idle time’s

insertion rule was similar to OSMH used by Mehta and Uzsoy (1998). Herroelen and Leus

(2004) presented different measures for a robust pre-schedule in a project scheduling

environment. They proposed a method that can be used in machine scheduling by assuming

that 50% of the time each job on its execution will be delayed by 1 period and the other 50%

by 2 periods. Hence, their schedule will spread out the disruptions over the schedule horizon,

but it might lead to an overestimation of the total schedule completion time. Davenport et al.

(2001) presented three slack-based techniques for creating the pre-schedule. Their paper

considered a job shop with machine breakdowns, and an objective of minimizing the sum of

job tardiness. Their techniques were mainly based on Mehta’s OSMH rule. Up to our

knowledge, no previous literature was found on creating predictable schedules for the

unrelated parallel machine problem.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

Reactive Scheduling

Reactive scheduling is a procedure to modify the created schedule during processing

to adapt to changes in production environment (Sim and Xue, 2001). Abumaizar and Svetska

(1997) proposed the affected operations algorithm (AOR) for the job shop problem with the

objective of minimizing the makespan as well as the jobs’ deviations. The authors reported

that their repair heuristic (AOR) performed better than the right shift rescheduling strategy

and complete rescheduling in almost all of the scheduling scenarios. Nof and Grant (1991)

compared three types of recovery procedures, including rerouting, splitting orders and

rescheduling, when disruptions occur. Their experiments showed that rescheduling is better

than the others when there are machine breakdowns. Guo and Nonaka (1999) addressed

rescheduling in a flow shop of three machines under machine failures scenarios and an

objective of minimizing the completion time. They assumed that only one failure occurs at a

time, and proposed a trigger value that once the disturbance time exceeds it, rescheduling

would start. Akturk and Gorgulu (1999) proposed a match-up point to reschedule the pre­

schedule in the case of machine breakdowns in a modified flow shop (MFS), with the

objective of minimizing both tardiness and match-up point. The authors defined the match­

up point as the schedule’s point following a disruption, where the state reached by the revised

schedule is the same as that reached by the initial schedule, and the preschedule can be

followed again. It is advantageous to minimize the match-up point, i.e. the period of time

where a new schedule is used instead of the preschedule, in order to ensure schedule’s

stability as the resources’ planning was done according to the preschedule. After a machine

breakdown, a match-up point for each machine is determined and a part of the initial

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

schedule that covers the time interval between the disruption and the match-up point is

rescheduled. The match-up point is created for all the affected machines by this disruption.

After the match-up point, the pre-schedule is used again. The authors used Branch & Bound

to solve their problem; they minimized two objectives: the tardiness of the jobs as well as the

match-up point. The results obtained were satisfactory as the revisited schedule had less

deviation, smaller match-up point and reduced computational time. Bean et al. (1991)

proposed a “match-up” heuristic method for scheduling problems with disruptions. They

showed that assuming enough idle time is present in the original schedule and disruptions are

sufficiently spaced over time, the optimal rescheduling strategy is to match-up with the pre­

schedule at some time in the future. Their algorithms were tested on a set of problems from

an automobile manufacturer using tardiness as a performance measure. Alagoz and Azizoglu

(2003) and Azizoglu and Alagoz (2005) addressed the rescheduling problem for identical

parallel machines under machine eligibility restrictions subject to machines’ breakdowns.

Their objective was to reduce the total flow time of all jobs in the system and their stability

measure was to reduce the number of jobs processed on different machines in the initial and

revised schedules. They assumed that the times of the disruption as well as its duration are

known. They proposed an LP model for the rescheduling problem of minimizing total flow

time, and after they reduced the total flow time, they implemented a branch and bound for the

problem of minimizing the number of disrupted jobs subject to the constraint that total flow

time is kept to a minimum. The authors reported good results. No previous literature on

rescheduling in unrelated parallel machines was found.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LEARNING CAPABILITY

2 3

The literature suggests that machine learning dates back to the mid-1950s when it was

considered as part of the artificial intelligence (Langley, 1996; Michalski et al., 1983).

However, it did not become a distinct field until around 1980, when the first workshop on the

topic occurred (Langley, 1996). Langley and Carbonell (1984,1987), Dietterich (1989), and

Michalski et al. (1983) presented the contributions of researchers in the machine learning

field. Moreover, numerous conferences and workshops tackled this topic (European

conference on Machine Learning, International Conference on Machine Learning). A

machine learns whenever it changes its structure, program, or data (based on its inputs or in

response to external information) in such a manner that its expected future performance

improves (Nilsson, 1996).

UNRELATED PARALLEL MACHINES

The literature defines unrelated parallel machines as machines having different

processing times for the same job (Liaw et al., 2003). They are unrelated in the sense that

the processing speed depends on the job being executed and not the machine; each job will

have different processing times for each of the available machines (see Table 1). Previous

research showed that even the identical parallel machine problem with only two machines is

NP-hard when the objective function is the minimization of makespan (Garey and Johnson,

1979). Ghirardi and Potts (2005) considered the problem of scheduling jobs on unrelated

parallel machines to minimize the makespan. The heuristic they used was an application of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 4

the recovering beam search. Weng et al. (2001) addressed the problem of scheduling a set of

independent jobs on unrelated parallel machines with sequence dependent setup times so as

to minimize the weighted mean completion time. They presented in their paper seven

heuristic algorithms and tested them. In their algorithms, they either assigned a job to the

machine with the least cost contribution, or to the machine on which the job has the shortest

processing time. They also introduced an algorithm where they first assigned the job with

the smallest ratio of processing time plus setup time to weight; this strategy outperformed the

rest significantly. The authors claimed that their algorithms are extremely fast and can find

solutions for up to 120 jobs and 12 machines in a fraction of a second. Low (2005) solved a

multi-stage flow shop scheduling problem with unrelated parallel machines and an objective

of minimizing total flow time in the system. A simulated annealing (S A)-based heuristic was

proposed to solve the problem in a reasonable running time. Mosheiov and Sidney (2003)

addressed the case of job-dependent learning curves and applied it to the problem of

unrelated parallel machines with the objective of minimizing total flow time. Rabadi et al.

(2006) addressed the same problem with sequence dependent setup times to minimize the

makespan, where they introduced a new heuristic (Meta-RaPS) for the deterministic problem

and compared it to an existing heuristic called the Partitioning Heuristic, which was

introduced by Al-Salem (2004). The new heuristic outperformed the existing Partitioning

Heuristic in almost all cases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 5

RESEARCH GAP

The previous literature clearly indicates the need for more robust predictable-reactive

scheduling research and solutions, as no prior research describes a clear approach for the

generation of robust scheduling systems in dynamic environments.

Moreover, the parallel machine environment lacks the appropriate recovery rules and

strategies that currently exist in other environments. Most of the knowledge in this field has

been limited to static deterministic scenarios, which have a great value in theory but can not

be safely applied in practice due to its lack of consideration of the dynamic characteristics

that are present in practical environments. In this research, we take the problem a step closer

to practical applications.

Up to our knowledge, no published work was found on the generation of predictable

schedules in parallel machine environments. Furthermore, most of the literature that

addressed schedule repair and rescheduling strategies were designed for either a flow shop or

a job shop, which require different recovery rules than the ones necessary for a parallel

machine environment.

In addition, the research gap extends to an absence of publications tackling learning methods

for predictable schedules, schedule repair, and rescheduling strategies in unrelated parallel

machine environment.

Finally, no previous literature was found on designing a robust scheduling system that

combines schedule repair, rescheduling, system’s response, and learning in a parallel

scheduling environment.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 6

This dissertation addresses these research gaps and develops new and improved

recovery rules and rescheduling policies for the dynamic parallel machine environment.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 7

PROBLEM NOTATIONS

The key notations that will be used throughout the dissertation are shown below.

Notation Definition
B Breakdown occurrence time

Ci
n

Completion time o f all the jobs scheduled on machine i, i.e. Ci = ^ p tj * xy .
j=i

Cmaxi Initial makespan without idle time
Cmaxp Predictable makespan before schedule execution
CmaxR Realized makespan after schedule execution

D Indicates the down machine
Dj Indicates the job that needs to be rescheduled/fitted
eii Efficiency o f job j on machine i

ESi The earliest start o f a job after the occurrence o f a breakdown on a machine i
Fij Planned finish o f job j on machine i
i Machines index, i = 1, ..., m

idle,j Idle time assigned to job j that will be processed on machine i
J Jobs index, j = 1, ..., n

Ji
The position o f job that needs to be scheduled after the breakdown on up
machine i.

Jd
The position o f the job that needs to be scheduled after the breakdown on
machine D, i.e. the position o f the interrupted job

JPik Indicates which job is in position k on machine i
ki Position index, i.e. indicates a job position on a machine i, k = 1, ..., n
Li Location o f B on machine i

LFi Latest finish o f the rescheduled jobs on machine i.
m Number o f machines

Mlncrease Integer indicating the amount o f jobs per machine to add to ResJobs in the
PR rule

n Number o f jobs
Ni Number o f jobs assigned to machine i

Pathj The new location on machine i if it processes Dj
Pii Processing time o f job j on machine i
Q Objective function Q = CmaxR - Cmaxp

RC The receiver machine o f the down job
RE Repair time required by a breakdown B

residlej Idle time residue once Dj is fitted between two jobs on a machine i
ResJobs The number o f jobs that need to be rescheduled

RF, Repair finish on machine i
SD The sender machine, i.e. the down machine
Sik Planned start o f the km job on machine i

Span; Span o f machine i, i.e. time to reschedule the jobs within.

Tidle
m d

Total idle time in the system = ^ ^ idle ;j
i=i j=i

Xij Binary decision variables = 1, if job j is assigned to machine i, 0 otherwise
LJj Latest position o f the job that will start after the breakdown on machine i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 8

CHAPTER III

OPTIMAL SOLUTIONS FOR THE UNRELATED PARALLEL

MACHINE PROBLEM USING INTEGER PROGRAMMING

The development of an Integer Program (IP) model for the unrelated parallel machine

problem (R) with the objective of minimizing the makespan Cmax addressed in this

research(R||Cmax) is crucial as the IP will be used to generate optimal initial schedules, and

also when total rescheduling is necessary.

Several researchers formulated linear/integer program models for the unrelated

parallel machine problem in order to obtain optimal solutions. Guinet (1991) and Rabadi et

al. (2006) formulated mixed integer programs for this problem, but with added machine-

dependent and job sequence-dependent setup times. Martello et al. (1997) presented in their

paper a mixed integer program for the problem at hand, while Lawler and Labetoulle (1978)

provided a linear program in order to attain near optimal solutions in a much faster

computational time than the one required by an IP. Below we will explain both programs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 9

INTEGER PROGRAM

Let us first describe the integer program, recalling that our objective is to minimize

the makespan Cmax, where Cmax = max {Q} (for i = 1,.. .,m), m is the number of machines,

n

and C; is the completion time of all jobs scheduled on machine i, i.e. Ci = p n * xy .

Objective: Minimize Z

m

Subject to Yuxij = I for j = 1, •• •, n, (Cl)
i-1

n

Y^Pij *xu - z > for i= 1 > -> m, (C2)
j =i

^ e { ° , l l (i = l,...,m ;j = l,...,n), (C3)

where,

Z: makespan Cmax

Pij: processing time of job j on machine i.

Xij: binary decision variable = 1 , if job j is assigned to machine i; 0 otherwise.

The objective is to minimize the makespan Z, which is also defined as a decision variable.

Constraints (1) ensure that all the jobs will be assigned and each job will be assigned to only

one machine. Constraints (2) guarantee that the completion time of jobs on each machine

does not exceed the makespan.

In the case of the problem at hand, the above mixed integer program (referred to as MIP [1])

guarantees optimal solutions as long as the problem size is computationally feasible. Of

course, the computation time increases dramatically as the problem size increases. Note that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 0

MIP [1] assumes no disruptions, i.e. used in the static case of the problem. Nevertheless, it is

indispensable in order to generate optimal solutions for the initial schedule, as well as for the

total rescheduling scenarios.

Upper Bound

A function / is said to have an upper bound UB iff(x) < UB for all x in its domain

(Rowland and Weisstein, 2006a). The closer the UB is to the optimal solution of the

problem, the better it is. It is very advantageous to use an UB for the MIP because it reduces

the search space as the nodes that result in a solution worse than the UB will be eleminated.

The new constraint that is added to MIP [1] in order to use the UB is as follows:

Z < UB (C4)

The value of the UB will be the feasible solution of the problem obtained using the algorithm

provided by Davis and Jaffe (1981). Their algorithm is discussed below:

Step 1: {Sort the jobs in the non increasing order of their efficiency}

• Find for each job j its minimum processing time over all machines [p j):

Pj = minlsism Pij, for / = 1 , ..., n.

• Find for each job j its efficiency on each machine i [e(i y)):

e uj) = Pj / Poj) > f°r * = 1 > •••» m;y = 1 , ...,n .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

• For each machine i, create a list of jobs j = 1 , n, sorted in the non increasing order

o fe (ij) .

Step 2: Assign the jobs to the machines such as sum, is minimal, where sum, is the sum of the

processing times of jobs already assigned to machine i.

If any machine had no more jobs in its list or had a job with an efficiency eai) < y ,—, this
/ vm

machine is marked as inactive (inefficient) and no more jobs will be assigned to it.

Step 3: The algorithm terminates when all the jobs are assigned.

The authors reported that their algorithm requires n + m iterations, with a total running time

of 0 (mn log n).

As an example, let us consider 8 jobs to be assigned on 3 unrelated parallel machines

with the objective of minimizing the makespan. The jobs’ processing times are shown in

Table 2.

Table 2. Jobs' Processing Times

Jobs
1 2 3 4 5 6 7 8

(0 1 82 22 24 62 38 93 51 330_c
£ 2 2 93 56 59 60 48 31 49
o0
S 3 17 92 94 48 14 94 58 49

The first step in the algorithm is to sort the jobs in the non increasing order of their

efficiency. To do this, Pj and e^) are calculated and presented in Table 3, and the jobs are

sorted in Table 4. Note that ties are broken arbitrarily.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 2

Table 3. pj and e(ij) values

Jobs
1 2 3 4 5 6 7 8

Pi 2 22 24 48 14 48 31 33

eQj) 0.02 1 1 0.77 0.368 0.516 0.608 1

e(2j) 1 0.237 0.429 0.81 0.233 1 1 0.6735

eQj) 0.12 0.239 0.255 1 1 0.511 0.534 0.6735

Table 4. Sorted Jobs in the Decreasing Order of e(jj)

Jobs Num ber

1 2 3 8 4 7 6 5 1

2 1 6 7 4 8 3 2 5

3 4 5 8 7 6 3 2 1

Next, the jobs are assigned to the machines such as sum, is minimal. For example, the first

jobs checked for assignment are job 2 on machine 1, job 1 on machine 2, and job 4 on

machine 3; the algorithm will assign job 1 on machine 2 as it will result in the smallest sum,

over the machines (job 1 will be removed from the other machines’ lists). Next, jobs 2, 6 ,

and 4 are checked to be assigned respectively on machines 1,2, and 3; the selected

assignment is job 2 on machine 1 as again it will cause the minimal sum,. The algorithm will

continue in the same manner until all jobs have been assigned. During this, if any machine

had no more jobs in its list or had a job with an efficiency e^j) < J / j — , this machine is

marked as inactive (inefficient) and no more jobs will be assigned to it. Following this, the

jobs assignment to the machines is presented in Table 5, where 1 indicates that a job is

assigned to a machine, 0 otherwise.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 3

Table 5. Upper Bound Jobs Assignment

Jobs
1 2 3 4 5 6 7 8

CO©c
f

1 0 1 1 0 0 0 0 1

2 1 0 0 0 0 1 1 0o
n
S

3 0 0 0 1 1 0 0 0

The makespan obtained by the Upper Bound algorithm is 81; the optimal makespan is 79.

As can be seen, the algorithm obtained a solution that is very close to the optimal (in this

case, 2.53% from the optimal).

Mokotoff and Chretienne (2002) also used the above algorithm as an UB when

solving the same problem addressed in this research, i.e. R\\Cmax.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 4

LOWER BOUND

As was stated earlier, the unrelated parallel machine problem (R\\Cmax) is NP-hard,

meaning that the search for optimal solutions grows exponentially and in many cases may not

be attainable in a feasible time. Therefore, a comparison with lower bounds (LBs) may be

necessary as a way to evaluate the performance o f the proposed rules. Moreover, the LB will

be also used as a constraint in the MIP in an attempt to attain optimal solutions faster.

Different LBs definitions are provided in the literature and they mainly state the following:

“a lower bound is a function or growth rate below which solving a problem is impossible”

(Algorithms and Theory of Computation Handbook, 1999). So if a function/is said to have

a lower bound c, then c < f(x) for all x’s in its domain (Rowland and Weisstein, 2006b).

As previously mentioned, the proposed scheduling system mainly consists of three stages: an

initial schedule, a predictive schedule, and a reactive schedule. Our approach in developing

lower bounds for the proposed system in the case of unrelated machines is as follows. Start

by generating separate lower bounds for each stage of the system, then try to cluster these

bounds together in order to serve the global system.

Initial Schedule Lower Bound

The initial schedule is essentially the deterministic schedule without the disruptions.

Therefore, in this section we develop a LB for the unrelated parallel machines scheduling

problem with the objective of minimizing the makespan.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 5

Many researchers worked on this problem and some of them achieved good LBs. Grigoriev

et al. (2005) generated a LB for the same problem but with an added resource constraint K,

meaning that the jobs were not only machine dependent, but also resource dependent. In

their paper, they suggested that a good LB could be the feasible solution of the relaxation of

the problem’s mixed integer program to a linear program. Many researchers used the same

approach for generating LBs (Martello et al., 1997; Vredeveld and Hurkens, 2002). The

mixed integer program for the problem on hand was presented in the beginning of this

chapter (MIP [1]). A similar formulation was used by Martello et al. (1997).

MIP [1] can be transformed to a linear program (LP) by relaxing constraints (3), i.e.

xy e {0,1} is replaced by xy > 0. Of course, xy will not be greater than 1 due to the restriction

of constraints (1). In other words, constraints (3) will become:

0 < x y < l (C3’)

Therefore, Zlp (makespan when using linear programming) would be the lower bound L\.

The reason for giving so much attention to using LP relaxations of IP models is that LP

representations, unlike IP’s, are generally easier to solve (Williams and Brailsford, 1996).

In other words, optimal solutions for large problems, or even medium (unrelated machines)

cannot be obtained using IP, as this process would be computationally infeasible

(Sundararaghavan et al., 1997). The LP model does not always generate feasible solutions,

because the decision variables are not binary when they actually should be, as they represent

the assignment of jobs to machines, which should be either 1 or 0 (yes or no). However, the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LP model produces a solution that could be close to the optimal one generated by the IP (and

sometimes the optimal) in a much shorter computational time. For example, when MIP [1]

was solved using Lingo Solver for an instance of 2 machines and 90 jobs, it took around 16

seconds to reach the optimal solution (Cmax = 626 minutes); on the other hand, the LP was

able to reach a very close makespan (Cmax = 622.74 minutes) in less than a second.

Vredeveld and Hurkens (2002) compared an LP relaxation similar to L\ to a modified LP

relaxation and a convex quadratic program relaxation. The authors proved through

computational tests the superiority o f L\.

Another way for generating LBs was proposed by Costa et al. (2002). However, it was for

the identical parallel machine problem, where the jobs’ processing times are job dependent as

opposed to being machine dependent. The authors suggested that a good LB would be the

problem solution with the preemption constraint, i.e. allowing the jobs to be split on different

machines, and the LB will be equal to the sum of all jobs processing times divided by the

number of machines. Unfortunately, this LB cannot be applied to the unrelated parallel

machine problem, because the jobs’ processing times are dependent on their machines’

assignments. However, one way to work around this is to actually determine for each job j =

1 ,... ,n, its minimum processing time, pj, over the machines / = 1 ,... ,m, and since the total

n j n

processing time cannot be less than V p , , a valid lower bound would be Lt = — V p . ,
j - i m M

where |"x"| is the ceiling of X (for example, [~10.1~|=|~10.9~|= 11). Lj was also suggested by

Martello et al. (1997) for the same problem at hand.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Martello et al. (1997) also pointed out that, as each job must be scheduled, a second obvious

bound to this problem would be the maximum Pj (max{pj}, for j = 1,..., n). So a valid lower

bound is L$ = max (L2, max {Pj}).

m j=\

number of machines, without actually assigning each minimum to its appropriate machine,

i.e. where this minimum occurred. The reason behind this large problem relaxation is that

problem instances where a machine is assigned more than one minimum processing time,

resulting in empty machines on one hand, and a large makespan on the other. A better LB

than L 2 could be the preemptive relaxation solution of the problem. Lawler and Labetoulle

(1978) proved that the unrelated parallel machine problem with preemptive relaxation could

be solved using the following LP:

Objective: Minimize Z

, the sum of the minimum jobs’ processing times was divided over the

* assigning each job to its machine could lead to an unbalanced schedule. We could have

m

Subject to (Cl)

it
(C2)

0 < Xy < 1 (C3’)

m

Y^Pij x x y Z z ,Q = 1>--.,n) (C4)
1=1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 8

Constraints (1), (2), and (3’) are as discussed above. Constraints (4) ensure that no split job

is processed in parallel. We will refer to the LB obtained in this case as L 4 .

Ghirardi and Potts (2005) suggested that a good LB for the unrelated parallel machine

problem is the lagrangian relaxation of constraints (2) in the mixed integer model (presented

above). However, Martello et al. (1997) proved in their paper that this lagrangian relaxation

would lead to the same LB realized with the LP relaxation, i.e. L\.

In summary, we described different LBs for the deterministic schedule in the

unrelated parallel machine problem with the objective of minimizing the makespan. L\,

which was generated through the linear relaxation of the IP model of the problem, was

reported to be a good lower bound. L 2 =
1 n

m j=1
was generated following the rationale

that Costa et al. (2002) used in their identical parallel machine problem; however, this LB

fails to account for job-machine assignments. L 4 was generated through the linear relaxation

o f the MIP of the problem subject to the preemption relaxation. Therefore, L 4 clearly is a

better bound for our problem than L2 (as it is always larger). Furthermore, L4 will also attain

better LBs than L i as it uses the same LP but with the extra constraint (4). Finally, a good LB

to be used in our problem is L4.

Predictable Schedule Lower Bound

As it was mentioned above, a predictable schedule is in fact a deterministic predictive

schedule but with added idle time between the activities (jobs). The idle time will be inserted

following the Critical First Job Idle Time (CFJI) rule (Equation (2) in Chapters 4 and 5) that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was developed by Amaout and Rabadi (2005). The authors reported that their rule

significantly outperformed the popular Mehta et al. (1998) rule, OSMH, when the rules were

compared in the unrelated parallel machine environment. CFJI inserts for each job the

following idle time:

idleij = Ri *5 i * p ij* (l - ^)
Ji

where Ri is the mean rate of repair duration on machine i, 8, is the average number of

breakdowns on machine i per minute, k[i] is the job’s position on machine i, and J, is the

total number of jobs that are scheduled on M;. As can be seen from Equation (2), the idle

time is directly related to the jobs’ processing time. Furthermore, the predictable schedule

will be generated right after the deterministic schedule; i.e. we know exactly where each job

is located and how much its processing time is. This is why a LB for the predictable schedule

is not needed, as we are only adding idle time to the jobs.

Reactive Schedule Lower Bound

We recall that the reactive schedule is the new schedule generated by the robust

system while executing the predictable schedule if disruptions occur. The perfect scenario

arises when absolutely no disturbances hit the system, and in this case, the solution would be

the predictable schedule. This means, the predictable schedule is in fact a LB for the reactive

schedule, because the latter solution could never be better than the predictable solution; it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 0

could either be the same (in case no disruptions occur) or bigger (disruptions leading to

delays in the schedule).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

MODELS VALIDATION

Williams (19.99) suggests that a good approach to validate an integer/linear model is

to convert this model into the format necessary to be tested on computer software.

Therefore, in order to demonstrate the validity of the proposed approach, the above MIP was

converted to the format required to be tested in Lingo Solver. Lingo is a tool provided by

Lindo Systems, Inc. to solve linear, nonlinear, and integer optimization models (Schrage,

2001). Williams (1999) states that there are three possible outcomes in an IP’s validation: a.

the model is infeasible; b. the model is unbounded; c. the model is solvable.

Lingo Solver would indicate if a model is infeasible after checking it. The feasibility

of the IP at hand was ensured when Lingo solver reported that it found the optimal solution.

Some models could be unbounded, i.e. the objective function can be optimized

without a limit. However, we confirm that this is not the case in the tested model as again

Lingo reported that an optimal solution was reached (instead of the message “Unbounded

Solution”).

If a model is neither infeasible nor unbounded, then a good solution is reached.

Moreover, the optimality of the solution is confirmed by Lingo, which identifies the optimal

solution if the model tested generates one. In fact, when Lingo reaches a global optimal

solution, it reports the following: “Global Optimal Solution Found”. On the other hand, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 2

Lingo finds a solution but does not guarantee that it is the global optimal one, it will then

report: “Local Optimal Solution Found”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 3

COMPUTATIONAL TESTS

MIP [1] presented above will be used to generate optimal initial schedules and will

also be used when complete rescheduling is needed. After generating LB and UB in the

previous sections, MIP [1] needs to be tested to determine when it will achieve the best

performance: without an UB or LB, with an UB, or with both UB and LB. Following this,

the different instances of MIP [1] were tested using Lingo with different number of machines

(2, 4, 6, 8) and jobs (20, 40, 60, 80, 100) to ensure the validity of our decision. Each problem

setting was run for 50 replications (total - 20 x 50 = 1000 replications). Moreover, the

performance of MIP [1] was judged by the CPU time as well as the number of iterations

required to reach the optimal solution.

The processing times of the jobs on different machines were generated randomly following

the uniform distribution U[10,100] (Martello et al., 1997). The reason a uniform distribution

was used is due to its high variance, ensuring that the presented model is being tested under

unfavorable conditions (Weng et al., 2001). The tested problem instances are summarized in

Table 6, where CPU refers to the average CPU time in seconds required to reach optimal

solutions for all replicates, Iter refers to the average number of iterations needed for all

replicates, and M and /re fe r respectively to Machines and Jobs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 4

Table 6. Computational Tests for MIP [1]

M 1 J W /O UB, W /O LB W ith UB, W /O LB W ith UB & LB
CPU (sec) I t e r CPU (sec) I t e r CPU (sec) I t e r

20 0.17 41 0.18 41 0.24 61
40 0.17 107 0.94 120 0.95 178

2 60 0.245 162 0.92 195 0.99 303
80 0.2 219 0.78 277 1.04 531
100 0.23 241 0.26 261 0.77 521
20 0.59 1194 1.35 1156 1.61 1876
40 1.6 5186 1.69 4656 2.64 6076

4 60 2.94 8557 3.08 9630 3.6 13797
80 3.58 15973 3.47 14367 6.9 20193
100 8.49 28915 5.63 23490 16.72 53291
20 0.63 2583 0.68 2832 1.19 4331
40 10.05 30848 12.87 38839 15.66 53839

6 60 32.5 98285 22.71 78447 121.77 233218
80 103.98 204816 87.5 206355 348.85 564586
100 209.86 370011 99.33 283101 529.18 596226
20 1.2 3039 0.82 2070 1.31 3685
40 21.81 51676 12.05 46732 39.91 113918

8 60 270.31 553584 243.78 536784 458.81 955791
80 823.47 1443105 445.3 1341065 1040.36 1690672
100 1970.32 3484094 1587.63 2634369 4282.44 6468239

It is clear from Table 6 that the MIP with no LB or UB performed the best in terms of both

CPU time and Iterations in small problems (of size up to 4 machines and 60 jobs), while the

MIP with the UB performed better in the larger problems. Furthermore, the MIP with both

UB and LB performed the worst in all problem settings. This behavior can be attributed to

the fact that the solver now needs to iterate more in order to determine the feasible search

region (between the UB and the LB). In addition, as MIP [1] with UB performed good but

with UB and LB performed the worst, MIP [1] with LB will not be tested as obviously it will

perform worse than MIP [1] with UB.

Figures 3-6 show how both the CPU and Iterations are the smallest when not using an UB in

small problems, and with an UB for larger problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 5

2 M achines 4 M achines

Figure 3. Average CPU Time comparison for 2 and 4 machines

CPU Tim e

6 M achines 8 M achines

♦ W /O UB

— ■ — UB

■ - a - - UB & LB

Figure 4. Average CPU Time comparison for 6 and 8 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 6

Iterations N um ber

60000

50000

40000

30000

20000

10000

2 M achines

■♦— W /O UB

-m— u b

- A - - UB & LB

4 M achines

Figure 5. Average Iterations' Comparison for 2 and 4 machines

Iterations N um ber

7000000

6000000

5000000

4000000

3000000

2000000

1000000

6 M achines 8 M achines

- • — W /O UB

- ■ — UB

- -A - - UB & LB

Figure 6. Average Iterations' Comparison for 6 and 8 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 7

SUMMARY

In this chapter, MIP [1] that will be used to generate optimal initial schedules for the

problem at hand was discussed. Furthermore, a LB and an UB were generated and tested

with MIP[1] to determine in which case it will achieve the best performance: without an UB

or LB, with an UB, or with both UB and LB.

From the computational tests, it can be concluded that including both UB and LB in the MIP

will deteriorate its performance instead o f improving it. Moreover, the MIP without an UB

will be used to obtain optimal solutions for small size problems, while the MIP with an UB

will be used in large size problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 8

CHAPTER IV

PREDICTABLE SCHEDULING

Much research has been done in the field of scheduling, concentrating on

deterministic scenarios and assuming a predefined schedule that is failure free.

Unfortunately, most manufacturing and service environments are dynamic in nature,

vulnerable to many unpredictable events, such as machine breakdowns, which leads the

predefined schedule to become obsolete once it hits the shop floor (MacCarthy and Liu,

1993). Deterministic schedules produced in advance are followed hoping no delays will

occur, because once they do, the whole schedule may be compromised, as it is not designed

to incorporate change. The reason these deterministic schedules fail is because they do not

account for variability by scheduling the activities directly after each other, so when a certain

activity is delayed, all its successors will be delayed too. To overcome this shortfall, many

researchers have suggested online scheduling, which is a completely reactive scheduling

where no deterministic schedule is produced in advance, and decisions are made locally in

real-time. One of the popular approaches in online scheduling are priority-dispatching rules,

where whenever a machine becomes free, the available job with the highest priority is

selected for processing. Dispatching rules are quick in general but inefficient and inaccurate

because they typically do not use global information, and cannot guarantee that the system

will operate at a good performance level (Ouelhadj, 2003). Furthermore, on-line scheduling

is unable to provide any plans for other activities, and it is difficult to predict system

performance because no initial schedule exists on which basis a scheduler can allocate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources and forecast performance. From here commenced the awareness of the importance

of an initial schedule that will allow for preplanning and prediction.

Very few research papers dealt with generating robust pre-schedules, also called predictable

schedules. Predictable scheduling is the process of making the predictive (deterministic)

schedule robust enough to account as much as possible for unpredictable events. This is

done through the insertion of idle time according to some rule between the scheduled jobs, so

the disruptions can be smoothed out throughout the schedule.

In this chapter, a new rule for constructing robust schedules for the unrelated parallel

machine problem is introduced and the computational results showing its dominance are

reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 0

PROBLEM FORMULATION AND ANALYSIS

This section describes respectively the problem at hand, the objective function that

needs to be minimized, and the proposed rules.

Problem statement

The scheduling problem considered in this chapter is to schedule n jobs on m

unrelated parallel machines. The problem constitutes of two parts: generating an initial

schedule and making the schedule robust. The first part will be achieved using MIP [1] that

was described in Chapter 3 of this dissertation, recalling that this problem is NP-hard as

explained earlier. After generating the initial schedule, the second part of this problem

consists of making this schedule robust enough to be able to absorb the disruptions. This is

done through the insertion of idle time according to some rule between the scheduled jobs, so

the disruptions can be smoothed out throughout the schedule.

The jobs' processing times are dependent on the machine they are assigned to; i.e. job j has a

processing time py when it is assigned to machine i. Our objective is to minimize the

variability between the predictable and realized schedule makespans. This is represented as

follows:

, „ CmaXp-Cmax„
Minimize Z = -------- — x 100%

CmaxR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

where Cmaxp is the makespan obtained from the predictable schedule, and CmaxR is the

actual makespan from the realized schedule (i.e. the executed schedule with machine

breakdowns).

Initial schedule (S i)

The problem objective is to compare different rules for idle time insertion within the

initial (Deterministic) schedule so it becomes robust (Predictable) where MIP [1] described

in Chapter 3 will be used to obtain optimal initial schedules. Once the initial schedule (Si) is

generated, it will be compared to the predictable schedule, which is the same schedule but

with added idle time. Recall that MIP [1] is described as follows:

Objective: Minimize Z

Subject to Y^Xy = 1, for j = 1,.. . , n, (Cl)
/=1

n

* x i j - z > for i = 1, ..., m, (C2)
7=1

x ij e M , 0 = l,...,m ; j = l,...,n), (C3)

Z <UB (C4)

where,

Z: the makespan (Cmaxsi) for schedule Si.

Pij: processing time of job j on machine i.

Xjj: binary decision variables = 1, if job j is assigned to machine i; 0 otherwise.

UB: is an upper bound for the problem discussed in chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 2

In other words, MIP [1] will deliver the initial deterministic schedule 5, along with its

makespan Cmaxsi.

Mehta’s predictive rule

Mehta et al. (1998) presented a predictable scheduling (PS) approach for a job shop

with random machine breakdowns and objective of minimizing L ,^ . One of the rules they

proposed for inserting the idle time became quite popular in the robust scheduling domain

and this is why it will be presented in this chapter and compared to the proposed rules. Their

rule is called OSMH and it works as follows:

Step 1: generate a schedule without breakdown consideration (Si)

Step 2(OSMH) : add to each operation of Si the associated idle time A, as follows:

Aj = E [DLij] = (pij * Ri)Ai where pij is the processing time of job j on machine i, R, is the

mean rate of repair duration on machine i, h is the mean rate of breakdowns on machine i,

and E [DLij] is the expected delay of job j on machine i.

After updating Si with the idle time and generating the predictable schedule, its makespan

will be calculated and referred to as Cmax o s m h -

CFJI Insertion Rule

Kizilisik (1999) introduced a measure for idle time defined by Mlj (PS) as the

number of jobs critical to job j (succeeding job j) , so the larger Mlj (PS), the larger should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the idle time inserted be. This is very logical because if the first job fails, it will lead to a

delay in all its successors. On the other hand, if the last job fails, no successive impact will

occur. Following this concept, we propose the Critical First Job Idle Time (CFJI) rule for

inserting idle time, which will be similar to OSMH but with an addition of job position effect

k[i]. The idle time idlejj for a job j on a machine i is calculated as follows:

idleij = R; * 8, * Pij * (1- M il), for J; > 1
Ji

where Ri is the mean rate of repair duration on machine /, 5; is the average number of

breakdowns on i per minute, k[i] is the job’s position on machine i, and Ji is the total number

of jobs that are scheduled on machine i (note that Si in CFJI rule is different from At in

Mehta’s rule as the latter was defined to be the mean rate o f breakdowns on machine i; the

calculation o f Si is described in the next section).

The associated makespan in this rule is referred to as Cmax c f ji-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 4

COMPUTATIONAL TESTS

The above rules have been implemented and compared in Microsoft Visual C++ 6.0

running on Windows XP with a Pentium 4 processor. The processing times of the jobs on

different machines were generated randomly following the uniform distribution U[10,100].

Uniform distributions were used due to their high variances, ensuring that the rules are being

tested under adverse conditions.

Once the predictable schedule is implemented, it will be subjected to machine breakdown

events. Each machine will have its own breakdown rate, where the time between

breakdowns (TBBi) will follow an exponential distribution with mean E[Mi] (Mehta et al.,

1998), where E[Mj] is the expected processing time of a job on machine i. The average

number of breakdowns per minute on machine i will be calculated as follows:

First we determine the number of breakdowns on machine i: (Total processing time on i) /

TBBj

where Ni is the number of jobs assigned to machine i.

As 8j is the average number of breakdowns on machine i per minute and is equal to:

Ni

of breakdowns on /' = ——
TBB;
j= l (3)

5j =
 ̂Total processing time on machine i ,

' # of breakdowns on machine i
(4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 5

Substituting (3) in (4) => 8i =

j= i

N i

j= l

The breakdowns’ repair time on a specific machine follows a uniform distribution between

PiE[MJ and P2E[MJ, where we considered (Pi, P2) to be (0.1,0.2) as in Mehta et al. (1998).

The rules above have been tested under 2,4, 6, and 8 unrelated parallel machines, and

respectively 20, 40, 60, 80, and 100 jobs. The results obtained are shown in Table 7, where

Cmaxsi, CmaxosMH, CmaxcFJi, and CmaxR refer respectively to the predicted makespan of the

initial schedule (Si), OSMH rule, CFJI rule, and the realized makespan obtained after the

occurrences of machines’ breakdowns. The closer the predicted makespan to CmaxR, the

more robust the rule is.

Moreover, the 95% Confidence Interval (Cl) attained from runnings 100 iterations of each

rule was also included in Table 7. This Cl was determined using Equation 4.5 that was

described by Law and Kelton (2000) using the t distribution:

(5)

where tni ^ is the upper 1 - a ll critical point for the t distribution with n-1 df, X is the

mean, S is the standard deviation, and n is the sample size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 7. Computational Tests for the Predictable Schedules

Machines Jobs Cmaxsi
Mean

Cmaxsi
95% C l

CmaxosMH
Mean

CmaxosMH
95% C l

CmaxcFji
Mean

CmaxcFji
95% C l

Cm axR
Mean

Cm axR
95% C l

20 409.12 [402.8-415.4] 566.98 [558.2-575.7] 481.99 [474.5-489.4] 492.45 [482.6-502.3]
40 796.93 [784-809.9] 1104.47 [1086.5-1122.4] 946.84 [931.4-962.3] 957.71 [938.9-976.5]

2 60 1205.49 [1186.3-1224.7] 1670.69 [1644-1697.3] 1437.56 [1414.4-1460.7] 1446.73 [1417.8-1475.6]
80 1592.27 [1569.7-1614.9] 2206.73 [2175.4-2238.1] 1899.8 [1872-1927.6] 1882.43 [1850.8-1914.1]
100 1971.88 [1940.8-2002.91 2732.83 [2689.8-2775.81 2355.17 [2317.9-2392.41 2337.2 [2290.7-2383.61
20 150.95 [148.7-153.2] 209.19 [206.04-212.36] 176.13 [173.4-178.9] 165.17 [162.2-168.1]
40 284.42 [280.1-288.9] 394.31 [388.1-400.5] 337.05 [331.7-342.4] 310.54 [304.3-316.7]

4 60 426.16 [418.9-433.4] 590.61 [580.6-600.6] 507.3 [498.6-515.9] 462.22 [453.8-470.6]
80 554.71 [547.4-562] 768.78 [758.6-778.9] 661.87 [652.8-670.9] 599 [590.7-607.3]
100 691.09 [679.8-703.31 957.78 [940.8-974.81 826.77 [812.7-840.81 744.69 r730.5-758.9l
20 87.63 [86.4-88.9] 121.44 [119.7-123.2] 100.69 [99.2-102.1] 93.91 [92.2-95.6]
40 158.58 [156.3-160.8] 219.77 [216.6-222.9] 186.94 [184.1-189.8] 167.14 [164.4-169.8]

6 60 232.22 [228.1-236.3] 321.83 [316.1-327.5] 275.96 [271.1-280.9] 246.19 [241.3-251.1]
80 307.88 [302.9-312.8] 426.69 [419.8-433.6] 366.54 [360.6-372.5] 328.08 [321.9-334.3]
100 383.79 [377.2-390.3l 531.89 [522.8-540.91 459.02 [450.9-4671 406.58 [399.5-413.61
20 60.89 [60.2-61.6] 84.39 [83.4-85.4] 69 [68.1-69.9] 64.05 [63.1-64.9]
40 107.67 [106.1-109.2] 149.23 [147-151.4] 126.57 [124.6-128.5] 113.01 [111.1-114.9]

8 60 155.74 [153.3-158.2] 215.84 [212.4-219.2] 184.55 [181.6-187.5] 163.04 [160.1-165.9]
80 205.19 [201.7-208.7] 284.37 [279.5-289.2] 243.99 [239.7-248.2] 216.25 [212-220.5]
100 253.14 [248.8-257.51 350.82 [344.8-356.91 301.88 [296.6-307.11 264.69 [259.9-269.51

5 7

As 101 iterations were run for each problem setting (i.e. n = 101), then the confidence

intervals will be:

X ±w J^X ±,.9S4J^

We recall that our objective is to minimize the variability between the predictable and

realized schedules’ makespans. Table 8 show the values of the objective function Z’

(Equation 1):

CmaXp-CmaXp
Z’ = p------------— xl00% (1)

CmaxR

It is important to note that as Z’ approaches zero, the more robust the rule is; a zero indicates

that the predictive schedule has lead to a makespan equal to the realized schedule.

Figures 7-11 show the percentage of variability from CmaxR for S,, OSMH, and CFJI for the

2, 4, 6, and 8 machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 8

Table 8. Rules' Relative Deviation percent from CmaxR

Machine Job Cmaxsi CmaxosMH CmaxcFji

2

20 -16.9215 15.134531 -2.12407
40 -16.788 15.324054 -1.135
60 -16.6748 15.480428 -0.63384
80 -15.4141 17.227732 0.922743
100 -15.6307 16.92752 0.768869

4

20 -8.60931 26.651329 6.635588
40 -8.41115 26.975591 8.536742
60 -7.80148 27.776816 9.752932
80 -7.39399 28.343907 10.49583
100 -7.19763 28.614591 11.02204

6

20 -6.68725 29.315302 7.219678
40 -5.12146 31.488572 11.84636
60 -5.67448 30.724237 12.09229
80 -6.15703 30.056693 11.72275
100 -5.60529 30.820503 12.89783

8

20 -4.93365 31.75644 7.728337
40 -4.72525 32.050261 11.99894
60 -4.47743 32.384691 13.19308
80 -5.11445 31.500578 12.82775
100 -4.3636 32.539952 14.0504

P e rc e n ta g e o f V ariab ility from Cm axR

4 0 | | m

30 | | | | b | ^ ^

— ♦ — C m ax S i
— ■ — C m axO SM H

— * — C m axC F JI

°

111

-2° - l i

Figure 7. Relative Deviation percent from CmaxR for all machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 9

2 Machines

* 15

- 1°
-15
-20

Jobs

— * — C m axSi

- - - * - - - C m axO S M H

— ± — Cm axCFJI

Figure 8. Relative Deviation percent from CmaxR for 2 machines

P
er

ce
nt

ag
e

V
a

ri
a

b
il

it
y

K>

-!■»■

—k
|sj

CO
-t*

O
O

O
O

O
O

O

c_
■

n
M

iH
n

E

°
■

■
H

H
IH

H
IH

h
H

ii
o-

■*

*
w

IB
B

H

s

■
■

■
H

H
H

H

o

■
B

B
h

h
H

s

'

M
B

B
—

o (0

— 0 — C m axSi

- - - - - - - C m axO S M H

— A — Cm axCFJI

Figure 9. Relative Deviation percent from CmaxR for 4 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 0

6 Machines

40 I l l l l i B B i B i l i l B l i l 1

= 3 0

2 0

“■ -10

Jobs

— • — C m axSi

- - - - - - - C m axO S M H

Figure 10. Relative Deviation percent from CmaxR for 6 machines

8 Machines

I* 30

20

1 0 B H H H ^ s B E ^ ^ B ^ ^ ^ n
* —

a u

o. ^ o IM I^ ^ ^ B lW W IW W Iil^ B B M IIIiy i
Jobs

— #— C m axSi

------- C m axO S M H

— A— Cm axCFJI

Figure 11. Relative Deviation percent from CmaxR for 8 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Figures 7-11 and Tables 7 and 8, it can be concluded that the proposed rule CFJI

outperformed OSMH in all problem combinations as it was always closer to the realized

makespan. As it was expected, the initial schedule Si has a makespan that is always smaller

than the realized makespan as it does not account for machine breakdowns. OSMH

performed better than the initial schedule in a sense that it was never below the realized

makespan, but in many instances it overestimated the idle time needed to smooth out the

breakdowns, leading to makespans that are far from the actual realized makespan (CmaxR),

resulting in an unstable pre-schedule. CFJI reflected high robustness and a good degree of

schedule prediction.

For the 2 machines (Figure 8), CFJI almost overlapped with the realized schedule, when St

predicted a much smaller makespan and OSMH a much higher one. For the 4, 6, and 8

machines (Figures 9-11), St had the closest prediction to CmaxR; however, it was always

smaller, i.e. such schedules will not be able to meet the set fourth deadlines. On the other

hand, and even though CFJI was farthest than 5, from the realized makespan, it was higher

than CmaxR, meaning that the schedule execution finished before the deadline and not after.

Furthermore, CFJI was still much closer to CmaxR than was OSMH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 2

SUMMARY

In this chapter, we have introduced a new idle time insertion rule, CFJI, for the

generation of robust predictable schedules on unrelated parallel machines. CFJI was

compared to the traditional initial schedule where no idle time is built-in, and to Mehta’s rule

OSMH from Mehta et al. (1998). All three rules were implemented in Microsoft Visual C++

6.0 running on Windows XP with a Pentium 4 processor, and the conclusions were drawn

using a large number o f experiments and data instances. Computational tests showed that the

introduced rule outperformed the other rules; however, as the problem size increased, CFJI

overestimated the idle time needed for insertion. Following this, a learning parameter that

will be added to CFJI is introduced in the next chapter in order to deliver superior predictable

schedules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 3

CHAPTER V

LEARNING PARAMETER FOR THE PREDICTABLE SCHEDULE

In Chapter 4, a new idle time insertion rule (CFJI) was developed and compared to

existing rules. Even though CFJI outperformed the other rules, it was clear that it

overestimated the idle time needed especially as the problem size increased. Therefore, the

system should learn to adjust its behavior, and thus, a learning parameter is developed in this

chapter to aid CFJI reach more robust predictable schedules; i.e. schedules that are closer to

the realized schedule.

Selfridge (1993) stated: “If an expert system, brilliantly designed, engineered and

implemented, cannot learn not to repeat its mistakes, it is not as intelligent as a worm or a sea

anemone or a kitten.” He then followed: “Find a bug in a program, and fix it, and the

program will work today. Show the program how to find and fix a bug, and the program will

work forever.” Machine learning studies the mechanisms through which intelligent systems

improve their performance over time (Shavlik and Dietterich, 1990). Over the past decade,

machine learning has evolved from a field of laboratory demonstrations to a field of

significant commercial value. Machine-learning algorithms have now learned to detect credit

card fraud by mining data on past transactions, learned to steer vehicles driving

autonomously on public highways at 70 miles an hour, and learned the reading interests of

many individuals to assemble personally customized electronic news (Mitchell, 1997).

As the proposed robust scheduling system will be dealing with a dynamic

environment and to aid CFJI reach superior predictable schedules, a learning capability will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 4

be developed to ensure that the proposed rules stay up to date with the environment.

Moreover, the system needs to learn from its mistakes so they would not occur again.

Learning is essential because most of the machines’ designs do not perform as intended when

used in different environments. Even if a machine is used in its associated environment, the

latter is subject to changes and consequently, the machine could perform poorly if no

learning capability is incorporated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 5

MACHINE LEARNING FOUNDATIONS

Different subjects have contributed to the field of machine learning; below we describe

some of the disciplines listed by Nilsson (1996):

• Statistics: estimation of the value of an unknown function at a new point given the

value of this function at sample points. Statistical solutions of such estimations are

considered a subset of the machine learning as the algorithms are learning the values

of new points from previous samples in the same settings. More information on such

methods can be found in Anderson (1958).

• Brain Models: different researchers (Gluck and Rumelhart, 1989; Sejnowski et al.,

1988) suggested modeling brains and networks based on nonlinear elements (neural

networks).

• Adaptive control theory: used to estimate the changing parameters of a process during

its operation. Bollinger and Duffie (1988) provide an introduction to this theory.

• Artificial Intelligence: AI has been concerned with machine learning since the 1950s

(Langley, 1996). Researchers studied how future decisions can be based on previous

ideal instances (Nilsson, 1996), and recent work has been aimed at generating rules

for expert systems using decision tree methods and inductive logic programming.

• Evolutionary Models: Genetic algorithms and programming are considered a part of

machine learning as they incorporate evolution through crossover and mutation in

order to attain better performance levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 6

LEARNING APPLICATIONS

Some of the machine learning’ achievements that were summarized by Mitchell

(1997) are listed as follows.

There are new programs that can effectively learn to recognize spoken words (Lee, 1989),

detect fraudulent use of credit cards (Pomerleau, 1989), and play world-class backgammon

(Tesauro, 1995). New research is founded on initial models of human and animal learning,

as well as their relationship to learning algorithms developed for computers (Anderson, 1991;

Ahn and Brewer, 1993).

Aytug et al. (1994) stated that a system should be able to correct its misconceptions

and improve its performance based on experience; this is learning. Other researchers also

acknowledged the necessity for learning in scheduling systems (Ow et al., 1988; Fox and

Smith, 1984).

Shaw et al. (1990) implemented a machine learning approach in order to perform intelligent

scheduling and determine the most effective dispatching rule based on simulation runs.

Simulation models have been frequently used as learning tools (Yih and Thesen, 1991;

Adachi et al., 1989; Davis and Smith, 1983).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PROPOSED LEARNING METHODOLOGY

Learning is needed in the proposed system for the idle time insertion when creating

predictable schedules. The system should be capable of estimating the appropriate idle time

to be inserted using results from previous problem iterations. For example, if prior iterations

indicated an overestimation of idle time, then the system should readjust and insert less idle

time.

A predictable schedule is generated by inserting idle time between the pre-schedule

activities, enabling the disruptions to be smoothed out through the system in order to

maintain the final output. The idle time will be inserted following the Critical First Job Idle

Time (CFJI) rule that was discussed in chapter 4 of this dissertation. CFJI inserts for each

job the following idle time:

idleij = R1* 5 1* p ij * (l - M il) ; for j, > i
J;

where R, is the mean rate of repair duration on machine i, 8; is the average number of

breakdowns on i per minute, k[i] is the job’s position on i, and Ji is the total number of jobs

scheduled on machine i.

The need to make the system capable of learning and determining how much idle time should

be inserted is crucial, and statistics will be used to achieve this aim.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 8

The proposed system has the following objective function:

Min Q = Cmaxtf - Cmaxp,

where,

Cmaxfl is the realized makespan obtained after the occurrences of machine breakdowns.

Cmaxp is the predictable makespan generated using CFJI rule.

The closer the predictable makespan to Cmax«, the more robust it is. In the case where

Cmaxp is far from Cmax^, the system will implement rescheduling techniques and schedule

repairs in order to ensure a minimal Q. The learning purpose is to use rescheduling until the

knowledge of the environment is robust enough to provide predictable schedules that almost

overlap with the realized schedules, i.e. rescheduling would only be necessary in infrequent

and severe situations. Through the learning parameter, the system will adjust the inserted

idle time in order to minimize the deviation between the actual and predictable schedules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 9

The Learning Capability

The learning component will be incorporated by including in Equation (2) a

parameter a that will be adjusted during iterations to decide on the appropriate amount of idle

time. For example,

if Q > 0 —* Cmax/j > Cmaxp —► increase a

if Q < 0 —► Cmax« < Cmax/> —* decrease a

If the predictable makespan was smaller (or larger) than the realized makespan, i.e. should be

adjusted by Q, then the total idle time in the predictable schedule should be adjusted by

mXQ, where m is the number of machines. Due to different jobs having machine-dependent

processing times, it is not easy to predict which machine will result in the largest completion

time, and thus the Cmax. Therefore, the rationale behind mx Q is to simplify the problem by

adjusting the idle time inserted using one parameter only, a, for all the machines. Following

this, we assume that the load is balanced over the m machines; i.e. the completion times of all

the jobs scheduled on machine 1 through m are equal and the makespan is equal to the

completion time of all jobs on any machine. This way the idle time would be equally divided

among the machines, and as the idle time on one machine (that determined the makespan)

should be adjusted by Q, the rest of the machines’ idle time should also be adjusted by Q, i.e.

the total idle time in the system should be adjusted by mx Q. This assumption is valid as our

objective for the parallel machine problem is to minimize Cmax. The best solution that can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 0

be attained for such an objective is when all the machines finish at the same time (this is the

best case scenario), i.e. the load is balanced over the machines.

Cmax = 10 Cmax = 8

Figure 12.a. Cmax with Unbalanced Load Figure 12.b. Cmax with balanced Load

In Figure 12, we illustrate how a balanced load over the machines leads to the smallest

makespan possible. When the jobs are not balanced over the machines (Figure 12.a), Cmax is

equal to 10. However, by balancing the jobs over the machines (Figure 12.b), all the

machines will finish at the same time, leading to the smallest possible makespan (Cmax = 8).

Following this, it is acceptable to assume that the MIP used to obtain initial schedules will

attempt to balance the load over the machines as this will lead to the optimal solution.

The purpose of learning here is to estimate a such that a * existing idle time would

be very close to the existing idle time + adjustment needed; this is given in Equations 6 and

6’ .

a x Tidle = Tidle + (mx Q) (6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

m xQ
a = 1 + ----- ^ (6’)

Tidle

m n
where, Tidle is the total idle time in the schedule = X S idley .

i=ly=l

m n m n
As a * Tidle - a * £ £ idley = £ £ a * idle a , Equation (2) becomes:

,=l j =1 i=l y=i

idleij = a * Ri * 8i * py * (1- ^), for Jj > 1 (2’)

and a will be calculated using Equation 6’.

Determining the number of iterations for the learning parameter (a)

Changing a for every iteration is unfavorable because it will result in big fluctuations

in the system as can be illustrated in the following example:

The R||Cmax problem with 2 machines and 100 jobs was tested in Microsoft Visual C++ 6.0

running on Windows XP with a Pentium 4 processor. The code was designed in such a way

that the program will keep on iterating while adjusting a until Q, the predictable makespan

deviation from the realized schedule, is less than 4 minutes. In other words, the program

changes o in every iteration in an attempt to find its finest value that minimizes Q. In the

first problem instance, the program computed Cmaxp (831 min), CmaxR (847 min), and Q

(15.7 min), indicating that the system underestimated the realized schedule by 15.7 minutes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Following this, via Equation 6’, the program calculated the appropriate value of a that will

increase the predictable schedule’s makespan to a similar rate of the realized one (increase by

15.7 minutes). In the second problem instance, a successfully brought up Cmaxp to 848

minutes (almost equal to the previous CmaxR = 847 min); however, CmaxR for this instance

was 821 minutes, resulting in a predictable overestimation of 27 minutes. The reason behind

this is that the breakdowns follow an exponential distribution (vs. a constant one), i.e. the

realized schedule is always fluctuating according to some distribution that needs to be

determined.

In other words, in order to give a good estimate of a, we need to determine the realized

schedule’s distribution, then the required number of iterations k after which a can be updated.

Realized Schedule’s Distribution

If we examine the realized schedule, the cause behind its fluctuations is due to the

repair time. Every time a random breakdown occurs, a repair time (that follows a uniform

distribution) is added to the realized schedule.

In order to understand the realized schedule’s distribution, let us examine how the realized

schedule is formed. At first, we start with an initial deterministic schedule 5, (can be

assumed to have a constant duration), then idle time is inserted to 5, so it becomes a

predictable schedule (assumed also to have a constant duration). Next, the predictable

schedule is executed in a dynamic environment under machine breakdowns; this schedule

will incur several delays (Repair time) of durations following the uniform distribution repair

time. Finally, upon the completion of the execution of the predictable schedule, the latter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 3

plus the delays will constitute the realized schedule. In other words, it can be assumed that

the realized schedule is nothing but the predictable schedule plus the repair delays:

Realized Schedule = Predictable Schedule + Repair Delays

Realized Schedule = C + U[piE[M;], p2E[M,]]i + ... + U[PiE[Mi], p2E[Mi]]t

where t is the number o f breakdowns and C is a constant.

As the probability distribution of the sum of a sequence of uniformly distributed random

values rapidly approaches that of a normal distribution as the number of values summed

increases (Derbyshire, 2004), it can be concluded that the realized schedule makespan

(CmaxR) follows a normal distribution. Derbyshire (2004) also provided a graphical

illustration of how the sum of uniform distributions will lead to a normal one (Figure 13),

where the first graph represents the uniform distribution, and the subsequent graphs

correspond to the cumulative addition of this distribution to itself up to n distributions. As

can be seen, the sum of the uniform distributions approaches a normal distribution.

PX1+X2+X3 (u)

0.7
PX1+X2+X3+X4 (u)

0.6

Figure 13. Graphical Illustration of the Sum of Uniform Distributions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 4

In fact, even if the repair duration follows a different distribution (other than the uniform

one), CmaxR will still follow a normal distribution because The Central Limit Theorem states

that under very general conditions when n random variables (regardless of their distributions)

are added together, the distribution of the sum tends towards the normal as n increases

(Brignell, 2006); where n refers in this case to the number of breakdowns with durations

equal to the repair time.

To further affirm that the CmaxR distribution is a normal one, we ran 1000 instances

of the same input for the problem of 2 machines and 100 jobs, and then constructed a

histogram from the data outputted by the program as shown in Figure 14.

Histogram
2 machines; 100 jobs

CMAXr

Figure 14. The CmaxR Distribution

As can be seen from Figure 14, CmaxR follows almost a normal distribution, indicating that

the mean of k iterations can be used to calculate a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 5

Following the above, Equation 6’ becomes:

k / m * Q \
1 +

a = U = 1 V Tidle
K

(6 ”)

where, u refer to the problem iterations’ index from 1 to k iterations.

Next, we run iterations until the half width of CFJI and Tidle is within 2% of the mean at

most (at a 95% confidence interval). In other words, for each problem iteration, we calculate

the mean and 95% confidence intervals, then we check, if the confidence intervals are far

from the mean at 2% at the most, we stop and calculate a ; otherwise, we run more problem

iterations. Following this, the number of iterations k needed was on average 115, with a min

of 34 and max of 315.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPUTATIONAL TESTS

In order to test the proposed learning parameter, the same experiments undergone in

Chapter 4 were rerun with the addition of the a parameter to CFJI which we will refer to as

MCFJI (Modified CFJI). Si, OSMH, MCFJI, and Realized have been implemented and

compared using Microsoft Visual C++ 6.0 running on Windows XP with a Pentium 4

processor. The processing times of the jobs on different machines were generated randomly

following the uniform distribution U[10,100].

The results are shown in Table 9 along with the 95% Confidence Intervals.

We recall that our objective is to minimize the variability between the predictable and

realized schedule makespans. Table 10 show the values of the objective function Z’:

CmaXp-CmaxR
Z’ = x 100%

Cmax.LR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 9. Computational Tests with a Learning Parameter

Machine Job Cmaxsi
Mean

Cmaxsi
95% Cl

CmaxosMH
Mean

CmaxosMH
95% Cl

CmaxMCFji
Mean

Cm axMcFji
95% Cl

CmaxR
Mean

CmaxR
95% Cl

20 409.11 [402.8-415.4] 590.54 [581.4-599.7] 492.99 [485.3-500.6] 492.45 [482.6-502.3]
40 796.93 [784-809.9] 1127.43 [1109.1-1145.8] 958.11 [942.5-973.7] 957.71 [938.9-976.5]

2 60 1205.49 [1186.3-1224.7] 1689.64 [1662.7-1716.6] 1447.06 [1423.8-1470.3] 1446.73 [1417.8-1475.6]
80 1592.27 [1569.7-1614.9] 2171.1 [2140.3-2201.9] 1881.93 [1854.4-1909.4] 1882.43 [1850.8-1914.1]
100 1971.88 [1940.8-2002.91 2696.38 [2653.9-2738.81 2299.87 [2299.9-2373.71 2337.2 [2290.7-2383.61
20 150.95 [148.7-153.2] 180.53 [177.8-183.2] 163.47 [160.9-165.9] 165.17 [162.2-168.1]
40 284.52 [280.1-288.9] 334.96 [329.7-340.2] 308.19 [303.4-313] 310.54 [304.3-316.7]

4 60 426.16 [418.9-433.4] 493.45 [485.1-501.8] 458.92 [451.1-466.7] 462.22 [453.8-470.6]
80 554.71 [547.4-562] 635.53 [627.1-643.9] 594.67 [586.7-602.6] 599 [590.7-607.3]
100 691.09 [678.8-703.31 786.82 [772.8-800.81 739.32 [726.5-752.11 744.69 [730.5-758.9l
20 87.63 [86.4-88.9] 121.44 [119.7-123.2] 92.12 [90.8-93.4] 93.91 [92.2-95.6]
40 158.58 [156.3-160.8] 219.77 [216.6-222.9] 164.41 [162.1-166.8] 167.14 [164.4-169.8]

6 60 232.22 [228.1-236.3] 321.83 [316.1-327.5] 242.9 [238.6-247.2] 246.19 [241.3-251.1]
80 307.88 [302.9-312.8] 426.69 [419.8-433.6] 324.45 [319.2-329.7] 328.08 [321.9-334.3]
100 383.78 [377.2-390.3] 531.89 [522.8-540.91 401.76 [394.9-408.6l 406.58 [399.5-413.61
20 60.88 [60.1-61.6] 84.38 [83.3-85.4] 62 [61.3-62.8] 64.16 [63.2-65.1]
40 107.67 [106.1-109.2] 149.23 [147-151.4] 110.49 [108.8-112.1] 113.01 [111.1-114.9]

8 60 155.74 [153.3-158.2] 215.84 [212.4-219.2] 160.14 [157.6-162.6] 163.12 [160.2-166.1]
80 204.16 [201.1-207.2] 282.95 [278.7-287.2] 212.12 [208.8-215.4] 214.58 [211-218.1]
100 249.83 [245.5-254.21 346.24 [340.2-352.2l 257.59 r253.1-262.1l 261.02 [256.2-265.8l

7 9

Table 10. Percentage of Variability of each rule from the Realized Schedule

Machine Job Cmaxsi CmaxosMH CmaxMcFji
20 -16.9235 19.91877348 0.109655803
40 -16.788 17.72143968 0.041766297

2 60 -16.6748 16.79027877 0.022810061
80 -15.4141 15.33496597 -0.026561413
100 -15.6307 15.36796166 -1.597210337
20 -8.60931 9.299509596 -1.029242599
40 -8.37895 7.86372126 -0.756746313

4 60 -7.80148 6.756522868 -0.71394574
80 -7.39399 6.098497496 -0.722871452
100 -7.19763 5.657387638 -0.721105426
20 -6.68725 29.31530188 -1.90608029
40 -5.12146 31.48857245 -1.633361254

6 60 -5.67448 30.72423738 -1.336366221
80 -6.15703 30.05669349 -1.106437454
100 -5.60775 30.82050273 -1.185498549
20 -5.11222 31.51496259 -3.366583541
40 -4.72525 32.05026104 -2.22989116

8 60 -4.52428 32.31976459 -1.82687592
80 -4.856 31.86224252 -1.146425576
100 -4.28703 32.64883917 -1.31407555

Figures 15-18 show the percentage of deviation of Si, OSMH, and MCFJI from CmaxR for

the 2, 4, 6, and 8 machines.

From Figures 15-18 and Tables 9 and 10, it can be concluded that the proposed rule MCFJI

outperformed the traditional scheduling strategy (initial schedule) and also OSMH. As it was

expected, the initial schedule had the worst robustness as it does not account for machine

breakdowns. OSMH performed better than the initial schedule, but in many instances it

overestimated the idle time needed to smooth out the breakdowns, resulting in makespans

that are far from the actual realized makespan. MCFJI reflected high robustness and a good

degree of schedule prediction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 0

2 Machines

-+— C m axSi

■- - - C m axO S M H

4 — C m axM CFJI

Jobs

Figure 15. Relative Deviation percent from CmaxR (0 on the Y-axis) for 2 machines

4 Machines

-+— Cm axSi

■- -- C m axO S M H

^ — C m axM CFJI

Jobs

Figure 16. Relative Deviation percent from CmaxR (0 on the Y-axis) for 4 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

6 Machines

0 30

1 20

-io
Jobs

— *— C m axSi

- - - - - - - C m axO S M H

— A— C m axM CFJI

Figure 17. Relative Deviation percent from CmaxR (0 on the Y-axis) for 6 machines

8 Machines

o 30

Jobs

— • — C m axSi

- - --- - C m axO S M H

— *— C m axM CFJI

Figure 18. Relative Deviation percent from CmaxR (0 on the Y-axis) for 8 machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 2

As can be seen, MCFJI almost overlapped with the realized schedule, indicating a superior

robustness, in contrast to OSMH and the initial schedule which were far from CmaxR and laid

on opposite sides. It is also worth noting that even though the predictable schedule reached

through OSMH is always larger than CmaxR (i.e. the schedule has the ability of smoothing

out the breakdown effects without any delay in CmaxosMH), the idle time inserted is

overestimated, leading to an underutilized pre-schedule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

SUMMARY

In this chapter, a learning parameter a was introduced for the idle time insertion rule

CFJI. a readjusts the amount of idle time inserted in the schedule by using information from

previous problem iterations. The computational tests indicate that this methodology will

improve the performance of the proposed robust reactive scheduling system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 4

CHAPTER VI

REPAIR AND RESCHEDULING RULES

As previously explained in Chapter 1, a robust predictable-reactive scheduling

construct will be implemented in this dissertation. The predictable schedule {discussed in

Chapters 4 and 5) has the ability to absorb the disruptions without affecting planned external

activities. If a disruption occurs during the schedule execution, repair rules and rescheduling

will only be necessary if the disruption duration exceeds the inserted idle time. We recall

that two main alternatives will be used for the reaction process: schedule repair and complete

rescheduling.

Schedule repair refers to a minimum modification of the pre-schedule, leading to a higher

stability in the system, while complete rescheduling refers to a complete rescheduling of all

jobs, which could result in better solutions but will jeopardize system stability. Moreover,

complete rescheduling will lead to system nervousness and could be very costly, as all the

pre-arranged plans have to be changed. In practice, most rescheduling has been done using

schedule repair, except in some severe situations where complete rescheduling had to be

done (Abumaizar and Svestka, 1997).

In this chapter, new and existing repair rules and rescheduling strategies are explained

and tested under extensive computational tests to determine superiority and dominance

among them. These rules are respectively Right Shift Repair, Fit Job Repair, Partial

Rescheduling, and Complete Rescheduling. The performance measures used to evaluate the

rules are also explained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 5

PERFORMANCE MEASURES

The repair and rescheduling rules will be judged based on both the schedule quality

and stability. The schedule quality is evaluated based on two performance measures: Cmax

Difference and CPU Time. Cmax Difference refers to the difference between the realized and

predictable schedules (i.e. Cmax Difference = CmaxR - Cmaxp), and CPU Time refers to the

time in seconds required by each rule during schedule execution. The schedule Stability is

also assessed with two performance measures: Match-up Time and Shifted Jobs. Match-up

Time refers to the time required by a rule to come back to the initial predictable schedule

after a disruption, and Shifted Jobs refers to the number of jobs that will be shifted from one

machine to another. The four performance measures are shown in Figure 19.

Schedule Quality

Schedule Performance -J

Match-up Time
Schedule Stability

Figure 19. Repair and Rescheduling Rules’ Performance Measures

Numerous publications used all or some of the above performance measures (e.g., Mendez

and Cerda, 2004; Alagoz and Azizoglu, 2003; Raheja and Subramaniam, 2002; Akturk and

Gorgulu, 1999).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 6

RIGHT SHIFT REPAIR (RSR)

Right Shift Repair rule implies delaying the entire schedule by the disruption

duration. In other words, whenever a disruption occurs, the disrupted operation and the

activities succeeding it are shifted to the right by the amount of down time. This rule is

similar to what an operator would instinctively do in the case of disruptions if no other

strategies were in place. It should be noted that as preemption is not allowed, a disrupted job

will have to be processed again from the beginning. RSR has been used frequently in the

literature to compare with rescheduling and repair rules (Abumaizar, 1997; Akturk and

Gorgulu, 1999; Bean et al., 1991; Alagoz and Azizoglu, 2003).

The RSR algorithm is described below, where S;j and Fjj refer respectively to the

Start and Finish of job j on machine i, RF; is the repair finish on machine i, D and Dy are

respectively the down machine and down job, and N, is the number of jobs scheduled on

machine i.

If (SD Dj < RFd) I I Apply RSR as D j was scheduled to start before the repair finishes

Step 1: {Calculate the new start and finish time for the interrupted job Dj}
* ^D,D, — RFd;

* FD Dj — SD D̂ + p D>Dj;

Step 2: {Update the start and finish of the remaining jobs on the down machine D}
• Let an integer Q = 0;
• while (Fdd + q > Sdd +q +1)

{
c = p

D ,D ,+ Q + 1 A D ,D ,+ Q ’

F d ,D j +Q+1 = ^ D ,D ,+ Q + 1 P d ,D ,+ Q + 1 >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 7

If (Dj + Q + 1 = = ND)
Exit the while loop;

else
Q = Q +1;

}

Note: As can be seen from the algorithm, this is at the most 0(mn), assuming that time is

incremented with integer values Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 8

FIT JOB REPAIR (FJR)

FJR is a new repair rule introduced in this dissertation. The rationale of FJR is to fit

the down job (Dj), i.e. the job that needs to be rescheduled, on a residle of any machine,

where residlei refers to the remaining idle time on machine i.

In other words, when a breakdown occurs, FJR determines the down job (Dj) and the

positions of the jobs not processed yet on the up machines (the machines that did not incur a

disruption). Next, the residle on each machine is calculated and D} is fitted on the machine i

with the highest residle;. In the case Dj does not fit in any residle, each machine’s residle is

increased by shifting to the right one job at a time. If after all jobs have been shifted (residle,

cannot be increased anymore) D} still cannot be fitted on any machine, then it will be

assigned at the end of the machine that will result in the smallest makespan, i.e. where C; is

less than the completion time of the other machines.

FJR algorithm is described below, where JP;(k refers to the job in position k on

machine i, Jo is the position of the interrupted job Dj, and Path; is the processing location on

machine i if it is to process Dj

Let tempS, tempF, tempJP be temporary arrays equal respectively to S, F, and JP

Step 1: Determine on each machine the jobs’ locations (J,) following a breakdown; also
determine the ES; on each machine, where ES; is the earliest start of a job on machin i after
the occurrence of a breakdown.
P.S.: In the case of D, ES/> = RF/>

Step 2: Determine the down job Dj, i.e. the job that needs to be rescheduled or fitted:
* ~ JPd,Jd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 9

Step 3: Calculate the location on each machine assuming Dj will processed on it:
• Pathj = ESi + pi>DJ (i = 1, ... , m)
• Let an integer variable Count = 0;

While ((Jj + Count) <= Ni; for i = 1 , . . m)
{

Check if the job can be fitted on any of the machines:
If (Path; < S; J(com) (i = 1 , , m)

{
residle; = S ,, - Path;;

L J i+Cow»t 1 ?

Fit = true ; //The job can be fitted
• Get the minimum fit cost over all the machines and determine the recipient

machine RC
MAX (residle;) (i = 1 ,... , m)

• Update RC by increasing Nrc and shifting the jobs to the right so D j can
be fitted.

• Fit Dj in the receiver machine after the breakdown
Src,.^ = ESrc ,
Frc,j/?c - Src,jrc+ Prc,dj ;
JPrc,jrc = Df,

If (Count > 0) HSeveral jobs on RC need to be shifted fo r fitting
For (s = Jrc, ..., J*c+ Count -1)

Src,s+i - Frc,s;
Frc,s+i = Src,s+i + Prc,jp/?c,s+i;

• Update the sender machine SD by decreasing Nsd and shifting the jobs to
the left as Dj location is available now.

} //end o f IF
Else // Need to shift more jobs in order to f it D j
{

Count = Count +1;
Path; = Path; + p;,ji+count; (i = 1 ,..., m)

}
} //End o f while

Step 4: If Dj did not fit on any machine, assign it to the machine that minimizes Cmax
If ((J; + Count) > N; AND Fit = False)
{

Path; = 0; (i = l , . . . ,m)
Path; = ES; + p ;,dj (i = 1 ,... , m)
Path; = Path; + p ; ^ ; (i = 1 , m ; j = J i , N i)
Let RC be the machine with the minimum Path;
• Update the receiver machine RC and the sender machine SD.

} HEnd o f IF
STOP; once all jobs have been processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 0

PARTIAL RESCHEDULING (PR)

Another rule introduced in this dissertation is the Partial Rescheduling rule. The

rationale behind PR depends strongly on the concept of match up rescheduling. We recall

that the match up strategy refers to trying to bring back the initial schedule as fast as possible

once a perturbation occurs. Akturk and Gorgulu (1999) defined the match-up point as the

schedule’s point following a disruption, where the state reached by the revised schedule is

the same as that reached by the initial schedule, and the pre-schedule can be followed again.

It is advantageous to minimize the match-up point, i.e. the period of time where a new

schedule is used instead of the pre-schedule, in order to ensure schedule’s stability as the

resource planning was done according to the pre-schedule.

Consequently, the strategy of PR is to minimize the match-up time so the initial schedule can

be used for the execution. By coming back to the initial optimal schedule, the final

makespan will remain the same, i.e. the best possible makespan.

PR works as follows: first, once a disruption occurs, PR will generate a pool of jobs

for each machine (ResJobSj) that need to be rescheduled in order to match up with the

original schedule. The initial jobs included in the pool are the following:

• The down job Dj plus the value of the Match counter (Match) of succeeding jobs.

For example, if Match = 0, only the down job will be added, if Match = 2, then Ds

will be added plus the 2 jobs following it.

• For each of the up machines, the job that will start directly after the breakdown is

added plus the Match counter of succeeding jobs. If the up machine was processing a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

job when the breakdown occurred, it would continue processing that job as the

disruption did not hit its assigned machine, and the succeeding job is added to

ResJobSj.

Next, the earliest start ES* and latest finish LFi on each machine are calculated. For the down

machine D, the ES0 is the point where the repair finishes; and for the up machines, ES; is the

exact point in time when the job that was being processed during the breakdown finishes.

The LFi on machine i is the scheduled start Sik of the job in the k1*1 position on machine i,

where k in this case refers to the job right after the last one added to ResJobs;. Following

this, the span on each machine (SpanO is calculated, where Span* is the time on machine i

necessary to reschedule the jobs and is computed as Span; = LF; - ES;. Now that we know

the jobs that need to be rescheduled on each machine (ResJobsO and the minimum match-up

time on each machine (Span;), we will try to optimally solve for the number of jobs that will

be shifted from one machine to another. The following MIP is used:

m JobsNo

Min 0 = 2 2 ^ 0 , - X ,
i= l j= l

m

Subject to: = 1, for j = 1 ,..., JobsNo, (Cl)
i= l

JobsN o

*Pjj < Span^ for i = 1 ,..., m, (C2)
j= i

X s € {0,l}, (i= l , . . . ,m ;j = l„..JobsN o), (C3)

where,

G: objective function

Pij: processing time of job j on machine i.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 2

Xy: binary decision variables = 1, if job j is assigned to machine i, 0 otherwise.

XOjj: initial job machine assignment.

The objective is to minimize the total (XOij - Xij); i.e. the number of jobs that will change

their position or shift from one machine to another. Constraints (1) ensure that all the jobs

will be assigned and each job will be assigned to only one machine. Constraints (2)

guarantee that the completion time of jobs on each machine does not exceed the Span.

The disadvantage of the above MIP is that it is non linear as the objective function contains

an absolute value. In order to change the optimization to a linear one, G is modified as

follows:

Let X’ij = XOij - Xij, and let Yij > |X’ij|, then G is replaced by:

m JobsNo

° ’ = Z 5 X
i=i j=i

fX'ij-Yy < 0 fXOjj -X ; - Y{j < 0
As X’ij < Yij => \ J J J J J

I - x 'ij -Y ij - 0 l - X O ^ X j - Y ^ O

In summary, the MIP that will minimize the number of shifted jobs is described below

(referred to as MIP [2]):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

m JobsN o

MinG’ = £ £ (Y s)
i=l j=l

m
Subject to: X Xij = ^ f°r J = 1, • JobsNo, (Cl)

i=l

JobsNo

Z x ij *Pij ^Span;, f° ri = h (C2)
j=i

Xy e {0,l}, (i = 1,...,m; j = 1,...,JobsNo), (C3)

X O y-X y-Y y^O (C4)

-X O y + X y -Y y ^ O (C5)

where,

G’: new objective function

Constraints (4) and (5) replace the absolute value in order for the model to be linear.

MIP [2] was implemented in Lingo 9.0 from Lindo Systems. The schedule execution was in

fact done in Microsoft Visual C++ 6.0 running on Windows XP with a Pentium 4 processor,

and whenever PR needs to minimize the number of shifted jobs, it sends the necessary

information to Lingo where it gets solved optimally (if it is possible) and the new job

locations are sent back to the C++ program to continue executing the schedule.

In the case where no feasible solution can be found, i.e. MIP [2] cannot fit the jobs within the

Span time allocated for each machine, Match is increased by 1 (one job is added from each

machine to the pool ResJobsO, then MIP [2] is run again.

Match will keep on increasing until a solution is found or no more jobs can be added to the

pool. In the latter case, complete rescheduling will take place with the objective of

minimizing both Cmax Difference and Shifted Jobs. This becomes a bicriteria optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 4

problem and two approaches exist in the literature to deal with such problems (Alagoz and

Azizoglu. 2003): the hierarchical approach, i.e. minimizing the less important measure

0Shifted Jobs) subject to the constraint that the more important measure (Cmax Difference) is

kept at its optimum, and the simultaneous approach, i.e. generation of efficient schedules or

optimization of a weighted combination of the two performance measures. Since we assume

in this research that Cmax Difference is more important than Shifted Jobs, the hierarchical

approach will be used in PR and CR.

Complete rescheduling works as follows: all the unprocessed jobs along with Dj are

added to the pool ResJobs, then they are solved optimally using a MIP in order to minimize

the makespan. In other words, as it is impossible to match up with the initial schedule, a new

schedule will be generated for the remaining jobs that will reduce the makespan as much as

possible. The MIP is described as follows (referred to as MIP [3]):

Min L

m
Subject to: ô rj = •••> J°bsNo, (Cl)

i= l

JobsN o

£ (X S *Pij) +ES; <L , fori = 1, ...,m , (C2)
j= i

XyejOd}, (i= l , . . . ,m ;j = l , . .„ JobsNo), (C3)

where,

L: makespan CmaxR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 5

MIP [3] reshuffles the jobs in order to obtain the smallest CmaxR possible. However, as the

number of shifted jobs is also a stability performance measure, we will attempt to reduce it.

In fact, there could be several possible solutions for the same CmaxR, and for this reason, an

addition to MIP [3] is the following MIP [4], which will try to reduce Shifted Jobs while

maintaining the same CmaxR. There is no guarantee that MIP [4] will be able to minimize

Shifted Jobs because it is constrained by an optimal CmaxR.

m JobsNo

M i n f f - 2 £(Y t)
i= l j= l

m

Subject to: = ^ ô rJ = •’ J°bsNo, (1)
i= l

JobsNo

^ (X jj *Pij) + ES; < L, for i = 1 ,..., m, (2)
j= i

X(j e {0,l}, (i = l,...,m ; j = 1,...,JobsNo), (3)

X O j j <0 (4)

-X O , + X a <0 (5)

where,

L: CmaxR obtained from MIP [3]

Following this, the above two MIPs guarantee an optimal CmaxR while minimizing Shifted

Jobs whenever possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 6

The PR algorithm is described as follows:

Let tempS, tempF, tempJP be temporary arrays equal respectively to S, F, and JP;
Let an integer variable Match = 0, and an integer variable array ResJobsi = 0;
ProcJobs[][] is a double array used to send the jobs’ processing time to Lingo.

Step 1: Determine on each machine the jobs’ locations (Jj) following a breakdown; also
determine the ESi on each machine.
P.S.: In the case of D, ESz> = RF/>

Step 2: Determine the number of jobs to be added to the rescheduling pool from each
machine: Match = Match + Mlncrease;

If (Match + Ji < Ni) for any i = 1 ,..., m. //we can still match with the preschedule
{

LF; = S; J +Match, (i — 1 ,..., m)
Span; = LFj - ESj; (i= l , . . . ,m)
JobsNo = JobsNo +1;
ResJobs[JobsNo] = JP[i][J; + j -1]; > (i = l,...,m; j = 1,...,Match)
XO[i] [JobsNo] = 1;
ProcJobs[i][j] = p[i][ResJobs[j]]; (i = l,...,m ; j = l,...,JobsNo)

Solve to optimality using MIP [2];
If (optimal solution is found)

Update job-machine assignment and continue schedule execution;

Else
Go back to Step 2;

}
Else //We ran out o f jobs and still cannot match, i.e. start complete rescheduling
{

JobsNo = JobsNo +1;
ResJobs[JobsNo] = JP[i][j]; > (i= l,...,m ;j = Ji,...,Ni)
XO[i] [JobsNo] = 1;
ProcJobs[i][j] =p[i][ResJobs[j]]; (i = l,...,m ; j = l,...,JobsNo)

Solve to optimality using MIP [3];
Try to reduce number of shifted jobs using MIP [4];
Update job-machine assignment and continue schedule execution;

}

STOP; once all jobs have been processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 7

PR Design of Experiments

After describing the PR algorithm, one important question arises. Every time PR

attempts to reschedule the Job Pool and fails to match with the initial schedule, the Job Pool

is increased by Mlncrease = 1 for each machine. But what if Mlncrease was larger than 1,

i.e. what if every time PR attempts to match, the Job Pool is increased by more than 1 job? It

is important to note however that the larger Mlncrease, the more PR approaches the

Complete Rescheduling (CR), as the time to match up is being increased.

It is not reasonable to determine the appropriate Mlncrease value by running replications of

the same problem design (e.g. 4 machines and 20 jobs), as a single problem design is not

sufficient to guarantee the best Mlncrease for all problem combinations. Therefore, Design

of Experiments (DoE) was used to determine the appropriate levels (parameters) of

Mlncrease that will contribute to better objective function values in the various problem

configurations. Numerous publications provide a good review of DoE (e.g., Fisher, 1960;

Taguchi, 1993; NIST/SEMATECH e-Handbook of Statistical Methods, 2006).

DoE Factors

The factors considered for the experiments along with their levels are shown in Table

11. Three levels were considered because non-linearity was suspected.

As can be seen, four factors are to be studied at three levels. Three-factor interactions (and

above) are not considered as they are known to have usually weak effects (Ross, 1996);

however, all 2nd degree interactions will be considered. Quadratic terms are to be analyzed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as well. If we want to conduct a full factorial experimental design for four factors, we will

need 3k experiments, where 3 refers to the 3 levels that we want to analyze, and k refers to

the number of main factors; this is a total of 34 = 81 experiments. As it can be observed, this

is a large number o f trials given that for each experiment setting we will run 15 instances.

Through a D-Optimal Design, we will be able to reduce this number dramatically.

Table 11. Pi? Design of Experiments Factors

________Factor_________Abbreviation_____Value_______ Setting_______ Level

[1,50] Low -1
Processing time Range A [1, 100] Medium 0

[1, 150] High 1

20 Low -1
Number of Jobs B 60 Medium 0

100 High 1

2 Low -1
Number of Machines C 5 Medium 0

8 High 1

1 Low -1
Mlncrease D 4 Medium 0

7 High 1

D-optimal designs are typically generated by a computer algorithm and they are mainly

useful when classical designs do not apply (NIST/SEMATECH, 2006). In the case of the PR

Experimental Design, a D-Optimal design was generated because of the large number of

experiments required by a classical one.

JMP 6.0 from SAS was used to generate the D-Optimal design, and the following Design

Diagnostics were reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Table 12. PR D-Optimal Design Diagnostics

D Efficiency 76.40377
G Efficiency 100
A Efficiency 48.2308
Average Variance of Prediction 2.073364

The D-Optimal Design is presented in Table 13 and as can be seen, through DoE, we were

able to reduce the number of experiments from 81 to 33 experiments.

For each of the 33 experiments, 15 replicates were run. The total number of replicates is 15

x 33 = 495. The following four performance measures are reported: CPU, Cmax Difference,

Shifted Jobs, and Match-up Time. Moreover, the minimum and maximum values of each

performance measure are included to indicate the variability in the results. The results for the

33 experiments are shown in Table 14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13. PR D-Optimal Design

Run AB AC AD BC BD CD AA BB CC DD

20

22
23
24
25
26
27

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Table 14. PR Rule's D-Optimal Design Results

Avg. Cmax Difference
(min)

Avg. CPU Time
(sec)

Avg. # Shifted
Jo b s

Avg. Match-up Time
(min)

Run Min Avg Max Min Avg Max. Min Avg Max Min Avg Max
1 7.92 49.34 99.25 1.53 3.43 6.1 2 11.45 26 476.88 1115.24 2342.01
2 -11.28 28.05 80.34 2.59 21.03 52.55 3 44.3 82 286.42 1483.28 2571.76
3 -7.52 15.4 39.13 0 1.67 5 0 5.15 22 0 149.83 592.45
4 -0.83 5.1 13.93 0 2.57 7.86 0 6.6 20 0 66.9 192.86
5 3.7 14.02 26.02 10.92 25.22 48.48 15 36.93 61 334.74 805.4 1364.02
6 -14.75 18.97 47.53 0 2.3864 6.36 0 6.8 25 0 235.52 667.75
7 -2.19 33.48 102.2 1.44 31.84 94.61 0 43.35 124 321.09 1798.54 3472.56
8 40.59 158.56 305.6 3 13.73 34.72 0 12.6 29 876.28 3149.75 7648.29
9 -1.62 6.66 18.21 47.89 348.27 1778 25 68.4 156 329.87 599.824 1090.04
10 423.24 795.34 1405 38.59 75.87 145.8 65 264.8 518 33324 70605.1 135537
11 -8.14 14.24 46.15 2.73 21.4 53.36 4 26.13 48 143.74 580.92 1235.36
12 40.6 157.67 268.5 1.56 3.83 7.2 2 12.47 26 876.29 3952.06 8780.64
13 0 5.1 13.93 0.02 4.09 12.56 0 6.6 20 0 66.9 192.86
14 -4.3 10.23 34.47 1.28 47.75 276.2 0 22.8 62 24 350.1 730.28
15 -13.88 45.77 145 6.84 50 109.7 38 85.8 162 2363.6 5217.4 7944.14
16 -6.18 32.74 52.77 9.56 55.84 118.4 34 100.6 169 1607.2 3271.71 5056.64
17 -15.05 22.5 67.27 0.015 3.58 6.98 0 5.47 16 0 357.23 812.56
18 -3.98 5.12 20.39 0.45 2.5 7.22 0 6.13 14 30.98 115.88 302.1
19 351.04 514.93 711.2 53.67 179.7 281.8 313 742.1 1630 16838 41192.1 54648.6
20 -12.25 33.78 95.94 7.59 73.07 212.4 9 120.5 277 609.81 2534.72 5898.8
21 -10.03 16 67.14 3.12 118.03 525.7 15 71.87 137 391.88 1421.09 2597.84
22 2.54 19.57 43.94 1.97 51.37 151.3 3 154.2 389 119.45 1365.81 3214.89
23 -2.65 7.49 19.07 11.23 57.02 274.1 17 34.13 59 84.1 267.06 537.57
24 -13.86 13.93 77.35 7.67 323.74 1313 25 79.6 143 731.07 1916.14 3140.31
25 76.1 245.33 362 9.39 15.91 23.3 17 80.6 237 9973.8 15828 22576.3
26 81.11 257.18 396.3 50.14 117.42 189.7 158 341.1 772 7532.4 22474.2 37705
27 -15.05 21.87 67.27 0.016 2.14 4.11 0 4.73 16 0 343.99 812.56
28 -0.41 15.43 40.92 47.16 257.91 818.2 20 68.87 130 553.69 1105.62 2008.1
29 -2.4 10,8 29.63 0.015 1.81 5.52 0 5.53 12 0 92.15 208.19
30 63.38 91.4 128.5 2.23 4.08 5.89 6 12.67 28 1268 2264.08 3350.87
31 206.12 444.88 800 25.15 41.03 74.44 46 123.3 246 14606 24419.3 42333.3
32 -2.4 10.8 29.63 0 2.96 8.14 0 5.53 12 0 92.15 208.19
33 64.69 145.67 218.4 31.56 75.87 128.9 41 161.5 295 3225.8 6789.81 12862.5

To be able to determine the significance of the factors and their interactions,

statistical analyses are carried out for each performance measure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Cmax Difference Analysis

Table 15. Cmax Difference Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

Multiple R 0.94673398
R Square 0.89630524
Adjusted R Square 0.81565375
Standard Error 75.5293918
Observations 33

The regression statistics reported in Table 15 indicate a Multiple R = 0.947; this is a

very good value, indicating the success of the regression in predicting the values of the

dependent variable Cmax Difference within the sample. However, the smaller R Square

(0.896) indicates that not all the factors have significant effects.

Table 16. Cmax Difference ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 14 887572 63398 11.11331372 3.86E-06
Residual 18 102684.4 5704.689
Total 32 990256.4

Based on the p-value listed for the whole model (Table 16), one can conclude the

model is significant since the p-value is very small. This means that at least some of the

factors used in the experiment, and/or their interactions have significant influence on Cmax

Difference. To determine which factors and interactions are the most significant, further

analysis is needed. Table 17 summarizes the effect test for all factors and their interactions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Table 17. Cmax Difference Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d E r r o r t S t a t P - v a l u e

A 61.1911609 17.45448 3.505757 0 . 0 0 2 5 2 4 2 5

B 78.7776971 16.81677 4.684473 0 . 0 0 0 1 8 4 6 2 7

C -146.602623 17.45448 -8.39914 1 . 2 1 6 7 E - 0 7

D 13.4694165 17.26671 0.78008 0.445481078
AB 29.6004878 20.96409 1.411961 0.175015829
A C -63.8021371 20.8407 -3.06142 0 . 0 0 6 7 2 2 8 2 4

AD -12.1847602 20.70825 -0.5884 0.563574026
B C -108.049782 20.96409 -5.15404 6 . 6 5 9 9 5 E - 0 5

BD 3.5314943 20.41114 0.173018 0.864567999
CD -5.10584124 20.70825 -0.24656 0.808038158
AA 9.04774589 28.5484 0.316927 0.754945662
BB 2.1285494 29.70274 0.071662 0.943661359
CC 125.306665 28.5484 4.389271 0 . 0 0 0 3 5 3 7 6

DD -2.89895209 29.12558 -0.09953 0.921815345

At significance level of 5% (i.e. 95% Confidence Interval), the significant factors

and/or interactions are bolded. These factors were determined to be significant due to a

relatively large t-Stat and a small p-value (less than 0.05). One can conclude that choosing

any value for Mlncrease (Factor D) within the limits addressed in this experiment does not

affect the Cmax Difference.

CPU Time Analysis

From Tables 18 and 19, and based on the R-squared and p-value listed for the whole

model, one can conclude that the model is significant since the p-value is very small. This

means that at least some of the factors used in the experiment, and/or their interactions have

significant influence on CPU. Following this, the effect test for all factors and their

interactions is summarized in Table 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Table 18. CPU Regression Statistics fox PR rule

R e g r e s s i o n S t a t i s t i c s

Multiple R 0.898498
R Square 0.807298
Adjusted R Square 0.657418
Standard Error 52.99221
Observations 33

Table 19. CPU ANOVA Results for Pi? rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p v a l u e)

Regression 14 211759.8 15125.7 5.386311 0.000588939
Residual 18 50547.13 2808.174
Total 32 262306.9

Table 20. Factors and Interactions Effect test for PR rule

C o e f f i c i e n t s S t a n d a r d E r r o r t S t a t P - v a l u e

A -9.07562 12.24624 -0.74109 0.468195
B 71.19263 11.79882 6.033877 1 . 0 5 E - 0 5

C 20.33954 12.24624 1.66088 0.114056
D 3.56697 12.1145 0.294438 0.771792

AB -5.41185 14.70862 -0.36794 0.717211
AC 1.379783 14.62205 0.094363 0.925863
AD -14.5722 14.52912 -1.00296 0.329172
B C 33.16255 14.70862 2.254633 0 . 0 3 6 8 5 1

BD 15.63612 14.32067 1.091857 0.289295
CD 24.62712 14.52912 1.695018 0.107302
AA -0.90818 20.02985 -0.04534 0.964334
BB 39.31008 20.83975 1.886303 0.075495
CC 55.06732 20.02985 2.749262 0 . 0 1 3 1 9 3

DD -13.0209 20.43481 -0.63719 0.532021

At significance level of 5% (i.e. 95% Confidence Interval), the only significant factor with a

small p-value in the model is Number o f Jobs (Factor B). One can conclude that choosing

any value for Mlncrease (Factor D) within the limits addressed in this experiment does not

affect the CPU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 5

Shifted Jobs Analysis

From Tables 21 and 22, and based on the R-squared and p-value listed for the whole

model, one can conclude that the model is significant since the p-value is very small. This

means that at least some of the factors used in the experiment, and/or their interactions have

significant influence on Shifted Jobs.

Table 21. Shifted Jobs R-Square for PR rule

R e g r e s s i o n S t a t i s t i c s

Multiple R 0.911723
R Square 0.831239
Adjusted R Square 0.69998
Standard Error 77.29007
Observations 33

Table 22. Shifted Jobs ANOVA Results for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 14 529631.4 37830.81 6.332837 0.000207857
Residual 18 107527.6 5973.754
Total 32 637159

The effect test for all factors and their interactions is summarized in Table 23. At

significance level of 5% (i.e. 95% Confidence Interval), the significant factors with a small

p-value in the model are Number o f Jobs (Factor B) and Number o f Machines (Factor C)

along with their interaction and the interaction between Number o f Machines and Mlncrease.

We then solved for the significant factors/interactions’ levels of the regression model in

Excel Solver with the objective of minimizing Shifted Jobs', i.e. solver determined the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 6

optimal combination of level settings of the factors that minimizes Shifted Jobs. Mlncrease

was determined to be at level (-1); i.e. Mlncrease = 1 job will minimize Shifted Jobs.

Table 23. Factors and Interactions' Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d E r r o r t S t a t P - v a l u e

A 6.939794 17.86136 0.388537 0.702176
B 94.18346 17.20879 5.472987 3 . 3 7 E - 0 5

C -80.2806 17.86136 -4.49465 0 . 0 0 0 2 8

D -25.337 17.66922 -1.43396 0.168727
AB 1.32434 21.45279 0.061733 0.951456
AC 2.377129 21.32652 0.111464 0.912482
AD -10.0374 21.19098 -0.47366 0.641434
S C -92.7491 21.45279 -4.3234 0 . 0 0 0 4 0 9

BD -35.2147 20.88695 -1.68597 0.109058
CD 47.5911 21.19098 2.245819 0 . 0 3 7 5 0 9

AA -20.6108 29.21389 -0.70551 0.489521
BB 45.12646 30.39514 1.48466 0.154936
CC 72.5657 29.21389 2.483945 0 . 0 2 3 0 6 4

DD 10.65194 29.80453 0.357393 0.724953

Match-up Time Analysis

From Tables 24 and 25, and based on the R-squared and p-value listed for the whole

model, one can conclude that the model is significant since the p-value is very small. This

means that at least some of the factors used in the experiment, and/or their interactions have

significant influence on Match-up Time.

Table 24. Match-up Time Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

Multiple R 0.9274572
R Square 0.8601768
Adjusted R Square 0.7514254
Standard Error 7245.4466
Observations 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Table 25. Match-up Time ANOVA Results for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 14 5.81 E+09 4.15E+08 7.909569547 4.58E-05
Residual 18 9.45E+08 52496496
Total 32 6.76E+09

Table 26 summarizes the effect test for all factors and their interactions. At significance

level o f 5% (i.e. 95% Confidence Interval), the significant factors/interactions with a small p-

value in the model are bolded. One can conclude that choosing any value for Mlncrease

(Factor D) within the limits addressed in this experiment does not affect the Match-up Time.

Table 26. Factors/Interactions' Effect Test for PR rule

C o e f f i c i e n t s S t a n d a r d E r r o r t S t a t P - v a l u e

A 4341.0824 1674.388 2.592639 0 . 0 1 8 3 8 1 5 4 3

B 8206.4979 1613.213 5.087051 7 . 6 9 2 7 8 E - 0 5

C -10536.5 1674.388 -6.29275 6 . 2 2 2 5 4 E - 0 6

D 1962.029 1656.376 1.184532 0.251608203
AB 3157.969 2011.061 1.5703 0.133757204
AC -4152.892 1999.224 -2.07725 0.052368414
AD -1223.242 1986.518 -0.61577 0.545753373
B C -10657.35 2011.061 -5.29937 4 . 8 7 9 2 2 E - 0 5

BD 1007.1609 1958.017 0.514378 0.613245508
CD -1109.795 1986.518 -0.55866 0.583275264
AA 819.73818 2738.614 0.299326 0.768120085
BB 1877.7087 2849.349 0.658996 0.51824076
C C 8261.9759 2738.614 3.016845 0 . 0 0 7 4 0 8 8 3 5

DD 53.695233 2793.983 0.019218 0.984878492

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 8

PR Experimental Design Conclusion

It can be concluded from the above statistical analyses that any value of Mlncrease

within the tested range can be used in PR without significantly affecting the performance

measures, except in the case of Shifted Jobs where Mlncrease = 1 will lead to a better

performance measure.

Following this, and as the larger Mlncrease the closer PR gets to CR, Mlncrease = 1 will be

used in PR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 9

COMPLETE RESCHEDULING (CR)

In the complete rescheduling rule, all remaining jobs after a breakdown occurrence

will be optimally rescheduled without trying to match up with the initial schedule; i.e. a new

optimal schedule is generated for the remaining unprocessed jobs. CR was embedded in PR

and used whenever the latter was not able to match up with the initial schedule. In the CR

approach, the unprocessed jobs along with Dj are added to the pool ResJobsj, then they are

solved optimally using MIP [3] in order to minimize the makespan. In other words, a new

schedule will be generated for the remaining jobs in order to reduce the makespan as much as

possible.

MIP [3] reshuffles the jobs in order to obtain the smallest CmaxR possible. However,

as the number of shifted jobs is also a stability performance measure (Shifted Jobs), we will

minimize it as well using MIP [4]. The latter attempts to reduce Shifted Jobs while

maintaining the same CmaxR reported by MIP [3]. As such, the above two MIPs guarantee

an optimal CmaxR while minimizing the number o f shifted jobs whenever possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN

Following the description of the repair rules, computational tests are undertaken to

prove superiority and dominance. However, there are several factors that could impact the

dominance of a rule over another. Therefore, the computational tests will follow an

experimental design (DoE) that will analyze 6 factors as shown in Table 27.

The studied factors are respectively Processing Time, Number o f Jobs, Number o f Machines, .

Repair Duration, Idle Time, and Breakdown. They are tested at 3 settings or levels as non-

linearity is suspected and to investigate a broader combination of problem settings. We

recall that the repair time follows a uniform distribution between PiE[Mi] and P2E[Mi],

where (Pi, P2) are set to (0.1,0.2), (0.1,0.5), and (0.1,1) respectively for levels -1, 0, and 1 in

the DoE. Furthermore, the idle time is calculated using CFJI insertion rule (Chapter 4), and

the different levels of Idle Time in Table 27 refer to the value computed by CFJI multiplied

by 80%, 100%, or 120%. Moreover, the time between breakdowns (TBBj) will follow an

exponential distribution with mean 0*E[Mj], where 6 is 1, 5, and 10 respectively for the

levels -1,0, and 1 in order to test different breakdown rates.

The factors presented in Table 27 are to be studied at three levels. Three-factor interactions

and above are assumed insignificant; however, all 2nd degree interactions will be considered.

Quadratic terms are to be analyzed as well. If we want to conduct full factorial DoE for six

factors, we will need 3k experiments, where 3 refers to the 3 levels that we want to analyze,

and k refers to the number of main factors; this is a total of 36 = 729 experiments for each of

the 4 rules. As it can be observed, this is a large number of trials given that each setting will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

be run for 50 replicates. Thus, a D-Optimal Design will be used again to reduce the number

of experiments.

Table 27. Factors analyzed in the Experimental Design of the Repair and Rescheduling rules

Factor__________ Abbreviation_____ Value_______ Setting_______ Level

[1,50] Low
Processing time Range A [1,100] Medium

[1,150] High

20 Low
Number of Jobs (n) B 60 Medium

100 High

2 Low
Number of Machines (m) C 5 Medium

8 High

(0.1,0.2) Low
Repair Duration (Pi, P2) D (0.1,0.5) Medium

(0.1, 1) High

80% Low
Idle Time (CFJI Levels) E 100% Medium

120% High

1 Low
Breakdown (0) F 5 Medium

10 High

JMP 6.0 from SAS was used to generate the D-Optimal design, and the following Design

Diagnostics were reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Table 28. Rules’ D-Optimal Design Diagnostics

D Efficiency
G Efficiency
A Efficiency

70.64045
100

39.79054
2.51316Average Variance of Prediction

The D-Optimal Design is presented in Table 29. As it can be seen, through DoE, we were

able to reduce the number of experiments from 729 to 73 experiments.

For each of the experiments in Table 29, 51 replicates were run. The total number of

replicates is 51 x 73 = 3723 for each of the 4 rules (i.e. a total of 14892 replicates for this

DoE). The following four performance measures are reported: CPU, Cmax Difference,

Shifted Jobs, and Matching Time. Moreover, the 95% Confidence Interval (Cl) attained from

running » 50 iterations of each rule was also included. This Cl was determined using

Equation 5 that was described by Law and Kelton (2000) using the t distribution:

As 51 iterations were run for each problem setting (i.e. n = 51), then the confidence intervals

will be:

The performance measures’ averages along with the confidence intervals for the RSR,

FJR, PR, and CR are presented respectively in Tables 30, 31, 32, and 33.

(5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Table 29. D-Optimal Design for the Rules' Experiments

Run 1 F | AB AC AD AE AF BC BD BE BF CD &E CF DE DF EF
-1 -1
0 0

B C D AA BB CC DO EE FF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

70
71
72
73

-1 -1
0 -1

0
-1
0
0
1
0
1
-1
1
0
-1
1
0
0
1
-1
-1
-1
1

-1
-1
0
0
0
0
0
1
0
0
-1
0
1
1
1
1
-1
0
1
1
0
0
-1
1
1

0
1
0
0
0
0
0
-1
1
0
0
-1
-1
0
1
1

-1
0
-1 -1

-1 -1

-1 -1
-1 -1
-1 0

1
0
0
-1
0
0
0
0
1
-1
-1
0
-1
1
0
0
1
0
0
-1
1
0
1
0
0
0
0
0
0
0
0
-1
0
1
-1
-1
0
1
0
-1
0
0
0
1
1
-1
0
0
0
0
0
1
1

-1
0
0
1
0
1
-1
0
0
0
-1
1
1
0
0
0
0
1

-1
1

-1
0
-1
-1
1
0
0
-1
1
-1
0
0
0
-1
-1
1
0
0
0
1
1
0
0
1
-1
0
0
0
0
0
1
-1
0
-1
-1
0
0
0
1
1
0
0
0
-1
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
-1
0
0
0
1
-1
0
1
0
-1
0
-1
1
1

-1
0
-1
-1
0
0
0
1
1
0
1
0
1
1
-1
0
-1
0
0
0
1
0
1
-1
0
0
0
0
0
1
0
1
0
0
-1
0
0
1
1
-1
0
0
0
-1
0
1
0
-1
0
0
0
1
1
1
0
0
0
-1
0
1
1
0
0
-1
0
0
1
0
1
-1
-1
1
0

-1 -1

-1 -1
-1 1

0 0
-1 -1

0
0
0
-1
0
-1
0
-1
-1
0
0
-1
0
0
0
1
1
1
0
1
0
0
-1
1
-1
0
-1
1
0
-1
0
0
0
0
0
0
-1
0
0
-1
1
0
0
-1
0
0
1
0
-1
1
1
1
1
0
0
0
0
1
0
1
0
0
0
0
0
-1
1
0
1
0
-1 -1
0 -1

0
1
0
-1
0
0
1
0
1
0
0
0
1
0
0
0
-1
-1
-1
1
0
1
-1
0
0
0
0
0
0
0
0
0
0
1
-1
0
-1
0
0
1
-1
0
0
1
0
-1
1
0
1
1
0
-1
1
0
1
0
1
0
0
1
0
0
-1
1
0
-1
0
0
0
0
-1
0
0

0
1
0
-1
0
-1
-1
-1
1
0
0
0
0
0
1
1
0
1
0
-1
0
-1
0
-1
1
0
1
0
0
0
-1
0
1
-1
-1
0
0
0
0
-1
-1
0
0
-1
0
0
1
0
0
1
0
-1
0
0
0
0
1
0
0
1
0
0
1
-1
0
0
1
0
-1
0
1
0
0

1 1 1 1 1 0
0 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 1
1 0 1 0 0
0 1 0 1 1 1
0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
1 1 1 1 0 0
1 1 1 0 1 0
1 1 0 0 0 1
1 1 0 1 1
1 1 1 1 1 0
1 0 1 1 1
1 1 0 1 0 1
1 1 1 0 1 1
0 1 1 1 1 1
0 1 0 0 1
1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1
1 1 1 0 1 1
1 1 0 1 1 1
1 1 0 1 0 1
0 0 1 1 0
0 1 0 1 0 1
0 1 0 0 1 1
0 0 1 0 1 0
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1 0

0 1 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 1 0 0 0

1 1 0 1 1
1 0 1 0 1 0
1 0 1 1 0
1 1 1 1 1 1
0 1 1 1 1 1
0 0 0 1 1
0 1 0 0 0
1 1 1 1 1 1
1 1 1 1 0 0
1 0 1 0 1 1
0 1 1 1 1 1
1 1 1 1 0
0 1 1 0 1 1
0 1 1 1 0 1
1 1 0 0 1
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 1 1
1 0 1 0 0 0
1 1 1 1 1 1
1 1 0 1 0
0 1 1 1 1 0
0 0 1 1 0 1
1 0 1 1 1 1
1 1 1 1 0 0
1 1 1 0 0 1
1 1 0 1 1 1
0 1 0 1 1 0
1 1 0 1 1 1
1 0 0 0 1 1
1 1 1 1 1 1
1 0 1 1 1 0
1 1 1 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Table 30. Right Shift Rule Computational Results (Average Numbers)

R S R

Run Cm ax Cmax
95% a

CPU
(sec)

CPU
95% Cl Match

Match
95% Cl

Shifted
Jobs

S. Jobs
95% a

1 17.57 [9.4-25.7] 0.02 [0.017-0.02] 139.69 [87.69-191.7] 0 0
2 642.81 [557.3-728.3] 0.22 [0.2-0.24] 19503.9 [17461.1-21546.7] 0 0
3 39.28 [24.9-53.6] 0.64 [0.4-0.8] 1018.53 [712.3-1324.7] 0 0
4 27.93 [12.7-43.2] 0.66 [0.5-0.8] 353.91 [176.8-531] 0 0
5 7.29 [4.2-10.3] 0.37 [0.2-0.5] 112.69 [67.2-158.1] 0 0
6 2.52 [0-5.04] 0.15 [0.1-0.2] 3.66 [0-7.32] 0 0
7 4.29 [1.1-7.5] 0.61 [0.2-1] 19.15 [0-45.3] 0 0
8 18.91 [3.7-34.1] 3.49 [2.5-45] 187.11 [0-375] 0 0
9 5.99 [0.2-11.8] 0.02 [0.01-0.03] 5.53 [0-11.551 0 0
10 256.39 [195.8-317] 0.099 [0.07-0.1] 10550.7 [7969.7-13131.8] 0 0
11 7.97 [5.6-10.3] 1.83 [1.3-2.4] 79.4 [57.6-101.2] 0 0
12 6.49 [0-13.04] 0.01 [0-0.01] 13.56 10-27] 0 0
13 680.8 [546.1-815.5] 0.211 [0.2-0.24] 14064.9 [11279.6-16850.2] 0 0
14 7.1 [1.2-13] 0.02 [0.01-0.02] 9.74 [0-21] 0 0
15 6.51 [3.6-9.4] 0.02 [0.01-0.03] 66.57 [37.5-95.6J 0 0
16 16.65 [8.6-24.7] 0.055 [0.04-0.07] 323.23 [171.4-475.1] 0 0
17 34.17 [19.5-48.8] 0.17 [0.1-0.2] 57.61 [0-132.3] 0 0
18 45.94 [28.1-63.8] 1.71 [1.1-2.3] 1019.03 [552.9-1485.1] 0 0
19 37.24 [25.2-49.2] 3.03 [2.5-3.5] 978.62 [716.1-1241.2] 0 0
20 259.69 [191.9-327.5] 0.08 [0.07-0.09] 2101.25 [1612.5-2590] 0 0
21 10.97 [5.9-16] 0.78 [0.2-1.3] 163.56 [88.2-238.9] 0 0
22 370.08 [272.3-467.9] 0.21 [0.17-0.25] 4739.92 [2250.2-7229.6] 0 0
23 14.97 [9.7-20.2] 0.014 [0.01-0.01] 82.91 [42.2-123.6] 0 0
24 50.07 [34.7-65.4] 1.74 [1.3-2.1] 201.18 [89.9-312.5] 0 0
25 2.59 [1.2-4] 0.58 [0.4-0.7] 6.13 [0.1-12.1] 0 0
26 18.37 [11.6-25.1] 0.83 [0.6-1.1] 232.22 [130.3-334.2] 0 0
27 106.35 [86.9-125.7] 4.56 [36-5.5] 2449.61 [1977.2-2922] 0 0
28 43.28 [30.8-55.7] 0.06 [0.03-0.09] 257.3 [187.1-327.5] 0 0
29 9.11 [5.6-12.6] 0.16 [0.1-0.2] 75.76 [42.9-108.6] 0 0
30 54.04 [33.3-74.7] 3.39 [2.44.4] 683.33 [245.3-1121.3] 0 0
31 60.69 [35.3-86] 0.49 [0.4-0.6] 632.38 [293.2-971.6] 0 0
32 121.44 [95.7-147.2] 0.08 [0.07-0.1] 3288 [2596-3979.9] 0 0
33 45.83 [24.6-67.1] 0.76 [0.6-0.9] 532.64 [304.9-760.4] 0 0
34 4.23 [0-8.5] 0.22 [0.1-0.3] 32.85 [0-69.6] 0 0
36 5.62 [1.9-9.3] 1.06 [0.8-1.3] 16.5 [0-39.4] 0 0
36 1.02 [0-2.3] 0.014 [0.01-0.02] 0.5 [0-1.5] 0 0
37 28.68 [13.9-43.4] 6.5 [4-9.1] 275.37 [120.7-430] 0 0
38 49.19 [33.4-64.9] 0.07 [0.06-0.08] 1089.29 [746.33-1432.2] 0 0
39 12.77 [6.9-18.6] 0.025 [0.02-0.03] 203.15 [86.5-319.7] 0 0
40 2.51 [0.14-4.9] 0.01 [0-0.01] 0.56 [0-5.14] 0 0
41 35.05 [18.5-51.6] 0.03 [0.03-0.04] 95.16 [42.9-147.4] 0 0
42 15.36 [8.6-22.1] 0.02 [0.016-0.02] 146.34 [93.9-198.7] 0 0
43 25 [14.4-35.6] 0.05 [0.04-0.06] 510.02 [315.5-704.5] 0 0
44 268.34 [171.6-365] 0.36 [0.3-0.4] 5586.18 [3157.1-8015.3] 0 0
45 19.76 [3.6-35.9] 0.016 [0.012-0.02] 21 [16.5-25.5] 0 0
46 13.26 [8.6-17.9] 0.06 [0.05-0.07] 101.16 [60.7-141.6] 0 0
47 266.05 [206.8-325.3] 0.1 [0.08-0.1] 2844.79 [2117.7-3571.9] 0 0
48 13.65 [8.7-18.6] 0 42 [0.2-0.7] 241.6 [170.1-313] 0 0
49 1041.83 [920.4-1163.2] 0.43 [0.4-0.5] 43751.8 [38410.8-49092.7] 0 0
50 10.62 [6.5-14.7] 1.41 [0.7-2.1] 90.52 [58.3-122.7] 0 0
51 9.4 [6.3-12.4] 0.09 [0.06-0.1] 193.66 [131.5-255.8] 0 0
52 39.36 [30.2-48.5] 0.05 [0.045-0.06] 1665.08 [1291.8-2038.4] 0 0
53 12.98 [7.9-18.1] 5.02 [4.3-57] 154.54 [95.79-213.3] 0 0
54 51.34 [35.6-67.1] 0.02 [0.01-0.02] 429.84 [290.2-569.4] 0 0
55 6.12 [2.8-94] 0.73 [0.5-1] 32.11 [14.1-50.1] 0 0
56 16.92 [11.8-22] 0.63 [0.5-0.8] 230.78 [169-292.5] 0 0
57 292.83 [262.5-323.1] 2.07 [1.9-2.2] 8964.24 [7960.6-9967.8] 0 0
58 20.16 [13-27.3] 1.25 [0.9-1.6] 99.01 [45.1-152.9] 0 0
59 10.41 [5.8-15] 1.31 [0.4-2.2] 90.11 [51.8-128.4] 0 0
60 5.03 [26-7.4] 0.26 [0.2-0.4] 61.77 [40.1-83.4] 0 0
61 6.72 [3.5-9.95] 0.15 [0.09-0.2] 20.78 [10.3-31.3] 0 0
62 32.37 [17.9-46.8] 041 [0.2-0.6] 271.76 [129.1-414.4] 0 0
63 27.39 [18.1-36.7] 3.25 [2.54] 324.81 [237.3-412.3] 0 0
64 949.77 [806.9-1092.7] 2.5 [1.54] 16425 [13041.2-19808.9] 0 0
65 53.84 [38.2-69.4] 2.36 [1.3-3.6] 1461.08 [1052-1870.1] 0 0
66 36.6 [16.6-56.6] 6.47 [54-7.5] 364.87 [112.9-616.8] 0 0
67 16.7 [12.7-20.7] 1.66 [1.2-2.1] 104.48 [72.1-136.9] 0 0
68 9.51 [3.2-15.8] 0.54 [0.3-0.8] 8.71 [0-23.9] 0 0
69 21.34 [13.8-28.9] 0.17 [0.1 -0.2] 560.38 [384.7-736.1] 0 0
70 23.1 [12.8-33.4] 0.74 [0.5-1] 262.2 [178.4-346] 0 0
71 77 [48.8-105.2] 4.45 [3.1-5.8] 1190 [936.5-1443.5] 0 0
72 5.38 [3.4-73] 0.3 [0.2-0.4] 39.17 [24.5-53.8] 0 0
73 19.6 [13.4-25.81 0.27 ro.2-0.31 203.75 (140.6-266.91 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 31. Fit Job Repair Computational Tests (Average Numbers)

F JR

Run Cmax Cmax
95% Cl

CPU
(sec)

CPU
95% Cl Match Match

95% Cl
Shifted
Jobs

S. Jobs
95% C l

1 9.96 [5-14.9] 0.05 [0.04-0.06] 121.31 [64.9-177.7] 0.44 [0.2-0.7]
2 311.97 [284.1-339.8] 22.8 [15.1-30.5] 9688.87 [8768.6-10609.1] 5.78 [4.8-6.7]
3 26.79 [14.9-38.7] 6.2 [4.8-7.6] 572.7 [375-770.4] 0.75 [0.2-1.3]
4 23.4 [7.8-39] 0.59 [0.37-0.8] 256.28 [140.8-371.8] 0.05 [0-0.15]
5 5.32 [2.4-8.3] 1.78 [1.2-2.4] 79.82 [51.1-108.5] 0.2 [0-0.4]
6 2.14 [0-5.05] 2.5 [1.3-3.7] 7.62 [0-15.4] 0.05 [0-0.15]
7 2.09 [0-4.4] 1.51 [0.8-2.2] 15.55 [3.4-27.7] 0.2 [0-0.4]
8 6.29 [1.5-11.1] 1.42 [1.2-1.6] 448.81 [302.3-595.3] 7.05 [5.1-8.9]
9 5.43 [1.95-8.9] 0.02 [0.01-0.021] 11.73 [5.2-18.2] 0.08 [0-0.16]
10 163.16 [138.4-187.9] 0.77 [0.7-0.8] 5092.67 [4359-5826.3] 1.52 [1.1-1.9]
11 6.64 [4.5-8.7] 0.4 [0.22-0.6] 77.99 [57.9-98.1] 0.6 [0.3-0.9]
12 6.24 [1.1-11.4] 2.14 [1.4-2.8] 22.04 [9.5-34.6] 0.1 [0-0.2]
13 289.88 [248.2-331.5] 19.24 [5.8-32.7] 9037.92 [7594.9-10480.9] 8.68 [7.7-9.7]
14 3.76 [0.5-7] 0.024 [0.02-0.03] 16.12 [5.3-26.9] 0.24 [0.1-0.4]
15 3.57 [1.9-5.1] 11.57 [8.8-14.3] 35.3 [21.3-49.3] 0.38 [0.2-0.6]
16 18.86 [11.6-26.1] 0.65 [0.3-0.9] 269.81 [186.4-353.2] 0.72 [0.4-1]
17 8.59 [5-12.2] 6.41 [5-7.8] 109.04 [85.4-132.7] 1.22 [0.9-1.6]
18 17.29 [7.7-26.8] 20.77 [16-25.5] 629.89 [347.3-912.5] 1.1 [0.8-1.3]
19 30.33 [20.8-39.9] 7.23 [5.1-9.3] 620.71 [458.7-782.7] 0.64 [0.4-0.8]
20 109.97 [84.7-135.2] 4.59 [3.8-5.4] 1863.42 [1497.9-2228.9] 3.86 [3.2-45]
21 7.88 [4.1-11.7] 15.79 [9.4-22.1] 130.75 [83.9-177.6] 0.77 [0.4-1.1]
22 128.09 [95-161.2] 1.57 [1.4-1.7] 4106.68 [3185.9-5027.5] 8.88 [7.4-10.3]
23 9.32 [4.5-14.1] 0.03 [0.02-0.03] 107.31 [72.5-142.1] 0.125 [0-0.2]
24 20.63 [13.3-27.9] 0.08 [0.07-0.09] 246.7 [191.4-301.9] 1.525 [1.1-1.9]
25 1.3 [0.24-2.3] 0.02 [0.01-0.02] 6.24 [2.6-9.9] 0.075 [0-0.16]
26 12.73 [7.1-18.3] 0.12 [0.1-0.15] 180.48 [99.1-261.8] 0.367 [0.12-0.6]
27 41.27 [28.9-53.6] 2.21 [1.6-2.8] 1283.69 [909.4-1658] 5.3 [4.1-6.5]
28 18.01 [11.9-24.1] 0.12 [0.1-0.14] 191.77 [137.1-246.5] 1.2 [0.8-1.6]
29 6.97 [3.4-10.5] 0.14 [0.1-0.2] 64.11 [37.4-90.8] 0.23 [0.02-0.4]
30 6.91 [0-13.3] 3.6 [1.4-5.7] 837.09 [471.1-1203.1] 4.4 [2.9-5.9]
31 3.45 [0-8.3] 0.91 [0.8-1] 807.87 [614.3-1001.5] 4.87 [3.7-6]
32 100.9 [72.9-128.9] 0.4 [0.3-0.5] 2208.62 [1631.3-2785.9] 1.2 [0.8-1.6]
33 9.85 [3.4-16.3] 18.93 [13.9-23.9] 445.47 [302.8-588.1] 3.6 [2.7-4.5]
34 5.81 [1.9-9.7] 1.01 [0.6-1.4] 49.98 [26-73.9] 0.133 [0-0.29]
35 0.16 [0-0.95] 6.85 [4.6-9.1] 114.8 [87.3-142.3] 3.45 [2.7-4.2]
36 1.016 [0.2-1.8] 0.03 [0.02-0.03] 4.31 [1.9-6.7] 0.05 [0-0.12]
37 1.21 [0-2.6] 20.97 [18.5-23.4] 256.88 [186.9-326.9] 3.4 [2.6-42]
38 32.43 [25.1-39.7] 5.15 [3.9-6.4J 674.53 [513.9-835.1] 1.1 [0.8-1.4]
39 8.66 [4.4-12.9] 1.48 [0.9-2.1] 214.68 [153.9-275.4] 0.94 [0.6-1.2]
40 0.85 [0.02-1.7] 0.05 [0.04-0.06] 3.8 [0-7.6] 0.04 [0-0.1]
41 7.4 [4.6-10.2] 1.83 [1-2.7] 96.48 [73.5-119.4] 1.64 [1.2-2.1]
42 9.2 [4.6-13.8] 0.82 [0.5-1.1] 61.66 [40.9-82.4] 0.2 [0.1-0.3]
43 13.43 [8.8-18.1] 4.25 [2.97-5.5] 345.15 [257.4-432.9] 1.24 [0.8-1.6]
44 86.2 [60-112.4] 33.62 [30.8-36.4] 3620.11 [2388.5-4851.7] 12.6 [9.8-15.3]
45 3.21 [0.2-6.2] 0.026 [0.02-0.03] 13.59 [4.1-23.1] 0.27 [0.05-0.5]
46 5.22 [3.6-6.8] 15.51 [10.7-20.3] 129.49 [101.5-157.4] 2.64 [2.1-3.2]
47 100.89 [83.6-118.1] 11.87 [8.8-14.9] 1528.55 [1279.6-1777.5] 1.92 [1.5-2.3]
48 9.41 [6.4-12.4] 9.22 [7.1-11.3] 180.8 [135.5-226.1] 0.77 [0.4-1.1]
49 474.03 [422.2-525.8] 28.38 [21.2-35.6] 21779.3 [18620.5-24938] 13.08 [11.8-14.4]
50 8.14 [4.8-11.4] 4.51 [2.7-6.3] 63.41 [39.5-87.3] 0.4 [0.2-0.6]
51 4.79 [2.5-7.1] 0.52 [0.3-0.7] 80.85 [45.1-116.6] 0.4 [0.2-0.6]
52 36.21 [27.9-44.5] 15.92 [11.9-19.9] 1069.03 [824.2-1313.8] 0.82 [0.4-1.2]
53 11.67 [5.95-17.4] 20.17 [13.4-26.9] 112.8 [71.2-154.4] 0.32 [0.1-0.5]
54 43.13 [28.4-57.8] 2.02 [1.6-2.4] 379.56 [270.2-488.9] 0.325 [0.1-0.5]
55 4.64 [2.2-7.1] 2.28 [1.2-3.3] 29.4 [15.9-42.9] 0.14 [0.04-0.2]
56 11.38 [7.5-15.2] 11.57 [9.5-13.6] 152.88 [117.7-188] 0.47 [0.2-0.7]
57 142.8 [124.9-160.7] 26.32 [23.1-29.5] 4424.96 [3801.1-5048.8] 6.65 [5.8-7.5]
58 5.13 [3-1-7.1] 0.18 [0.1-0.2] 99.36 [79.7-119] 1.35 [0.9-1.7]
59 11.56 [5.7-17.4] 2.98 [1.9-4.1] 109.39 [66.6-152.2] 0.37 [0.2-0.6]
60 2.1 [0-4.3] 0.31 [0.1-0.5] 31.94 [12.6-51.3] 0.25 [0-0.5]
61 3.92 [1.7-6.1] 0.65 [0.3-1] 14.43 [8.9-19.9] 0.3 [0.1-0.4]
62 27.39 [17.7-37] 3.56 [2.8-4.3] 274.67 [205.2-344.1] 0.48 [0.3-0.7]
63 14.16 [9.7-18.6] 8.74 [6.4-11] 303.5 [236.6-370.4] 2.17 [1.6-2.7]
64 323.75 [266.5-381] 10.23 [7.03-13.4] 9305.8 [7399.1-11212.5] 9.17 [7.8-10.5]
65 38.45 [27.1-49.8] 39.21 [28.1-50.3] 1162.47 [793-1531.9] 3.37 [2-7-4.1]
66 7.72 [2-13.4] 7.69 [5-10.4] 567.18 [418.9-715.4] 4.467 [3.4-5.5]
67 10.14 [7.6-12.6] 6.01 [4.2-7.8] 101.47 [83.5-119.4] 0.75 [0.5-1]
68 3.57 [0.7-6.5] 0.95 [0.7-1.2] 11.88 [4.3-19.5] 0.15 [0-0.3]
69 15.1 [7.3-22.8] 4.49 [2.3-67] 296.81 [198.3-395.3] 0.37 [0.1-0.6]
70 22.33 [12-32.6] 0.1 [0.08-0.12] 183.4 [116.1-250.7] 0.4 [0.1-0.6]
71 36.94 [30.5-43.3] 10.16 [7.1-13.2] 924.64 [763.2-1086] 3.93 [3.2-4.7]
72 3.18 [1.4-5] 3.08 [1.7-4.4] 26.85 [16.6-37.1] 0.14 [0.02-0.3]
73 9.15 [5.6-12.61 0.82 [0.5-1.11 113.69 f77-150.31 0.18 ro.i-o.3i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Table 32. Partial Rescheduling Computational Tests (Average Numbers)

P R

Run Cmax Cmax
95% C l

CPU
(sec)

CPU
95% C l Match Match

95% Cl
Shifted
Jobs

S. Jobs
95% C l

1 9.89 [4.7-15.05] 1.03 [0.6-1.4] 136.26 [75.74-196.8] 4.84 [2.7-6.9]2 316.54 [288.3-344.8] 88.87 [70.7-107] 14693.1 [13159-16227.2] 162.92 [137.6-188.2]
3 12.53 [3.8-21.2] 38.26 [18.6-57.9] 793.13 [572.3-1013.9] 21.5 [14.3-28.6]
4 23.13 [7.1-39.1] 1.01 [0.5-1.5] 357.73 [173.1-542.4] 1.2 [0-2.4]6 3.68 [2.2-5.12] 7.12 [5.15-9.1] 130.87 [105.4-156.4] 8.3 [6.2-10.4]6 2.78 [0.9-4.6] 0.17 [0.1-0.3] 13.82 [6.5-21.1] 0.48 [0.1-0.8]
7 3.78 [1.4-6.2] 23.58 [0-48] 34.25 [19.5-48.9] 2.78 [1.4-4.2]8 8.52 [0.5-16.6] 157.77 [55.3-260.2] 1057.91 [601.3-1514.5] 139.05 [82.1-196]
9 3.35 [0-8] 0.27 [0-0.54] 8.94 [0-18.8] 0.35 [0-0.7]10 187.13 [155.6-218.7] 66.01 [44.3-87.7] 7543.95 [5732.7-9355.2] 123.55 [87.9-159.2]11 2.47 [1-3.9] 42.73 [18-67.4] 83.35 [61.5-105.2] 11.04 [7.8-14.2]12 3.42 [0-7.5] 1.11 [0.5-1.7] 17.73 [5.5-30] 0.225 [0.01-0.4]
13 388.41 [326.5-450.3] 152.25 [83.2-221.3] 17681 [14171.9-21190.1] 223.02 [174.9-271.1]
14 4.35 [0.16-8.5] 0.25 [0.1-0.4] 25.26 [6.4-44.1] 1.23 [0.1-2.3]
15 2.97 [1-5] 1.58 [0.7-2.4] 48.51 [27.1-69.9] 4.47 [2.2-6.7]
16 4.63 [0-11.2] 4.03 [1-7.1] 211.6 [114.3-308.9] 12.35 [3-21.7]
17 9.71 [5.5-13.9] 3.9 [3.1-4.76] 111.38 [86.7-136.04] 5.12 [3.85-6.4]
18 28.97 [5.9-52] 3.64 [0.6-6.6] 813.84 [153.5-1474.1] 57.1 [29.9-84.3]
19 35.82 [21.5-50.1] 13.18 [9.8-16.6] 845.02 [607.2-1082.8] 24.83 [15.1-34.5]20 116.09 [86-146.1] 10.22 [7.8-12.6] 2430.62 [1865.9-2995.3] 21.55 [16.2-26.9]21 4.56 [1.4-7.7] 51.23 [29.4-73.1] 140.88 [95.2-186.6] 9.52 [5-14]22 206.26 [157.6-254.9] 49.94 [35.9-64] 8941.1 [6601.1-11281.1] 181.9 [130.2-233.6]
23 7.95 [4.1-11.8] 2.79 [1.9-3.6] 118.14 [83.86-152.4] 1.7 [1-2.3]
24 12.36 [4.9-19.7] 4.34 [3.4-5.3] 277.92 [211.7-344.1] 7.72 [5.8-97]
25 1.08 [0.04-2.1] 0.34 [0.1-0.5] 6.23 [2.5-9.9] 0.45 [0.1-0.7]
26 5.46 [0.9-10] 12.16 [6.3-18] 216.31 [138.7-293.9] 9.82 [6.4-13.3]
27 36.73 [27.9-45.6] 95.36 [64.7-126] 2378.51 [1881-2876] 116.77 [93.2-140.3]
28 11.5 [5.7-17.3] 5.09 [3.9-6.3] 207.53 [156.6-258.4] 5.62 [4.1-7.1]
29 2.43 [0-5] 7.05 [3.8-10.3] 64 [41.9-86.1] 5.43 [3.3-7.6]
30 22.85 [6.9-38.8] 70.67 [29.9-111.5] 2457.27 [1751.9-3162.6] 115.03 [75.7-154.4]
31 0.9 [0-2.1] 25.31 [16.7-33.9] 1135.44 [896.9-1374] 32.44 [24.8-40.1]
32 95.75 [75.6-115.9] 19.78 [15.5-24] 2681.13 [2151.9-3210.3] 29.42 [21.3-37.5]
33 9.99 [3.6-16.3] 24.15 [16-32.3] 903.33 [686.7-1119.9] 40.58 [29.7-51.5]
34 3.4 [1.4-5.3] 7.77 [3.1-12.4] 57.47 [34.8-80.1] 3.1 [1.7-4.5]
35 0 [0-0.1] 50.53 [33.3-67.7] 165.26 [115.7-214.8] 29.22 [20.8-37.6]
36 0.92 [0.1-1.7] 0.89 [0.4-1.3] 4.28 [1.8-6.7] 0.4 [0.1-0.7]
37 0 [0-1.5] 209.86 [176.5-243.2] 522.63 [387.7-657.5] 38.97 [28.4-49.5]
38 30.86 [22.7-39] 37.97 [25.5-50.4] 883.97 [628.1-1139.9] 34.8 [25.6-43.9]
39 3.1 [0-6.3] 8.89 [5.1-12.7] 258.47 [168.9-348] 9.75 [6.6-12.9]
40 0.82 [0-1.7] 0.35 [0-0.8] 3.95 [0-8.4] 0.52 [0-1.2]
41 6.24 [2.2-10.2] 9.36 [7.4-11.3] 104.77 [80.4-129.1] 8.35 [6.4-10.3]
42 3.89 [1.3-6.5] 4.57 [2.6-6.6] 85.71 [59.8-111.6] 2.52 [1.6-3.4]
43 7.85 [1.6-14.1] 14.96 [5.2-24.7] 375.46 [224.3-526.6] 25.57 [15.5-35.6]
44 196.05 [151.2-240.9] 238.13 [200.1-276.2] 13928.8 [10391.6-17465.9] 393.89 [300.3-487.5]
45 3.76 [0.1-7.4] 0.99 [0.5-1.5] 16.06 [4.8-27.3] 1.25 [0.2-2.3]
46 3.97 [2.1-5.9] 58.87 [33.7-84] 185.14 [144.2-226.1] 27.35 [20.9-33.8]
47 102.55 [87-118] 21.76 [18.1-25.4] 1952.4 [1631-2273.8] 15.78 [12.4-19.1]
48 7.17 [3.9-10.4] 38.39 [0-77.4] 216.54 [159.4-273.7] 14 [9.8-18.2]
49 554.15 [496.4-611.9] 303.82 [281.2-326.4] 39900.2 [34707.8-45092.7] 315.51 [250.7-380 3]
60 3.89 [0.8-7] 109.4 [0-223.6] 87.61 [58.5-116.7] 7.27 [4.5-10]
51 2.43 [0.7-4.1] 36.77 [20.6-52.9] 113.04 [63 7-162.3] 10.13 [5.5-14.8]
52 36.11 [26.6-45.6] 170.09 [102.8-237.3] 1643.03 [1268.9-2017.2] 48.54 [33.7-63.4]
53 3.86 [0.4-7.3] 135.85 [72.3-199.4] 141.53 [96.5-186.5] 6.42 [4-8.8]
54 35.06 [23.2-46.9] 11.65 [8.5-14.8] 474.75 [357.8-591.7] 2.38 [1.4-3.4]
55 3.08 [1.1-5.1] 3.24 [1.3-5.2] 29.63 [17-42.2] 2.94 [1.4-4.5]
56 7.17 [4.2-10.1] 231.52 [137.7-325.3] 203.02 [158.2-247.8] 14.32 [10.2-18.5]
57 148.72 [131.7-165.8] 140.31 [123.2-157.4] 6960.47 [6103.5-7817.4] 196.71 [164.1-229.3]
58 4.38 [2.3-6.5] 17.07 [12.9-21.2] 113.28 [92.4-134.2] 8.27 [6.6-9.9]
59 6.13 [1.4-10.9] 25.66 [12.1-39.2] 126.3 [81.1-171.4] 6.28 [3.8-88]
60 1.51 [0.6-2.4] 139.42 [100.1-178.7] 56.69 [38.6-74.7] 8.29 [5.5-11]
61 2.98 [0.8-5.1] 3.24 [1.9-4.6] 13.91 [8.2-19.6] 1 [0.5-1.5]
62 26.4 [17.2-35.6] 20.23 [15.4-25] 325.21 [242.5-407.9] 3.44 [2.3-4.5]
63 10.49 [6.5-14.4] 70.66 [48.7-92.6] 394.71 [320.1-469.3] 26.23 [20.1-32.4]
64 459.71 [376.2-543.3] 122.52 [71.5-173.5] 17884.6 [13503.9-22265.3] 206.4 [160.8-251.9]
65 47.08 [31.6-62.5] 15.81 [10.1-21.5] 1576.42 [1027.2-2125.6] 147.2 [109.9-184.5]
66 1 [0-2.1] 226.92 [106.1-347.7] 1085.26 [763.8-1406.7] 67.08 [43.9-90.2]
67 8.75 [6.4-11.1] 2.65 [2.1-3.2] 110.45 [85.1-135.8] 6.56 [4.5-8.6]68 4.96 [1.3-8.6] 0.44 [0 12-0.8] 10.31 [3.7-17] 0.7 [0.2-1.2]
69 4.84 [1.9-7.8] 14.36 [7.4-21.3] 503.94 [340.5-667.4] 9.13 [5.7-12.5]
70 11 76 [6.8-16.7] 4.31 [2.7-5.9] 197.96 [135.3-260.6] 4.05 [2.5-5.6]
71 18.77 [12-25.5] 269.14 [134.3-404] 1167.61 [954.9-1380.3] 48.24 [37.6-58.9]
72 2.74 [1.1-4.3] 4.69 [1.6-7.7] 31.1 [19.8-42.4] 4.3 [2.6-6]
73 9.03 [6-12] 1.63 n .1-2.21 147.95 T98-197.91 2.12 [1.1-3.1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Table 33. Complete Rescheduling Computational Tests (Average Numbers)

C R

Run Cmax Cmax
95% C l

CPU
(sec)

CPU
95% C l Match Match

95% Cl
Shifted
Jobs

S. Jobs
95% C l

1 8.53 [4.2-12.8] 0.58 [0.4-0.7] 181.58 [112.9-250.3] 2.9 [1.8-3.9]
2 298.48 [273.8-323.1] 44.24 [37-51.5] 20571.4 [19079.5-22063.2] 60.88 [56-65.7]
3 19.07 [11.8-26.3] 51.66 [27.01-76.3] 1118.05 [884.3-1351.8] 15.25 [11.2-19.3]
4 23.13 [7.1-39.1] 0.38 [0.2-0.5] 357.73 [173.1-542.4] 1.2 [0-2.4]
S 3.29 [1.5-5.1] 5.62 [2.9-83] 134.13 [82.7-185.6] 6.5 [3.9-9]
6 2.78 [0.9-4.6] 0.26 [0.1-0.4] 13.82 [6.5-21.1] 0.48 [0.1-0.8]
7 3.41 [1.21-5.6] 24.32 [0-50.1] 34.78 [20.3-49.3] 2.9 [1.5-4.3]
8 2.32 [0-7.6] 177.8 [127.6-227.9] 2179.87 [1782.4-2577.4] 108 [90.2-125.8]
9 4.28 [1.4-7.1] 0.95 [0.5-1.3] 10.58 [4.6-16.5] 0.64 [0.3-1]
10 195.29 [161.7-228.8] 20.36 [16.4-24.3] 13939.2 [11387.9-16490.4] 20.3 [17.2-24]
11 2.98 [1.5-4.5] 256.59 [91.4-421.7] 100.51 [75.6-125.4] 13.18 [9.8-16.6]
12 3.42 [0-7.5] 0.3 [0.1-0.5] 17.73 [5.5-30] 0.225 [0.01-0.4]
13 255.64 [211.9-299.3] 117.74 [88.3-147.2] 33103.1 [29683.1-36523] 71.25 [63.4-79.1]
14 2.64 [0-6] 0.71 [0,2-1.2] 15.94 [0-32.5] 1.08 [0-2.4]
15 2.98 [0.4-5.5] 3.07 [1.1-5.1] 59.92 [30-89.8] 4.12 [2.1-6.2]
16 6.4 [0-14.8] 18.01 [5.8-30.2] 460.19 [244.1-676.3] 8.25 [4.1-12.4]
17 9.71 [5.5-13.9] 9.85 [6.9-12.8] 111.38 [86.7-136] 5.12 [3.8-64]
18 14.78 [4.9-24.7] 4.32 [2.9-57] 3360.66 [2309.1-4412.2] 8.96 [6.3-11.6]
19 27.49 [16-39] 1.1 [0.8-1.4] 1311.79 [942-1681.6] 4.48 [3.1-5.9]
20 90.55 [67.2-113.8] 9.63 [7.8-11.4] 3734.3 [3175.9-4292.6] 16.36 [13.2-19.5]
21 3.75 [0.2-7.3] 184.1 [94.1-274.1] 277.8 [199.5-356.1] 16.3 [11.7-20.9]
22 125.22 [95-155.5] 27.63 [24.9-30.3] 21629.7 [18913-24346.4] 78.98 [69.7-88.2]
23 7.39 [4.2-10.6] 0.68 [0.5-0.8] 116.05 [84.4-147.7] 1.46 [0.9-2]
24 12.47 [5.3-19.6] 7 [5.5-85] 288.57 [228-349.1] 7.66 [6.1-9.2]
25 1.35 [0.1-2.6] 0.55 [0.3-0.8] 5.86 [2.6-9.1] 0.44 [0.2-0.7]
26 7.55 [3.3-11.8] 11.82 [8.1-15.6] 305.31 [228.5-382.1] 10.34 [8-12.7]
27 38.23 [30.9-45.5] 147.55 [119.4-175.7] 4466.79 [4030.2-4903.39] 99.72 [88.7-110.8]
28 12.24 [7-17.5] 2.86 [2.2-35] 215.02 [167.6-262.4] 6.34 [4.8-79]
29 2.61 [0.4-4.8] 13.14 [8.6-17.7] 58 [40.4-75.6] 4.86 [3.1-6.6]
30 3.55 [0-7.1] 255.24 [153.1-357.4] 6037.55 [4941.4-7133.7] 99.93 [81.7-118.1]
31 3 [0-6.1] 78.22 [62.4-94] 2308.3 [1961.9-2654.8] 55.62 [48.3-62.9]
32 84.5 [62.1-106.9] 9.56 [7.7-11.4] 3990.99 [3152.9-4829.1] 8.45 [6.5-10.4]
33 10.7 [5.1-16.3] 72.4 [58.9-85.8] 1443.49 [1190.8-1696.2] 43.35 [36.3-50.4]
34 3.91 [1.3-6.5] 8.01 [3.7-12.3] 57.6 [34.9-80.2] 2.87 [1.4-4.3]
35 0 [0-0] 94.5 [66.8-122.2] 222.25 [168.1-276.3] 47.6 [37.2-58]
36 0.92 [0.1-1.7] 0.26 [0.1-0.4] 4.28 [1.8-6.7] 0.4 [0.1 -0.7]
37 0 [0-1.3] 472.8 [400-545.6] 1193.98 [1021-1366.9] 78.2 [67.2-89.1]
38 32.14 [24.9-39.3] 22.9 [17.5-28.3] 1441.23 [1138.1-1744.4] 10.22 [8-12.4]
39 3.41 [0-6.8] 11.63 [7.8-15.5] 376.94 [263.2-490.6] 9.55 [6.7-12.4]
40 0.82 [0-1.7] 0.29 [0-0.6] 3.95 [0-8.4] 0.52 [0-1.2]
41 6.24 [2.2-10.2] 8.57 [6.7-10.4] 104.77 [80.4-129.1] 8.35 [6.4-10.3]
42 3.7 [1-6.4] 3.66 [2.4-4.9] 91.72 [64.1-119.3] 3.15 [2.1-4.2]
43 8.6 [1.8-15.4] 32.63 [21.7-43.5] 655.46 [450.2-860.7] 18.32 [11.6-25.1]
44 78.1 [50.3-105.9] 113.95 [98.3-129.6] 30368.2 [25741.9-34994.4] 140.4 [118.9-161.9]
45 4.29 [0.1-8.4] 1.14 [0.6-1.7] 18.36 [5.7-31] 1.43 [0.2-2.6]
46 4.99 [2.75-7.2] 81.34 [53.9-108.7] 240.66 [191.9-289.3] 37.23 [27.8-46.6]
47 96.97 [80.1-113.8] 34.49 [27.9-41.1] 2559.07 [2206.7-2911.5] 10.84 [8.9-12.7]
48 5.38 [3.1-7.7] 56.34 [18.4-94.2] 313.84 [239.9-387.7] 13.03 [9.7-16.3]
49 473.33 [414.6-532] 158.45 [121.6-195.3] 62882.9 [57233.6-68532.3] 126.17 [113.3-138.9]
50 2.96 [0.2-5.7] 279.45 [39.2-519.7] 105.81 [72.2-139.4] 9.35 [6.5-12.2]
51 1.87 [0.02-3.7] 13.12 [4.8-21.4] 123.59 [53.5-193.7] 5.9 [2.8-89]
52 36.71 [27.9-45.5] 12.17 [10-14.3] 2227.53 [1829.4-2625.7] 10.1 [8.4-11.8]
53 3.31 [0.04-6.6] 128.94 [67.7-190.2] 150.21 [102.7-197.7] 6.5 [4.1-8.8]
54 38.02 [26.3-49.8] 3.12 [2.5-37] 568.76 [436.6-700.9] 2.54 [1.9-3.1]
55 3.089 [1.1-5.1] 6.83 [3.2-10.5] 29.63 [17.05-42.2] 2.7 [1.3-4.1]
56 6.44 [4-8.9] 186.96 [128.4-245.5] 207.94 [164.7-251.1] 13.25 [10.2-16.3]
57 132.58 [115-150.1] 81.59 [71.5-91.6] 10322.7 [9333-11312.5] 56.45 [50.4-62.5]
58 3.3 [1.2-5.3] 5.75 [4.6-6.9] 119.96 [97-142.9] 9.17 [7.5-10.9]
59 7.31 [1.9-12.7] 27.6 [12.1-43] 137.71 [81.3-194.1] 7.5 [3.8-11.2]
60 0.7 [0-1.8] 313.28 [52.4-574.1] 56.58 [37.4-75.7] 9.15 [5.9-12.4]
61 3.27 [0.8-5.7] 3.03 [1.8-4.2] 14.38 [8.1-20.6] 1 [0.5-1.5]
62 19.17 [8.7-29.6] 5.8 [4.5-7.1] 375.03 [273.3-476.8] 2.75 [2-3.5]
63 10.56 [7.3-13.8] 70.1 [53.4-86.8] 433.26 [357.3-509.2] 32.2 [25.6-38.8]
64 297.94 [237.4-358.5] 176.4 [150.6-202.2] 29841.1 [26097.7-33584.4] 66.1 [58.2-74]
65 31.53 [19.1-44] 124 [98.8-149.2] 4958.36 [4184.1-5732.6] 24 [20.5-27.5]
66 7.42 [0-15.8] 512.97 [475.2-550.7] 1610.68 [1292.3-1929.1] 74.4 [61.2-87.6]
67 8.82 [6.4-11.2] 7.35 [5.7-9] 111.52 [85.9-137.2] 6.53 [4.5-86]
68 4.96 [1.3-8.6] 0.91 [0.3-1.5] 10.31 [3.7-16.9] 0.7 [0.2-1.2]
69 4.91 [1.5-8.3] 13.06 [5.4-20.7] 508.8 [289.9-727.7] 7.9 [4.6-11.2]
70 11.95 [6.2-17.7] 5.26 [3.1-7.4] 235.24 [157-313.5] 4.93 [3-6.8]
71 23.73 [16.6-30.9] 604.2 [539.1-669.3] 1791.8 [1505-2078.6] 77.72 [65.1-90.3]
72 3.29 [1.3-5.3] 5.42 [1.4-9.4] 33.25 [19.5-47] 4.67 [2.6-67]
73 9.41 [6-12.81 0.98 [0.7-1.3] 152.11 [96.1-208.2] 2.35 [1.2-3.5]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Performance Measures’ Statistical Analyses

To be able to determine the significance of the factors and their interactions,

statistical analyses are carried out for each performance measure in the case of each of the

four rules. Minitab 14.2 Statistical Software was used for the analyses.

Cmax Difference Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the four rules in the case of the Cmax Difference performance measure.

Cmax Difference in the RSR rule

The regression statistics reported in Table 34 indicate a R Square = 0.793; this is an

acceptable value, indicating the success of the regression in predicting the values of the

dependent variable Cmax Difference within the sample. However, it also indicates that not

all the factors have significant effects (as R Square is not very big).

Table 34. Cmax Difference Regression Results for RSR rule

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.793
0.669

114.267
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Table 35. Cmax Difference ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 2254011 83482 6.39 0.000
Residual 45 587559 13057
Total 72 2841570

Based on the small p-value listed for the whole model (Table 35), one can conclude

the significance of the model. This means that at least some of the factors used in the

experiment, and/or their interactions have significant influence on Cmax Difference. To

determine which factors and interactions are the most significant, further analysis is needed.

Table 36 summarizes the effect test for all factors and their interactions. At significance

level of 5% (i.e. 95% Confidence Interval), the significant factors and/or interactions are

bolded. These factors were determined to be significant due to a relatively large t-Stat and a

small p-value (less than 0.05). Factor C (Number o f Machines) has a negative effect on

Cmax Difference, i.e. when the number of machines increases, Cmax Difference decreases.

This is logical because the jobs’ load will be split over the machines, meaning that more

machines will lead to smaller loads. Interaction DF (Repair Duration and Breakdown) has a

positive effect on Cmax Difference. This makes sense because if the repair durations and

breakdown rate are higher, the delays will be more frequent and longer; i.e. CmaxR will

increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 0

Table 36. Cmax Difference Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 37.41 54.93 0.68 0.499

A 32.21 17.75 1.81 0.076
B 22.89 38.47 0.6 0.555
C -119.61 40.91 -2.92 0.005
D -24.19 41.35 -0.59 0.561
E -3.9 39.89 -0.1 0.922
F -57.31 42.45 -1.35 0.184

AB 0.6936 0.9494 0.73 0.469
AC 0.117 0.9763 0.12 0.905
AD 0.758 1.024 0.74 0.463
AE -0.6894 0.9271 -0.74 0.461
AF -0.929 1.084 -0.86 0.396
BC -44.93 23.43 -1.92 0.062
BD 15.68 25.83 0.61 0.547
BE -19.41 22.22 -0.87 0.387
BF -18.49 23.65 -0.78 0.438
CD -4.24 23.37 -0.18 0.857
CE -21.44 22.33 -0.96 0.342
CF -19.48 24.41 -0.8 0.429
DE 37.17 24.47 1.52 0.136
DF 121.69 26.7 4.56 0
EF 42.59 22.07 1.93 0.06
AA -12.74 30.75 -0.41 0.681
BB -24.12 30.94 -0.78 0.44
CC 80.36 30.89 2.6 0.013
DD -53.62 29.98 -1.79 0.08
EE 27.5 31.62 0.87 0.389
FF 49.76 33.34 1.49 0.143

Cmax Difference in the FJR rule

The same approach implemented in analyzing Cmax Difference in the RSR rule was

used here. The regression statistics are reported in Table 37, ANOVA test in Table 38, and

Effect test in Table 39. The results indicate the success of the regression in predicting the

values of Cmax Difference and that the model is significant since the p-value is very small.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Table 37. Cmax Difference Regression Results for FJR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.788
Adjusted R Square 0.66
Standard Error 49.0274
Observations 73

Table 38. Cmax Difference ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 401059 14854 6.18 0.000
Residual 45 108166 2404
Total 72 509225

The factors were determined to be significant due to a relatively large t-Stat and a

small p-value (less than 0.05). In addition to Factor C (Number o f Machines) and interaction

DF (Repair Duration and Breakdown) that were determined to have a significant effect on

Cmax Difference from the RSR rule analysis, interaction EF (Idle Time and Breakdown) had

also a positive effect on Cmax Difference. It was anticipated that EF interaction impacts

Cmax Difference because if the breakdown rate was high and the idle time inserted is low,

then CmaxR would be much higher than Cmaxp. In other words, E and F are very

interdependent as a larger Idle Time can absorb more Breakdowns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 2

Table 39. Cmax Difference Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 24.61 23.57 1.04 0.302

A 14.413 7.617 1.89 0.065
B 11.43 16.5 0.69 0.492
C -63.18 17.55 -3.6 0.001
D -15.32 17.74 -0.86 0.392
E -3.83 17.11 -0.22 0.824
F -25.35 18.21 -1.39 0.171

AB 0.2492 0.4074 0.61 0.544
AC 0.2391 0.4189 0.57 0.571
AD 0.3036 0.4395 0.69 0.493
AE -0.2593 0.3978 -0.65 0.518
AF -0.2372 0.4651 -0.51 0.612
BC -19.66 10.05 -1.96 0.057
BD 2.72 11.08 0.25 0.807
BE -4.463 9.535 -0.47 0.642
BF -2.94 10.15 -0.29 0.773
CD -3.99 10.03 -0.4 0.692
CE -12.087 9.582 -1.26 0.214
CF -6.92 10.47 -0.66 0.512
DE 18.98 10.5 1.81 0.077
DF 48.49 11.46 4.23 0
EF 21.931 9.468 2.32 0.025
AA -6.78 13.19 -0.51 0.61
BB -8.33 13.28 -0.63 0.533
CC 37.66 13.25 2.84 0.007
DD -24.12 12.86 -1.87 0.067
EE 7.28 13.57 0.54 0.594
FF 14.22 14.3 0.99 0.325

Cmax Difference in the PR rule

The same approach implemented earlier was used here. The results indicate the

success of the regression in predicting the values of Cmax Difference (Table 40) and that the

model is significant since the p-value is very small (Table 41).

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 42; these factors are Number o f Machines and the interaction

between Repair Duration and Breakdown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Table 40. Cmax Difference Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.784
Adjusted R Square 0.654
Standard Error 61.9666
Observations 73

Table 41. Cmax Difference ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 625407 23163 6.03 0.000
Residual 45 171794 3840
Total 72 798201

Table 42. Cmax Difference Effect Test for PR rule

Predictor Coefficients SE C oef tS ta t P-value
Constant 13 29.79 0 .44 0.665

A 14.332 9.627 1.49 0 .144
B 17.58 20.86 0 .84 0 .404
C -69 .32 22.19 -3 .12 0 .003
D -18 .2 22.42 -0.81 0.421
E 5.39 21.63 0 .25 0 .804
F -27 .5 23.02 -1 .19 0.239

AB 0.2719 0 .5149 0 .53 0.6
AC 0.0814 0 .5295 0 .15 0.879
AD 0.5423 0 .5555 0 .98 0.334
AE -0.4851 0 .5027 -0 .96 0 .34
AF -0 .4187 0 .5878 -0.71 0 .48
BC -23 .98 12.71 -1 .89 0 .066
BD 4.59 14.01 0 .33 0.745
BE -8.73 12.05 -0 .72 0.473
BF -4 .73 12.83 -0 .37 0.714
C D -3.69 12.68 -0 .29 0.772
C E -6 .66 12.11 -0 .55 0.585
CF -14.31 13.24 -1 .08 0.285
DE 14.73 13.27 1.11 0.273
DF 63.66 14.48 4 .4 0
EF 21.76 11.97 1.82 0.076
AA -1.57 16.68 -0 .09 0.926
BB -11 .23 16.78 -0 .67 0.507
CC 49.79 16.75 2 .97 0.005
DD -28 .99 16.26 -1 .78 0.081
EE 14.24 17.15 0 .83 0.411
FF 22.29 18.08 1.23 0 .224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Cmax Difference in the CR rule

The same approach implemented earlier was used here. The results indicate the

success of the regression in predicting the values of Cmax Difference (Table 43) and that the

model is significant since the p-value is very small (Table 44).

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 45; these factors are Number o f Machines and the interactions

between Repair Duration and Breakdown and Idle Time and Breakdown, and their analyses

were discussed earlier.

Table 43. Cmax Difference Regression Results for CR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.773
Adjusted R Square 0.637
Standard Error 49.2828
Observations 73

Table 44. Cmax Difference ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 372252 13787 5.68 0.000
Residual 45 109296 2429
Total 72 481547

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

Table 45. Cmax Difference Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 20.59 23.69 0.87 0.389

A 12.177 7.656 1.59 0.119
B 14.06 16.59 0.85 0.401
C -62.89 17.65 -3.56 0.001
D -18.45 17.83 -1.03 0.306
E -2.61 17.2 -0.15 0.88
F -23.7 18.31 -1.29 0.202

AB 0.1516 0.4095 0.37 0.713
AC 0.2838 0.4211 0.67 0.504
AD 0.3625 0.4418 0.82 0.416
AE -0.274 0.3998 -0.69 0.497
AF -0.2433 0.4675 -0.52 0.605
BC -18.56 10.11 -1.84 0.073
BD 1.71 11.14 0.15 0.879
BE -4.034 9.584 -0.42 0.676
BF -2.36 10.2 -0.23 0.818
CD -4.85 10.08 -0.48 0.633
CE -12.309 9.632 -1.28 0.208
CF -7.74 10.53 -0.74 0.466
DE 19.52 10.55 1.85 0.071
DF 45.77 11.52 3.97 0
EF 21.767 9.518 2.29 0.027
AA -7.97 13.26 -0.6 0.551
BB -5.25 13.34 -0.39 0.696
CC 37.96 13.32 2.85 0.007
DD -22.87 12.93 -1.77 0.084
EE 4.94 13.64 0.36 0.719
FF 13.81 14.38 0.96 0.342

Cmax Difference Analysis Summary

The factors and interactions’ effects on Cmax Difference were analyzed and it is

concluded that the significant factors are Number o f Machines and the interactions between

Repair Duration and Breakdown and Idle Time and Breakdown. Number o f Machines has a

negative effect on Cmax Difference, while the interactions between Repair Duration and

Breakdown and Idle Time and Breakdown have a positive one, i.e. increases Cmax

Difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 6

CPU Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the four rules in the case of the CPU performance measure. This analysis will follow

the same approach used for the Cmax Difference Statistical Analysis.

CPU in the RSR rule

Table 46. CPU Regression Results for RSR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.656
Adjusted R Square 0.449
Standard Error 1.11545
Observations 73

The R Square reported in the regression statistics (Table 46) indicates that 65.6% of

the variation in CPU can be predicted using the regression model.

Table 47. CPU ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 106.597 3.948 3.17 0.000
Residual 45 55.99 1.244
Total 72 162.587

Based on the p-value listed for the whole model (Table 47), one can conclude the

model is significant since the p-value is very small. This means that at least some of the

factors used in the experiment, and/or their interactions have significant influence on CPU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 7

To determine which factors and interactions are the most significant, further analysis is

needed. Table 48 summarizes the effect test for all factors and their interactions. At

significance level of 5% (i.e. 95% Confidence Interval), the significant factors and/or

interactions are bolded.

Table 48. CPU Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 0.3795 0.5212 0.73 0.47

A 0.1044 0.1687 0.62 0.539
B 0.706 0.1697 4.16 0
C 0.2217 0.1731 1.28 0.207
D 0.0545 0.1713 0.32 0.752
E 0.0921 0.1668 0.55 0.584
F -0.5646 0.1741 -3.24 0.002

AB 0.1047 0.2101 0.5 0.621
AC 0.2 0.2174 0.92 0.362
AD 0.1115 0.2286 0.49 0.628
AE -0.015 0.2165 -0.07 0.945
AF 0.1398 0.2217 0.63 0.532
BC 0.6398 0.2235 2.86 0.006
BD -0.0031 0.2198 -0.01 0.989
BE 0.0652 0.2198 0.3 0.768
BF -0.4901 0.2262 -2.17 0.036
CD -0.3574 0.2282 -1.57 0.124
CE 0.2746 0.2255 1.22 0.23
CF -0.569 0.2351 -2.42 0.02
DE -0.2904 0.2195 -1.32 0.192
DF 0.2921 0.2406 1.21 0.231
EF 0.0952 0.2203 0.43 0.668
AA -0.0035 0.2999 -0.01 0.991
BB 0.3088 0.2885 1.07 0.29
CC 0.282 0.2912 0.97 0.338
DD -0.1554 0.2907 -0.53 0.596
EE -0.3519 0.3118 -1.13 0.265
FF 0.8267 0.295 2.8 0.007

Factor B (Number o f Jobs) has a positive effect on CPU, i.e. when the number of jobs

increases, CPU increases too. This is logical because more jobs will need to be shifted when

a disruption occurs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 8

Factor F {Breakdown) has a negative effect on CPU because the larger the time between

breakdowns the less they will occur and less CPU will be required.

Interaction BC {Number o f Jobs and Number o f Machines) has a positive effect on CPU

because when the number of machines and jobs increases, the problem size becomes larger

and more CPU is needed.

Interactions BF {Number o f Jobs and Breakdown) and CF {Number o f Machines and

Breakdown) have a negative effect on CPU. This is because of their interaction with

Breakdown, as the latter has a negative effect on CPU.

CPU in the FJR rule

The FJR regression statistics are reported in Table 49, ANOVA test in Table 50, and

Effect test in Table 51. The results indicate the success of the regression in predicting the

values of CPU and that the model is significant since the p-value is very small.

Table 49. CPU Regression Results for FJR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.688
Adjusted R Square 0.501
Standard Error 5.57668
Observations 73

Table 50. CPU ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 3089.1 114.41 3.68 0.000
Residual 45 1399.47 31.1
Total 72 4488.57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Table 51. CPU Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -1.215 2.606 -0.47 0.643

A -1.012 0.8432 -1.2 0.236
B 4.2585 0.8485 5.02 0
C -2.3371 0.8654 -2.7 0.01
D -0.9629 0.8566 -1.12 0.267
E 1.022 0.8341 1.23 0.227
F -2.8425 0.8706 -3.26 0.002

AB -1.085 1.05 -1.03 0.307
AC 1.332 1.087 1.23 0.227
AD 1.08 1.143 0.95 0.35
AE -1.103 1.083 -1.02 0.314
AF 1.003 1.109 0.9 0.37
BC -1.157 1.117 -1.04 0.306
BD 0.042 1.099 0.04 0.97
BE 2.275 1.099 2.07 0.044
BF -0.498 1.131 -0.44 0.662
CD -0.142 1.141 -0.12 0.902
CE 0.585 1.127 0.52 0.606
CF 1.517 1.176 1.29 0.203
DE 1.633 1.097 1.49 0.144
DF 2.655 1.203 2.21 0.032
EF 0.571 1.101 0.52 0.607
AA -0.116 1.499 -0.08 0.939
BB -0.002 1.442 0 0.999
CC 5.238 1.456 3.6 0.001
DD -1.019 1.454 -0.7 0.487
EE 3.33 1.559 2.14 0.038
FF 3.377 1.475 2.29 0.027

The factors were determined to be significant due to a relatively large t-Stat and a

small p-value (less than 0.05). Factors B and F were explained earlier.

Factor C (Number of Machines) has a negative effect on CPU in the case of FJR because the

larger the number of machines, the easier for FJR to fit a job as there are more options.

BE positive effect can be attributed to the interaction of factor E with B, as the latter has a

strong positive effect on CPU.

DF interaction in FJR has a positive effect; this is logical because for example if the repair

duration and breakdown rate are both high, FJR will require more time to fit the down jobs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 3 0

CPU in the PR rule

The PR regression statistics are reported in Table 52, ANOVA test in Table 53, and

Effect test in Table 54. The results indicate the success of the regression in predicting the

values of CPU and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 54; these factors are Number o f Jobs, Breakdown, and the

interaction between Number o f Jobs and Breakdown.

Table 52. CPU Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.783
Adjusted R Square 0.653
Standard Error 43.54
Observations 73

Table 53. CPU ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 307954 11406 6.02 0.000
Residual 45 85308 1896
Total 72 393262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Table 54. CPU Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -23.66 20.35 -1.16 0.251

A -3.006 6.584 -0.46 0.65
B 53.166 6.624 8.03 0
C -2.055 6.756 -0.3 0.762
D -2.762 6.688 -0.41 0.682
E -10.877 6.513 -1.67 0.102
F -30.948 6.797 -4.55 0

AB 0.477 8.202 0.06 0.954
AC 12.294 8.485 1.45 0.154
AD 1.588 8.921 0.18 0.86
AE -1.455 8.452 -0.17 0.864
AF -3.278 8.655 -0.38 0.707
BC 9.934 8.723 1.14 0.261
BD -8.847 8.58 -1.03 0.308
BE -15.928 8.581 -1.86 0.07
BF -25.264 8.828 -2.86 0.006
CD 2.852 8.908 0.32 0.75
CE 2.28 8.802 0.26 0.797
CF 13.714 9.178 1.49 0.142
DE 3.555 8.567 0.41 0.68
DF -2.11 9.392 -0.22 0.823
EF 0.9 8.599 0.1 0.917
AA -1.17 11.71 -0.1 0.921
BB 25.13 11.26 2.23 0.031
CC 39.09 11.37 3.44 0.001
DD -8.71 11.35 -0.77 0.447
EE 15.89 12.17 1.31 0.198
FF 39.07 11.52 3.39 0.001

CPU in the CR rule

The CR regression statistics are reported in Table 55, ANOVA test in Table 56, and

Effect test in Table 57. The results indicate the success of the regression in predicting the

values of CPU and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 57; these factors are Number o f Jobs, Number o f Machines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Breakdown, and the interactions between Processing Time and Breakdown, Number o f Jobs

and Number o f Machines, and Number o f Jobs and Breakdown.

Table 55. CPU Regression Results for CR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.864
Adjusted R Square 0.783
Standard Error 56.911
Observations 73

Table 56. CPU ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 926954 34332 10.60 0.000
Residual 45 145749 3239
Total 72 1072703

AF has a negative effect on CPU which is attributed to the interaction between factors A and

F, as the latter has a strong negative effect on CPU.

Note that factor C has a positive effect on CPU in the case of CR (versus a negative one in

the other rules); this is because CR uses a MIP to obtain optimal new schedules every time a

disruption occurs, leading to a higher CPU especially as the problem size increases, i.e. when

B and C increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Table 57. CPU Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant -37.09 26.59 -1.39 0.17

A 9.342 8.605 1.09 0.283
B 76.294 8.659 8.81 0
C 39.618 8.831 4.49 0
D 11.854 8.742 1.36 0.182
E -6.984 8.512 -0.82 0.416
F -47.834 8.885 -5.38 0

AB 6.31 10.72 0.59 0.559
AC 8.85 11.09 0.8 0.429
AD -2.65 11.66 -0.23 0.821
AE -6,85 11.05 -0.62 0.538
AF -29.5 11.31 -2.61 0.012
BC 61.9 11.4 5.43 0
BD 12.37 11.22 1.1 0.276
BE -13.4 11.22 -1.19 0.238
BF -50.94 11.54 -4.41 0
CD 2.99 11.64 0.26 0.799
CE -2.79 11.51 -0.24 0.81
CF -10.8 12 -0.9 0.373
DE -11.63 11.2 -1.04 0.304
DF 19.98 12.28 1.63 0.111
EF 0.31 11.24 0.03 0.978
AA 16.25 15.3 1.06 0.294
BB 42.44 14.72 2.88 0.006
CC 41.43 14.86 2.79 0.008
DD -0.78 14.83 -0.05 0.958
EE 13.9 15.91 0.87 0.387
FF 43.4 15.05 2.88 0.006

CPU Analysis Summary

The factors and interactions’ effects on CPU were analyzed and it is concluded that

the significant factors and interactions differ among the rules. For example, factor C was

significant in rules FJR and CR but insignificant in RSR and PR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

Match-up Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the four rules in the case o f the Match-up Time performance measure. This analysis

will follow the same approach used earlier.

Match-up in the RSR rule

The RSR regression statistics are reported in Table 58, ANOVA test in Table 59, and

Effect test in Table 60. The results indicate the success of the regression in predicting the

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 60; these factors are Number o f Jobs, Number o f Machines, Idle

Time, and Breakdown, and the interactions between Number o f Machines and Idle Time, and

Number o f Machines and Breakdown.

Table 58. Match-up Regression Results for RSR rule

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.74
0.584

3974.41
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

Table 59. Match-up ANOVA Test for RSR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 2022849784 74920362 4.74 0.000
Residual 45 710817562 15795946
Total 72 2733667346

Table 60. Match-up Effect Test for RSR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 1542 1857 0.83 0.411

A 842.4 601 1.4 0.168
B 1847.5 604.7 3.06 0.004
C -3165.4 616.7 -5.13 0
D -176 610.5 -0.29 0.774
E -1444.1 594.5 -2.43 0.019
F -2115.6 620.5 -3.41 0.001

AB 807.8 748.7 1.08 0.286
AC -1335.3 774.6 -1.72 0.092
AD -102 814.3 -0.13 0.901
AE -669.6 771.5 -0.87 0.39
AF -397.2 790 -0.5 0.618
BC -2627 796.2 -3.3 0.002
BD -106 783.2 -0.14 0.893
BE -933.7 783.3 -1.19 0.24
BF -1379 805.9 -1.71 0.094
CD 1164.8 813.1 1.43 0.159
CE 1666.2 803.5 2.07 0.044
CF 3537.7 837.8 4.22 0
DE 622 782 0.8 0.431
DF 749.6 857.4 0.87 0.387
EF 1488.5 784.9 1.9 0.064
AA -1333 1069 -1.25 0.219
BB 105 1028 0.1 0.919
CC 2793 1038 2.69 0.01
DD -2348 1036 -2.27 0.028
EE 863 1111 0.78 0.442
FF 828 1051 0.79 0.435

Table 61 describes the factors effects on Match-up Time in the case of RSR and lists the

causes of these effects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

Table 61. Factors Effects on Match-up Time in the case of RSR

M a t c h - u p E f f e c t s D i a g n o s i s f o r R S R r u l e

Factor1

Interaction Cause o f Effect

B + When the number of jobs increases, RSR will shift more jobs
to the right, i.e. longer time to match.

C When there are more machines, the jobs on each machine
will be less, i.e. time to match will be less.

E
It is easier for RSR to match-up with the initial schedule when
the idle time is larger as it will compensate the shifting of the
jobs.

F When the time between breakdowns is larger, less delay will
occur, hence, it is easier to match-up with initial schedule.

BC

BC effect is negative because C (number of machines) effect
is stronger than B (number of jobs). It is obvious that B and C
interact as the number of jobs on each machine depends on
both of them.

CE +
C (number of machines) and E (Idle Time) interact because
the higher the number of machines, the fewer jobs assigned
to each machine, i.e. the less idle time.

CF +

C (number of machines) and F (Breakdown) interact because
more machines lead to fewer breakdowns on each machine
as no more than one breakdown can occur at a time over the
machines.

Match-up in the FJR rule

The FJR regression statistics are reported in Table 62, ANOVA test in Table 63, and

Effect test in Table 64. The results indicate the success of the regression in predicting the

values of Match-up and that the model is significant since the p-value is very small.

Table 62. Match-up Regression Results for FJR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.762
Adjusted R Square 0.62
Standard Error 1957.36
Observations 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Table 63. Match-up ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 552765280 20472788 5.34 0.000
Residual 45 172406102 3831247
Total 72 725171382

Table 64. Match-up Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 771.2 914.7 0.84 0.404

A 501.4 296 1.69 0.097
B 965.8 297.8 3.24 0.002
C -1702.4 303.7 -5.6 0
D -8.6 300.7 -0.03 0.977
E -670.7 292.8 -2.29 0.027
F -1190.4 305.6 -3.9 0

AB 409.9 368.7 1.11 0.272
AC -706.5 381.5 -1.85 0.071
AD -34 401.1 -0.08 0.933
AE -252.6 380 -0.66 0.51
AF -301.1 389.1 -0.77 0.443
BC -1331.9 392.1 -3.4 0.001
BD -41.5 385.7 -0.11 0.915
BE -438.4 385.8 -1.14 0.262
BF -715.4 396.9 -1.8 0.078
CD 457.8 400.4 1.14 0.259
CE 737.9 395.7 1.86 0.069
CF 1858.3 412.6 4.5 0
DE 342.2 385.1 0.89 0.379
DF 272.3 422.2 0.64 0.522
EF 635.2 386.5 1.64 0.107
AA -576.3 526.3 -1.1 0.279
BB -61.7 506.2 -0.12 0.904
CC 1476.4 511 2.89 0.006
DD -1161.8 510.2 -2.28 0.028
EE 451.4 547.1 0.83 0.414
FF 557.6 517.7 1.08 0.287

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 64; these factors are Number ofJobs, Number o f Machines, Idle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 3 8

Time, and Breakdown, and the interactions between Number o f Machines and Idle Time, and

Number o f Machines and Breakdown. Their diagnosis is the same as in RSR (Table 61).

Match-up in the PR rule

The PR regression statistics are reported in Table 65, ANOVA test in Table 66, and

Effect test in Table 67. The results indicate the success of the regression in predicting the

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 67; these factors are Number o f Jobs, Number o f Machines, and

Breakdown, and the interactions between Number o f Machines and Number o f Jobs, Number

o f Jobs and Breakdown, and Number o f Machines and Breakdown. Their diagnosis is the

same as in RSR (Table 61).

The negative effect of BF can be attributed to the interaction between factors B (Number o f

Jobs) and F (Breakdown), as the latter has a stronger negative effect on Match-up Time.

Table 65. Match-up Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.757
0.611

3690.9
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Table 66. Match-up ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 1906312712 70604175 5.18 0.000
Residual 45 613023257 13622739
Total 72 2519335969

Table 67. Match-up Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 769 1725 0.45 0.658

A 726.1 558.1 1.3 0.2
B 1943.8 561.6 3.46 0.001
C -3015.1 572.7 -5.26 0
D 248.1 566.9 0.44 0.664
E -1063.7 552.1 -1.93 0.06
F -2273.3 576.2 -3.95 0

AB 645.6 695.3 0.93 0.358
AC -1032.5 719.3 -1.44 0.158
AD 5.5 756.3 0.01 0.994
AE -585.8 716.5 -0.82 0.418
AF -388.6 733.7 -0.53 0.599
BC -2681.6 739.4 -3.63 0.001
BD 63 727.4 0.09 0.931
BE -461.7 727.4 -0.63 0.529
BF -1706.6 748.4 -2.28 0.027
CD 479.5 755.1 0.64 0.529
CE 934.7 746.2 1.25 0.217
CF 3729.6 778 4.79 0
DE 665.4 726.3 0.92 0.364
DF 185.1 796.2 0.23 0.817
EF 796.2 728.9 1.09 0.281
AA -851.7 992.4 -0.86 0.395
BB 147.9 954.5 0.15 0.878
CC 2683.3 963.5 2.78 0.008
DD -2241.7 962 -2.33 0.024
EE 1156 1032 1.12 0.268
FF 1221.4 976.3 1.25 0.217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 4 0

Match-up in the CR rule

The CR regression statistics are reported in Table 68, ANOVA test in Table 69, and

Effect test in Table 70. The results indicate the success of the regression in predicting the

values of Match-up and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 69; these factors are Number o f Jobs, Number o f Machines and

Breakdown, and the interactions between Number o f Machines and Number o f Jobs, Number

ofJobs and Breakdown, and Number o f Machines and Breakdown. The effects can be

explained in similar fashion like previous rules.

Table 68. Match-up Regression Results for CR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.784
Adjusted R Square 0.654
Standard Error 5870.32
Observations 73

Table 69. Match-up ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 5616516513 208019130 6.04 0.000
Residual 45 1550728815 34460640
Total 72 7167245328

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Table 70. Match-up Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 876 2743 0.32 0.751

A 1147.8 887.6 1.29 0.203
B 3493.9 893.1 3.91 0
C -5136.1 910.9 -5.64 0
D 815.7 901.7 0.9 0.37
E -1341.2 878.1 -1.53 0.134
F -3896.8 916.5 -4.25 0

AB 1100 1106 0.99 0.325
AC -1606 1144 -1.4 0.167
AD -77 1203 -0.06 0.949
AE -832 1140 -0.73 0.469
AF -629 1167 -0.54 0.593
BC -4982 1176 -4.24 0
BD 261 1157 0.23 0.823
BE -166 1157 -0.14 0.886
BF -3084 1190 -2.59 0.013
CD 186 1201 0.16 0.877
CE 749 1187 0.63 0.531
CF 6465 1237 5.22 0
DE 1316 1155 1.14 0.261
DF -85 1266 -0.07 0.947
EF 636 1159 0.55 0.586
AA -1226 1578 -0.78 0.441
BB 406 1518 0.27 0.79
CC 4640 1532 3.03 0.004
DD -3520 1530 -2.3 0.026
EE 1928 1641 1.17 0.246
FF 2153 1553 1.39 0.172

Shifted Jobs Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the four rules in the case of the Shifted Jobs performance measure. This analysis will

follow the same approach used earlier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 4 2

Shifted Jobs in the RSR rule

No analysis has been done for the Shifted Jobs in the case of RSR as the latter will

always have zero jobs shifted from one machine to another. Recall that RSR only shifts jobs

to the right and is not equipped with a mechanism that allows jobs to be shifted from one

machine to another.

Shifted Jobs in the FJR rule

The FJR regression statistics are reported in Table 71, ANOVA test in Table 72,

Effect test in Table 73, and the factors effects diagnosis in Table 74. The results indicate the

success of the regression in predicting the values of Shifted Jobs and that the model is

significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 73 and explained in Table 74; these factors are Number o f Jobs,

Number o f Machines, Repair Duration, and Breakdown, and the interactions between

Number ofJobs and Number ofMachines, Number o f Machines and Breakdown, and Number

o f Jobs and Breakdown.

Table 71. Shifted Jobs Regression Results for FJR rule

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.935
0.897

0.935038
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Table 72. Shifted Jobs ANOVA Test for FJR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 569.658 21.098 24.13 0.000
Residual 45 39.343 0.874
Total 72 609.001

Table 73. Shifted Jobs Effect Test for FJR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 0.5975 0.4369 1.37 0.178

A 0.0081 0.1414 0.06 0.955
B 1.2207 0.1423 8.58 0
C -1.1051 0.1451 -7.62 0
D 0.5173 0.1436 3.6 0.001
E -0.1174 0.1399 -0.84 0.406
F -2.1328 0.146 -14.61 0

AB -0.0172 0.1761 -0.1 0.923
AC 0.0532 0.1822 0.29 0.772
AD -0.0013 0.1916 -0.01 0.995
AE -0.0429 0.1815 -0.24 0.814
AF 0.0763 0.1859 0.41 0.683
BC -0.7411 0.1873 -3.96 0
BD 0.1791 0.1843 0.97 0.336
BE -0.0562 0.1843 -0.31 0.762
BF -1.2268 0.1896 -6.47 0
CD -0.1801 0.1913 -0.94 0.351
CE -0.0739 0.189 -0.39 0.698
CF 1.2385 0.1971 6.28 0
DE 0.1307 0.184 0.71 0.481
DF -0.3752 0.2017 -1.86 0.069
EF 0.021 0.1847 0.11 0.91
AA 0.008 0.2514 0.03 0.975
BB -0.1815 0.2418 -0.75 0.457
CC 0.7258 0.2441 2.97 0.005
DD -0.2386 0.2437 -0.98 0.333
EE 0.0492 0.2613 0.19 0.852
FF 1.6665 0.2473 6.74 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

Table 74. Factors' Effects on Shifted Jobs in the case of FJR

S h i f t e d J o b s E f f e c t s ' D i a g n o s t i c f o r F J R r u l e

Factor/ „
Interaction tTTecl Cause o f Effect

B +

C

D +

F

BC

BF

CF +

A higher number of jobs logically indicated a higher number
of shifts between the machines
When there are more machines, the jobs on each machine
will be less, i.e. fewer jobs will be shifted.
Larger repair durations lead to longer delays; hence, more
jobs need to be shifted in order to accommodate the delays.
When the time between breakdowns is larger, less delay will
occur, hence, less shifting is required.
BC effect is negative because C (number of machines) effect
is stronger than B (number of jobs). It is obvious that B and C
interact as the number of jobs on each machine depends on
both of them.
BF effect is negative because F (Breakdown) effect is
stronger than B. B and F interact because the higher the
number of jobs, the more they will be hit by a breakdown.

C and F interact because more machines lead to fewer
breakdowns on each machine as no more than one
breakdown can occur at a time over the machines.

Shifted Jobs in the PR rule

The PR regression statistics are reported in Table 75, ANOVA test in Table 76, and

Effect test in Table 77. The results indicate the success of the regression in predicting the

values of Shifted Jobs and that the model is significant since the p-value is very small.

Table 75. Shifted Jobs Regression Results for PR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.929
Adjusted R Square 0.886
Standard Error 25.7356
Observations 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Table 76. Shifted Jobs ANOVA Test for PR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 388875 14403 21.75 0.000
Residual 45 29804 662

Total 72 418680

Table 77. Shifted Jobs Effect Test for PR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 7.49 12.03 0.62 0.537

A -3.481 3.891 -0.89 0.376
B 38.775 3.916 9.9 0
C -38.457 3.994 -9.63 0
D 7.949 3.953 2.01 0.05
E -4.733 3.849 -1.23 0.225
F -40.09 4.018 -9.98 0

AB -0.677 4.848 -0.14 0.89
AC 3.082 5.015 0.61 0.542
AD -5.504 5.273 -1.04 0.302
AE -3.227 4.996 -0.65 0.522
AF 4.671 5.116 0.91 0.366
BC -37.293 5.156 -7.23 0
BD 4.972 5.072 0.98 0.332
BE 8.828 5.072 1.74 0.089
BF -33.152 5.218 -6.35 0
CD -2.306 5.265 -0.44 0.663
CE -5.042 5.203 -0.97 0.338
CF 42.493 5.425 7.83 0
DE 6.647 5.064 1.31 0.196
DF -2.442 5.552 -0.44 0.662
EF -1.013 5.082 -0.2 0.843
AA 3.537 6.92 0.51 0.612
BB 2.199 6.655 0.33 0.743
CC 30.035 6.718 4.47 0
DD -8.616 6.708 -1.28 0.206
EE 2.493 7.193 0.35 0.731
FF 23.766 6.807 3.49 0.001

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 77; these factors are Number o f Jobs, Number o f Machines,

Repair Duration, and Breakdown, and the interactions between Number o f Jobs and Number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

ofMachines, Number o f Machines and Breakdown, and Number ofJobs and Breakdown.

Their diagnosis is the same as in FJR (Table 74).

Shifted Jobs in the CR rule

The CR regression statistics are reported in Table 78, ANOVA test in Table 79, and

Effect test in Table 80. The results indicate the success of the regression in predicting the

values of Shifted Jobs and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 80; these factors are Number o f Jobs, Number o f Machines,

Repair Duration, and Breakdown, and the interactions between Number o f Jobs and Number

ofMachines, Number o f Machines and Breakdown, and Number ofJobs and Breakdown.

Their diagnosis is the same as in FJR (Table 74).

Table 78. Shifted Jobs Regression Results for CR rule

R e g r e s s i o n S t a t i s t i c s

R Square 0.955
Adjusted R Square 0.928
Standard Error 8.93576
Observations 73

Table 79. Shifted Jobs ANOVA Test for CR rule

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 76742.8 2842.3 35.6 0.000
Residual 45 3593.1 79.8
Total 72 80335.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 80. Shifted Jobs Effect Test for CR rule

Predictor Coefficients SE Coef tS tat P-value
Constant 7.608 4.176 1.82 0.075

A -0.61 1.351 -0.45 0.654
B 19.127 1.36 14.07 0
C -5.858 1.387 -4.22 0
D 4.008 1.373 2.92 0.005
E 0.303 1.337 0.23 0.821
F -25.266 1.395 -18.11 0

AB 0.564 1.683 0.34 0.739
AC 1.875 1.741 1.08 0.287
AD -1.511 1.831 -0.83 0.414
AE 2.026 1.735 1.17 0.249
AF 0.818 1.776 0.46 0.647
BC -4.382 1.79 -2.45 0.018
BD 1.353 1.761 0.77 0.446
BE -0.413 1.761 -0.23 0.816
BF -21.516 1.812 -11.88 0
CD -0.692 1.828 -0.38 0.707
CE -1.01 1.807 -0.56 0.579
CF 7.505 1.884 3.98 0
DE 0.631 1.758 0.36 0.721
DF -2.989 1.928 -1.55 0.128
EF -1.022 1.765 -0.58 0.565
AA -1.064 2.403 -0.44 0.66
BB 2.169 2.311 0.94 0.353
CC 1.716 2.333 0.74 0.466
DD -0.898 2.329 -0.39 0.702
EE 0.777 2.497 0.31 0.757
FF 19.931 2.364 8.43 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Repair and Rescheduling Rules Comparisons

Following the analysis of factor and interaction significance, this section will

compare the rules based on each performance measure as well as the overall performance.

Conclusions are drawn regarding dominance among the rules.

Eigenvalue Normalization Procedure

As our objective is to determine the best rule for both schedule quality (Cmax

Difference and CPU) and stability {Shifted Jobs and Matching Time), we need to compute the

overall performance for each rule. However, since the performance measures are not

expressed in commensurate terms, a unique measure is desired. The eigenvalue

normalization procedure explained by Akturk and Gorgulu (1999) will be used to have a

common unit of measure for each objective (Equation 7).

and Nij is the normalized value of the Ay value, Ny is between 0 and 1, where 0 indicates the

(7)

where Ay is the value of the ith performance measure in th e /h rule, p is the number of rules,

best value and 1 the worst among the rules (because for all measures in our case, the lower

their values, the better the performance is).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Before judging the rules by their overall performance, they will be compared for each

of the objectives to determine superiority.

Cmax Difference Comparison

Following the normalization of the performance measures, the Cmax Difference

performance of the four rules is presented in Table 81. The boxplot of the rules is also

shown in Figure 20. It is obvious that RSR performed the worst in the case of Cmax

Difference; this was expected as RSR only shifts the jobs to the right which will eventually

increase Cmax. From Figure 20, it is apparent that CR performed the best, followed by PR,

then FJR; however, this can not be validated unless tests are undertaken to determine that the

differences are statistically significant.

Boxplot of RSR, FJR, PR, CR

1 .0 -

0 .8 -

0 .6 -

0 .4 - ■
0 . 2 -

■
0 . 0 -

RSR FJR PR CR

Figure 20. Cmax Difference Boxplot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 5 0

Table 81. Cmax Difference Performance among the rules

C m a x D iffe re n c e
Run RSR FJR PR CR
1 0.730513 0.41411 0.411199 0.354654
2 0.768405 0.372924 0.378387 0.356798
3 0.744815 0.507984 0.23759 0.361599
4 0.570399 0.477886 0.472372 0.472372
S 0.708693 0.51718 0.357749 0.319835
6 0.490577 0.416601 0.541192 0.541192
7 0.614813 0.299524 0.541724 0.488698
8 0.867536 0.288567 0.390873 0.106435
9 0.614866 0.557382 0.343873 0.439336
10 0.63021 0.401049 0.459968 0.480025
11 0.719826 0.599705 0.223083 0.269145
12 0.635023 0.610561 0.334635 0.334635
13 0.77902 0.331701 0.444447 0.292522
14 0.746584 0.395374 0.457414 0.277603
15 0.762846 0.418335 0.348027 0.349198
16 0.631426 0.715236 0.175586 0.24271
17 0.903619 0.227161 0.256779 0.256779
18 0.780199 0.293636 0.491998 0.251009
19 0.564924 0.4601 0.543383 0.417018
20 0.816294 0.345673 0.36491 0.28463
21 0.744193 0.53457 0.309345 0.254396
22 0.804542 0.278463 0.448402 0.272224
23 0.722946 0.45009 0.383929 0.356885
24 0.879522 0.362383 0.217114 0.219046
25 0.76753 0.385246 0.320051 0.400064
26 0.758648 0.525726 0.225488 0.311801
27 0.845429 0.328076 0.291985 0.303909
28 0.869156 0.36168 0.230945 0.245806
29 0.758403 0.580249 0.202296 0.217281
30 0.913078 0.116754 0.386081 0.059982
31 0.997066 0.056679 0.014786 0.049286
32 0.598025 0.496877 0.471516 0.416116
33 0.933229 0.200574 0.203425 0.217882
34 0.477434 0.655767 0.383753 0.441316
35 0.999595 0.028458 0 0
36 0.525644 0.523582 0.47411 0.47411
37 0.999111 0.042152 0 0
38 0.665905 0.439018 0.417765 0.435093
39 0.79302 0.537788 0.192511 0.211762
40 0.867718 0.293849 0.283477 0.283477
41 0.950029 0.200577 0.169135 0.169135
42 0.821741 0.492189 0.20811 0.197945
43 0.814999 0.437818 0.25591 0.28036
44 0.76212 0.244819 0.556807 0.221814
45 0.949272 0.154209 0.180631 0.206092
46 0.849342 0.334357 0.25429 0.319624
47 0.837642 0.317646 0.322872 0.305304
48 0.724238 0.499274 0.380424 0.285451
49 0.767789 0.349342 0.408387 0.348826
50 0.745492 0.571404 0.273066 0.207783
51 0.855586 0.435985 0.221178 0.170207
52 0.530155 0.487727 0.48638 0.494462
53 0.713958 0.641902 0.212317 0.182065
54 0.606282 0.509329 0.414029 0.448984
55 0.692899 0.525335 0.348714 0.349733
56 0.750207 0.504572 0.317907 0.28554
57 0.766801 0.373934 0.389436 0.347172
58 0.9371 0.238458 0.203596 0.153394
59 0.570452 0.63347 0.335915 0.400577
60 0.882578 0.368472 0.264949 0.122824
61 0.750859 0.438001 0.33297 0.365373
62 0.605023 0.511942 0.493438 0.358303
63 0.799978 0.41357 0.306381 0.308425
64 0.830776 0.283188 0.402114 0.260612
65 0.618083 0.441406 0.540478 0.361964
66 0.959439 0.202374 0.026214 0.194509
67 0.721287 0.437955 0.37792 0.380943
68 0.77038 0.289196 0.401796 0.401796
69 0.789321 0.558517 0.179021 0.18161
70 0.637417 0.61617 0.324503 0.329746
71 0.849857 0.407711 0.207166 0.26191
72 0.710182 0.419773 0.361691 0.434294
73 0.775989 0.36226 0.357509 0.372554

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

The first test is the One-Way ANOVA, which will determine if there is significant difference

between the means of the rules. The ANOVA results are shown in Table 82.

Table 82. One-Way ANOVA for Cmax Difference

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

55.35
29.55
23.75
21.78

0.758193
0.404816
0.325307
0.298301

0.015432
0.021721
0.016712
0.013518

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

Total

9.894449
4.851586

14.74604

3
288

291

3.29815
0.016846

195.7849 3.35E-69 2.63595107

As the p-value in Table 82 is less than 0.05, we can reject the hypothesis that all the means

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR - PR to determine if the

difference between them is statistically significant (Table 83). The t-test evaluates

Ho: m i - m 2 = do versus Hi: m i - m 2 # d o , where m i and m 2 are the population means

and d 0 is the hypothesized difference between the two population means. As the p-value is

less than 0.05, we can reject the hypothesis that the means are equal and conclude that the

difference between FJR and PR is statistically significant. Moreover, as the difference is

greater than zero, we conclude that PR performed better than FJR in the case of Cmax

Difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Table 83. t test for FJR — PR in the case of Cmax Difference

Tw o-sam ple T fo r FJR vs PR

N Mean StDev SE Mean
FJR 73 0.405 0.147 0.017
PR 73 0.325 0.129 0.015

Difference = mu (FJR) - mu (PR)
Estimate for difference: 0.079509
95% Cl for difference: (0.034148, 0.124869)
T-Test of difference = 0 (vs not =): T-Value = 3.47 P-Value = 0.001 DF = 141

The next t test is for PR - CR (Table 84). Even though the CR mean is smaller than PR mean

(indicating that CR performed better), this difference is not statistically significant as the 95%

Confidence Interval overlaps with zero. Moreover, the p-value is greater than 0.05.

Based on these tests, we conclude that for the Cmax Difference, the best performance

was achieved by CR and PR, followed by FJR, then finally RSR that had the worst

performance.

Table 84. t test for PR - CR in the case of Cmax Difference

Two-sam ple T fo r PR vs CR

N Mean StDev SE Mean
PR 73 0.325 0.129 0.015
CR 73 0.298 0.116 0.014

Difference = mu (PR) - mu (CR)
Estimate for difference: 0.027006
95% Cl for difference: (-0.013221, 0.067234)
T-Test of difference = 0 (vs not =): T-Value = 1.33 P-Value = 0.187 DF = 142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

CPU Comparison

The CPU performance of the four rules is presented in Table 85. The boxplot of the rules is

also shown in Figure 21. It is visually noticeable that RSR performed the best, followed by

FJR, then PR and CR. The same tests implemented in the Cmax Difference comparison will

be used here to determine if the differences are statistically significant. The ANOVA results

are shown in Table 86.

Boxplot of RSR, FJR, PR, CR

Figure 21. CPU Boxplot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Table 85. CPU Performance among the rules

CPU
Run RSR FJR PR CR

1 0.0169 0.04225 0.870447 0.490154
2 0.00216 0.22384 0.872494 0.434332
3 0.00991 0.096 0.592383 0.799856
4 0.47285 0.4227 0.72361 0.272249
6 0.03999 0.19241 0.769633 0.607491
6 0.05944 0.99061 0.067362 0.103024
7 0.01799 0.04452 0.695297 0.717117
8 0.01468 0.00597 0.663635 0.747888
9 0.02024 0.02024 0.273272 0.961511
10 0.00143 0.01115 0.955518 0.294718
11 0.00703 0.00154 0.164264 0.98639
12 0.00412 0.88089 0.45691 0.123489
13 0.00109 0.09947 0.787129 0.608713
14 0.02655 0.03186 0.331839 0.942424
15 0.00166 0.95824 0.130857 0.254261
16 0.00298 0.0352 0.218228 0.975258
17 0.01373 0.51763 0.314937 0.795417
18 0.07919 0.96192 0.168578 0.200071
19 0.19708 0.47026 0.857262 0.071547
20 0.00542 0.31069 0.691774 0.651838
21 0.00407 0.08235 0.267174 0.960115
22 0.00368 0.0275 0.87467 0.483924
23 0.00487 0.01045 0.971495 0.23678
24 0.20669 0.0095 0.515537 0.831511
25 0.66755 0.02302 0.391322 0.633021
26 0.04888 0.00707 0.716185 0.69616
27 0.02595 0.01257 0.54257 0.839516
28 0.01027 0.02055 0.871574 0.489725
29 0.01073 0.00939 0.472732 0.881091
30 0.0128 0.01359 0.266791 0.963574
31 0.00596 0.01107 0.307835 0.951357
32 0.00364 0.0182 0.9002 0.435081
33 0.00966 0.24072 0.307104 0.920677
34 0.01963 0.09012 0.693304 0.714719
35 0.00987 0.06379 0.470549 0.88001
36 0.01509 0.03233 0.959268 0.280236
37 0.01255 0.0405 0.405332 0.913185
38 0.00157 0.11537 0.850598 0.513002
39 0.0017 0.10059 0.604217 0.790443
40 0.02186 0.10932 0.765222 0.634041
41 0.00234 0.14272 0.729994 0.668381
42 0.00338 0.1387 0.772987 0.619066
43 0.00138 0.11758 0.413869 0.90271
44 0.00135 0.12633 0.894815 0.428187
45 0.01059 0.01722 0.655553 0.754879
46 0.00059 0.15266 0.579433 0.800595
47 0.00235 0.27947 0.512324 0.812043
48 0.0061 0.13402 0.55801 0.818918
49 0.00125 0.08254 0.683636 0.460839
50 0.0047 0.01503 0.364499 0.931071
51 0.00231 0.01332 0.941754 0.33603
52 0.00029 0.09295 0.993131 0.071059
53 0.02664 0.10703 0.720887 0.684219
54 0.00164 0.16519 0.952688 0.25514
55 0.09206 0.28753 0.408598 0.861335
56 0.00212 0.03885 0.777413 0.627786
57 0.01259 0.16006 0.853254 0.496166
58 0.06923 0.00997 0.945359 0.318442
59 0.03463 0.07878 0.678373 0.72966
60 0.00076 0.0009 0.406587 0.913611
61 0.03344 0.1449 0.722259 0.675446
62 0.01921 0.16676 0.947632 0.271689
63 0.03251 0.08743 0.706819 0.701218
64 0.01163 0.04757 0.569774 0.820341
65 0.01881 0.08155 0.126032 0.988489
66 0.01153 0.01371 0.404485 0.914369
67 0.16607 0.60124 0.265105 0.735292
68 0.36277 0.6382 0.295588 0.611331
69 0.00853 0.22536 0.720742 0.655494
70 0.10817 0.01462 0.630011 0.768877
71 0.00673 0.01536 0.406847 0.913342
72 0.03843 0.39452 0.600745 0.694251
73 0.12927 0.39259 0.780396 0.469195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Table 86. One-Way ANOVA for CPU Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

3.314858
12.34003
43.97871
46,79539

0.045409
0.169042
0.602448
0.641033

0.011485
0.056456
0.063979
0.066292

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups 19.93723 3 6.645742 134.1141 2.21 E-54 2.635951
Within Groups 14.27123 288 0.049553

Total 34.20846 291

As the p-value in Table 86 is less than 0.05, we can reject the hypothesis that all the means

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR - RSR to determine if the

difference between them is statistically significant (Table 87). As the p-value is less than

0.05, we can reject the hypothesis that the means are equal and conclude that the difference

between FJR and RSR is statistically significant. Moreover, as the difference is greater than

zero, we conclude that RSR performed better than FJR in the case of CPU. This is expected

as RSR is very simple and requires very little computation. It is evident from Figure 21 that

FJR performs better than both PR and CR in the case of CPU. On the other hand, a t test is

needed to check if the difference between CR and PR is statistically significant. This is

shown in Table 87.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Table 87. t test for FJR - RSR in the case of CPU

Two-sample T for FJR vs RSR

N Mean StDev SE Mean
FJR 73 0.169 0.238 0.028
RSR 73 0.045 0.107 0.013

Difference = mu (FJR) - mu (RSR)
Estimate for difference: 0.123633
95% Cl for difference: (0.063107, 0.184158)
T-Test of difference = 0 (vs not =): T-Value = 4.05 P-Value = 0.000 DF = 100

From Table 88, even though the PR mean is smaller than CR mean (indicating that PR

performed better), this difference is not statistically significant as the 95% Confidence

Interval overlaps with zero. Moreover, the p-value is greater than 0.05.

Table 88. t test for CR - PR in the case of CPU

Two-sample T for CR vs PR

N Mean StDev SE Mean
CR 73 0.641 0.257 0.03
PR 73 0.602 0.253 0.03

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.038585
95% Cl for difference: (-0.044918, 0.122087)
T-Test of difference = 0 (vs not =): T-Value = 0.91 P-Value = 0.363 DF = 143

Based on the previous tests, we conclude that for the CPU, the best performance was

achieved by RSR, followed by FJR, then finally PR and CR that had the worst performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

This conclusion was expected as both RSR and FJR are heuristics that do not involve MIP

solutions.

Match-up Comparison

The Match-up performance of the four rules is presented in Table 89. The boxplot of

the rules is also shown in Figure 22. Visually it seems that FJR performed the best, followed

by PR and RSR, then CR. The same tests applied earlier will be used to determine if the

differences are statistically significant. The ANOVA results are shown in Table 90.

Figure 22. Match-up Boxplot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Table 89. Match-up Performance among the rules

Match-Up Time
Run RSR FJR PR CR

1 0.476967 0.414145 0.465358 0.620023
2 0.584529 0.290375 0.44035 0.616522
3 0.565442 0.317947 0.440307 0.620737
4 0.529429 0.383421 0.535114 0.535114
5 0.484146 0.342812 0.562331 0.576078
6 0.17397 0.357344 0.648861 0.648861
7 0.35057 0.284838 0.626279 0.635408
8 0.075708 0.181602 0.428067 0.88207
9 0.290396 0.617752 0.469914 0.559673
10 0.535309 0.258388 0.382759 0.707231
11 0.462723 0.454564 0.486034 0.585688
12 0.377845 0.61122 0.491754 0.491754
13 0.342341 0.219983 0.430357 0.805732
14 0.274775 0.456071 0.716682 0.450405
15 0.617782 0.327443 0.449887 0.555633
16 0.490707 0.409631 0.321267 0.698711
17 0.287933 0.544873 0.55687 0.55687
18 0.278456 0.172129 0.222382 0.918357
19 0.503486 0.319348 0.434749 0.674916
20 0.398961 0.353793 0.461483 0.709009
21 0.435842 0.34846 0.375367 0.740079
22 0.195617 0.169484 0.369001 0.892663
23 0.387313 0.501311 0.55177 0.542426
24 0.393181 0.482097 0.543067 0.563977
25 0.499899 0.508094 0.508094 0.483509
26 0.487907 0.379273 0.454497 0.641507
27 0.424763 0.222595 0.412435 0.774548
28 0.586789 0.437412 0.473217 0.490321
29 0.576056 0.48714 0.48638 0.440782
30 0.103413 0.12669 0.371898 0.913755
31 0.228346 0.291716 0.409969 0.833478
32 0.527821 0.354545 0.430396 0.640673
33 0.28962 0.242256 0.491201 0.784954
34 0.325656 0.494918 0.569156 0.570146
35 0.054941 0.382258 0.550411 0.740208
36 0.066983 0.576054 0.576054 0.576054
37 0.202995 0.189359 0.385204 0.880088
38 0.513499 0.317961 0.41672 0.679385
39 0.373324 0.394452 0.474922 0.692449
40 0.087706 0.55547 0.584705 0.584705
41 0.473982 0.480454 0.521778 0.521778
42 0.722842 0.304849 0.423428 0.453073
43 0.523265 0.354178 0.385266 0.672549
44 0.163978 0.106265 0.408867 0.89143
45 0.600311 0.388773 0.460239 0.525987
46 0.293105 0.375071 0.536105 0.697139
47 0.623908 0.335245 0.428191 0.56125
48 0.496903 0.371854 0.445279 0.645398
49 0.491164 0.244498 0.447926 0.705933
50 0.513367 0.35964 0.496916 0.600157
51 0.721324 0.301265 0.420803 0.460277
52 0.489386 0.314187 0.48289 0.654679
53 0.549074 0.400877 0.502873 0.533792
54 0.458744 0.405163 0.506774 0.607105
55 0.531535 0.486826 0.490138 0.490138
56 0.575065 0.380968 0.505798 0.518007
57 0.561421 0.277135 0.435931 0.646503
58 0.457051 0.458897 0.523069 0.554001
59 0.38419 0.466486 0.538548 0.587158
60 0.582519 0.300685 0.534447 0.533504
61 0.644804 0.446403 0.430903 0.446403
62 0.432074 0.436684 0.516963 0.596128
63 0.441529 0.412574 0.53655 0.589023
64 0.414962 0.235102 0.451838 0.753907
65 0.264317 0.210299 0.285175 0.896987
66 0.177481 0.275877 0.527872 0.783418
67 0.48795 0.473942 0.515967 0.520636
68 0.419805 0.574216 0.497011 0.497011
69 0.585874 0.310291 0.526805 0.531928
70 0.590883 0.413303 0.446205 0.530037
71 0.454848 0.353405 0.446286 0.68487
72 0.595284 0.408498 0.472279 0.505687
73 0.646088 0.360452 0.46919 0.482188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

Table 90. One-Way ANOVA for Match-up Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

31.23218
26.80359
34.62358
45.99258

0.427838
0.367172
0.474296
0.630035

0.025998
0.012805
0.006026
0.016247

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

Total

2.765779
4.397386

7.163165

3
288

291

0.921926
0.015269

60.38014 2.59E-30 2.635951

As the p-value in Table 90 is less than 0.05, we can reject the hypothesis that all the means

are equal, i.e. there is a significant difference between the performances of the rules.

Next, a two-tailed two-sample t test was conducted for FJR - RSR to determine if the

difference between them is statistically significant (Table 91). As the p-value is less than

0.05, we can reject the hypothesis that the means are equal and conclude that the difference

between FJR and RSR is statistically significant. Moreover, as the difference is greater than

zero, we conclude that FJR performed better than RSR in the case of Match-up Time.

Another t test is conducted for RSR - PR and the results are shown in Table 92. The small p-

value and the negative difference indicate that RSR outperformed PR in the Match-up Time

and the difference is statistically significant. Finally, a t test was carried out for CR - PR,

and the results indicate that PR outperformed CR in the Match-up Time (Table 93).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Table 91. t test for RSR - FJR in the case of Match-up Time

Two-sample T for RSR vs FJR

N Mean StDev SE Mean
RSR 73 0.428 0.161 0.019
FJR 73 0.367 0.113 0.013

Difference = mu (RSR) - mu (FJR)
Estimate for difference: 0.060666
95% Cl for difference: (0.015051, 0.106281)
T-Test of difference = 0 (vs not =): T-Value = 2.63 P-Value = 0.010 DF = 129

Table 92. t test for RSR - PR in the case of Match-up Time

Two-sample T for RSR vs PR

N Mean StDev SE Mean
RSR 73 0.428 0.161 0.019
PR 73 0.4743 0.0776 0.0091

Difference = mu (RSR) - mu (PR)
Estimate for difference: -0.046458
95% Cl for difference: (-0.087996, -0.004919)
T-Test of difference = 0 (vs not =): T-Value = -2.22 P-Value = 0.029 DF = 103

Table 93. t test for CR - PR in the case of Match-up Time

Two-sample T for CR vs PR

N Mean StDev SE Mean
CR 73 0.63 0.127 0.015
PR 73 0.4743 0.0776 0.0091

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.155740
95% Cl for difference: (0.121150, 0.190330)
T-Test of difference = 0 (vs not =): T-Value = 8.92 P-Value = 0.000 DF = 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Based on the previous tests, we conclude that for the Match-up Time, the best

performance was achieved by FJR, followed by RSR, then PR, and finally CR that had the

worst performance.

Shifted Jobs Comparison

The Shifted Jobs performance of the four rules is presented in Table 94. The boxplot

of the rules is also shown in Figure 23. RSR performed the best as the number of shifted jobs

in this rule is always zero (no shifting allowed). Visually it is evident that FJR performed the

best after RSR; however, a t test is conducted for PR - CR. The results shown in Table 95

indicate that CR performed better than PR and the difference is statistically significant.

Boxplot o f RSR, FJR, PR, CR

1.0 -

0.8 -

0.6 -

0.4-

0.2 -

0.0 -

RSR FJR PR CR

Figure 23. Shifted Jobs Boxplot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Table 94. Shifted Jobs Performance among the rules

Sh ifted J o b s
Run RSR FJR PR CR
1 0 0.077746 0.855209 0.512419
2 0 0.033215 0.936218 0.349846
3 0 0.028441 0.815322 0.578309
4 0 0.02945 0.7068 0.7068
5 0 0.018968 0.787163 0.616453
6 0 0.073458 0.705196 0.705196
7 0 0.049724 0.691157 0.720992
8 0 0.04001 0.789133 0.612918
9 0 0.109018 0.476953 0.872142
10 0 0.012139 0.986696 0.16212
11 0 0.034877 0.641737 0.766131
12 0 0.299813 0.674579 0.674579
13 0 0.037049 0.951914 0.304116
14 0 0.145071 0.743491 0.652821
15 0 0.062388 0.733875 0.676413
16 0 0.048421 0.830557 0.554825
17 0 0.166148 0.697279 0.697279
18 0 0.019028 0.987732 0.154993
19 0 0.025358 0.983794 0.177503
20 0 0.141235 0.788499 0.5986
21 0 0.040758 0.503913 0.862792
22 0 0.044734 0.916349 0.397874
23 0 0.055695 0.757449 0.650515
24 0 0.138866 0.702982 0.697519
25 0 0.118331 0.709983 0.694206
26 0 0.025728 0.688411 0.724864
27 0 0.034495 0.759989 0.64902
28 0 0.140238 0.656782 0.740925
29 0 0.031546 0.744763 0.666583
30 0 0.028864 0.754603 0.655546
31 0 0.075419 0.502378 0.861353
32 0 0.039173 0.960403 0.275847
33 0 0.060516 0.682145 0.728708
34 0 0.031467 0.733441 0.679024
35 0 0.061652 0.522163 0.850614
36 0 0.088045 0.704361 0.704361
37 0 0.038885 0.445686 0.894345
38 0 0.030314 0.959039 0.281649
39 0 0.068712 0.712707 0.698088
40 0 0.054313 0.706063 0.706063
41 0 0.137561 0.700385 0.700385
42 0 0.049518 0.623929 0.779911
43 0 0.03939 0.812264 0.581958
44 0 0.030118 0.941523 0.335601
45 0 0.140741 0.651581 0.745409
46 0 0.057054 0.591075 0.804596
47 0 0.099789 0.820141 0.563392
48 0 0.040228 0.731418 0.680741
49 0 0.038465 0.927824 0.37103
50 0 0.033754 0.613474 0.788993
51 0 0.034101 0.863616 0.502995
52 0 0.016537 0.978897 0.203685
53 0 0.035005 0.702284 0.711035
54 0 0.092965 0.680789 0.726556
55 0 0.035051 0.736077 0.675989
56 0 0.024084 0.733784 0.678955
57 0 0.032477 0.960697 0.275692
58 0 0.108679 0.665758 0.738211
59 0 0.037797 0.641534 0.766163
60 0 0.020244 0.671285 0.740923
61 0 0.207514 0.691714 0.691714
62 0 0.108348 0.776492 0.620742
63 0 0.052179 0.630711 0.774262
64 0 0.042274 0.951503 0.304721
65 □ 0.02259 0.986716 0.160878
66 0 0.044548 0.668962 0.741961
67 0 0.080763 0.70641 0.70318
68 0 0.149813 0.699127 0.699127
69 0 0.030632 0.755853 0.654024
70 0 0.062571 0.633529 0.771185
71 0 0.042923 0.526877 0.848857
72 0 0.022048 0.677199 0.73547
73 0 0.056781 0.668756 0.74131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Table 95. t test for PR - CR in the case of Shifted Jobs

Two-sample T for PR vs CR

N Mean StDev SE Mean
PR 73 0.744 0.133 0.016
CR 73 0.621 0.192 0.022

Difference = mu (PR) - mu (CR)
Estimate for difference: 0.123220
95% Cl for difference: (0.069133, 0.177308)
T-Test of difference = 0 (vs not =): T-Value = 4.51 P-Value = 0.000 DF = 128

Based on the previous tests, we conclude that for the Shifted Jobs, the best

performance was achieved by RSR, followed by FJR, then CR, and finally PR that had the

worst performance.

Overall Performance Comparison

The overall performance including all the performance measures for each rule is

presented in Table 96 and computed by summing for each rule its performance values for the

4

four performance measures, then dividing by 4; i.e. overall performance of rule j = —----- .
4

The boxplot of the rules is also shown in Figure 24. Visually it seems that FJR performed

the best, followed by RSR, then PR and CR. The same tests implemented earlier will be used

to determine if the differences are statistically significant. The ANOVA results are shown in

Table 97. As the p-value is less than 0.05, we can reject the hypothesis that all the means are

equal, i.e. there is a significant difference between the performances of the rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

Next, a two-tailed two-sample t test was conducted for RSR - FJR (Table 98). As the p-

value is less than 0.05, we can reject the hypothesis that the means are equal and conclude

that the difference between FJR and RSR is statistically significant. Moreover, as the

difference is greater than zero, we conclude that FJR performed better than RSR in the case

of Overall Performance. Another t test is conducted for CR - PR and the results are shown

in Table 99. Even though the difference was positive indicating that PR outperformed CR,

this difference was not statistically significant.

Boxplot Of RSR, FJR, PR, CR
0.8 H

0 .7 -

0.6 -

0.5-

0. 1 -

0.0-1
RSR FJR PR CR

Figure 24. Overall Performance Boxplot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

Table 96. Overall Performance among the rules

Overall Perform ance
Run RSR FJR PR CR

1 0.306095 0.237064 0.650553 0.494312
2 0.338774 0.230089 0.656862 0.439375
3 0.330042 0.237592 0.5214 0.590126
4 0.393171 0.328365 0.609474 0.496634
5 0.308208 0.267842 0.619219 0.529964
6 0.180996 0.459504 0.490653 0.499568
7 0.245843 0.169653 0.638614 0.640554
8 0.239481 0.129038 0.567927 0.587328
9 0.231376 0.326099 0.391003 0.708165
10 0.291738 0.17068 0.696235 0.411024
11 0.297396 0.272671 0.378779 0.651839
12 0.254246 0.600621 0.489469 0.406114
13 0.280613 0.172051 0.653462 0.502771
14 0.261977 0.257093 0.562357 0.580813
15 0.345571 0.441602 0.415661 0.458876
16 0.281278 0.302122 0.386409 0.617876
17 0.30132 0.363952 0.456466 0.576586
18 0.284462 0.361677 0.467673 0.381107
19 0.316372 0.318766 0.704797 0.335246
20 0.305168 0.287847 0.576667 0.561019
21 0.296026 0.251534 0.36395 0.704345
22 0.250959 0.130045 0.652106 0.511671
23 0.278783 0.254386 0.666161 0.446651
24 0.369848 0.248212 0.494675 0.578013
25 0.483745 0.258673 0.482363 0.5527
26 0.32386 0.234449 0.521145 0.593583
27 0.324034 0.149435 0.501745 0.641748
28 0.366555 0.239969 0.55813 0.491694
29 0.336297 0.277081 0.476543 0.551434
30 0.257322 0.071475 0.444843 0.648214
31 0.307843 0.10872 0.308742 0.673868
32 0.282372 0.2272 0.690629 0.441929
33 0.308128 0.186017 0.420969 0.663055
34 0.20568 0.318068 0.594913 0.601301
35 0.266102 0.134039 0.385781 0.617708
36 0.151929 0.305004 0.678448 0.50869
37 0.303665 0.077724 0.309055 0.671904
38 0.295243 0.225666 0.66103 0.477282
39 0.292011 0.275385 0.496089 0.598186
40 0.244322 0.253237 0.584867 0.552072
41 0.356588 0.240329 0.530323 0.51492
42 0.386991 0.246313 0.507113 0.512499
43 0.334912 0.237241 0.466827 0.609394
44 0.231863 0.126884 0.700503 0.469258
45 0.390045 0.175235 0.487001 0.558092
46 0.28576 0.229785 0.490226 0.655489
47 0.365976 0.258038 0.520882 0.560497
48 0.306812 0.261343 0.528783 0.607627
49 0.315051 0.178711 0.666943 0.471657
50 0.315889 0.244956 0.436989 0.632001
51 0.394804 0.196167 0.611838 0.367377
52 0.254958 0.227851 0.735325 0.355971
53 0.322418 0.296204 0.534591 0.527778
54 0.266665 0.293161 0.63857 0.509446
55 0.329124 0.333686 0.495882 0.594299
56 0.331847 0.237119 0.583725 0.527572
57 0.335203 0.210901 0.65983 0.441383
58 0.365844 0.204001 0.584445 0.441012
59 0.247319 0.304134 0.548592 0.62089
60 0.366464 0.172576 0.469317 0.577716
61 0.357275 0.309204 0.544462 0.544734
62 0.264076 0.305934 0.683631 0.461716
63 0.318504 0.241438 0.545115 0.593232
64 0.314341 0.152035 0.593807 0.534895
65 0.225303 0.188961 0.4846 0.60208
66 0.287113 0.134126 0.406883 0.658564
67 0.343826 0.398475 0.46635 0.585013
68 0.388238 0.412857 0.473381 0.552316
69 0.345932 0.281199 0.545605 0.505764
70 0.334117 0.276665 0.508562 0.599961
71 0.327858 0.204849 0.396794 0.677245
72 0.335973 0.31121 0.527978 0.592425
73 0.387836 0.293021 0.568963 0.516312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

Table 97. One-Way ANOVA for the Overall Performance

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR
FJR
PR
CR

73
73
73
73

22.47377
18.34526
39.1697

39.97448

0.30786
0.251305
0.536571
0.547596

0.002995
0.007835
0.010081
0.007287

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups 5.151378 3 1.717126 243.5784 1.13E-78 2.635951
Within Groups 2.030279 288 0.00705

Total 7.181657 291

Table 98. t test for RSR - FJR in the case of Overall Performance

Two-sample T for RSR vs FJR

N Mean StDev SE Mean
RSR 73 0.3079 0.0547 0.0064
FJR 73 0.2513 0.0885 0.01

Difference = mu (RSR) - mu (FJR)
Estimate for difference: 0.056555
95% Cl for difference: (0.032440, 0.080671)
T-Test of difference = 0 (vs not =): T-Value = 4.64 P-Value = 0.000 DF = 120

Following this, we conclude that for the Overall Performance, the best performance

was achieved by FJR, followed by RSR, then PR and CR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Table 99. t test for CR - PR in the case of Overall Performance

Tw o-sam ple T fo r CR vs PR

N Mean StDev SE Mean
CR 73 0.5476 0.0854 0.01
PR 73 0.537 0.1 0.012

Difference = mu (CR) - mu (PR)
Estimate for difference: 0.011024
95% Cl for difference: (-0.019471, 0.041520)
T-Test of difference = 0 (vs not =): T-Value = 0.71 P-Value = 0.476 DF = 140

Computational Tests Summary

In this chapter, new repair and rescheduling rules have been introduced for the

unrelated parallel machine problem. The rules have been compared to existing ones and

evaluated based on four performance measures: Cmax Difference, CPU Time, Match-up

Time, and Shifted Jobs. Extensive computational tests indicated the following conclusions

about each rule:

Right Shift Repair (RSR)

RSR has been used frequently in the literature to compare with rescheduling and

repair rules. RSR had the worst Cmax Difference performance among all rules, the best CPU

and Shifted Jobs performances, and was the second best in the Match-up Time and overall

performances. Recall that RSR performed the best in the case of Shifted Jobs because it does

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

not shift jobs between machines. Moreover, RSR was the finest in CPU Time as it is a simple

heuristic with a computational complexity of 0(mn) at the most.

From the experimental design and its factor analyses, the following was determined

about RSR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of

jobs decreases.

• Match-up Time decreases when the number o f machines, idle time, and time between

breakdowns increase and the number of jobs decreases.

• Shifted Jobs is always zero when using RSR.

Fit Job Repair (FJR)

FJR is a new repair rule introduced in this Dissertation. It ranked 3rd between the
j

rules in the case of Cmax Difference (after CR and PR), 2 for CPU Time and Shifted Jobs

(after RSR), and was the best in the case of Match-up Time and Overall Performance.

The following was determined from the DoE factor analyses about FJR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns and the number o f machines

increase and the number of jobs decreases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

• Match-up Time decreases when the number o f machines, idle time, and time between

breakdowns increase and the number of jobs decreases.

• Shifted Jobs declines when the number of jobs and repair durations decrease and the

number of machines and the time between breakdowns increase.

Partial Rescheduling (PR)

PR is a new repair rule introduced in this Dissertation. It ranked 1st among all rules in

case of Cmax Difference (tied with CR), 3rd for Match-up Time (after FJR and RSR), and was

the worst in the case of CPU Time (tied with CR), Shifted Jobs, and Overall Performance

(tied with CR).

The following was determined from the experimental design factor analyses about PR

performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of

jobs decreases.

• Match-up Time decreases when the number of machines and time between

breakdowns increase and the number of jobs decreases.

• Shifted Jobs declines when the number of jobs and repair durations decrease and the

number of machines and the time between breakdowns increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

Complete Rescheduling (CR)

CR ranked 1st among all rules in the case of Cmax Difference (tied with PR), 3rd for

Shifted Jobs, and was the worst in the case of CPU Time (tied with PR), Match-up Time, and

Overall Performance (tied with PR).

The following was determined from the DoE factor analyses about CR performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns increases and the number of

jobs and machines decreases.

• Match-up Time decreases when the number of machines and time between

breakdowns increase and the number of jobs decreases.

• Shifted Jobs declines when the number of jobs and repair durations decrease and the

number of machines and the time between breakdowns increase.

Finally, as it is obvious that the superiority of each of the four rules strongly depends

on which performance measure is being evaluated, Table 100 below summarizes the ranks of

the rules for all possible combinations of the four performance measures addressed in this

dissertation (15 alternatives). All necessary ANOVA and t tests were carried out to make

sure that the reported results are statistically significant. Note that the rules are ranked

between 1 and 4, where 1 indicates the best performance and 4 the worst one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

Table 100. Ranks of the Rules for all combinations of Performance Measures
(4 is worst and 1 is best)

Performance Measures Repair Rules
Cmax Difference CPU Time Match-up Time Shifted Jobs RSR FJR PR CR

• 4 3 1 1
• 1 2 4 4

• 2 1 3 4
• 1 2 4 3

• • 2 1 4 4
• • 4 1 1 3
• • 2 1 4 3

• • 1 1 3 4
• • 1 4 4

• • 1 1 4 4
• • • 2 1 3
• • • 2 1 4 4
• • • 2 1 4 4

• • • 1 2 4 4
• • • • 2 1 3 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 7 2

CHAPTER VII

ROBUST REACTIVE SCHEDULING SYSTEM

The proposed robust scheduling system is presented in this chapter. The system is a

combination of the repair rules described in chapter 6, with the objective of delivering

superior performance measures, i.e. better schedule quality and stability.

The rationale o f the system is very simple. Following the creation of a predictable

schedule using MCFJI (explained in Chapter 5), the schedule is executed under a dynamic

environment subject to breakdowns. Upon the occurrence of any disruption, the system will

check its Tidle, where Tidle is the total idle time in the predictable schedule. If Tidle > 0, the

system attempts to shift Dj (down job) to the right without impacting its successor. It repeats

this operation one more time if necessary for the next job to start on time (this is actually

RSR). After shifting two jobs, if the schedule is still not repaired, apply FJR; i.e. try to fit Dj

on any machine while maximizing residlej (idle time left on each machine). In case all jobs

have been shifted and Dj was not fitted on any machine, then apply PR (which includes CR

in case matching up with the initial schedule is not possible).

The system’s architecture is presented in Figure 25. Note that the reason only PR is used

when Tidle = 0 is because both RSR and FJR are not able to repair the schedule in the

absence of idle time; RSR shifts the jobs to the right and FJR attempts to fit the jobs in the

idle time between the machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Start

Predictable
Schedule

Are all jobs
processed?Stop -Ye:

No

Is Repair Duration >
Start of the down job?

•No-

Yes

Is Tidle > 0?-Yes- No-

No

No

-Yes-

Is the scheduli
repaired?

the schedul
repaired?

Schedule subject
to random

Breakdowns

Update the new
Jobs’ assignments

Try to fit Dj on a
machine using

FJR

Shift up to 2 jobs
to the right using

RSR

Continue Schedule
Execution

Tty to Match-up
using PR (which
includes CR in
case we cannot

match-up)

Figure 25. Robust Reactive Scheduling System Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

COMPUTATIONAL TESTS AND EXPERIMENTAL DESIGN

Following the description of the robust system, the same computational tests applied

in chapter 6 to test the repair rules will be used here. The D-Optimal design experiments

shown in Table 29 are carried out and the factors in Table 27 are analyzed to see how they

impact the system performance. The Robust System is tested both with and without the

learning parameter (explained in Chapter 5). The computational tests are shown in Tables

101 and 102.

Performance Measures Statistical Analyses

Similarly to chapter 6 approach, Minitab 14.2 Statistical Software was used to

determine the significance of the factors and their interactions for each performance measure.

Cmax Difference Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

the Robust System with and without Learning in the case of the Cmax Difference

performance measure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Table 101. Computational Tests for the Robust System w/o Learning
(Average Numbers)

R o b u st (no learning)

Run Cmax Cmax
95% C/

CPU
(sec)

CPU
95% Cl Match Match

95% a
Shifted
Jobs

S.Jobs
95% Cl

1 9.4 [4.5-14.3] 0.52 [0.2-0.8] 202.22 [125.5-278.9] 1.24 [0.35-2.1]
2 291.58 [264.7-318.5] 76.63 [62.3-91] 9299.75 [8498.7-10100.8] 29.66 [24-35.3]
3 13.67 [5.2-22.1] 7.72 [0.05-15.4] 969.45 [754.1-1184.8] 8.4 [4.1-12.7]
4 20.07 [6.8-33.3] 0.49 [0.1-0.9] 511.85 [281.3-742.3] 0.65 [0-1.3]
5 2.57 [0.8-4.3] 1.74 [0.4-3.05] 147.55 [104.1-190.9] 3.1 [1.3-4.9]
6 2.77 [0.9-4.6] 0.17 [0 1-0.2] 14.69 [7-22.3] 0.48 [0.14-0.8]
7 3.43 [1.3-5.6] 2.23 [0.3-4.2] 45.76 [26.1-65.4] 1.9 [0.8-3]8 2.28 [0-4.6] 18.19 [8.4-28] 426.24 [367.6-484.9] 7.58 [4.8-10.4]
9 4.28 [1.4-7.1] 1.29 [0.7-1.9] 10.58 [4.6-16.5] 0.64 [0.3-1]
10 174.51 [137.5-211.5] 79.45 [45.6-113.3] 7892.24 [6382.5-9402] 9.9 [6-13.8]
11 2.67 [1.4-3.9] 32.94 [8.3-57.6] 105.28 [81.1-129.4] 7.54 [4.8-10.2]
12 4.82 [0.6-9.1] 1.19 [0.7-1.7] 28 [12.2-43.8] 0.38 [0.05-0.7]
13 271.73 [231-312.4] 26.67 [20.8-32.6] 9588.46 [8215-10961.9] 18.56 [14.5-22.6]
14 4.13 [1-7.3] 1.09 [0.6-1.5] 19.65 [6.3-33] 0.96 [0.2-1.7]
15 2.65 [1-4.2] 1.46 [0.6-2.3] 72.14 [43.7-100.6] 2.15 [1-3.3]
16 3.63 [0-7.4] 4.84 [0-10.9] 504.05 [298.9-709.1] 5.6 [0.9-10.3]
17 8.49 [4.4-12.5] 1.4 [1-1.7] 113.75 [85.7-141.8] 4.64 [3.4-5.8]
18 26.5 [7.5-45.5] 5.62 [1.8-9.4] 2068.88 [1369.1-2768.6] 1.9 [1-2.8]
19 25.78 [13.2-38.4] 8.35 [4.8-11.9] 1402.04 [1110.6-1693.5] 3.87 [0.4-7.3]20 92.16 [67.9-116.4] 21.3 [14.8-27.8] 1921.2 [1543.3-2299.1] 5.12 [38-6.4]21 3.94 [0.7-7.2] 11.3 [5-17.6] 243.53 [173.9-313.2] 3.72 [1.9-5.5]
22 116.7 [86.7-146.7] 5.48 [3.8-7.2] 4478.6 [3545.8-5411.4] 12.3 [8.9-15.6]
23 7.63 [3.1-12.2] 1.95 [1.2-2.7] 142.95 [95.9-190] 1.43 [0.6-2.2]
24 15.19 [6.3-24.05] 7.62 [3.9-11.3] 215.88 [141.2-290.6] 4.77 [2.8-6.7]
25 0.93 [0-2] 0.37 [0.1-0.6] 8.71 [1.1-16.3] 0.27 [0-0.57]
26 7.93 [1.4-14.4] 2.51 [0.4-4.7] 291.41 [160.6-422.2] 4.95 [1.8-8.1]
27 27.55 [18.4-36.6] 16.98 [7.1-26.8] 1403.05 [1078-1728] 22.25 [11.4-33.1]
28 15.55 [9.2-21.9] 2.99 [2.1-3.9] 182.73 [124.8-240.6] 4.7 [2.7-6.6]
29 2.68 [0.01-5.3] 2.99 [1.3-4.7] 85.74 [53.6-117.9] 4 [1.8-6.2]
30 0 [0-1.3] 1.46 [0.4-2.5] 1064.13 [815.8-1312.4] 5.15 [2.1-8.2]
31 1.53 [0-4.4] 2.96 [1.4-4.5] 742.19 [583.4-900.9] 4.9 [3.2-65]
32 94.32 [71-117.6] 10.28 [6.7-13.9] 3398.15 [2755.5-4040.8] 5.71 [3.5-7.9]
33 5.42 [1.3-9.5] 2.2 [0.5-3.9] 507.97 [404.4-611.6] 5.56 [3.5-74]
34 2.44 [0.7-4.1] 2.7 [0.8-4.6] 84.78 [40.6-129] 2.07 [0.8-3.3]
35 0 [0-0.1] 4.71 [2.5-69] 87.06 [62.8-111.3] 5.1 [3.1-7.1]
36 1.18 [0.3-2] 1.68 [1-2.4] 5.46 [2.8-8.1] 0.64 [0.2-1]
37 0.82 [0-2.87] 17.65 [6.5-28.8] 282.23 [233.9-330.6] 5.48 [3.2-7.7]
38 30.44 [24.5-36.4] 29.16 [22.2-36.1] 1071.34 [902.9-1239.8] 6.11 [2.7-9.51
39 5.46 [0-11.6] 3.68 [2.2-5.1] 399.57 [289.5-509.6] 2.95 [1.7-4.2]
40 0.82 [0-1.7] 0.36 [0-0.75] 3.95 [0-8.4] 0.52 [0-1.2]
41 5.71 [2-9.4] 8.44 [6.1-10.8] 103.85 [77.2-130.4] 7.8 [5.5-10]
42 3.11 [0.9-5.3] 2.87 [1.3-4.5] 118.84 [82.4-155.3] 1.34 [0.8-1.9]
43 9.82 [5.3-14.3] 9.4 [3.6-15.1] 656.6 [530.5-782.7] 6.65 [3.6-9.7]
44 86.9 [63-110.7] 65.28 [60.6-70] 4511.1 [3417.9-5604.2] 18.87 [14-23.7]
45 4.59 [0.8-8.4] 1.31 [0.6-2] 18.07 [5.3-30.8] 1.022 [0.2-1.8]
46 4.05 [2.3-58] 11.31 [6.4-16.2] 144.72 [115-174.4] 12.84 [9.1-16.5]
47 96.62 [79.5-113.7] 4.21 [3.3-5.1] 1740.15 [1476.5-2003.8] 5.66 [4.4-6.9J
48 5.57 [3.4-7.7] 36.09 [14.8-57.4] 310.02 [266.2-353.8] 8.02 [5.6-10.4]
49 455.99 [416.66-495.3] 103.6 [85.8-121.5] 21145.8 [18940.9-23350.8] 30.38 [25.9-34.9]
50 4.06 [1.3-6.8] 33.8 [12.8-54.8] 131.86 [93.6-170.1] 4.02 [2.1-5.9]
51 3.53 [1.8-5.3] 6.52 [3.4-9.6] 185.71 [135.4-236] 4.2 [2.1-6.3]
52 29.4 [22.5-36.3] 31.48 [18-45] 1747.11 [1484.6-2009.6] 6.6 [3.5-96]
53 4.05 [1-7.1] 39.01 [23.5-54.5] 186.52 [133.8-239.2] 3.86 [23-5.4]
54 36.42 [24.7-48.1] 7.82 [4.7-10.9] 647.88 [499.2-796.5] 1.42 [0.9-1.9]
55 3.41 [1.3-5.5] 1.97 [0.6-3.3] 39.7 [22.3-57.1] 2.16 [0.8-3.5]
56 4.6 [2.8-64] 62.68 [45.3-80.1] 228.39 [185.1-271.6] 7.2 [4.8-9.6]
57 135.65 [122-149.3] 73.32 [55.6-91] 4568.32 [4077-5059.6] 25.84 [21.1-30.6]
58 4.92 [2.7-72] 8.48 [6.4-10.5] 92.36 [70.1-114.7] 5.22 [3.9-65]
59 5.19 [1.3-9] 8.88 [4.4-13.3] 147.63 [100.8-194.4] 4.33 [2.4-62]
60 1.45 [0.2-2.7] 44.63 [33-56.26] 73.33 [53.5-93.1] 4.47 [27-6.2]
61 3.69 [1.4-5.9] 1.22 [0.8-1.6] 18.33 [11.3-25.3] 0.98 [0.6-1.4]
62 24.47 [15.8-33.2] 8.22 [5.2-11.2] 466.44 [358.1-574.8] 1.94 [1.2-2.7]
63 11.89 [8.7-15.1] 35.53 [24.1-47] 356.91 [296.9-416.8] 16.98 [12.1-21.8]
64 305.59 [252.3-358.8] 65.82 [47.2-84.5] 9863.87 [8247.1-11480.7] 18.78 [15.9-21.7]
65 34.62 [25-44.2] 47.73 [31.7-63.8] 1955.56 [1630.3-2280.8] 7.06 [5.2-89]
66 1.82 [0-5] 59.03 [38.2-79.8] 514.32 [417.3-611.3] 9.311 [6.3-12.3]
67 8.74 [6.6-10.8] 5.04 [3.9-62] 106.26 [85.3-127.2] 5.18 [3.8-65]
68 3.91 [1.5-6.4] 0.23 [0.1-0.4] 20.03 [8.9-31.1] 0.56 [0.2-0.9]
69 5.62 [1.9-9.3] 9.52 [3.1-15.9] 585.99 [428.6-743.38] 3.87 [1.8-5.9]
70 11.15 [6-16.3] 19.65 [12.4-26.9] 235.42 [160.5-310.3] 2.49 [1.5-3.4]
71 19.87 [13.8-25.9] 82.58 [45.7-119.5] 1048.32 [902.8-1193.8] 22.55 [18.9-26.2]
72 2.58 [1.2-4] 15.6 [6-25.1] 40.07 [26.5-53.6] 2.95 [1.6-4.3]
73 7.86 [4.5-11.2] 6.31 [3.9-87] 166.75 [114.7-218.8] 1.12 [0.4-1.8]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Table 102.Computational Tests for the Robust System with Learning
(Average Numbers)

R o b u st (with learning)

Run Cmax Cmax CPU CPU Match Match Shitted S. Jobs
95% c ; (sec) 95% Cl 95% Cl Jobs 95% Cl

1 7.86 [3.7-12] 0.86 [0.4-1.4] 169.86 [98.5-241.2] 1.28 [0.3-2.2]
2 23.75 [10.2-37.3] 0.98 [0.5-1.4] 1688.4 [1326.5-2050.29] 2.62 [0.95-4.3]
3 12.73 [2.2-23.2] 0.98 [0.5-1.5] 1206.96 [986-1427.9] 2.4 [0.6-4.1]
4 10.26 [1.5-19] 0.29 [0-0.6] 262.36 [122.4-442.3] 0.45 [0-0.9]
5 6.56 [3.4-9.7] 2.35 [1.1-3.6] 189 [136.4-241.6] 4.45 [2.2-67]
6 2.33 [0.7-3.9] 0.89 [0.4-1.3] 14.11 [6.4-21.8] 0.46 [0.1-0.8]
7 1.56 [0-3.2] 4.07 [0.6-7.6] 39.79 [22.1-57.5] 1.54 [0.4-2.6]
8 1.63 [0-3.9] 10.5 [8.3-12.7] 380.8 [308-453.6] 6.62 [4.1-9.1]
9 1.83 [0-3.8] 0.26 [0.03-0.5] 11.07 [4.8-17.4] 0.78 [0.3-1.2]
10 31.71 [9-54.4] 6.18 [1.5-10.8] 3615.09 [2496.9-4733.2] 2.55 [0.9-4.2]
11 0.52 [0-1.04] 11.53 [0.9-22.2] 93.53 [71.3-115.8] 6 [3.6-84]
12 2.92 [0-6.1] 0.16 [0.1-0.3] 24.58 [8.54-40.6] 0.34 [0.1-0.6]
13 134.02 [94.7-173.4] 20.93 [12.9-28.9] 5792.28 [4362-7222.5] 9.24 [6.4-12.1]
14 1.9 [0-4.8] 0.94 [0.1-1.8] 17.52 [5.2-29.8] 0.87 [0.03-1.7]
15 1.09 [0-2.6] 6.36 [2.7-10] 59.3 [29.4-89.1] 1.63 [0.6-2.6]
16 2.73 [0-6.6] 2.38 [0.6-4.1] 526.19 [325.8-726.5] 6.4 [1.4-11.4]
17 0.38 [0-1.6] 2.1 [0.2-4] 72.97 [31.9-114] 3.1 [1.1-5]
18 10.92 [0-23.8] 18.55 [2.7-34.4] 1837.92 [1278.3-2397.6] 1.6 [0.8-2.4]
19 12.95 [4.2-21.7] 11.55 [4.8-18.2] 1171.79 [873.4-1470.1] 1.3 [0.6-1.9]
20 60.05 [36.7-83.4] 5.76 [4.3-72] 1426.21 [1037.1-1815.3] 3.47 [2.3-4.6]
21 3.11 [0-7.8] 28.69 [13.3-44] 238.31 [168.1-308.6] 2.8 [1.42-4.2]
22 85.46 [54.9-116] 4.4 [2.7-6.1] 4234.2 [3225.3-5243] 10.8 [7.3-14.3]
23 6.09 [1.8-10.3] 4.62 [1.5-7.7] 144.31 [81.7-206.9] 0.87 [0.3-1.4]
24 2.85 [0-6.1] 2.19 [1.4-2.9] 283.74 [197-370.4] 5.6 [37-7.5]
25 0.7 [0-1.7] 0.12 [0.01-0.2] 8.55 [1.2-15.9] 0.27 [0-0.6]
26 4.42 [0.4-8.4] 5.76 [3.7-78] 201.9 [134.5-269.3] 1.43 [0.6-2.3]
27 14.72 [4.9-24.5] 6.42 [1.33-11.5] 1139.7 [822-1457.4] 11.05 [6.2-15.9]
28 6.84 [1.7-11.9] 1.68 [1.1-2.2] 160.23 [107.2-213.2] 3.3 [2.3-43]
29 3.42 [0.5-6.33] 2.2 [0.7-3.7] 95.59 [56.2-135] 3.57 [1.4-5.7]
30 3.97 [0-10.4] 1.47 [0.6-2.3] 1056.9 [796.3-1317.5] 5.6 [3.1-8.1]
31 1.47 [0-6] 2.55 [1.4-3.6] 788.11 [578.5-997.7] 5.23 [3.1-7.3]
32 25.31 [10.3-40.3] 1.82 [0.9-2.8] 2028.14 [1490.6-2565.7] 3.03 [1.1-5]
33 6.21 [0.1-12.3] 9.83 [4.2-15.5] 565.08 [448.4-681.8] 9 [5.2-12.8]
34 4.18 [0.8-7.5] 3.65 [1.3-6] 57.34 [25.2-89.5] 1.71 [0.6-2.8]
35 0 [0-0.24] 2.32 [0.8-3.9] 76.2 [55.8-96.6] 3.48 [1.6-5.4]
36 2.13 [0.6-3.7] 1.28 [0.3-2.2] 6.56 [2.8-10.3] 0.63 [0.2-1]
37 0.23 [0-2.5] 27.26 [15.2-39.3] 313.31 [254.6-372] 5.38 [3.5-72]
38 16.77 [10.4-23.1] 1.75 [0.8-2.6] 778.22 [582.6-973.8] 3.47 [1.9-5]
39 2.18 [0-6.5] 1.25 [0.5-2] 342.7 [235.9-449.5] 3.5 [1.4-5.6]
40 0.156 [0-0.6] 0.43 [0.1 -0.7] 3.47 [0.7-6.3] 0.325 [0-0.6]
41 1.08 [0-3.35] 6.93 [4.7-9.2] 69 [51.3-86.7] 5.54 [4.1-7]
42 2.41 [0.2-4.6] 2.96 [1.5-4.4] 141.86 [97.8-185.9] 1.2 [0.6-1.8]
43 4.3 [0.5-8.1] 5.36 [3-7.7] 439.35 [334.5-544.1] 3.6 [1.97-5.2]
44 49.44 [30.5-68.3] 22.28 [16.3-28.3] 3041.59 [2286.9-3796.3] 11.52 [8.1-14.9]
45 2.82 [0-5.9] 1.51 [0.8-2.2] 19.38 [10.6-28.2] 1 [0.4-1.5]
46 1.78 [0.21-3.3] 17.58 [10.6-24.5] 115.03 [92.6-137.5] 9.2 [6.5-11.9]
47 44.09 [32.2-55.9] 13.78 [10.7-16.8] 970.74 [748.2-1193.3] 3.18 [2.3-4.1]
48 2.67 [0.6-4.7] 7.56 [4.5-10.6] 222.19 [169.5-274.9] 5.3 [2.7-79]
49 159.45 [130.4-188.5] 23.39 [18.4-28.4] 7813.32 [6311.9-9314.7] 10.04 [8-12.1]
50 1.88 [0.05-3.7] 7.61 [3.4-11.8] 116.94 [77.6-156.3] 3.67 [1.8-5.5]
51 1.76 [0.2-3.3] 10.41 [3.1-17.7] 197.38 [142-252.7] 5.77 [2.5-9.1]
52 8.74 [4.5-13] 13.28 [7.2-19.4] 887.81 [652.2-1123.4] 3.75 [1.3-6.1]
53 6.12 [1.7-10.5] 30.73 [25.5-36] 202.98 [142.5-263.4] 4.44 [2.2-67]
54 20.98 [11.7-30.3] 2.92 [2-3.8] 601.21 [471.8-730.6] 1.34 [0.6-2]
55 1.8 [0-3.6] 1.26 [0.3-2.2] 45.35 [26.7-64] 1.62 [0.7-2.5]
56 2.64 [0.9-4.3] 23.06 [15.4-30.7] 205.68 [162.8-248.5] 5.95 [4-7.9]
57 67.53 [52.2-82.9] 22.63 [18.9-26.4] 2488.1 [2005-2971.2] 13.4 [10-16.8]
58 1.99 [0.02-3.9] 14.59 [10.6-18.6] 75.11 [55.6-94.6] 2.91 [1.9-3.9]
59 3.43 [0.3-6.5] 13.99 [6.9-21.1] 150.1 [102.1-198] 3.93 [2.4-54]
60 0.33 [0-1] 23.19 [4.5-41.9] 72.8 [51.9-93.6] 4.09 [1.8-6.4]
61 1.52 [0-3.2] 1.06 [0.6-1.5] 11.48 [6.2-16.8] 0.49 [0.15-0.8]
62 16.56 [9.3-23.8] 1.24 [0.7-1.8] 397.62 [296.3-498.9] 1 [0.5-1.5]
63 8.37 [4.7-12] 11.87 [8.6-15.1] 206.36 [155 9-256.8] 8.73 [5.9-11.5]
64 196.04 [144-248] 22.43 [10.1-34.8] 7669.65 [5833.5-9505.8] 9.84 [7-12.7]
65 9.95 [3.7-16.2] 3.95 [0.2-7.7] 1033.58 [813.3-1253.8] 2.4 [1.3-3.4]
66 2.06 [0-5] 39.16 [24.4-54] 437.46 [341.3-533.6] 8.95 [5.7-12.1]
67 4.19 [1.7-6.7] 1.25 [0.9-1.6] 78.74 [58.7-98.8] 3.51 [2.3-4.7]
68 1.63 [0-3.5] 0.19 [0.05-0.3] 22.66 [7.1-38.2] 0.244 [0.05-0.4]
69 4.8 [1.4-8.2] 17.79 [10.3-25.3] 535.34 [405 2-665.4] 3.24 [1.9-4.6]
70 4.83 [0.4-9.3] 6.61 [2.7-10.5] 218.76 [146.8-290.7] 2.18 [1.2-3.2]
71 10.53 [5.9-15.2] 27.73 [16.7-38.8] 687.69 [568.4-806.9] 11.5 [10.2-12.8]
72 1.999 [0.7-3.3] 7.48 [3.8-11.2] 32.04 [19.6-44.4] 2.13 [1-3.2]
73 7.07 [2.9-11.2] 3.07 [1.6-4.5] 151.74 [91.8-211.6] 1.42 [0.65-2.2]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Cmax Difference in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 103,

ANOVA test in Table 104, and Effect test in Table 105. The results indicate the success of

the regression in predicting the values of Cmax Difference and that the model is significant

since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 105; these factors are Number o f Machines, and the interaction

between Repair Duration and Breakdown and Idle Time and Breakdown.

Factor C (Number o f Machines) has a negative effect on Cmax Difference, i.e. when the

number of machines increases, Cmax Difference decreases. This is logical because the jobs’

load will be distributed over the machines. Interaction DF {Repair Duration and Breakdown)

has a positive effect on Cmax Difference. This makes sense too because if the repair

durations and breakdown rate are higher, the delays will be more frequent and longer; i.e.

CmaxR will increase.

Factors E and F interact because a larger idle time is able to absorb a higher rate of

breakdowns, and vice versa.

Table 103. Cmax Difference Regression Results for Robust
System w/o Learning

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.777
0.643

48.3152
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

Table 104. Cmax Difference ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 365150 13524 5.79 0.000
Residual 45 105046 2334
Total 72 470196

Table 105. Cmax Difference Effect Test for Robust System w/o
Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 19.45 23.23 0.84 0.407

A 11.856 7.506 1.58 0.121
B 11.45 16.26 0.7 0.485
C -61.18 17.3 -3.54 0.001
D -16.99 17.48 -0.97 0.336
E -1.36 16.87 -0.08 0.936
F -22.45 17.95 -1.25 0.217

AB 0.1971 0.4014 0.49 0.626
AC 0.2386 0.4128 0.58 0.566
AD 0.36 0.4331 0.83 0.41
AE -0.2779 0.392 -0.71 0.482
AF -0.2658 0.4583 -0.58 0.565
BC -19.047 9.908 -1.92 0.061
BD 1.86 10.92 0.17 0.865
BE -3.923 9.396 -0.42 0.678
BF -2.7 10 -0.27 0.789
CD -3.425 9.883 -0.35 0.731
CE -10.238 9.443 -1.08 0.284
CF -6.78 10.32 -0.66 0.515
DE 17.59 10.35 1.7 0.096
DF 46.14 11.29 4.09 0
EF 21.813 9.331 2.34 0.024
AA -6.67 13 -0.51 0.611
BB -6.81 13.08 -0.52 0.605
CC 38.33 13.06 2.94 0.005
DD -22.93 12.68 -1.81 0.077
EE 6.48 13.37 0.48 0.63
FF 13.06 14.1 0.93 0.359

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 7 9

Cmax Difference in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 106,

ANOVA test in Table 107, and Effect test in Table 108. The results indicate the success of

the regression in predicting the values of Cmax Difference and that the model is significant

since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 108; these factors are Processing Time Range, and the

interactions between Repair Duration and Breakdown, Number o f Jobs and Number o f

Machines, and Processing Time Range and Breakdown.

Factor A (Processing Time Range) has a positive effect on Cmax Difference, i.e. when the

processing time increases, Cmax Difference increases. This is attributed to the fact that a

wider processing time range will create a larger variability, i.e. it is harder for the learning

parameter to predict CmaxR. Interaction DF (Repair Duration and Breakdown) was

discussed earlier. Interaction BC (Number o f Jobs and Number o f Machines) is evident as

both the number of jobs and number of machines determine the size of the problem, i.e. the

difficulty to attain solutions. Factors A and F interact because the time between breakdowns

is a function of the processing time; the larger the processing time, the longer is the time

between breakdowns.

Table 106. Cmax Difference Regression Results for Robust
System with Learning

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.77
0.631

21.2020
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

Table 107. Cmax Difference ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 67538.5 2501.4 5.56 0.000
Residual 45 20228.6 449.5
Total 72 87767.1

Table 108. Cmax Difference Effect Test for Robust System with
Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 8.21 10.19 0.81 0.425

A 7.107 3.294 2.16 0.036
B 2.727 7.137 0.38 0.704
C -11.262 7.592 -1.48 0.145
D 3.679 7.672 0.48 0.634
E 2.626 7.401 0.35 0.724
F 1.758 7.876 0.22 0.824

AB 0.1546 0.1762 0.88 0.385
AC -0.2513 0.1812 -1.39 0.172
AD -0.0265 0.1901 -0.14 0.89
AE -0.2 0.172 -1.16 0.251
AF -0.4156 0.2011 -2.07 0.045
BC -11.317 4.348 -2.6 0.012
BD 1.885 4.792 0.39 0.696
BE -3.756 4.123 -0.91 0.367
BF -3.813 4.389 -0.87 0.39
CD -2.667 4.337 -0.61 0.542
CE -1.409 4.144 -0.34 0.735
CF -1.064 4.528 -0.23 0.815
DE 3.472 4.541 0.76 0.448
DF 22.255 4.955 4.49 0
EF 1.691 4.095 0.41 0.682
AA 1.497 5.706 0.26 0.794
BB -6.263 5.741 -1.09 0.281
CC 15.231 5.731 2.66 0.011
DD -10.753 5.563 -1.93 0.06
EE 3.935 5.867 0.67 0.506
FF 6.079 6.186 0.98 0.331

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

CPU Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the two systems in the case of the CPU performance measure. This analysis will

follow the same approach used earlier.

CPU Time in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 109,

ANOVA test in Table 110, and Effect test in Table 111. The results indicate the success of

the regression in predicting the values of CPU Time and that the model is significant since

the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 111. These factor effects on CPU Time in the case of Robust

System w/o Learning are described in Table 112.

Table 109. CPU Time Regression Results for Robust System
w/o Learning

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.761
0.618

15.1293
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 8 2

Table 110. CPU Time ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 32792.6 1214.5 5.31 0.000
Residual 45 10300.3 228.9
Total 72 43092.9

Table 111. CPU Time Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant -0.695 7.07 -0.1 0.922

A -0.163 2.288 -0.07 0.944
B 16.426 2.302 7.14 0
C -6.55 2.348 -2.79 0.008
D -2.88 2.324 -1.24 0.222
E -7.961 2.263 -3.52 0.001
F -8.272 2.362 -3.5 0.001

AB -0.216 2.85 -0.08 0.94
AC -0.206 2.948 -0.07 0.945
AD -0.493 3.1 -0.16 0.874
AE -5.834 2.937 -1.99 0.053
AF 0.767 3.007 0.25 0.8
BC -1.105 3.031 -0.36 0.717
BD -4.166 2.982 -1.4 0.169
BE -1.552 2.982 -0.52 0.605
BF -4.103 3.068 -1.34 0.188
CD 0.975 3.095 0.32 0.754
CE 2.868 3.059 0.94 0.353
CF 9.774 3.189 3.06 0.004
DE 0.814 2.977 0.27 0.786
DF 6.299 3.264 1.93 0.06
EF 4.672 2.988 1.56 0.125
AA 4.669 4.068 1.15 0.257
BB 4.268 3.913 1.09 0.281
CC 18.858 3.95 4.77 0
DD -1.597 3.943 -0.4 0.687
EE 0.02 4.229 0 0.996
FF 2.5 4.002 0.62 0.535

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Table 112. Factors' Effects on CPU Time in the case of Robust System w/o Learning

C P U T i m e E f f e c t s ' D i a g n o s t i c f o r R o b u s t S y s t e m w / o L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

B +
A higher number of jobs leads to a higher possibilities of
assignments to the machines; the MIP will require more time
to attain a solution.

C -
When there are more machines, the jobs on each machine
will be less, i.e. the problem becomes a little easier for the
MIP to solve.

E -
A larger repair duration leads to longer but fewer delays as no
more than one breakdown can occur until the repair finishes,
i.e. less rescheduling

F - When the time between breakdowns is larger, less delay will
occur, hence, less shifting is required.

CF +

C (number of jobs) and F (breakdown) interact because more
machines lead to fewer breakdowns on each machine as no
more than one breakdown can occur at a time over the
machines.

CPU Time in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 113,

ANOVA test in Table 114, and Effect test in Table 115. The results indicate the success of

the regression in predicting the values of CPU Time and that the model is significant since

the p-value is very small.

Table 113. CPU Time Regression Results for Robust System
with Learning

R e g r e s s i o n S t a t i s t i c s

R Square 0.658
Adjusted R Square 0.453
Standard Error 6.82670
Observations 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 8 4

Table 114. CPU Time ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 4033.32 149.38 3.21 0.000
Residual 45 2097.17 46.60
Total 72 6130.49

Table 115. CPU Time Effect Test for Robust System with Learning

Predictor Coefficients SE Coef tS tat P-value
Constant -1.758 3.19 -0.55 0.584

A 0.117 1.032 0.11 0.91
B 6.399 1.039 6.16 0
C 0.274 1.059 0.26 0.797
D 0.289 1.049 0.28 0.784
E 0.675 1.021 0.66 0.512
F -2.032 1.066 -1.91 0.063

AB 1.48 1.286 1.15 0.256
AC 1.882 1.33 1.41 0.164
AD 2.117 1.399 1.51 0.137
AE -0.405 1.325 -0.31 0.761
AF 0.685 1.357 0.5 0.616
BC 3.124 1.368 2.28 0.027
BD 0.009 1.345 0.01 0.995
BE -0.601 1.345 -0.45 0.657
BF -0.274 1.384 -0.2 0.844
CD -0.371 1.397 -0.27 0.792
CE -1.301 1.38 -0.94 0.351
CF -0.896 1.439 -0.62 0.537
DE -1.665 1.343 -1.24 0.221
DF 0.359 1.473 0.24 0.808
EF 0.468 1.348 0.35 0.73
AA 1.823 1.836 0.99 0.326
BB 1.708 1.765 0.97 0.338
CC 6.404 1.782 3.59 0.001
DD -2.084 1.779 -1.17 0.248
EE 2.259 1.908 1.18 0.243
FF 5.075 1.806 2.81 0.007

The factors that were determined to be significant due to a relatively large t-Stat and a

small p-value are bolded in Table 115; these factors are Number o f Jobs, and the interaction

between Number o f Jobs and Number o f Machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

Interaction BC is logical as both the number of jobs and number of machines determine the

size of the problem, i.e. the difficulty to attain solutions.

Shifted Jobs Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the two systems in the case of the Shifted Jobs performance measure.

Shifted Jobs in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 116,

ANOVA test in Table 117, Effect test in Table 118, and the factor effects diagnosis in Table

119. The results indicate the success of the regression in predicting the values of Shifted

Jobs and that the model is significant since the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 118 and explained in Table 119; these factors are Number o f

Jobs, Number o f Machines, Repair Duration, Idle Time and Breakdown, and the interactions

between Repair Duration and Breakdown, Idle Time and Breakdown, Number o f Machines

and Breakdown, and Number o f Jobs and Breakdown.

Table 116. Shifted Jobs Regression Results for Robust System
w/o Learning

R e g r e s s i o n S t a t i s t i c s

R Square
Adjusted R Square
Standard Error
Observations

0.858
0.773

3.28318
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 8 6

Table 117. Shifted Jobs ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 2933.01 108.63 10.08 0.000
Residual 45 485.07 10.78
Total 72 3418.07

Table 118. Shifted Jobs Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 3.891 1.534 2.54 0.015

A -0.0502 0.4964 -0.1 0.92
B 3.4753 0.4995 6.96 0
C -2.1223 0.5095 -4.17 0
D -1.1446 0.5043 -2.27 0.028
E -1.6311 0.4911 -3.32 0.002
F -4.5305 0.5126 -8.84 0

AB -0.0535 0.6185 -0.09 0.931
AC -0.0844 0.6398 -0.13 0.896
AD -0.008 0.6727 -0.01 0.991
AE -0.9125 0.6373 -1.43 0.159
AF 0.4475 0.6526 0.69 0.496
BC -1.1854 0.6577 -1.8 0.078
BD -1.244 0.647 -1.92 0.061
BE -0.2874 0.647 -0.44 0.659
BF -1.675 0.6657 -2.52 0.015
CD 0.4626 0.6717 0.69 0.495
CE 0.3526 0.6638 0.53 0.598
CF 2.4411 0.6921 3.53 0.001
DE 0.5797 0.646 0.9 0.374
DF 2.0618 0.7083 2.91 0.006
EF 1.3537 0.6484 2.09 0.042
AA -0.2858 0.8828 -0.32 0.748
BB -1.3525 0.8491 -1.59 0.118
CC 2.8488 0.8571 3.32 0.002
DD -0.285 0.8558 -0.33 0.741
EE -0.1199 0.9176 -0.13 0.897
FF 2.9012 0.8684 3.34 0.002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

Table 119. Factors' Effects on Shifted Jobs in the case of Robust System w/o Learning

S h i f t e d J o b s E f f e c t s ' D i a g n o s t i c f o r R o b u s t S y s t e m w / o L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

B + A higher number of jobs logically indicates a higher number of shifts
between the machines

C - When there are more machines, the jobs on each machine will be less,
i.e. fewer jobs will be shifted.

D - A larger repair duration leads to longer but fewer delays as no more than
one breakdown can occur until the repair finishes

E -
The higher the idle time the easier it will be to fix the schedule by just
shifting the jobs on the same machine; i.e. less jobs will be shifted to
another machine

F - When the time between breakdowns is larger, less delay will occur,
hence, less shifting is required.

BF -
BF effect is negative because F effect is stronger than B. B and F
interact because the higher the number of jobs, the more they will be hit
by a breakdown.

CF +
C and F interact because more machines lead to fewer breakdowns on
each machine as no more than one breakdown can occur at a time over
the machines.

DF +
D and F interact because if the repair durations and breakdown rate are
higher, the delays will be more frequent and longer; i.e. CmaxR will
increase.

EF + E and F interact because a higher idle time will absorb more frequent
breakdowns, and vice versa

Shifted Jobs in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 120,

ANOVA test in Table 121,' and Effect test in Table 122. The results indicate the success of

the regression in predicting the values of Shifted Jobs and that the model is significant since

the p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 122; these factors are Number o f Jobs and Breakdown, and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 8 8

interactions between Repair Duration and Processing Time Range, and Number o f Machines

and Idle Time. The effects of B and F are explained in Table 119.

Processing Time Range and Repair Duration interact because the repair duration depends on

the processing time. If the latter increases, the repair time will increase too.

Number o f Machines and Idle Time interact because the larger the number of machines, the

smaller the number of jobs on each machine, hence, the smaller the idle time on each

machine.

Table 120. Shifted Jobs Regression Results for Robust System
with Learning

R e g r e s s i o n S t a t i s t i c s

R Square 0.808
Adjusted R Square 0.693
Standard Error 1.82045
Observations 73

Table 121. Shifted Jobs ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 2 7 628.148 23.265 7.02 0.000
Residual 45 149.131 3.314
Total 72 777.279

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Table 122. Shifted Jobs Effect Test for Robust System with Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 2.1224 0.8507 2.49 0.016

A -0.1905 0.2753 -0.69 0.492
B 2.036 0.277 7.35 0
C -0.2405 0.2825 -0.85 0.399
D -0.0989 0.2796 -0.35 0.725
E -0.1247 0.2723 -0.46 0.649
F -2.2 0.2842 -7.74 0

AB -0.1548 0.3429 -0.45 0.654
AC 0.4019 0.3548 1.13 0.263
AD 0.902 0.373 2.42 0.02
AE -0.1265 0.3534 -0.36 0.722
AF 0.4664 0.3619 1.29 0.204
BC 0.1875 0.3647 0.51 0.61
BD -0.5196 0.3588 -1.45 0.154
BE -0.042 0.3588 -0.12 0.907
BF -0.6985 0.3691 -1.89 0.065
CD -0.4441 0.3724 -1.19 0.239
CE -0.8139 0.368 -2.21 0.032
CF 0.2897 0.3837 0.75 0.454
DE -0.5489 0.3582 -1.53 0.132
DF 0.3717 0.3927 0.95 0.349
EF -0.1357 0.3595 -0.38 0.708
AA 0.6357 0.4895 1.3 0.201
BB -0.6806 0.4708 -1.45 0.155
CC 0.6272 0.4752 1.32 0.194
DD 0.1195 0.4745 0.25 0.802
EE -0.1705 0.5088 -0.34 0.739
FF 2.2159 0.4815 4.6 0

Match-up Statistical Analysis

In this section, the significance of the factors and their interactions is determined for

each of the two systems in the case of the Match-up Time performance measure. This

analysis will follow the same approach used earlier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 9 0

Match-up in the Robust System w/o Learning

The Robust System w/o Learning regression statistics are reported in Table 123,

ANOVA test in Table 124, and Effect test in Table 125. The results indicate the success of

the regression in predicting the values of Match-up and that the model is significant since the

p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 125 and explained in Table 126; these factors are Processing

Time Range, Number ofJobs, Number o f Machines, Idle Time, and Breakdown, and the

interactions between Number o f Machines and Processing Time Range, Number o f Jobs and

Number o f Machines, and Number ofMachines and Breakdown.

Table 123. Match-up Regression Results for Robust System w/o
Learning

R e g r e s s i o n S t a t i s t i c s

R Square 0.802
Adjusted R Square 0.683
Standard Error 1811.28
Observations 73

Table 124. Match-up ANOVA Test for Robust System w/o Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 597666764 22135806 6.75 0.000
Residual 45 147632323 3280718
Total 72 745299087

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Table 125. Match-up Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 829.8 846.4 0.98 0.332

A 602.9 273.9 2.2 0.033
B 1133.9 275.6 4.11 0
C -1957 281.1 -6.96 0
D -25.6 278.2 -0.09 0.927
E -610.3 270.9 -2.25 0.029
F -1093.2 282.8 -3.87 0

AB 503.9 341.2 1.48 0.147
AC -853.3 353 -2.42 0.02
AD -106.7 371.1 -0.29 0.775
AE -251 351.6 -0.71 0.479
AF -292.8 360 -0.81 0.42
BC -1579.9 362.9 -4.35 0
BD -66.8 356.9 -0.19 0.852
BE -339.7 357 -0.95 0.346
BF -656.5 367.3 -1.79 0.081
CD 463.4 370.6 1.25 0.218
CE 630.3 366.2 1.72 0.092
CF 1739.4 381.8 4.56 0
DE 310.7 356.4 0.87 0.388
DF 296.1 390.7 0.76 0.453
EF 579.7 357.7 1.62 0.112
AA -507.4 487 -1.04 0.303
BB -20.2 468.4 -0.04 0.966
CC 1726.1 472.8 3.65 0.001
DD -1042.6 472.1 -2.21 0.032
EE 386.3 506.2 0.76 0.449
FF 410 479.1 0.86 0.397

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

Table 126. Factors' Effects on Match-up Time in the case of Robust System w/o Learning

M a t c h - u p E f f e c t s ' D i a g n o s t i c f o r R o b u s t S y s t e m w / o L e a r n i n g

Factor/
Interaction Effect Cause o f Effect

A + It is logical that the larger the processing time, the larger the match­
up time will be.

B + When the number of jobs increases, more jobs will be shifted, i.e.
longer time to match.

C - When there are more machines, the jobs on each machine will be
less, i.e. time to match will be less.

E - It is easier to match-up with the initial schedule when the idle time is
larger as it will absorb the shifting of the jobs better.

F - When the time between breakdowns is larger, less delay will occur,
hence, it is easier to match-up.

AC -

A (processing) and C (number of machines) interact in the case of
Match-up time because for example a larger processing time with a
small number of machines will increase the match-up dramatically;
on the other hand, a smaller processing time with a large number of
machines will decrease the match-up time.

BC -
BC effect is negative because C effect is stronger than B (number of
jobs). It is obvious that B and C interact as the number of jobs on
each machine depends on both of them.

CF +
C and F (breakdown) interact because more machines lead to fewer
breakdowns on each machine as no more than one breakdown can
occur at a time over the machines.

Match-up in the Robust System with Learning

The Robust System with Learning regression statistics are reported in Table 127,

ANOVA test in Table 128, and Effect test in Table 129. The results indicate the success of

the regression in predicting the values of Match-up and that the model is significant since the

p-value is very small.

The factors that were determined to be significant due to a relatively large t-Stat and a small

p-value are bolded in Table 129; these factors are Processing Time Range, Number o f Jobs,

Number o f Machines, and Breakdown, and the interactions between Number o f Jobs and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

Number o f Machines, and Number o f Machines and Breakdown. The factor effects are

explained in Table 126.

Processing Time Range and Number o f Jobs interact in the case of Match-up Time because

for example a large processing time with a high number of jobs will lead to a large Match-up

Time, and vice versa.

Table 127. Match-up Regression Results for Robust System
with Learning

R e g r e s s i o n S t a t i s t i c s

R Square 0.816
Adjusted R Square 0.706
Standard Error 844.630
Observations 73

Table 128. Match-up ANOVA Test for Robust System with Learning

ANOVA
d f SS M S F S i g n i f i c a n c e F (p - v a l u e)

Regression 27 142671841 5284142 7.41 0.000
Residual 45 32102993 713400
Total 72 174774834

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

Table 129. Match-up Effect Test for Robust System w/o Learning

Predictor Coefficients SE Coef tS tat P-value
Constant 249.3 394.7 0.63 0.531

A 403.3 127.7 3.16 0.003
B 615.4 128.5 4.79 0
C -1029.3 131.1 -7.85 0
D 160.1 129.7 1.23 0.224
E -183.2 126.3 -1.45 0.154
F -492.8 131.9 -3.74 0.001

AB 329.8 159.1 2.07 0.044
AC -458.9 164.6 -2.79 0.008
AD 140.4 173.1 0.81 0.421
AE -136.8 164 -0.83 0.408
AF -150.3 167.9 -0.9 0.375
BC -710 169.2 -4.2 0
BD -28.1 166.5 -0.17 0.867
BE -96.7 166.5 -0.58 0.564
BF -287.6 171.3 -1.68 0.1
CD -91.9 172.8 -0.53 0.597
CE 76.7 170.8 0.45 0.655
CF 712.3 178 4 0
DE -8.2 166.2 -0.05 0.961
DF 13 182.2 0.07 0.943
EF 48.8 166.8 0.29 0.771
AA 11.5 227.1 0.05 0.96
BB -152.9 218.4 -0.7 0.488
CC 861.6 220.5 3.91 0
DD -322 220.2 -1.46 0.151
EE 230.8 236.1 0.98 0.334
FF 304.1 223.4 1.36 0.18

Repair and Rescheduling Rule Comparisons

Following the analysis of factors and interaction significance, this section will

compare the systems to the rules described in chapter 6 based on each performance measure

as well as an overall performance. The Eigenvalue Normalization Procedure explained in

chapter 6 (Equation 7) will also be used here to attain a unique measure for the four

performance measures. Conclusions are drawn regarding dominance among the rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

Cmax Difference Comparison

Following the normalization of the performance measures, the Cmax Difference

performance of the four rules and the two systems is presented in Table 130. The boxplot of

the rules is also shown in Figure 26. It is visually noticeable that Robust with Learning

performed the best, followed by Robust w/o Learning, CR, and PR, then FJR, and finally

RSR that had the worst performance; however, this can not be validated unless tests are

undertaken to determine that the differences are statistically significant. It is obvious though

that no tests are needed for RSR and Robust with Learning as the boxplot indicates clearly

that their performances are significantly far from the rest.

Boxplot of RSR, HR, PR, CR, Robust w /o Learning, Robust with Leamfeig

1.0

0.8

0.6

0.4

0.2

0.0

■

ii

Figure 26. Cmax Difference Boxplot for the Rules and Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

Table 130. Cmax Difference Performance among the rules and systems

Cmax Difference

Run
RSR FJR PR CR

ROBUST
w/o

Learning

Robust
with

Learning
1 0.650911 0 368985 0.366392 0.316008 0.348239 0.291187
2 0.725332 0.35202 0.357177 0.336798 0.329012 0.026799
3 0.702077 0.478835 0.223957 0.340851 0.244333 0.227532
4 0.518137 0.4341 0.429091 0.429091 0.372324 0.190336
5 0.584696 0.426692 0.295155 0.263875 0.206127 0.526146
6 0.401019 0.340548 0.442394 0.442394 0.440802 0.370783
7 0.540974 0.263551 0.476662 0.430005 0.432527 0.196718
8 0.860452 0.286211 0.387681 0.105566 0.103746 0.074169
9 0.554789 0.502922 0.310274 0.39641 0.39641 0.169493
10 0.577695 0.36763 0.421639 0.440025 0.393204 0.071449
11 0.699039 0.582386 0.216641 0.261372 0.234183 0.045609
12 0.556085 0.534664 0.293037 0.293037 0.412994 0.250195
13 0.73604 0.313401 0.419926 0.276383 0.293778 0.144894
14 0.673579 0.356712 0.412686 0.250457 0.391814 0.180253
15 0.723169 0.396576 0.329925 0.331036 0.294377 0.121084
16 0.622262 0.704856 0.173037 0.239188 0.135664 0.102029
17 0.881628 0.221633 0.25053 0.25053 0.219052 0.009804
18 0.701506 0.264019 0.442373 0.225691 0.404656 0.166749
19 0.517531 0.421502 0.497797 0.382034 0.35827 0.179969
20 0.771481 0.326696 0.344877 0.269004 0.273787 0.178395
21 0.70447 0.506037 0.292833 0.240817 0.253018 0.199717
22 0.767491 0.26564 0.427752 0.259688 0.242018 0.177231
23 0.653916 0.407114 0.34727 0.322808 0.333292 0.266022
24 0.848799 0.349725 0.20953 0.211394 0.257505 0.048314
25 0.725576 0.364189 0.302557 0.378196 0.260535 0.196102
26 0.710361 0.492264 0.211136 0.291955 0.30665 0.17092
27 0.820512 0.318406 0.283379 0.294952 0.212554 0.113568
28 0.822603 0.342308 0.218575 0.23264 0.295552 0.130005
29 0.713181 0.54565 0.190234 0.204325 0.209805 0.267736
30 0.911031 0.116492 0.385216 0.059848 0 0.066928
31 0.99646 0.056645 0.014777 0.049257 0.025121 0.024136
32 0.538943 0.447787 0.424932 0.375005 0.418586 0.112324
33 0.920355 0.197807 0.200619 0.214877 0.108844 0.124709
34 0.41899 0.575493 0.336777 0.387294 0.241687 0.414038
35 0.999595 0.028458 0 0 0 0
36 0.327591 0.326306 0.295474 0.295474 0.378978 0.684087
37 0.998672 0.042134 0 0 0.028553 0.008009
38 0.60255 0.397249 0.378018 0.393697 0.372873 0.205423
39 0.744925 0.505173 0.180835 0.198919 0.318504 0.127168
40 0.833701 0.282329 0.272365 0.272365 0.272365 0.051816
41 0.938459 0.198134 0.167075 0.167075 0.152884 0.028917
42 0.80412 0.481635 0.203648 0.193701 0.162813 0.126167
43 0.769369 0.413305 0.241582 0.264663 0.302208 0.132332
44 0.733137 0.235509 0.535632 0.213378 0.237421 0.135076
45 0.918996 0.14929 0.17487 0.199519 0.213471 0.131152
46 0.817168 0.321691 0.244658 0.307517 0.249588 0.109695
47 0.794408 0.301251 0.306208 0.289546 0.288501 0.13165
48 0.688221 0.474444 0.361505 0.271255 0.280834 0.134619
49 0.723321 0.329109 0.384735 0.328623 0.316584 0.110703
50 0.711238 0.545149 0.26052 0.198236 0.271905 0.125907
51 0.805261 0.41034 0.208169 0.160196 0.302401 0.150772
52 0.489988 0.450774 0.449529 0.456998 0.365997 0.108803
53 0.662054 0.595236 0.196882 0.168829 0.206573 0.312155
54 0.543066 0.456222 0.370859 0.402169 0.385245 0.221923
55 0.635023 0.481455 0.319587 0.320521 0.353828 0.186771
56 0.730286 0.491173 0.309465 0.277958 0.198541 0.113945
57 0.712742 0.347572 0.361981 0.322697 0.330169 0.164367
58 0.909823 0.231518 0.19767 0.148929 0.22204 0.089809
59 0.53994 0.599587 0.317947 0.379151 0.269192 0.177905
60 0.853986 0.356535 0.256366 0.118845 0.246179 0.056027
61 0.685769 0.400032 0.304106 0.3337 0.376561 0.155114
62 0.529625 0.448145 0.431947 0.313652 0.400369 0.270948
63 0.736327 0.380664 0.282003 0.283885 0.31964 0.225011
64 0.791806 0.269905 0.383252 0.248387 0.254765 0.163435
65 0.571173 0.407905 0.499458 0.334493 0.367273 0.105557
66 0.956958 0.20185 0.026146 0.194006 0.047586 0.053862
67 0.66534 0.403985 0.348606 0.351395 0.348208 0.166933
68 0.72867 0.273539 0.380042 0.380042 0.29959 0.124893
69 0.761384 0.538749 0.172685 0.175183 0.200514 0.171258
70 0.60435 0.584205 0.307669 0.31264 0.29171 0.126364
71 0.824831 0.395705 0.201066 0.254198 0.212849 0.112798
72 0.652225 0.385516 0.332174 0.398851 0.312777 0.242341
73 0.715817 0.33417 0.329787 0.343665 0.287057 0.258205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 9 7

The first test is the One-Way ANOVA, which will determine if there is significant difference

between the means of the 6 alternatives. The ANOVA results are shown in Table 131.

Table 131. One-Way ANOVA for Cmax Difference

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 52.063 0.713192 0.020635
FJR 73 27.40544 0.375417 0.018262
PR 73 21.93136 0.30043 0.013141
CR 73 20.07717 0.27503 0.010126
ROBUST w/o Learning 73 19.89701 0.272562 0.010589
Robust with Learning 73 11.83726 0.162154 0.012348

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

13.27976
6.127351

5
432

2.655953
0.014184

187.2541 9.7E-106 2.23488

Total 19.40711 437

As the p-value in Table 131 is less than 0.05, we can reject the hypothesis that all the means

are equal, i.e. there is a significant difference between the performances of the rules.

It was previously determined in Chapter 6 that the difference between PR and CR is not

statistically significant (Table 84) and that both rules outperformed FJR (Table 83), and the

latter outperformed RSR. Following this, a t test is conducted for Robust w/o Learning - CR

(Table 132). Even though the Robust w/o Learning mean is smaller than CR mean

(indicating that Robust w/o Learning performed better), this difference is not statistically

significant as the 95% Confidence Interval overlaps with zero. Moreover, the p-value is

greater than 0.05.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

Table 132. t test for Robust w/o Learning - CR in the case of Cmax Difference

Two-sample T for Robust w/o Learning vs CR

Robust w/o Learn
CR

N
73
73

Mean StDev SE
0.273 0.103 0.012
0.275 0.101 0.012

Difference = mu (Robust w/o Learning) - mu (CR)
Estimate for difference: -0.002468
95% Cl for difference: (-0.035766, 0.030830)
T-Test of difference = 0 (vs not =): T-Value = -0.15 P-Value = 0.884 DF = 143

The next t test is for Robust w/o Learning — Robust with Learning (Table 133). As p-value is

less than 0.05, we conclude that Robust with Learning outperformed Robust w/o Learning

and the difference is statistically significant.

Table 133. t test for Robust w/o Learning - Robust with Learning in the case of Cmax
Difference

Two-sample T for Robust w/o Learning vs Robust with Learning

Difference = mu (Robust w/o Learning) - mu (Robust with Learning)
Estimate for difference: 0.110408
95% Cl for difference: (0.075369, 0.145446)
T-Test of difference = 0 (vs not =): T-Value = 6.23 P-Value = 0.000 DF = 143

Based on previous tests, we conclude that for the Cmax Difference, the best

performance was achieved by Robust with Learning, then Robust w/o Learning, CR and PR,

followed by FJR, then finally RSR that had the worst performance.

N
Robust w/o Learn 73
Robust with Lear 73

Mean StDev SE Mean
0.273 0.103 0.012
0.162 0.111 0.013

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 9 9

CPU Comparison

The CPU performance is presented in Table 134. The boxplot of the rules and systems is

also shown in Figure 26. It is known from chapter 6 that RSR performed the best (Table 87),

followed by FJR, then PR and CR (Table 88). The ANOVA results shown in Table 135

indicate that the means are not equal.

Boxplot of RSR, FIR, PR, CR, Robust w /o Learning, Robust with Learning

✓ s f

Figure 27. CPU Boxplot of the rules and systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0

Table 134. CPU Performance among the rules and systems

CPU Time

Run RSR FJR PR CR
Robust

w/o
Learning

Robust
with

Learning
1 0.01288 0.03221 0.663454 0.373595 0.334948 0.553952
2 0.00173 0.17887 0.697195 0.347068 0.601171 0.007688
3 0.00984 0.09531 0.588129 0.794112 0.118671 0.015064
4 0.43783 0.39139 0.670006 0.252082 0.325053 0.192378
6 0.03814 0.18346 0.733848 0.579245 0.179339 0.242211
6 0.05594 0.93234 0.063399 0.096964 0.063399 0.331914
7 0.01782 0.04411 0.688876 0.710495 0.065148 0.118903
8 0.01462 0.00595 0.66106 0.744987 0.076217 0.043995
9 0.01215 0.01215 0.164077 0.577308 0.783923 0.158
10 0.00094 0.0073 0.625893 0.193049 0.753328 0.058597
11 0.00697 0.00152 0.162805 0.977631 0.125504 0.04393
12 0.00369 0.7897 0.409611 0.110706 0.439132 0.059043
13 0.00107 0.09798 0.77531 0.599573 0.135813 0.106583
14 0.01231 0.01477 0.153885 0.437035 0.670941 0.578609
15 0.00146 0.843 0.115121 0.223684 0.106377 0.463398
16 0.00286 0.03379 0.209477 0.936148 0.25158 0.123711
17 0.01345 0.5072 0.308593 0.779394 0.110777 0.166165
18 0.05893 0.71582 0.125449 0.148884 0.193688 0.639307
19 0.14453 0.34487 0.628688 0.05247 0.398296 0.550937
20 0.00301 0.17285 0.384873 0.362654 0.802132 0.216915
21 0.00402 0.0813 0.263785 0.947936 0.058184 0.147726
22 0.00365 0.02729 0.868119 0.480299 0.09526 0.076486
23 0.00242 0.00519 0.482799 0.117672 0.33744 0.799474
24 0.15046 0.00692 0.375297 0.605318 0.658932 0.189378
25 0.60928 0.02101 0.357163 0.577764 0.388678 0.126058
26 0.04585 0.00663 0.67167 0.65289 0.138643 0.31816
27 0.02581 0.01251 0.539699 0.835073 0.0961 0.036335
28 0.00886 0.01772 0.751557 0.422289 0.441484 0.248058
29 0.01041 0.00911 0.458734 0.855002 0.194555 0.143151
30 0.0128 0.01359 0.266783 0.963544 0.005512 0.005549
31 0.00595 0.01106 0.307488 0.950285 0.035961 0.03098
32 0.00329 0.01644 0.813091 0.39298 0.422577 0.074814
33 0.00959 0.23877 0.304615 0.913215 0.02775 0.12399
34 0.01819 0.08353 0.642579 0.662427 0.22329 0.301855
35 0.00986 0.06371 0.469988 0.87896 0.043808 0.021579
36 0.00607 0.013 0.385806 0.112707 0.728263 0.554867
37 0.01253 0.04042 0.404537 0.911394 0.034023 0.052548
38 0.00131 0.09654 0.71174 0.429256 0.546598 0.032803
39 0.00164 0.09725 0.58418 0.764231 0.24182 0.08214
40 0.01382 0.06909 0.483645 0.400734 0.497463 0.594193
41 0.00178 0.10866 0.555744 0.508838 0.501119 0.411464
42 0.00277 0.11377 0.634039 0.507786 0.398162 0.410669
43 0.00133 0.11264 0.396485 0.864793 0.249128 0.142056
44 0.00131 0.12229 0.866192 0.41449 0.237454 0.081043
45 0.00639 0.01038 0.395153 0.455024 0.522879 0.602708
46 0.00058 0.14953 0.567544 0.78417 0.109036 0.169482
47 0.00223 0.26466 0.485166 0.768997 0.093867 0.307242
48 0.00538 0.11812 0.491823 0.721785 0.462358 0.096853
49 0.00119 0.07886 0.844254 0.440301 0.287967 0.064996
50 0.00467 0.01493 0.362094 0.924929 0.111872 0.025188
51 0.0022 0.0127 0.898347 0.320542 0.159294 0.254332
52 0.00029 0.09116 0.97394 0.069686 0.180255 0.076042
53 0.02576 0.1035 0.697089 0.661632 0.200173 0.157685
54 0.00135 0.13643 0.786845 0.210726 0.528166 0.197218
55 0.0883 0.27579 0.391911 0.826158 0.238292 0.15241
56 0.00206 0.03791 0.758571 0.612571 0.20537 0.075556
57 0.01141 0.14504 0.773216 0.449624 0.404049 0.124709
58 0.05058 0.00728 0.69068 0.232654 0.343114 0.590335
59 0.03172 0.07216 0.621366 0.668344 0.215032 0.338773
60 0.00075 0.00089 0.402283 0.903939 0.128776 0.066913
61 0.03146 0.13632 0.679505 0.635463 0.255863 0.222307
62 0.0179 0.15539 0.883044 0.253171 0.358805 0.054126
63 0.03044 0.08187 0.661876 0.656631 0.332812 0.111187
64 0.01106 0.04527 0.542132 0.780543 0.291244 0.099249
65 0.01758 0.07619 0.117743 0.923474 0.355463 0.029417
66 0.01144 0 0136 0.401298 0.907166 0.104392 0.069253
67 0.14737 0.53354 0.235256 0.652503 0.447431 0.11097
68 0.35569 0.62576 0.289825 0.599411 0.1515 0.125152
69 0.006 0.15834 0.506414 0.460569 0.335728 0.627375
70 0.0339 0.00458 0.197421 0.240936 0.900074 0.302773
71 0.00667 0.01523 0.403365 0.905525 0.123764 0.041559
72 0.01581 0.16227 0.247096 0.285556 0.821896 0.394089
73 0.03688 0.112 0.222634 0.133853 0.861851 0.419316

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 1

Table 135. One-Way ANOVA for CPU Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 2.770214 0.037948 0.009458
FJR 73 10.43274 0.142914 0.042783
PR 73 36.95338 0.506211 0.051319
CR 73 40.95285 0.560998 0.074862
Robust w/o Learning 73 22.66898 0.310534 0.05257
Robust with Learning 73 15.58389 0.213478 0.037854

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

15.43636
19.35692

5
432

3.087272
0.044808

68.90051 7.08E-53 2.23488

Total 34.79328 437

The t test for PR - Robust w/o Learning shown in Table 136 indicates that Robust w/o

Learning outperformed PR and the difference is statistically significant. Furthermore, a t test

for Robust with Learning - Robust w/o Learning shown in Table 137 indicates that Robust

with Learning outperformed Robust w/o Learning.

Table 136. t test for PR - Robust w/o Learning in the case of CPU Time

Two-sample T for PR vs R obust w/o Learning

N Mean StDev SE Mean
PR 73 0.506 0.227 0.027

Robust w/o Learn 73 0.311 0.229 0.027

Difference = mu (PR) - mu (Robust w/o Learning)
Estimate for difference: 0.195677
95% Cl for difference: (0.121107, 0.270246)
T-Test of difference = 0 (vs not =): T-Value = 5.19 P-Value = 0.000 DF = 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 2

Table 137. t test for Robust with Learning - Robust w/o Learning in the case of CPU

Two-sample T for Robust with Learning vs Robust w/o Learning

N Mean StDev SE Mean
Robust with Lear 73 0.213 0.195 0.023
Robust w/o Learn 73 0.311 0.229 0.027

Difference = mu (Robust with Learning) - mu (Robust w/o Learning)
Estimate for difference: -0.097056
95% Cl for difference: (-0.166638, -0.027474)
T-Test of difference = 0 (vs not =): T-Value = -2.76 P-Value = 0.007 DF = 140

Finally, a t test was carried out for Robust with Learning - FJR in Table 138, which proved

that FJR outperformed Robust with Learning and the difference is statistically significant.

Table 138. t test for Robust with Learning - FJR in the case of CPU Time

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.213 0.195 0.023

FJR 73 0.143 0.207 0.024

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.070564
95% Cl for difference: (0.004867, 0.136261)
T-Test of difference = 0 (vs not =): T-Value = 2.12 P-Value = 0.035 DF = 143

Based on the previous tests, we conclude that for the CPU Time, the best performance

was achieved by RSR, followed by FJR, then Robust with Learning, then Robust w/o

Learning, and finally PR and CR that had the worst performance. This conclusion was

expected as both RSR and FJR are heuristics that do not involve MIP solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 3

Match-up Comparison

The Match-up performance of the rules and systems is presented in Table 139. The

boxplot is also shown in Figure 27. It is known from Chapter 6 that FJR performed the best

between the 4 rules (Table 91), followed by RSR, then PR (Table 92), and finally CR (Table

93). The ANOVA results shown in Table 140 indicate that there is a significant difference

between the performances of the rules.

Boxplot of RSR, FJR, PR, CR, Robust w /o Leaning, Robust with Leaning

■

Figure 28. Match-up Boxplot for the rules and systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

Table 139. Match-up Performance among the rules and systems

Match-Up Time

Run RSR FJR PR CR
Robust

w/o
Leamina

Robust
with

Leamina
1 0.354241 0.307584 0.345619 0.460488 0.512724 0.430718
2 0.562401 0.279382 0.42368 0.593182 0.268162 0.048686
3 0.428822 0.241125 0.333921 0.470756 0.408191 0.508169
4 0.398521 0.288615 0.4028 0.4028 0.576443 0.317961
5 0.337217 0.238775 0.391674 0.401249 0.441644 0.565519
6 0.125621 0.258033 0.468534 0.468534 0.499091 0.479059
7 0.234909 0.190864 0.419655 0.425772 0.560356 0.466824
8 0.073761 0.176932 0.417059 0.859388 0.168022 0.150124
9 0.225741 0.480213 0.36529 0.435064 0.435064 0.454355
10 0.489898 0.236468 0.350289 0.647235 0.366457 0.167859
11 0.357672 0.351365 0.37569 0.452721 0.474343 0.421323
12 0.262525 0.424673 0.341669 0.341669 0.540493 0.474475
13 0.330283 0.212235 0.415199 0.777353 0.225165 0.136019
14 0.220157 0.365415 0.574223 0.360876 0.447123 0.397644
15 0.467017 0.247533 0.340095 0.420035 0.505585 0.415828
16 0.329043 0.274677 0.215425 0.468519 0.513213 0.535702
17 0.238568 0.451456 0.461396 0.461396 0.471337 0.302227
18 0.2221 0.137292 0.177375 0.732493 0.450934 0.40059
19 0.366837 0.232675 0.316756 0.49174 0.525552 0.439256
20 0.363236 0.322112 0.420159 0.64552 0.332103 0.246538
21 0.322724 0.258021 0.277945 0.547999 0.480338 0.4701
22 0.18958 0.164254 0.357614 0.865115 0.179129 0.169354
23 0.280917 0.3636 0.400197 0.393419 0.484573 0.489013
24 0.322599 0.395553 0.445578 0.462734 0.346169 0.454942
25 0.353546 0.359342 0.359342 0.341954 0.504238 0.495544
26 0.391279 0.30416 0.364486 0.51446 0.491037 0.340221
27 0.405319 0.212405 0.393554 0.739091 0.232161 0.188578
28 0.513242 0.382588 0.413905 0.428865 0.364436 0.319614
29 0.41232 0.348677 0.348133 0.315495 0.466171 0.519969
30 0.100848 0.123547 0.362672 0.891088 0.15705 0.155988
31 0.212675 0.271696 0.381833 0.776278 0.249601 0.26504
32 0.44552 0.299263 0.363286 0.540776 0.460452 0.274811
33 0.26767 0.223896 0.453974 0.725463 0.255307 0.283994
34 0.228752 0.347647 0.399794 0.40049 0.58961 0.398682
35 0.051267 0.356691 0.513598 0.690701 0.270625 0.236758
36 0.044022 0.378589 0.378589 0.378589 0.484241 0.577568
37 0.193848 0.180826 0.367847 0.840431 0.198634 0.220532
38 0.435603 0.269728 0.353505 0.576326 0.428405 0.311205
39 0.268349 0.283536 0.341379 0.49774 0.527718 0.452575
40 0.069356 0.439252 0.462371 0.462371 0.462371 0.401107
41 0.402662 0.40816 0.443266 0.443266 0.43946 0.291845
42 0.533495 0.224994 0.312512 0.334392 0.433214 0.517304
43 0.406494 0.275141 0.299292 0.522465 0.523342 0.350183
44 0.161926 0.104935 0.40375 0.880274 0.130762 0.088166
45 0.478395 0.309818 0.36677 0.419165 0.412331 0.441491
46 0.258402 0.330663 0.472631 0.614598 0.369474 0.293715
47 0.571699 0.307192 0.39236 0.514284 0.349716 0.195083
48 0.390966 0.292577 0.350348 0.507803 0.501653 0.359556
49 0.476153 0.237025 0.434236 0.664358 0.230131 0.085033
60 0.363019 0.254314 0.351386 0.424391 0.529084 0.469076
61 0.507712 0.212049 0.296187 0.323971 0.486743 0.517358
52 0.424072 0.272255 0.418443 0.567305 0.444955 0.22611
53 0.392229 0.286365 0.359226 0.381312 0.473467 0.515305
54 0.333688 0.294714 0.368625 0.441605 0.503016 0.466767
55 0.376223 0.344578 0.346922 0.346922 0.465297 0.531517
56 0.456561 0.302462 0.401568 0.411261 0.451813 0.406869
57 0.533806 0.263503 0.414489 0.614703 0.272036 0.148163
58 0.400519 0.402138 0.458372 0.485478 0.373818 0.303869
59 0.285902 0.347144 0.40077 0.436944 0.468359 0.476292
60 0.417339 0.215422 0.382898 0.362223 0.494999 0.491622
61 0.53576 0.370911 0.358032 0.370911 0.471366 0.295699
62 0.309474 0.312776 0.370276 0.426979 0.531048 0.452735
63 0.385167 0.359908 0.468058 0.513832 0.423233 0.244714
64 0.395714 0.224197 0.430879 0.718938 0.237643 0.184779
65 0.2454 0.195248 0.264765 0.83279 0.328454 0.173595
66 0.168622 0.262105 0.501521 0.74431 0.23766 0.202152
67 0.415138 0.40322 0.438974 0.442946 0.422289 0.312804
68 0.237404 0.324725 0.281065 0.281065 0.545757 0.618342
69 0.450864 0.238787 0.405408 0.40935 0.47146 0.430702
70 0.478569 0.334743 0.361391 0.429288 0.429653 0.399282
71 0.410182 0.318701 0.402461 0.617617 0.361339 0.23704
72 0.469506 0.322186 0.372491 0.39884 0.480285 0.383749
73 0.5256 0.293232 0.381692 0.392266 0.430177 0.391338

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

Table 140. One-Way ANOVA for Match-up Time

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 25.09667 0.34379 0.016737
FJR 73 21.32688 0.292149 0.006023
PR 73 28.00718 0.38366 0.004064
CR 73 38.02203 0.52085 0.024933
Robust w/o Learning 73 30.0783 0.412032 0.012922
Robust with Learning 73 25.90672 0.354887 0.018727

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

2.22014
6.00523

5
432

0.444028
0.013901

31.94217 1.06E-27 2.23488

Total 8.22537 437

The following t tests were carried out to determine superiority: Robust with Learning - FJR

(Table 141), Robust with Learning - RSR (Table 142), Robust with Learning - PR (Table

143), Robust w/o Learning - PR (Table 144), and Robust w/o Learning - CR (Table 145).

Table 141. t test for Robust with Learning - FJR in the case of Match-up Time

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

FJR 73 0.2921 0.0776 0.0091

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.062738
95% Cl for difference: (0.026258, 0.099217)
T-Test of difference = 0 (vs not =): T-Value = 3.41 P-Value = 0.001 DF = 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

Table 142. t test for Robust with Learning - RSR in the case of Match-up Time

Two-sample T for Robust with Learning vs RSR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

RSR 73 0.344 0.129 0.015

Difference = mu (Robust with Learning) - mu (RSR)
Estimate for difference: 0.011097
95% Cl for difference: (-0.032471, 0.054665)
T-Test of difference = 0 (vs not =): T-Value = 0.50 P-Value = 0.615 DF = 143

Table 143. t test for Robust with Learning - PR in the case of Match-up Time

Two-sample T for Robust with Learning vs PR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

PR 73 0.3837 0.0638 0.0075

Difference = mu (Robust with Learning) - mu (PR)
Estimate for difference: -0.028773
95% Cl for difference: (-0.063825, 0.006278)
T-Test of difference = 0 (vs not =): T-Value = -1.63 P-Value = 0.107 DF = 101

Table 144. t test for Robust w/o Learning — PR in the case of Match-up Time

Two-sample T for PR vs Robust w/o Learning

N Mean StDev SE Mean
PR 73 0.3837 0.0638 0.0075

Robust w/o Learn 73 0.412 0.114 0.013

Difference = mu (PR) - mu (Robust w/o Learning)
Estimate for difference: -0.028372
95% Cl for difference: (-0.058593, 0.001849)
T-Test of difference = 0 (vs not =): T-Value = -1.86 P-Value = 0.065 DF = 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

Table 145. t test for Robust w/o Learning - CR in the case of Match-up Time

Tw o-sam ple T fo r R obust w ith Learning vs PR

N Mean StDev SE Mean
Robust with Lear 73 0.355 0.137 0.016

PR 73 0.3837 0.0638 0.0075

Difference = mu (Robust with Learning) - mu (PR)
Estimate for difference: -0.028773
95% Cl for difference: (-0.063825, 0.006278)
T-Test of difference = 0 (vs not =): T-Value = -1.63 P-Value = 0.107 DF = 101

Following the above tests, we conclude that for the Match-up Time, the best

performance was achieved by FJR, followed by RSR and Robust with Learning, then PR and

Robust w/o Learning, and finally CR that had the worst performance.

Shifted Jobs Comparison

The Shifted Jobs performance of the rules and systems is presented in Table 146. The

boxplot is shown in Figure 28. It is known from chapter 6 that RSR performed the best

between the four rules as the number of shifted jobs in this rule is always zero (no shifting

allowed), followed by FJR, then CR, and finally PR.

It is clear from Figure 28 that the two systems perform worse than FJR but better than CR.

Next, a t test is carried out for Robust w/o Learning - Robust with Learning in Table 147.

The results indicated that Robust with Learning outperformed Robust w/o Learning and the

difference is statistically significant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 8

Boxpiot of RSR, HR, PR, CR, Robust w /o Learning, Robust with Learning

&

&

Figure 29. Shifted Jobs Boxpiot for the rules and systems

Table 147. t test for Robust w/o Learning - Robust with Learning in the case of Shifted
Jobs

Two-sample T for Robust w/o Learning vs Robust with Learning

N Mean StDev SE Mean
Robust w/o Learn 73 0.291 0.159 0.019
Robust with Lear 73 0.229 0.152 0.018

Difference = mu (Robust w/o Learning) - mu (Robust with Learning)
Estimate for difference: 0.061561
95% Cl for difference: (0.010623, 0.112499)
T-Test of difference = 0 (vs not =): T-Value = 2.39 P-Value = 0.018 DF = 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

Table 146. Shifted Jobs Performance for the rules and systems

Shifted Jo b s

Run RSR FJR PR CR
Robust

w/o
Lsaming

Robust
with

Lsaming
1 0 0.074157 0.815722 0.486759 0.208987 0.215728
2 0 0.032739 0.922807 0.344835 0.167999 0.01484
3 0 0.026998 0.773955 0.548968 0.302382 0.086395
4 0 0.026698 0.640741 0.640741 0.347068 0.240278
5 0 0.016867 0.699998 0.548191 0.261445 0.3753
6 0 0.05255 0.504481 0.504481 0.504481 0.483461
7 0 0.042486 0.590554 0.616046 0.403616 0.327142
8 0 0.039945 0.787849 0.611921 0.042948 0.037509
9 0 0.064123 0.280539 0.512986 0.512986 0.625202
10 0 0.012099 0.983424 0.161582 0.078801 0.020297
11 0 0.030429 0.55989 0.66842 0.382389 0.304288
12 0 0.164122 0.369274 0.369274 0.623664 0.558015
13 0 0.036905 0.948209 0.302932 0.078911 0.039285
14 0 0.114216 0.585356 0.513971 0.456863 0.414032
15 0 0.057042 0.670993 0.618455 0.322737 0.24468
16 0 0.042032 0.720974 0.481622 0.326919 0.373622
17 0 0.132283 0.555157 0.555157 0.503111 0.33613
18 0 0.019011 0.986622 0.15485 0.032836 0.027652
19 0 0.025032 0.971171 0.175225 0.151366 0.050847
20 0 0.137751 0.769051 0.583836 0.182717 0.123833
21 0 0.039574 0.489273 0.837726 0.191187 0.143904
22 0 0.044583 0.913249 0.396528 0.061754 0.054223
23 0 0.044646 0.607181 0.521461 0.510746 0.310734
24 0 0.115374 0.584057 0.579518 0.360875 0.423668
25 0 0.101358 0.60815 0.594635 0.36489 0.36489
26 0 0.024198 0.647469 0.681755 0.326372 0.094285
27 0 0.034052 0.750245 0.640699 0.142956 0.070996
28 0 0.116445 0.545348 0.615215 0.456074 0.320222
29 0 0.025414 0.600001 0.537017 0.441989 0.394476
30 0 0.028828 0.753665 0.654731 0.033742 0.036691
31 0 0.074958 0.499312 0.856096 0.07542 0.080499
32 0 0.038329 0.939709 0.269903 0.182384 0.096782
33 0 0.059581 0.671608 0.717452 0.092019 0.148952
34 0 0.026561 0.61909 0.573157 0.413392 0.341498
35 0 0.06128 0.519013 0.845484 0.090588 0.061813
36 0 0.047057 0.376455 0.376455 0.602328 0.592917
37 0 0.038735 0.443977 0.890915 0.062432 0.061293
38 0 0.029762 0.941548 0.276512 0.165312 0.093884
39 0 0.065161 0.675877 0.662012 0.204496 0.242622
40 0 0.041739 0.542602 0.542602 0.542602 0.339126
41 0 0.107287 0.546246 0.546246 0.510266 0.36242
42 0 0.045235 0.569959 0.712449 0.303074 0.271409
43 0 0.038301 0.789797 0.565861 0.205403 0.111195
44 0 0.030076 0.940211 0.335133 0.045042 0 027498
45 0 0.112845 0.522433 0.597663 0.427141 0.417946
46 0 0.053995 0.559379 0.761452 0.262612 0.188164
47 0 0.094552 0.777096 0.533823 0.27873 0.156601
48 0 0.035949 0.653618 0.608331 0.37443 0.247441
49 0 0.038295 0.923744 0.369398 0.088946 0.029395
50 0 0.030673 0.557477 0.716976 0.308261 0.281423
51 0 0.029133 0.737787 0.429708 0.305894 0.42024
52 0 0.016346 0.967624 0.201339 0.131568 0.074755
53 0 0.029436 0.590554 0.597913 0.355068 0.40842
54 0 0.081165 0.594376 0.634334 0.354628 0.334649
55 0 0.029039 0.609817 0.560036 0.448029 0.336021
56 0 0.021724 0.66188 0.612424 0.332789 0.275013
57 0 0.032154 0.951135 0.272948 0.124942 0.064792
58 0 0.097934 0.599936 0.665225 0.378678 0.211102
59 0 0.032449 0.550752 0.657745 0.379738 0.344658
60 0 0.018174 0.602661 0.665181 0.324957 0.297332
61 0 0.165383 0.551276 0.551276 0.54025 0.270125
62 0 0.097193 0.696549 0.556834 0.392821 0.202485
63 0 0.04742 0.573192 0.703652 0.371056 0.190773
64 0 0.042073 0.946991 0.303276 0.086165 0.045147
65 0 0.022562 0.985485 0.160677 0.047266 0.016068
66 0 0.044183 0.663481 0.735882 0.092094 0.088523
67 0 0.066978 0.585832 0.583153 0.462593 0.313456
68 0 0.127891 0.596824 0.596824 0.477459 0.208036
69 0 0.028263 0.697418 0.603461 0.295619 0.247495
70 0 0.055566 0.562609 0.684855 0.3459 0.302836
71 0 0.041371 0.507826 0.818164 0.237386 0.121061
72 0 0.01913 0.587566 0.638124 0.403098 0.29105
73 0 0.04932 0.580874 0.643894 0.306877 0.389076

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 0

Based on the previous tests, we conclude that for the Shifted Jobs, the best

performance was achieved by RSR, followed by FJR, then Robust with Learning, then Robust

w/o Learning, then CR, and finally PR that had the worst performance.

Overall Performance Comparison

The overall performance including all the performance measures is presented in

Table 148. The boxpiot is shown in Figure 29. It is known from chapter 6 that FJR

performed the best among the four rules (Table 98), followed by RSR, then PR and CR

(Table 99). The ANOVA results shown in Table 149 indicate that there is a significant

difference between the performances of the rules and systems.

Table 149. One-Way ANOVA for the Overall Performance

Anova: Single Factor

SUMMARY
G r o u p s C o u n t S u m A v e r a g e V a r i a n c e

RSR 73 79.92988 1.09493 0.042709
FJR 73 63.15228 0.8651 0.077417
PR 73 135.9991 1.863002 0.154734
CR 73 139.1484 1.906143 0.150971
Robust w/o Learning 73 93.85687 1.285711 0.200583
Robust with Learning 73 70.04649 0.959541 0.205709

ANOVA
S o u r c e o f V a r i a t i o n SS d f M S F P - v a l u e F c r i t

Between Groups
Within Groups

74.9431
59.91292

5
432

14.98862
0.138687

108.0749 7.83E-74 2.23488

Total 134.856 437

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 1

Boxpiot o f RSR, FIR, PR, CR, ROBUST w /o Learning, Robust vuith Learning

I
&

✓ >?

Figure 30. Overall Performance Boxpiot for the rules and systems

The following t tests were carried out to determine superiority: Robust with Learning - FJR

(Table 150), Robust with Learning - RSR (Table 151), Robust w/o Learning - PR (Table

152), and Robust w/o Learning - RSR (Table 153).

Based on these tests, we conclude that for the Overall Performance, the best

performance was achieved by FJR and Robust with Learning, followed by RSR, then Robust

w/o Learning, and finally PR and CR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 2

Table 148. Overall Performance among the rules and systems

Overall Performance

Run
RSR FJR PR CR

Robust
w/o

Learning

KODUSt
with

Learning
1 1.018034 0.782932 2.191187 1.63885 1.404897 1.491585
2 1.289459 0.84301 2.400859 1.621883 1.366345 0.098013
3 1.140737 0.842265 1.919961 2.154687 1.073577 0.83716
4 1.354484 1.140803 2.142639 1.724714 1.620887 0.940953
5 0.960048 0.865796 2.120676 1.792561 1.088556 1.709177
6 0.582581 1.583474 1.478808 1.512373 1.507774 1.665218
7 0.793703 0.541015 2.175748 2.182318 1.461647 1.129586
8 0.948836 0.509037 2.253649 2.321862 0.390932 0.305797
9 0.792683 1.059411 1.12018 1.921768 2.128383 1.407049
10 1.068532 0.623498 2.381245 1.441892 1.59179 0.318202
11 1.063683 0.965704 1.315026 2.360143 1.216419 0.81515
12 0.8223 1.913159 1.413591 1.114686 2.016282 1.341729
13 1.067398 0.660517 2.558644 1.956241 0.733667 0.426782
14 0.906046 0.851116 1.72615 1.562339 1.966741 1.570539
15 1.191643 1.544156 1.456134 1.59321 1.229077 1.244989
16 0.954164 1.055353 1.318913 2.125477 1.227377 1.135064
17 1.133647 1.312572 1.575676 2.046477 1.304277 0.814327
18 0.982539 1.136139 1.732019 1.261919 1.082115 1.234298
19 1.0289 1.024081 2.414412 1.101469 1.433485 1.221008
20 1.137729 0.959413 1.91896 1.861014 1.590738 0.765681
21 1.03121 0.884935 1.323836 2.574478 0.982727 0.961447
22 0.960721 0.501768 2.566735 2.00163 0.578161 0.477294
23 0.937255 0.82055 1.837447 1.35536 1.666052 1.865242
24 1.321863 0.867569 1.614462 1.858964 1.62348 1.116302
25 1.6884 0.845898 1.627212 1.89255 1.51834 1.182593
26 1.147486 0.82725 1.894762 2.14106 1.262702 0.923586
27 1.251638 0.577372 1.966878 2.509816 0.683771 0.409477
28 1.344705 0.859059 1.929386 1.69901 1.557546 1.0179
29 1.135912 0.928851 1.597101 1.911839 1.312521 1.325332
30 1.024676 0.282458 1.768336 2.569211 0.196304 0.265156
31 1.215088 0.414354 1.20341 2.631915 0.386102 0.400655
32 0.987752 0.801822 2.541018 1.578665 1.483999 0.558731
33 1.197611 0.720057 1.630816 2.571008 0.48392 0.681645
34 0.665936 1.033228 1.99824 2.023367 1.467979 1.456072
35 1.060721 0.510142 1.502599 2.415144 0.405021 0.32015
36 0.377682 0.764956 1.436324 1.163225 2.19381 2.409438
37 1.20505 0.302118 1.216361 2.64274 0.323643 0.342382
38 1.039465 0.793274 2.384811 1.67579 1.513188 0.643315
39 1.014917 0.951124 1.782271 2.122903 1.292538 0.904506
40 0.916875 0.832412 1.760983 1.678072 1.774801 1.386241
41 1.342902 0.822236 1.712332 1.665426 1.60373 1.094646
42 1.34039 0.86563 1.720158 1.748328 1.297283 1.325549
43 1.177189 0.839384 1.727155 2.217782 1.280081 0.735766
44 0.896372 0.492811 2.745785 1.843276 0.65068 0.331783
45 1.403778 0.582332 1.459225 1.671372 1.575822 1.593297
46 1.076149 0.855875 1.844212 2.467736 0.990709 0.761057
47 1.368337 0.967651 1.96083 2.10665 1.010814 0.790576
48 1.084568 0.92109 1.857294 2.109174 1.619275 0.838469
49 1.200669 0.683292 2.586969 1.822679 0.923628 0.290127
50 1.078924 0.845062 1.531477 2.264531 1.221122 0.901593
51 1.315172 0.664227 2.14049 1.234417 1.254332 1.342703
52 0.914345 0.830534 2.809536 1.295328 1.122776 0.485709
53 1.080042 1.014536 1.843751 1.809686 1.235281 1.393565
54 0.878105 0.968532 2.120705 1.688834 1.771054 1.220557
55 1.099547 1.130861 1.668237 2.053637 1.505446 1.20672
56 1.188911 0.853268 2.131484 1.914213 1.188513 0.871383
57 1.257956 0.788273 2.500821 1.659972 1.131197 0.50203
68 1.36092 0.738872 1.946658 1.532287 1.31765 1.195114
59 0.857564 1.051342 1.890836 2.142185 1.332321 1.337628
60 1.272075 0.591026 1.644208 2.070188 1.194911 0.911894
61 1.252988 1.072646 1.892919 1.89135 1.64404 0.943245
62 0.856996 1.013509 2.381815 1.550637 1.683043 0.980294
63 1.151937 0.86986 1.98513 2.158 1.44674 0.771685
64 1.198583 0.581441 2.303254 2.051144 0.869817 0.49261
65 0.834148 0.701901 1.867451 2.251434 1.098456 0.324637
66 1.137022 0.521737 1.592447 2.581365 0.481732 0.41379
67 1.227846 1.407726 1.608668 2.029998 1.68052 0.904162
68 1.321769 1.351914 1.547756 1.857342 1.474305 1.076423
69 1.218243 0.964142 1.781924 1.648562 1.303323 1.476831
70 1.116814 0.979094 1.429089 1.667719 1.967338 1.131255
71 1.241682 0.771004 1.514718 2.595505 0.935338 0.51246
72 1.137536 0.889104 1.539326 1.721372 2.018056 1.311229
73 1.278295 0.788721 1.514987 1.513678 1.885963 1.457935

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

Table 150. t test for Robust with Learning — FJR in the case of Overall Performance

Two-sample T for Robust with Learning vs FJR

N Mean StDev SE Mean
Robust with Lear 73 0.96 0.454 0.053

FJR 73 0.865 0.278 0.033

Difference = mu (Robust with Learning) - mu (FJR)
Estimate for difference: 0.094441
95% Cl for difference: (-0.028874, 0.217756)
T-Test of difference = 0 (vs not =): T-Value = 1.52 P-Value = 0.132 DF = 119

Table 151. t test for Robust with Learning — RSR in the case of Overall Performance

Two-sample T for R obust with Learning vs RSR

N Mean StDev SE Mean
Robust with Lear 73 0.96 0.454 0.053

RSR 73 1.095 0.207 0.024

Difference = mu (Robust with Learning) - mu (RSR)
Estimate for difference: -0.135389
95% Cl for difference: (-0.251124, -0.019654)
T -Test of difference = 0 (vs not =): T-Value = -2.32 P-Value = 0.022 DF = 100

Table 152. t test for Robust w/o Learning - PR in the case of Overall Performance

Two-sample T for ROBUST w/o Learning vs PR

N Mean StDev SE Mean
ROBUST w/o Learn 73 1.286 0.448 0.052

PR 73 1.863 0.393 0.046

Difference = mu (RO BUST w/o Learning) - mu (PR)
Estimate for difference: -0.577291
95% Cl for difference: (-0.715215, -0.439367)
T-Test of difference = 0 (vs not =): T-Value = -8.27 P-Value = 0 .000 DF = 141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

Table 153. t test for Robust w/o Learning - RSR in the case of Overall Performance

Tw o-sam ple T fo r ROBUST w /o Learning vs RSR

N Mean StDev SE Mean
ROBUST w/o Learn 73 1.286 0.448 0.052

RSR 73 1.095 0.207 0.024

Difference = mu (ROBUST w/o Learning) - mu (RSR)
Estimate for difference: 0.190781
95% Cl for difference: (0.076259, 0.305302)
T-Test of difference = 0 (vs not =): T-Value = 3.30 P-Value = 0.001 DF = 101

Computational Tests Summary

In this chapter, a robust reactive scheduling system has been introduced for the

unrelated parallel machine problem. The system with and without the learning capability

was compared to the rules introduced in chapter 6 and evaluated based on four performance

measures: Cmax Difference, CPU Time, Match-up Time, and Shifted Jobs. Extensive

computational tests indicated the following conclusions about the system:

Robust Scheduling System w/o Learning

j

The Robust w/o Learning ranked 2 among the 6 alternatives (4 rules and 2 systems)

in the case of Cmax Difference (after Robust with Learning and tied with CR and PR), and 4th

for CPU Time, Shifted Jobs, Match-up Time, and Overall Performance (after RSR, FJR, and

Robust with Learning).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 5

The following was determined from the DoE factor analyses of Robust w/o Learning

performance:

• Cmax Difference improves when the number of machines increases.

• CPU Time improves when the time between breakdowns, the idle time, and the

number of machines increase and the number of jobs decreases.

• Match-up Time decreases when the number of machines, idle time, and time between

breakdowns increase and the number of jobs and processing time range decreases.

• Shifted Jobs declines when the number of jobs decreases and the number o f machines,

repair duration, idle time, and the time between breakdowns increase.

Robust Scheduling System with Learning

Robust with Learning ranked 1st among the 6 alternatives in the case of Cmax

Difference and Overall Performance (tied with FJR), 2nd for Match-up Time (after FJR and

tied with RSR), and 3rd for CPU Time and Shifted Jobs (after RSR and FJR).

The following was determined from the experimental design factor analyses of

Robust with Learning performance:

• Cmax Difference improves when the processing time range decreases.

• CPU Time improves when the number of jobs decreases.

• Match-up Time decreases when the number of machines and time between

breakdowns increase and the number of jobs and processing time range decrease.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 6

• Shifted Jobs declines when the number of jobs decreases and the time between

breakdowns increases.

Furthermore, the average usage of each of the three rules (RSR, FJR, and PR)

incorporated in both Robust with Learning and Robust w/o Learning was recorded for all

problem replications (14892 replicates). The results indicated the following: FJR usage is

almost the same in both systems, RSR usage is 37.31% higher in Robust with Learning, and

PR usage is 12.82% less in Robust with Learning. This observation is extremely important

because it explains the reason why the CPU time is smaller in Robust with Learning, as the

latter utilizes more the simple heuristic RSR and less the PR rule which requires a high CPU

time.

Finally, as the superiority of each of the 6 alternatives depend strongly on which

performance measure is being evaluated, Table 154 below summarizes the ranks of the

alternatives for all possible combinations of the four performance measures addressed in this

dissertation (15 alternatives). All necessary ANOVA and t tests were carried out to make

sure that the reported results are statistically significant. Note that the alternatives are ranked

between 1 and 6, where 1 indicates the best performance and 6 the worst one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 7

Table 154. Ranks of the Rules and Systems for all combinations of Performance Measures
(1 = Best, 6 = Worst)

Performance Measures Repair Rules and Systems

Cmax
Difference

CPU
Time

Match­
up

Time

Shifted
Jobs RSR FJR PR CR

Robust
w/o

Learning

Robust
with

Learning
• 6 5 2 2 2 1

• 1 2 6 6 4 3
• 2 1 4 6 4 2

• 1 2 6 5 4 3
• • 4 2 6 6 2 1
• • 6 2 2 5 2 1
• • 4 1 6 5 3 1

• • 1 1 5 6 4 3
• • 1 2 6 6 4 3

• • 1 1 6 6 4 3
• • • 4 1 5 6 3 1
• • • 3 1 6 6 4 1
• • • 3 1 6 6 3 1

• • 1 2 6 6 4 3
• • • • 3 1 6 6 4 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 8

CHAPTER VIII

GENERALIZABILITY, CONCLUSIONS, AND FUTURE RESEARCH

In this chapter, conclusions are summarized based on the results of the computational

study performed in previous chapters. What makes the problem addressed in this research

unique is that up to our knowledge, no published work was found on the generation of

predictable schedules in parallel machine environments. Furthermore, most of the literature

that addressed schedule repair and rescheduling strategies were designed for either a flow

shop or a job shop, which require different recovery rules than the one necessary for a

parallel machine environment. The research gap extends to an absence of publications

tackling schedule repair and rescheduling strategies for unrelated parallel machines.

Finally, no previous literature was found on designing a robust scheduling system that

combines schedule repair, rescheduling, system response, and learning in a parallel

scheduling environment.

This chapter includes three sections. The first section lists the contributions of this

research and its generalizability. In the second section, conclusions on the performance of

the repair and rescheduling rules and the robust systems are presented. Finally, future

research is discussed in the third section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 9

RESEARCH CONTRIBUTIONS AND GENERALIZABILITY

Research Contributions

The main contributions of this research are the following:

1. New and improved heuristics (FJR and PR) for scheduling repair and rescheduling in

unrelated parallel machine environments.

2. An analysis of six repair and rescheduling alternatives with four performance measures,

and a comparison study that allows readers to choose the rule that will optimize the

performance measure(s) they desire.

3. An idle time insertion rule (MCFJI) equipped with a learning parameter that guarantees

robust predictable schedules.

4. A robust predictable-reactive scheduling construct, which will react according to an event

driven policy and attempt to overcome the perturbations using schedule repair as long as

possible, otherwise it will use complete rescheduling.

Research Generalizability

Even though the developed rules and systems in this research were only tested on

unrelated parallel machines subjects to breakdowns, they can be generalized to the following:

1. The environment must be a parallel machine one; however, it does not have to be the

unrelated machines (which is the hardest case), i.e. the rules can be applied also to

uniform and identical machines. The rules were developed for the parallel machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

environment independent of which generalization of the problem is used. As can be seen

from the previous chapters, the rationale of all the rules is to shift the jobs upon a

disruption either on the same machine or to another machine, i.e. the only requirement is

to have parallel machines.

2. The machine breakdowns can be replaced by almost any other disruption type causing a

delay, such as new job arrivals, absenteeism, the closing of a processing unit, etc... For

example, in the case of a new job arrival, the latter’s time of arrival will be considered as

the start of a breakdown, and its processing time as the delay of a breakdown. Following

this, any of the rules or systems can be implemented to repair the schedule.

3. The approach followed in this research can be adapted to environments other than

parallel machines. The rules will have to change or be modified; however, the system

architecture can still be utilized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

RESEARCH CONCLUSIONS

Based on the results discussed in previous chapters, the following conclusions can be

drawn:

1. Robust with Learning ranked 1st among the 6 alternatives (4 rules and 2 systems) in the

case of Cmax Difference and Overall Performance (tied with FJR), 2nd for Match-up

Time (after FJR and tied with RSR), and 3rd for CPU Time and Shifted Jobs (after RSR

and FJR). Moreover, the processing time range had a significant effect on Robust with

Learning in the case of Cmax Difference, as the latter improves when the processing

range decreases. Furthermore, CPU Time improves when the number of jobs decreases;

Match-up Time decreases when the number of machines and time between breakdowns

increase and the number of jobs and processing time range decreases, and Shifted Jobs

declines when the number of jobs decreases and the time between breakdowns increases.

2. Robust w/o Learning ranked 2nd among the 6 alternatives in the case of Cmax Difference

(after Robust with Learning and tied with CR and PR), and 4th for CPU Time, Shifted

Jobs, Match-up Time, and Overall Performance (after RSR, FJR, and Robust with

Learning). Furthermore, in the case of Robust w/o Learning, Cmax Difference improves

when the number of machines increases, CPU Time decreases when the time between

breakdowns, the idle time, and the number of machines increase and the number of jobs

decreases; Match-up Time decreases when the number of machines, idle time, and time

between breakdowns increase and the number of jobs and processing time range

decreases, and Shifted Jobs declines when the number of jobs decreases and the number

of machines, repair duration, idle time, and the time between breakdowns increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. FJR ranked 5th among the rules in the case of Cmax Difference (after Robust with

Learning, Robust w/o Learning, CR and PR), 2nd for CPU Time and Shifted Jobs (after

RSR), and was the best in the case of Match-up Time and Overall Performance (tied with

Robust with Learning). In addition, FJR performance is impacted as follows: Cmax

Difference improves when the number of machines increases, CPU Time improves when

the time between breakdowns and the number of machines increase and the number of

jobs decreases, Match-up Time decreases when the number of machines, idle time, and

time between breakdowns increase and the number of jobs decreases, and Shifted Jobs

declines when the number of jobs and repair durations decrease and the number of

machines and the time between breakdowns increase.

4. PR ranked 2nd among the rules in the case of Cmax Difference (after Robust with

Learning and tied with Robust w/o Learning and CR), 4th for Match-up Time (after FJR,

Robust with Learning, and RSR and tied with Robust w/o Learning), and was the worst in

the case o f CPU Time (tied with CR), Shifted Jobs, and Overall Performance (tied with

CR). In addition, PR performance is impacted as follows: Cmax Difference improves

when the number o f machines increases, CPU Time improves when the time between

breakdowns increases and the number of jobs decreases, Match-up Time decreases when

the number of machines and time between breakdowns increase and the number of jobs

decreases, and Shifted Jobs declines when the number of jobs and repair durations

decrease and the number of machines and the time between breakdowns increase.

5. RSR had the worst Cmax Difference performance among the 6 alternatives, the best CPU

and Shifted Jobs performances, the second best Match-up Time (after FJR and tied with

Robust with Learning), and ranked 3rd for overall performance (after FJR and Robust

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

with Learning). Recall that RSR performed the best in the case of Shifted Jobs because it

does not shift jobs between the machines. Moreover, RSR was the finest in CPU Time as

it is a simple heuristic with a computational complexity of 0(mn) at the most. In

addition, RSR performance is impacted as follows: Cmax Difference improves when the

number of machines increases, CPU Time improves when the time between breakdowns

increases and the number of jobs decreases, and Match-up Time decreases when the

number of machines, idle time, and time between breakdowns increase and the number of

jobs decreases. Shifted Jobs is always zero when using RSR.

6. CR ranked 2nd among the rules in the case of Cmax Difference (after Robust with

Learning and tied with PR and Robust w/o Learning), 5th for Shifted Jobs (after RSR,

FJR, Robust with Learning, and Robust w/o Learning), and was the worst in the case of

CPU Time (tied with PR), Match-up Time, and Overall Performance (tied with PR). In

addition, CR performance is impacted as follows: Cmax Difference improves when the

number of machines increases, CPU Time improves when the time between breakdowns

increases and the number of jobs and machines decreases, Match-up Time decreases

when the number o f machines and time between breakdowns increase and the number of

jobs decreases, and Shifted Jobs declines when the number of jobs and repair durations

decrease and the number of machines and the time between breakdowns increase.

7. A new idle time insertion rule, CFJI, was introduced and compared to the traditional

initial schedule where no idle time is built-in, and to Mehta’s rule OSMH. CFJI

outperformed the other rules; however, as the problem size increased, it overestimated the

idle time needed for insertion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

8. The learning parameter was successful in predicting the realized schedule and was

determined to be an essential addition to the robust system. In fact, MCFJI (which is

CFJI with the learning parameter) performed much better than CFJI alone. Furthermore,

Robust with Learning outperformed Robust w/o Learning and delivered the finest

performances for almost all performance measure combinations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 5

FUTURE RESEARCH

In this research, repair and rescheduling rules and systems were developed and

compared for the unrelated parallel machine problem. This dissertation is innovative in the

sense that no previous work was found on rescheduling in unrelated parallel machine

environments. The extensions listed below can be considered in future research:

1. Extending this dissertation results to unrelated parallel machine environments with

machine eligibility restrictions. Scheduling in the presence of machine eligibility

restrictions when not all machines can process all the jobs is a practical problem into

which there has been little research (Centeno and Armacost, 2004).

2. Extending the problem to include sequence dependent setup times. This will increase the

problem’s complexity and the proposed rules will need to be modified to account for this

extension.

3. Extending the results to identical and uniform parallel machine environments to verify if

the rules would dominance hold.

4. Extending the problem to different environments other than the parallel one. Such

environments include the flow shop and job shop problems where more work has been

done on schedule repair and rescheduling. This extension can also be beneficial to

compare the rules and systems developed in this dissertation to existing ones for the flow

shop or job shop problems.

5. Altering the proposed rules and systems to be able to absorb more than one overlapping

event (disruption). Such extension can be a great addition to the current literature and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 6

will provide the rules with the ability to handle a broader variety of problems, such as for

example the case where several jobs can arrive after time 0.

6. Modifying and testing the rules for different quality measures such as tardiness, earliness,

or weighted tardiness and earliness.

7. In the case of PR, we are dealing with bicriteria optimization problem (minimizing

Shifted Jobs and Cmax Difference). The hierarchical approach followed by Alagoz and

Azizoglu (2003) was used in this research, i.e. minimizing the less important measure

{Shifted Jobs) subject to the constraint that the more important measure {Cmax

Difference) is kept at its optimum. An extension to the PR rule is to investigate the

simultaneous approach for bicriteria problems, i.e. generation of efficient schedules or

optimization of a weighted combination of the two performance measures.

8. The learning parameter used with CFJI proved to be effective in predicting the realized

schedule CmaxR and has aided the robust system in reaching superior performance

measures. However, as the literature and findings on machine learning are almost

abundant, it is worthy to investigate other intelligent parameters. The fields that can be

explored are brain models, adaptive control theory, artificial intelligence, and

evolutionary models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 7

REFERENCES

Abumaizar, R. J., and Svestka, J. A. (1997) Rescheduling job shops under random
disruptions. International Journal o f Production Research, V. 35, pp. 2065-2082.

Adachi, T., Talavage, J.J., and Moodie, C.L. (1989) A rule based control method for a multi­
loop production system. Artificial Intelligence in Engineering, V. 4, pp. 115-125.

Ahn, W., and Brewer, W.F. (1993) Psychological studies o f explanation-based learning.
Kluwer Academic Publishers, Boston.

Akturk, M.S., and Gorgulu, E. (1999) Match-up scheduling under a machine breakdown.
European Journal o f Operational Research, V. 112, pp. 81-97.

Alagoz, O., Azizoglu, M. (2003) Rescheduling of identical parallel machines under machine
eligibility constraints. European Journal o f Operational Research, V. 149, pp. 523-
532.

Algorithms and Theory of Computation Handbook, CRC Press LLC (1999) Lower Bound.
From Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S.
National Institute of Standards and Technology. Available:
http://www.nist.gov/dads/HTMLAowerboimd.html, last accessed: 10/24/2006.

Al-Salem, A. (2004) Scheduling to minimize makespan on unrelated parallel machines with
sequence dependent setup times. Engineering Journal o f the University o f Qatar,
V.17, pp. 177-187.

Anderson, E.J., Potts, C.N. (2004) Online Scheduling of a Single Machine to Minimize Total
Weighted Completion Time. Mathematics o f Operations Research, V. 29, pp. 686-
697.

Anderson, J.R. (1991) The place o f cognitive architecture in rational analysis. In:
Architectures for Intelligence, Hillsdale, NJ, pp. 1-24.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.nist.gov/dads/HTMLAowerboimd.html

2 2 8

Anderson, T.W. (1958) An Introduction to Multivariate Statistical Analysis. John Wiley,
New York.

Amaout, J-P, Rabadi, G., and Mun, J.H. (2006) A Dynamic Heuristic for the Stochastic
Unrelated Parallel Machine Scheduling Problem. International Journal o f Operations
Research, V. 3, pp. 136-143.

Amaout, J-P (2005) Predictable Scheduling of Unrelated Parallel Machines subject to
Breakdowns. Proceedings o f the 26th National Conference o f the American Society
fo r Engineering Management, Virginia Beach: 464-469.

Amaout, J-P, and Rabadi, G. (2005) Minimizing the total weighted completion time on
unrelated parallel machines with stochastic times. Proceedings o f the 2005 Winter
Simulation Conference, Orlando: 2141-2147.

Aytug, H., Bhattacharyya, S., Koehler, G.J., and Snowdon, J. (1994) A Review of Machine
Learning in Scheduling. IEEE Transactions on Engineering Management, V. 41, pp.
165-171.

Azizoglu, M., and Alagoz, O. (2005) Parallel-machine rescheduling with machine
disruptions. HE Transactions, V. 37, pp. 1113-1118.

Bean, J.C., Birge, J.R., Mittenehal, J., and Noon, C.E. (1991) Match-up scheduling with
multiple resources, release dates and disruption. Operations Research, V. 39, pp. 470-
483.

Beasley, J.E. (2006) OR Notes: Simulation. Available:
http://people.brunel.ac.uk/~mastjjb/jeb/or/sim.html, last accessed : 10/24/2006.

Bollinger, J., and Duffie, N. (1988) Computer Control o f Machines and Processes. Reading,
Addison-Wesley, MA.

Brignell, John (2006) What is the Normal Distribution and what is so normal about it?
Available: http://www.numberwatch.co.uk, last accessed: 10/24/2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://people.brunel.ac.uk/~mastjjb/jeb/or/sim.html
http://www.numberwatch.co.uk

2 2 9

Bruno, J.L., Downey, P.J., and Frederickson, G.N. (1981) Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. Journal o f the ACM,
V. 28, pp. 100-113.

Centeno, G., and Armacost, R. (2004) Minimizing makespan on parallel machines with
release time and machine eligibility restrictions. International Journal o f Production
Research, V. 42, pp. 1243-1256.

Chong, C.S., Sivakumar, A.I., and Gay, R. (2003) Simulation-based scheduling for dynamic
discrete manufacturing. Proceedings o f the 2003 Winter Simulation Conference, pp.
1465-1473.

Church, L. K., and Uzsoy, R. (1992) Analysis of periodic and event-driven rescheduling
policies in dynamic shops. International Journal o f Computer Integrated
Manufacturing, V. 5, pp. 153-163.

Costa, A.M., Vargas, P.A., Von Zuben, F.J., Fran9 a, P.M. (2002) Makespan minimization on
parallel processors: an immune based approach. Proceedings o f the Special Sessions
on Artificial Immune Systems in the 2002 Congress on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, Honolulu, Hawaii: 115-123.

Cowling, P., and Johansson, M. (2002) Using real time information for effective dynamic
scheduling. European Journal o f Operational Research, V. 139, pp. 230-244.

Cowling, P.I., Ouelhadj, D., and Petrovic, S. (2003) A multi-agent architecture for dynamic
scheduling of steel hot rolling. Journal o f Intelligent Manufacturing, V. 14, pp. 457-
470.

Crama, Y. (2005) Advanced Operations Research. HEC Management School, University of
Liege.

Davenport, A.,Gefflot, C., and Beck, J. (2001) Slack-based techniques for robust schedules.
Proceedings o f the 6 th European Conference on Planning (ECP-2001), pp. 7-18.
Available: http://tidel.mie.utoronto.ca/pubs/uncertainty-ecp.ps.gz, last accessed:
10/24/2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://tidel.mie.utoronto.ca/pubs/uncertainty-ecp.ps.gz

2 3 0

Davis, E., and Jaffe, J. (1981) Algorithms for Scheduling Tasks on Unrelated Processors.
Journal o f the Association for Computing Machinery, V. 28, pp. 721-736.

Davis, R., and Smith, R. (1983) Negotiation as a metaphor for distributed problem solving.
Artificial Intelligence, V. 20, pp. 63-109.

Derbyshire, J. (2004) Prime Obsession: Berhhard Riemann and the Greatest Unsolved
Problem in Mathematics. Plume.

Dietterich, T.G. (1989) Machine Learning. Annual review o f computer science, V. 3. Palo
Alto, CA: Annual Reviews, Inc.

Dorn, J., Kerr, R., and Thalhammer, G. (1993) Reactive Scheduling in a Fuzzy-Temporal
Framework. Proceedings o f the IFIP International Workshop on Knowledge-Based
Reactive Scheduling, Athens, Greece.

Feldmann, S., Sgall, J., and Teng, S.-H. (1991) Dynamic scheduling on parallel machines.
Proceedings o f IEEE, San Juan, Puerto Rico: 111-120.

Fisher, R.A. (1960). The Design o f Experiments. Hafiier Publishing Company, New York.

Fox, M.S., and Smith, S.F. (1984) ISIS—A knowledge-based system for factory scheduling.
Expert Systems, V. 1, pp. 25-44.

Gamer, B.J., and Ridley, G.J. (1994) Application of neural network process models in
reactive scheduling. Knowledge based reactive scheduling. IFIP Trans. B (Appl.
Tech.), V. B-15, pp. 19-28.

Garey, M.R., and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory
ofNP-Completeness. Freeman, San Francisco.

Ghirardi, M., and Potts, C.N. (2005) Makespan minimization for unrelated parallel machines:
a recovering beam search approach. European Journal o f Operational Research, V.
165, pp. 457-467.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 1

Gluck, M., and Rumelhart, D. (1989) Neuroscience and Connectionist Theory. The
Developments in Connectionist Theory. Erlbaum Associates, Hillsdale, NJ.

Graves, S. C. (1981) A review of production scheduling. Operations Research, V. 29, pp.
646-675.

Grigoriev, A., Sviridenko, M., and Uetz, M. (2005) Unrelated Parallel Machine Scheduling
with Resource Dependent Processing Times. Proceedings o f the 11th Conference on
Integer Programming and Combinatorial Optimization, Lecture Notes in Computer
Science 3509, 2005, pp. 182-195.

Guinet, A. (1991) Textile Production Systems: a succession of Non-identical Parallel
Processor Shops. Journal o f Operational Research Society, V. 42, pp. 655-671.

Guo, B., Nonaka, Y. (1999) Rescheduling and optimization of schedules considering
machine failures. International Journal o f Production Economics, V. 60-61, pp. 503-
513.

Herroelen, W., and Leus, R. (2004) Robust and reactive scheduling: a review and
classification of procedures. International Journal o f Production Research, V. 42, pp.
1599-1620.

Hoogeveen, J.A., Schuurman, P., and Woeginger, G.J. (2001) Non-approximability results
for scheduling problems with minsum criteria. INFORMS journal on computing, V.
13, pp. 157-168.

Jozefowska, J., Mika, M., Roycki, R., Waligora, G., and Wglarz, J. W. (1998) Local search
meta-heuristics for discrete-continuous scheduling problems. European Journal o f
Operational Research, V. 107, pp. 354-370.

Kizilisik, O. (1999) Predictive and Reactive Scheduling, Department of Industrial
Engineering, Bilkent University.

Kouikoglou, V.S., and Phillis, Y.A. (1997) Review of a fast simulation method for the
analysis of queuing networks. Applied Stochastic Models and Data Analysis, V. 13,
pp. 73-83.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 2

Langley, P. (1996) Elements o f Machine Learning. Morgan Kaufman Publishers, Inc. San
Francisco, CA.

Langley, P., and Carbonell, J.G. (1984) Approaches to Machine Learning. Journal o f the
American Society for Information Science, V. 35, pp. 306-316.

Langley, P., and Carbonell, J.G. (1987) Language acquisition and machine learning. In:
Mechanisms o f language acquisition. Hillsdale, NJ.

Law, A., and Kelton, D. (2000) Simulation Modeling and Analysis. McGraw-Hill, 3rd edition,
2000.

Lawler, E.L., and Labetoulle, J. (1978) On preemptive scheduling of unrelated parallel
processors by linear programming. Journal o f the Association fo r Computing
Machinery, V. 25, pp. 612-619.

Lee, I. (2001) Artificial intelligence search methods for multi-machine two-stage scheduling
with due date penalty, inventory, and machining costs. Computers and Operations
Research, V. 28, pp. 835-852.

Lee, K. (1989) Automatic speech recognition: The development o f the Sphinx system. Kluwer
Academic Publishers, Boston.

Leon, V. J., Wu, S. D. and Storer, R. H. (1994) Robustness measures and robust scheduling
for job shops. HE Transactions, V. 26, pp. 32-41.

Leung, J. (2004). Handbook o f Scheduling: Algorithms, Models, and Performance Analysis.
Chapman & Hall, New York.

Liaw, C., Lin, Y., Cheng, C., and Chen, M. (2003) Scheduling unrelated parallel machines to
minimize total weighted Tardiness. Computers and Operations Research, V. 30, pp.
1777-1789.

Low, C.Y., 2005. Simulated annealing heuristic for flow shop scheduling problems with
unrelated parallel machines. Computers and Operations Research, V. 32, pp. 2013-
2026.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 3

MacCarthy, B. L., and Liu, J. (1993). Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. International Journal o f
Production Research, V. 31, pp. 59-79.

Martello, S., Soumis, F., and Toth, P. (1997) Exact and approximation algorithms for
makespan minimization on unrelated parallel machines. Discrete Applied
Mathematics, V. 75, pp. 169-188.

Mehta, S. V., and Uzsoy, R. (1998) Predictable scheduling of a Job Shop subject to
breakdowns. IEEE Transactions on Robotics and Automation, V. 14, pp.365-378.

Mehta, S. V. and Uzsoy, R. (1999) Predictable scheduling of a single machine subject to
breakdowns. International Journal o f Computer Integrated Manufacturing, V. 12,
pp. 15-38.

Mendez, C., and Cerda, J. (2004) An MILP framework for batch reactive scheduling with
limited discrete resources. Computers and Chemical Engineering, V. 28, pp. 1059-
1068.

Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (1983) Machine Learning: An Artificial
Intelligence Approach. Morgan Kaufman Publishers, Inc. Los Altos, CA.

Mitchell, T. (1997) Does Machine Learning really Work? Artificial Intelligence Magazine,
V.18, pp. 11-20.

Miyashita, K. (1995) Case based knowledge acquisition for schedule optimization. Artificial
Intelligence in Engineering, V. 9, pp. 277-287.

Mokotoff, E., and Chretienne, P. (2002) A cutting plane algorithm for the unrelated parallel
machine scheduling problem. European Journal o f Operational Research, V. 141, pp.
515-525.

Mosheiov, G., and Sidney, J. (2003) Scheduling with general job-dependent learning curves.
European Journal o f Operational Research, V.147, pp. 665-670.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 4

Nilsson, N. (1996) Introduction to Machine Learning. An early draft of a proposed textbook.
Available: http://ai.stanford.edu/people/nilsson/mlbook.html, last accessed:
10/24/2006.

NIST/SEMATECH e-Handbook o f Statistical Methods. Available:
http://www.itl.nist.gov/div898/handbook/, last accessed: 10/24/2006.

Nof, S.Y., and Grant, F.H. (1991) Adaptive/predictive scheduling; review and a general
framework. Production Planning and Control, V. 2, pp. 298-312.

O’Donovan, R., Uzsoy, R., and McKay, K. N. (1999) Predictable scheduling of a single
machine with breakdowns and sensitive jobs. International Journal o f Production
Research, V. 37, pp. 4217-4233.

O’Kane, J. F. (2000) A knowledge-based system for reactive scheduling decision-making in
FMS. Journal o f Intelligent Manufacturing, V. 11, pp. 461-474.

Ouelhadj, D. (2003) A Multi-Agent system fo r the integrated dynamic scheduling o f steel
production, Doctoral Dissertation, The School of Computer Science and Informations
Technology, University of Nottingham, Nottingham, UK.

Ow, P.S., Smith, S.F., and Howie, R. (1988) A cooperative scheduling system. Proceedings
o f the 1988 Expert Systems and Intelligent Manufacturing, pp.70-89.

Pinedo, M. (2002) Scheduling theory, algorithms and systems. Second edition, Prentice Hall.

Pomerleau, D.A. (1989) ALVINN: An autonomous land vehicle in a neural network. Carnegie
Mellon University, Pittsburgh, PA.

Rabadi, G., Moraga, R., and Al-Salem, A. (2006) Heuristics for the Unrelated Parallel
Machine Scheduling Problem with Setup Times. Journal o f Intelligent
Manufacturing, V. 17, pp. 85-97.

Raheja, A.S., and Subramaniam, V. (2002) Reactive recovery of job shop schedules - a
review. International Journal o f Advanced Manufacturing Technology, V. 19, pp.
756-763.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ai.stanford.edu/people/nilsson/mlbook.html
http://www.itl.nist.gov/div898/handbook/

235

Reeves, C. R. (1995) Modem heuristic techniques for combinatorial problems. John Wiley &
Sons, McGraw-Hill International (UK) Limited.

Ross, P. (1996) Taguchi Techniques for Quality Engineering, New York: McGraw Hill.

Rowland, T., and Weisstein, E. W. (2006a) Upper Bound. From MathWorld—A Wolfram
Web Resource. Available: http://mathworld.wolfram.com/UpperBound.html, last
accessed: 10/24/2006.

Rowland, T., and Weisstein, E. W. (2006b) Lower Bound. From MathWorld—A Wolfram
Web Resource. Available: http://mathworld.wolfram.com/LowerBound.html, last
accessed: 10/24/2006.

Sabuncuoglu, I., and Bayiz, M. (2000). Analysis of reactive scheduling problems in a job
shop environment. European Journal o f Operational Research, V. 126, pp. 567-586.

Sauer, J., and Bruns, R. (1997) Knowledge-based scheduling systems in industry and
medicine. Expert IEEE, V. 12, pp. 24-31.

Schmidt, G. (1994) How to apply fuzzy logic to reactive production scheduling. Knowledge
based reactive scheduling. IF IP Trans. B (Appl. Tech.), V. B-15, pp. 57-66.

Schrage, L. (2001) Optimization Modeling with LINGO. Lindo Systems, Inc. Chicago,
Illinois.

Sejnowski, T., Koch, C., and Churchland, P. (1988) Computational Neuroscience. Science,
V. 241, pp. 1299-1306.

Selfridge, O. (1993) The Gardens of Learning. Artificial Intelligence Magazine, pp. 36-48.

Shafaei, R., and Brunn, P. (1999) Workshop scheduling using practical (inaccurate) data Part
2: an investigation of the robustness of scheduling rules in a dynamic and stochastic
environment. International Journal o f Production Research, V. 37, pp. 4105-4117.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://mathworld.wolfram.com/UpperBound.html
http://mathworld.wolfram.com/LowerBound.html

2 3 6

Shavlik, J,W., and Dietterich, T.G., eds. (1990) Readings in Machine Learning. Morgan
Kaufnab Publishers, Inc. San Mateo, California.

Shaw, M.J., Park, S.C., and Raman, N. (1990) Intelligent Scheduling with Machine Leaning
Capabilities: The Induction o f Scheduling Knowledge. Carnegie Mellon University -
The Robotics Institute-Technical Report.

Shukla, C. S. and Chen, F. F. (1996) The state of the art in intelligent real-time FMS control:
a comprehensive survey. Journal o f Intelligent Manufacturing, V. 7, pp. 441-455.

Subramaniam, V., Raheja, A.S., and Rama Bhupal Reddy, K. (2005) Reactive repair tool for
job shop schedules. International Journal o f Production Research, V. 43, pp. 1-23.

Sun, J. and Xue, D. (2001) A dynamic reactive scheduling mechanism for responding to
changes of production orders and manufacturing resources. Computers in Industry, V.
46, pp. 189-207.

Sundararaghavan, P. S., Kunnathur, A. S., and Viswanathan, I. (1997) Minimizing Makespan
in Parallel Flowshops. The Journal o f the Operational Research Society, V. 48, pp.
834-842.

Suresh, V. and Chaudhuri, D. (1993) Dynamic scheduling a survey of research. International
Journal o f Production Economics, V. 32, pp. 53-63.

Taguchi, G. (1993). Taguchi Methods: Design o f Experiments, American Supplier Institute,
Inc., Michigan.

Tesauro, G. (1995) Temporal difference learning and TD-gammon. Communications o f the
ACM, V. 38, pp. 58-68.

Vieira, G. E., Herrmann, J. W. and Lin, E. (2000) Analytical models to predict the
performance of a single machine system under periodic and event driven rescheduling
strategies. International Journal o f Production Research, V. 38, pp.1899-1915.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 7

Vieira, G. E., Hermann, J. W. and Lin, E. (2003) Rescheduling manufacturing systems: a
framework of strategies, policies and methods. Journal o f Scheduling, V. 6, pp. 36-
92.

Vredeveld, T., and Hurkens, C. (2002) Experimental Comparison of Approximation
Algorithms for Scheduling Unrelated Parallel Machines. INFORMS Journal on
Computing, V. 14, pp. 175-189.

Weng, M.X., Lu, J., and Ren, H. (2001). Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective. International Journal
o f Production Economics, V. 70, pp. 215-226.

Williams, H. P., and Brailsford, S. C. (1996) Computational logic and integer programming.
In Beasley, J. E., editor, Advances in Linear and Integer Programming, pages 249-
281. Clarendon Press, Oxford, UK.

Williams, H.P. (1999) Model Building in Mathematical Programming, Fourth Edition, John
Wiley and Sons, LTD.

Wu, S. D., Storer, R. H. and Chang, P. C. (1991) A rescheduling procedure for
manufacturing systems under random disruptions. Proceedings o f Joint USA/German
Conference on New Directions fo r Operations Research in Manufacturing, pp. 292-
306.

Wu, S. D., Storer, R. H. and Chang, P. C. (1993) One machine rescheduling heuristics with
efficiency and stability as criteria. Computers Operations Research, V. 20, pp. 1-14.

Yih, Y., and Thesen, A. (1991) Semi-Markov decision models for real time scheduling.
International Journal o f Production Research, V. 29, pp. 2331-2346.

Youssef, H., Sait, S. M., and Adiche, H. (2001) Evolutionary algorithms, simulated annealing
and tabu search: a comparative study. Engineering Applications o f Artificial
Intelligence, V. 14 (2), pp. 167-181.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A: ROBUST SYSTEM IMPLEMENTATION CODE
IN VISUAL C++

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 9

This is the C++ Main Function that implements the Robust System (with or w/o Learning).
The program calculates the 95% confidence intervals for each of the Performance measures

and the averages of usages of each of the rules

#ifndef for
#define for if (0) {} else for
#endif

include <iostream>
include <conio.h>
include <fstream>
include <time.h>
include <string>
include <math.h>
include <windows.h>
include "lingd90.h"
using namespace std;

// Global Inputs needed for the problem
const int nom=8,noj=100,Mincrease=l, iteration =45,Teta=l;
float betal=0.1,beta2=0.2, alpha=0.8*(l);
int maxpro=150,minpro=l;
ifstream fm;
ofstream fout;

// Functions Prototypes
void inputdata (double[][500]);
void LINGO 1 (double[][500],double[][500]);
void sort(double[][500],double[][500], int[][500], int[]);
void assign(double[][500],int[],int[][500], int[],float[][500],float[][500],float[][500],float&, float&,

int&,int&,int&,int&,float&);
int jobposit (int[],int[],int,float[],float[3,float, double[][500],int[][500]);
int jobposup (float[],int[],int[],int,float[],float[], double[][500],int[][500]);
void RepairRulel (int,float[][500], float[][500], float[], int[],int[],double[][500], int[][500], float&,

int&, float[]);
void RepairRule2 (float[],float[],int,float[][500],float[][500],float[],int[],int[],double[][500],

int[][500],float&, int&, float[],int&);
void RepairRule5 (float[],float[],int,float[][500],float[][500],float[],int[],int[],double[][500],

int[][500],float&,int&,float[]);
void LING02 (double[][500],double[10][500],double[10][500],double[],int,double&);
void LING03 (double [][500],double[10][500],double[10][500],double [],int ,double&,double&);
void LING04 (double [] [500],double [10][500],double [10][500],double [],int ,double& ,double);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 0

// Main Function
void main()
{
int countlter=0;
float CmaxDiffCount=0,MatchCount=0,Tidle=0;
double CPUtime=0,CPUCount=0,JobsCounter=0,RSRcounter=0,FJRcounter=0,PRcounter=0;
float Record[10][1000]={0};
float varCmax=0,varCPU=0,varMatch=0,varSJobs=0,avgCmax=0,avgSJobs=0,avgCPU=0,

avgMatch=0,avgTidle=0,avgRSR=0,avgFJR=0,avgPR=0;

fout.open("results.txt");

cout«"Output Failure"«endl
«"Press any Key"«endl;

getch();
return;

}// end of error check

while (countlter < iteration) 11 Run the appropriate iterations number
{
clockt starti=0,endi=0;
double data[10] [500]={0} ,Xdecisions[10] [500]= {0};
int place[10][500]={0}, number[nom]={0} jobposi[nom]={0};
float idles[l0][500]={0}, start[10][500]={0},finito[10][500]={0};
float matchcounter=0,CmaxDifference=0;
int jobsc=0,RSRC=0,FJRC=0,PRC=0;

inputdata(data);

LINGO 1 (data,Xdecisions);

sort(data,Xdecisions, place, number);

starti=clock(); IIRecord the start of CPU time

assign(data,number,place jobposi,idles,start,finito,matchcounter,CmaxDifferencejobsc,RSRC,FJRC,

if(!fout)

PRC,Tidle);

endi=clock(); 11 Record the end of CPU time
CPUtime=double ((endi-starti)/double(CLOCKS_PER_SEC));

countIter=countIter +1;

Record[1] [countIter]=(CmaxDifference);
Record[2] [countIter]=CPUtime;
Record[3][countIter]=matchcoimter;

I/record cmax
llrecord the CPU
I/record the matching time

Record[4] [countIter]=j obsc;
Record[5] [countIter]=RSRC;
Record[6] [countIter]=FJRC;

llrecord the shifted jobs
11 record the use of RSR
llrecord the use of FJR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 1

Record[7][countIter]=PRC;
Record[8] [countIter]=T idle;
} 11 end of while loop

for(int i=l;i<(countIter+l);i-H-)
{

avgCmax=avgCmax + Record[l][i];
avgCPU=avgCPU + Record[2][i];
avgMatch=avgMatch + Record[3][i];
avgS Jobs=avgS Jobs+Record[4] [i];
avgRSR=avgRSR+Record[5][i];
avgF JR=avgF JR+Record[6] [i];
avgPR=avgPR+Record[7] [i];
avgTidle=avgTidle+Record[8] [i];

}

avgCmax=avgCmax/countIter;
avgCPU=avgCPU/countIter;
avgMatch=avgMatch/countIter;
avgSJobs=avgSJobs/countIter;
avgRSR=avgRSR/countIter;
avgFJR=avgFJR/countIter;
avgPR=avgPR/countIter;
avgT idle=avgT idle/countlter;

for(int i=l;i<(countIter+l);i++)
{

varCmax=varCmax+(pow((avgCmax-Record[l] [i]),2));
varCPU=varCPU+(pow((avgCPU-Record[2][i]),2));
varMatch=varMatch+(pow((avgMatch-Record[3][i]),2));
varSJobs=varSJobs+(pow((avgSJobs-Record[4][i]),2));

}

varCmax=(varCmax/(countIter-l));
varCPU=(varCPU/(countIter-1));
varMatch=(varMatch/(countIter-l));
varSJobs=(varS Jobs/(countIter-l));

varCmax=2.009 * pow((varCmax/countIter),0.5);
varCPU=2.009 * pow((varCPU/countIter),0.5);
varMatch=2.009 * pow((varMatch/countIter),0.5);
varSJobs=2.009 * pow((varSJobs/countIter),0.5);

cout«"Required iterations "«countIter«endl;
cout«"Cmax average is "«avgCm ax«" and the LCI is "«avgCmax - varCmax«" and UCI

"«avgCmax + varCmax«endl;
cout«"CPU average is "«avgCPU «" and the LCI is "«avgCPU - varCPU«" and the UCI

"«avgCPU + varCPU«endl;
cout«"Match average is "«avgM atch«" and the LCI is "«avgMatch - varMatch«" and the UCI

"«avgMatch + varMatch«endl;

11 record the use o f PR
IIrecord the Tidle

IIGet the averages

l/AVGCmax
HA VG CPU
l/AVG Match
l/AVGSJobs
l/AVG RSR
l/AVG FJR
HA VG PR
HAVG Tidle

I/Get the variance for each rule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 2

cout«"SJobs average is "«avgSJobs«" and the LCI is "«avgSJobs - varSJobs«" and the UCI
"«avgSJobs + varSJobs«endl;

cout«"RSR average is "«avgR SR «endl;
cout«"FJR average is "«avgFJR «endl;
cout«"PR average is "«avgP R «endl;

alpha= 1 +((nom*(avgCmax))/avgTidle); IIDetermine the learning parameter

fout.close();

getch();

}// End o f main function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 3

inputdata Function will input the processing time o f jobs on the unrelated parallel machines.
The processing time will be randomly generated from a uniform distribution

between minpro and maxpro

void inputdata (double datas[][500])
{

for(int i=l ;i<(nom+l);i++) I/input jobs processing time
{

for(int j= l ;j<(noj+l);j++)
{

datas[i][j] = rand() % (maxpro - minpro) +minpro ;
}

}
for(int i=l ;i<(nom+l);i++) //Display jobs processing time
{

for(int j= l ;j<(noj+l);j++)
{

cout«datas[i][j]«" " ;
}
cout«endl;

}
} // The end o f input data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 4

Below is the C++ LINGO 1 function that interfaces with LINGO. Information is passed to LINGO so ;'■>
the latter can generate the optimal initial schedule. The LINGO file that contains MIP[1] -

is called LINGOl.Lng (Appendix E)

void LINGO 1 (double datak[][500],double X[10][500])
{
char cScript[256]; //LINGO interface
double dObjective, dStatus=-l.;
double dnoj[]= {noj};
double dnom[] = {nom};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM =l;

// create the LINGO environment object
pLSenvLINGO pLINGO;

pLINGO = LScreateEnvLng();
if (IpLINGO)
{

printf("Can"t create LINGO environment!\n");
goto FinalExit;

}
// Open LINGO'S log file
nError = LSopenLogFileLng(pLINGO, "LINGO.log");
if (nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

H @POINTER(l)
nError = LSsetPointerLng(pLINGO, dnoj, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng(pLINGO, dnom, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(3)
double datas2[1000];

for (int i = 0; i<(nom); i++)
for (int j = 0; j < (noj); j++)

datas2[i * noj + j] = datak[i+l][j+l];
nError = LSsetPointerLng(pLINGO, datas2, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(4)
nError = LSsetPointerLng(pLINGO, &dObjective, &nPointersNow);
if (nError) goto ErrorExit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// @POINTER(5)
nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(6)
nError = LSsetPointerLng(pLINGO, dX, &nPointersNow);
if (nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy(cScript, "SET ECHOIN 1 \n TAKE LINGOl .Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng(pLINGO, cScript);
if (nError) goto ErrorExit;

II Close the log file
LScloseLogFileLng(pLINGO);

// Any problems?
if (nError || dStatus != LS_STATUS_GLOBAL_LNG)
{

// Had a problem
printf("Unable to solve!");

}

// Output the decision variables
for (int i = 1; i<(nom+l); i++)
{

for (int j = 1; j < (noj+1); j++)
{

X[i][j]=dX[index];
index++;

}
}
for (int i=l;i<nom+l;i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j= l ;j<noj+l ;j++)

cout«" "«X[i][j];
}

cout«"the objective is "«dO bjective«" and status is "«dStatus«endl;

goto NormalExit;
ErrorExit:

printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng(pLINGO);

FinalExit:;
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 6

Below is the C++ Sort function. It will assign the jobs to the machines according to the Optimal |
solution obtained via LINGO 1 .Lng (i.e. MIP[1]) <£

void sort(double thedataf][500],double XI[][500], int places[][500], int numbers[])
{

for (int i=l; i<10;i++)
{

numbers[i]=l;
}

for (int i=l; i< (nom+1); i++)
{

for (int j = l ; j <(noj+l); j++)
{

if(XI[i][j] == 1)
{

places[i] [numbers[i]]=j;
numbers[i]=numbers[i] +1;

}
}

}

for (int i= l; i< (nom+1); i++) I/Get the accurate number ofjobs on each machine
{

numbers[i]=numbers[i]-l;
}

for (int i= l; i< (nom+1); i++)
{

for(intj= l;j <numbers[i]+l; j++)
{
cout«" "«places[i][j];
}
cout«endl;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 7

The Assign Function executes the initial optimal schedule subject to breakdowns, then applies |
the appropriate repair and rescheduling rules to repair the schedule |

void assign(double dataw[][500],int thenumbers[],int theplaces[][500], int jobpos[],float idle[][500],
float S[][500], float F[][500], float& matchcount,float& CmaxDiff,int& jobct,int& RSR, int&
FJR, int& PR,float& Totalidle)

{
int 1=1 ,state=0, imakespan=0,Mtotal [nom]={0};
float pmakespan=0,rmakespan=0,residle=0,Rmatchcount=0,Pmatchcount=0,Fmatchcount=0;
float procomp[nom]={0},lamda[nom]={0},Mexpected[nom]={0},tidle[nom]={0};
double r,rk;
float comp[nom]={0},leftl=0,left2=0,breakdown=0,repair[nom]= {0} ,repairs=0 ,fmdpos [nom]={0};

// This part will calculate the expected processing time on each machine
for (int i=l; i<(nom +1); i++)
{

for(int j=l ;j <(thenumbers [i]+1) ;j ++)
{

Mtotal[i] = Mtotalfi] + dataw[i][theplaces[i][j]];
}

}

for (int i=l; i<(nom +1); i++)
{

Mexpected[i]=(float(Mtotal[i])/float(thenumbers[i]));
cout«"Mexpected of machine " « i « " is "«Mexpected[i]«endl;

}

// This part will calculate the objective function Cmaxsi
for(int i=l;i<(nom +l);i++)
{

if(Mtotal[i] > imakespan)
{

imakespan = Mtotal[i];
}

}

// This part will calculate the repair time and lamda for each machine
for(int i=l; i<(nom +l);i++)
{

lamda[i]=((((1 /((-T eta*Mexpected[i])*log(0.1)))+(l/((-T eta*Mexpected[i])*log(0.2)))+
(l/((-Teta*Mexpected[i])*log(0.3)))+(l/((-Teta*Mexpected[i])*log(0.4)))+
(l/((-Teta*Mexpected[i])*log(0.5)))+(l/((-Teta*Mexpected[i])*log(0.6)))+
(l/((-Teta*Mexpected[i])*log(0.7)))+(l/((-Teta*Mexpected[i])*log(0.8)))+
(1 /((-T eta*Mexpected[i])*log(0.9))))/9));

repair[i]= (betal *Mexpected[i])+(((beta2*Mexpected[i])-(betal *Mexpected[i]))*(0.5));
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 8

// This part will add idle time to jobs and calculate Cmaxp using CFJI rule (Chapter 4)
for(int i=l; i<(nom +1); i++)
{

for(int j=l ;j <thenumbers [i]+1 ;j++)
{

idle[i][j]= alpha * repair[i] * lamda[i] * dataw[i][theplaces[i][j]]*
(1 -(float(j)/float(thenumbers[i])));

tidle[i]=tidle[i]+idle[i] [j];
S[i]Q]=F[i][j-l]-t-idle[i][j-l]; // Start time ofjob j on machine i
F[i]D]=S[i][j] + dataw[i][theplaces[i][j]]; // Finish time ofjob j on machine i

}
}

for (int i=l; i<(nom +1); i++)
{

residle=residle+tidle[i];
for(int j=l ;j <(thenumbers [i]+1);j ++)
{

procomp[i] = procomp[i] + dataw[i][theplaces[i][j]] + idle[i][j];
}

}

Totalidle = residle;

for(int i=l ;i<(nom +l);i++)
{

if(procomp[i] > pmakespan)
{

pmakespan = procomp[i];
}

}

// This part will generate the events (breakdowns) and calculate the realized schedule makespan
int j=l ,re=l ,nM=l ,nM2=l, machine=0;
intrm[noj]={0};
bool karen=false,hobbi=true;
float residuel=0,RepairF[nom]={0};
float location[nom]={0} ,findposition[nom]={0} ,finish[nom]={0} ,fmish2=0,Match[nom][500]= {0};
float matching[10][500]={0};

for (int i=l; i <(nom +1); i++) I/Finish ofjobs
{

finish[i]=F[i] [thenumbers[i]];
}

while (hobbi)
{

// Generate breakdowns
r =((double)rand()/((double)(RAND_MAX)+(double)(l)));
breakdown =(-Teta*Mexpected[1])* log(r);
cout«endl«"breakdown is: "«breakdown«endl;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4 9

rk = (randO % nom) + 1; 11 Determine on which machine the breakdown will occur
machine=rk;

I/Determine the location of the breakdown on each machine
for (int i=l; i<(nom +1); i++)
{

location[i]=location[i]+breakdown;
}

karen=false;

for (int i= l; i<(nom +1); i++) //Exit the while loop if all jobs are processed
{

if(location[i] < finish[i])
{

karen=true;
}

}
if(karen — false)
{

break;
hobbi=false;

}

if(location[machine] < finish[machine])
{

if (RepairF[machine] > location[machine]) //Ensure Breakdown after repair
{

for(int z=l;z<(nom +l);z++)
{ //Assume the breakdown did not occur

location[z]=location[z]-breakdown;
}
continue;

} //Determine the repair time
r =((double)rand()/((double)(RAND_MAX)+(double)(l)));
repairs= (betal * Mexpected[machine])+ (((beta2*Mexpected[machine])-

(betal *Mexpected[machine]))*r);
RepairF[machine]=location[machine] + repairs;
residle=residle-repairs;

//Determine the job position on the machine upon the breakdown
jobpos[machine]=jobposit(thenumbersjobpos,machine,location,findposition,repairs,

dataw,theplaces);
if (S[machine][jobpos[machine]] < RepairF[machine])
{

state=0;
if(residle>0) //Still able to apply RSR and FJR
{

RepairRule 1 (machine, S ,F, RepairF, thenumbers j obpos,dataw,
theplaces,Rmatchcoimt,state,finish);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

if(state = 1)
{

RSR=RSR+1;
matchcount=matchcount+Rmatchcount;
Rmatchcount=0;

}
else
{
RepairRule2 (location,findposition,machine,S,F,RepairF,

thenumbersjobpos,dataw,theplaces,
Fmatchcountjobct,finish,state);

if(state=l)
{

FJR=FJR +1;
matchcount=matchcount+Fmatchcount;
F matchcount=0;

}
}

}
if(state!=l)
{

RepairRule5 (location,findposition,machine,S,F,RepairF,thenumbers,
jobpos,dataw,theplaces,Pmatchcountjobct,finish);

PR=PR+1;
matchcount=matchcount+Pmatchcount;
Pmatehcount=0;

}
}

}
} //End o f while

for(int i=l;i<(nom +l);i++)
{

if(F[i] [thenumbers[i]] >rmakespan)
{

rmakespan = F[i][thenumbers[i]];
}

}
} HEnd of Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 1

jobposit function will calculate the job position on down machine when the breakdown occurs

int jobposit (int num[],int jobp[],int mtype,float locat[],float findposf],float rep, double datak[][500],
int jplaces[][500])

{

int status=0;

while (jobp[mtype] < (num[mtype]+l) && status=0)
{

findposfmtype] = findpos[mtype] + datak[mtype][jplaces[mtype][jobp[mtype]]];

if (findpos[mtype] = locat[mtype])
{

jobp[mtype]=jobp[mtype] + 1;
status=l;

}
else if (findpos[mtype] > locat[mtype])
{

jobp[mtype] = jobp[mtype];
status=l;

}
if(jobp[mtype] > num[mtype]) //in case of the last job
{

jobp[mtype]=jobp[mtype]+l;
}
jobp[mtype]=jobp[mtype] +1;

}
jobp[mtype]=jobp[mtype] -1;
fmdpos[mtype]=locat[mtype] + rep;
cout«"Job "«jobp[mtype]«endl;
return j obp [mtype];

} 11 End of Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 2

jobposup function will calculate the job position on the up machines when the breakdown occurs

int jobposup (float trackpos[],int nemra[],int jobpup[],int matype,float locate[],float findpose[],
double dataz[][500],int jplac[][500])

{

int status=0jobpos=0;

trackpos[matype]=fmdpose[matype];
j obpos=j obpup [matype];

while ((jobpos < nemra[matype]+l) && status=0)
{

trackpos[matype] = trackpos[matype]+ dataz[matype][jplac[matype][jobpos]];

if (trackpos[matype] = locate[matype])
{

jobpos=jobpos + 1;
status=l;

}
else if (trackpos[matype] > locate[matype])
{

jobpos = jobpos +1;
status=l;

}
jobpos=jobpos +1;
}
jobpos=jobpos -1;
return jobpos;

} I I End ofFunction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

253

This is the RSR rule when implemented as the first rule in the Robust System

void RepairRulel (int mach,float SI[][500], float FI[][500], float ReF[], int thenumero[],int jobpi[],
double datam[][500], int joplaces[][500], float& matchc, int& statusl, float finisia[])

{

float awal[10] [500]={0}, ekher[10] [500]={0} ,petit=0,finitio[l 0] [500]={0};
int index=0,matchsignal=0;

status 1=0;
for(int i=l; i<(nom +1); i++) // Use temporary S and F arrays so the original won't b modified
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

awal[i] [j]=SI[i] [j];
ekher[i] [j]=FI[i] [j];
finitio[i][j]=FI[i]D];

}
}

int k = 0, lecmax=0;
awal[mach][jobpi[mach]]=ReF[mach]; 11 Shift 1 job to the right
ekher[mach][jobpi[mach]]= awal[mach][jobpi[mach]] + datam[mach][joplaces[mach][jobpi[mach]]];

if(ekher[mach][jobpi[mach]] <= awal[mach][(jobpi[mach] +1)]) //RSR Successful
{

status 1=1;
for(int i=l; i<(nom +1); i++) HReupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

SI[i][j] =awal[i][j];
FI[i][j]= ekher[i][j];

}
}

}
else //Shift 2 jobs to the right
{

awal[mach][jobpi[mach]+l]=ekher[mach][jobpi[mach]];
ekher[mach][jobpi[mach]+l]= awal[mach][jobpi[mach]+l] +

datam[mach][joplaces[mach][jobpi[mach]+l]];
}

//RSR Successful
if((statusl=0) && (ekher[mach][jobpi[mach]+l] <= awal[mach][(jobpi[mach] +2)]))
{

status 1=1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 4

for(int i=l; i<(nom +1); i++) //Reupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

SI[i][j] =awal[i][j];
FI[i]D]=ekher[i]D];

}
}

}
} IIEnd of function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

255

This is FJR when implemented as the second rule in the Robust System

void RepairRule2 (float locati[],float fmdposiQ, int machi,float SE[][500], float FE[][500],
float RepF[], int lenumero[],int jobsp[], double datap[][500], int jplas[][500], float& mathc,

int& jobcount, float fini[],int& status2)
{

float awal[10][500]= {0}, ekher[10][500]={0},awil[10][500]={0}, ekhir[10][500]={0},
track[nom]={0} ,path[nom]={0} ,wpath[nom]= {0} ,residle[nom]={0} ,compi[nom]={0};

int joblocat[nom]={0}, ma7al[10][500]={0}, ma7il[10][500]={0};
int fitsignal=0,k=0,states=0,petitindex=0jindex=0;
bool hobbi=true, karen=false;
float petit=0,makespani=0;

for(int i=l; i<(nom +1); i++) HUse temporary S andFarrays so the original won't b modified
{

for(int j=l ;j<(lenumero[i]+l);j++)
{

awal[i][j]=SE[i][j];
awil[i] [j]=SE[i] [j];
ekher[i] [j]=FE[i] [j];
ekbir[i] [j]=FE[i] [j];
ma7al[i]|j]=jplas[i][j];
ma7il[i][j]=jplas[i][j];

}
}

for(int i=l; i<(nom +1); i++) 11 Get the jobs "on the right" locations on each machine
{

j oblocat [i] =j obposup (track,lenumerojobsp,i,locati,findposi,datapjplas);
if(i = machi) llfor the down machine, locate the job after the down job
{

joblocat[i] =jobsp[i]+l;
cout«"jobloc " « j oblocat[i]«endl;
cout«"machi "«machi«endl;
track[i]=RepF[i]; //Because it can only start once the repair finishes

}
}

jindex=jplas[machi][jobsp[machi]];

for(int i=l; i<(nom +1); i++) //assume the down job on each machine to see which one is
//more appropriate

{
path[i]=track[i]+datap[i] [jindex];
wpath[i]=path[i]; //Use it in case we couldn’t fit the job on any machine

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 6

while(hobbi)
{

karen=false;
for(int i=l ;i<(nom +1); i++) //Check if we still have jobs to shift in order to fit the down job
{

if((lenumero[i]) >= (joblocat[i]+k))
{

karen=true;
}
else
{

path[i]=1000000; //assigned a large number so this path is not chosen
}

}
if(karen=false)
{

hobbi=false;
break;

}

for(int i=l; i<(nom +1); i++)
{ 11 check if the job can be fitted on any or all the machines

if(path[i] <= SE[i][joblocat[i]+k])
{

residle[i]=SE[i][joblocat[i]+k] - path[i];
fitsignal=l;

}
} Hin case the job has been fitted on a machine, check where it'll b most economical
if(fitsignal = 1)
{

status2=l;
petit=0; I/Locate the machine where the job can be processed with minimal cost
for(int i=l; i<(nom +1); i++)
{

if (residle[i] > petit)
{

petit = residle[i];
petitindex = i;

}
}

if(petitindex != machi) //Update the number o f shifted jobs
{

j obcount=j obcount+1;
}

//Update the match-up time
mathc=mathc+(SE[petitindex][joblocat[petitindex]+k] - RepF[machi]);

lenumero[petitindex]=lenumero[petitindex] +1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 7

I I shifts the job on recipient machine
for(int j=joblocat[petitindex]+l ; j< lenumero [petitindex] +1; j++)
{

awal [petitindex] [j]=awil[petitindex] [j-1];
ekher[petitindex] [j]=ekhir[petitindex] [j -1];
ma7al[petitindex] [j]=ma7il[petitindex] [j -1];

}
//Start updating the recipient machine

awal[petitindex][joblocat[petitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitindex]]=track[petitindex]+ datap[petitindex][jindex];
ma7al[petitindex][joblocat[petitindex]] = jindex;
if(k > 0)
{ //update the shiftedjobs required for fitting

for(int j=joblocat[petitindex]; j <(joblocat[petitindex] +k);j++)
{

awal[petitindex][j +1] = ekher[petitindex][j];
ekher[petitindex][j +1] = awal[petitindex][j +1]+

datap[petitindex][jplas[petitindex]|j+l]];
}

}

for(int j=l; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j];
FE[petitindex][j] = ekher[petitindex][j];
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; HStart updating the giver machine

for(int j=jobsp[machi]; j <(lenumero[machi] +l);j++)
{

awal[machi][j] = SE[machi][j+l];
ekher[machi][j] = FE[machi][j+l];
ma7al[machi][j] = jplas[machi][j+l];

}

for(int j=l; j<(lenumero[machi] +1); j++)
{

SE[machi][j] = awal[machi][j];
FE[machi][j] = ekher[machi][j];
jplas[machi][j] = ma7al[machi][j];

} HFinished updating the giver machine

hobbi=false;

else //Need to Shift more jobs in order to fit the down job
{

k=k+l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 8

for(int i=l; i<(nom +1); i++) //update the tracking variable "path"
{

path[i]=path[i]+datap[i][jplas[i][joblocat[i]+k]];
}

} IIEnd o f while loop

} IIEnd of the function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 9

This is the C++ Function that imiThis is the C++ Function that implements PR rule as standalone or implemented in the |
Robust System

void RepairRule5 (float locatOQ,float findpO[], int machO,float SO[][500], float FO[][500], float
RepFO[], int lenumeroO[],int jobspO[], double datapO[][500], int jplasO[][500], float&
mathcO, int& jobcount, float finiO[])

{

float awal[10][500]={0}, ekher[10][500]={0},track[nom]={0},residle[nom]={0},
ES[nom] = {0},LF[nom] = {0};

float petit=0, makespan=0,LatestS=0;
int states=0, joblocat[nom]={0},ma7al[10][500]={0}, ResJobs[noj]={0} jindex=0, Njob[noj]={0},

c[nom]={0};
int JobsNo = 0;
bool jiji=true,karen=true,lello=true;
double SPANS[nom]={0}, Xjobs[10][500]={0},Xnew[10][500]={0},Xnewer[10][500]={0},

ProcJobs[10] [500]={0}, status= 10,ESt[nom]={0} ,obj ect=0,statu=8;

for(int i=l; i<(nom +1); i++) 11 Use temporary jplas arrays so the original won't be modified
{

for(int j=l ;j <(lenumeroO [i]+l);j ++)
{

awal[i][j]=SO[i][j];
ekher[i] [j]=FO[i] [j];
ma7al[i][j]=jplasO[i][j];

for(int i=l; i<(nom +1); i++) II Get the jobs locations on each machine

joblocat[i]=jobposup (track,lenumeroOjobspO,i,locatO,findpO,datapOjplasO);
if(i = machO) IIfor the down machine, locate the down job

joblocat[i] = jobspO[i];

for(int i=l; i<(nom +1); i++) 11 Get the ES on each machine

ES[i]= track[i];
if(i = machO) 11 for the down machine, ES is just after the repair

ES[i] = RepFO[i];

ESt[i-l]=double(ES [i]); 11 Keep a double array for Lingo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 0

int matchlncrease=0; I/This is used to increase the match-up when it's not enough

while (jiji)
{

jiji=true; //reinitialize jiji
matchlncrease = matchlncrease + (Mincrease * 1); I I Increment the match-up

I I Check if the match increase has exceeded the nb ofjobs on any machine
for (int i=l; i<(nom +1); i++)
{

if((matchlncrease + joblocat[i]-1) >= lenumeroO[i])
{

lello=false;
}

}

if(lello=false) I/Apply complete rescheduling
{

for(int j=l; j<(JobsNo +l);j++) //Reinitialize the arrays
{

for(int i=l; i<(nom +l);i++)
{

ProcJobs[i][j]=0;
Xjobs[i][j]=0;

}
}
JobsNo = 0; //This is the number o f jobs that need to be rescheduled

for(int i=l;i<(nom +1); i ++)
{

for(int j=joblocat[i];j<(lenumeroO[i] +1); j++)
{

JobsNo = JobsNo +1; HIncrement nb o f jobs
ResJobs[JobsNo]=jplasO[i][j]; //these are the jobs located

Hafter the breakdown
Xjobs[i][JobsNo]=l;

}
}

for(int i =1; i<(nom+l);i++) //Get the processing time array
{

for(int j= l; j<(JobsNo +l);j++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}
LING03 (ProcJobs,Xjobs,Xnew,ESt,JobsNo,status,object);
if(status=0) //LINGO! found an optimal solution
{

LENG04 (ProcJobs,Xjobs,Xnewer,ESt,JobsNo,statu,object);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 1

if(statu==0) I I we were able to min nb of shifted jobs
{

for(int i=l;i<nom +l;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

Xnew[i][j]=Xnewer[i][j];
}

}
}

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=l ;j<JobsNo+l ;j++)

cout«" "«Xnew[i][j];
}
jiji=false;

for (int i=l; i< (nom+1); i++) //Update the new places o f the jobs
{

for (int j= l; j <(JobsNo+l); j++)
{

if((Xnew[i][j] - Xjobs[i][j])<0) IIMachine i lost the
I I job (joblocat[i]+j-l)

{
lenumeroO[i]=lenumeroO[i]-l;

}
if((Xnew[i][j] - Xjobs[i][j]) > 0) IIMachine won the job

//(ResJobsjjj)
{

lenumeroO[i]=lenumeroO[i]+1;
j obcount=j obcount+1; // update the shifted jobs

)
}

}

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

if(Xnew[i][j]=l)
{

Njob[i]=Njob[i]+l;
jplasO [i] [j oblocat [i] +Nj ob [i] -1]=Res J obs [j];
if(Njob[i]=1)
{

SO [i] [j oblocat[i]+Nj ob [i] -1]=ES [i];
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 2

else
{

SO[i][joblocat[i]+Njob[i]-l] =
FO[i][joblocat[i]+Njob[i]-2];

}
FO[i][joblocat[i]+Njob[i]-l]=

SO[i][joblocat[i]+Njob[i]-l] +ProcJobs[i][j];
}

}
}

}
makespan=0;
for(int i=l;i<(nom +l);i++)
{

if(FO[i][lenumeroO[i]] > makespan)
{

makespan = FO[i][lenumeroO[i]];
}

}
mathcO = mathcO + (makespan - RepFO[machO]); //Match-up time required

} IIEnd o f Complete rescheduling

if(jiji=true)

{ for (int i=l; i<(nom +1); i++) //calculate the span on each machine
{

LF[i] = SO[i][joblocat[i]+ matchlncrease];
if(joblocat[i] >= lenumeroO[i])
{

LF[i]=FO[i] [lenumeroO[i]];
}
SPANS[i-l] = double(LF[i] - ES[i]);

JobsNo = 0; //This is the number of jobs that need to be rescheduled

for(int i=l;i<(nom +1); i ++)
{

for(int j=lj<(matchlncrease +1); j++)
{

JobsNo = JobsNo +1; HIncrement nb of jobs
ResJobs[JobsNo]=jplasO[i][joblocat[i]+j - 1]; Uthese r the jobs located

//after the breakdown
Xjobs[i][JobsNo]=l;
cout«"these r the "«ResJobs[JobsNo]«"

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 3

for(int j= l; j<(JobsNo +l);j++) //Get the processing time array
{

for(int i=l; i<(nom+l);i++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}

LING02 (ProcJobs,Xjobs,Xnew,SPANS,JobsNo,status); Usend info to LINGO to try to find
Ha solution

if(status = 0)
{

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=l J<JobsNo+l ;j++)

cout«" ”«Xnew[i][j];
}
jiji=false;
for (int i=l; i< (nom+1); i++) HUpdate the new places o f the jobs
{

for (int j= l; j <(JobsNo+l); j++)
{ IIMachine i lost the job (joblocatjij+j - 1)

if((Xnew[i][j] - Xjobs[i][j])<0)
{

lenumeroO[i]=lenumeroO[i]-l;
for(int k?=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

jplasO[i] [k]=jplasO[i] [k+1];
}

}
if((Xnew[i][j] - Xjobs[i][j]) > 0) IIMachine won the job (ResJobsjjj)
{

for(int k=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

ma7al[i][k+l]=jplasO[i][k];
j obcount=j obcount+1; llupdate the shifted jobs

}
for(int k=joblocat[i]+j -1; k<(lenumeroO[i]+l); k++)
{

jplasO[i] [k+1]=ma7al[i] [k+1];
}
jplasO[i][joblocat[i]+j - l]=ResJobs[j];
lenumeroO[i]=lenumeroO[i]+1;
Njob[i]=Njob[i]+l;

} I/Machine kept the same job
if((Xnew[i][j] = Xjobs[i][j]) && (Xjobs[i][j] = 1))
{ //Increment the nb. o f jobs assigned to this machine

Njob[i]=Njob[i]+l;
}

}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

264

}
for (int i=l; i< (nom+1); i++) I I Get the Start on all machines
{

SO[i][joblocat[i]] = ES[i];
FO[i][joblocat[i]] = SO[i][joblocat[i]] + datapO[i][jplasO[i][joblocat[i]]];

}for (int i=l; i< (nom+1); i++) //Update the start and finish o f the jobs
{

for(int j= l; j <(Njob[i]); j++)
{

SO[i][joblocat[i]+j]=FO[i][joblocat[i]+j-l];
FO[i][joblocat[i]+j]=SO[i][joblocat[i]+j] +

datapO[i] [jplasO[i] [joblocat[i]+j]];
}

}

for(int i=l;i<(nom+l);i++)
{

if(FO[i][joblocat[i]+Njob[i]-l] - ES[i] > LatestS)
{

LatestS = FO[i]Uoblocat[i]+Njob[i]-l] - ES[i];
}

}
mathcO=mathcO + (LatestS); //update the match-up time

} II End of I f

for(int j= l; j<(JobsNo +l);j++) 11 Reinitialize the arrays
{

for(int i=l; i<(nom +l);i++)
{

ProcJobs[i][j]=0;
Xjobs[i][j]=0;

}
}
jiji=true;

}
} IIEnd of IF

} IIEnd of while

} I I End of function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 5

This function will generate an optimal reschedule by interfacing with LING02.Lng (MIP[2])
in order to match with the initial schedule, with objective of minimizing # of jobs

that will be shifted to other machines I

void LING02 (double processing^[500],double Xold[10][500],double Xnews[10][500],
double SPAN[],int JobNo,double& stat)

{
char cScript[256]; IILINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]={0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object
pLSenvLINGO pLINGO;

pLINGO = LScreateEnvLng();
if ('.pLINGO)
{

printf("Can"t create LINGO environment!\n");
goto FinalExit;

}

// Open LINGO'S log file
nError = LSopenLogFileLng(pLINGO, "LING02.log");
if (nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

II @POINTER(l)
JobsNo[0]=(double)JobNo; 11 Assign the nb ofjobs
nError = LSsetPointerLng(pLINGO, JobsNo, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng(pLINGO, dnom, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(3)
double datas3[1000];

for (int i = 0; i<(nom); i++) I/Transfer the "processing" double array to "datasS " single array
for (int j = 0; j < (JobNo); j++)

datas3[i * JobNo + j] = processing[i+l][j+l];
nError = LSsetPointerLng(pLINGO, datas3, &nPointersNow);
if (nError) goto ErrorExit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 6

// @P0INTER(4)
double datas4[1000];
for (int i = 0; i<(nom); i++) //Transfer the "Xold" double array to "datas4" single array

for (int j = 0; j < (JobNo); j++)
datas4[i * JobNo + j] = Xold[i+l][j+l];

nError = LSsetPointerLng(pLINGO, datas4, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(5)
nError = LSsetPointerLng(pLINGO, SPAN, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(6)
nError = LSsetPointerLng(pLINGO, &dObjective, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng(pLINGO, dX, &nPointersNow);
if (nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy(cScript, "SET ECHOIN 1 \n TAKE LING02.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng(pLINGO, cScript);
if (nError) goto ErrorExit;

// Close the log file
LScloseLogFileLng(pLINGO);

// Any problems?
if (nError || dStatus != LS STATUS GLOBAL LNG)
{

// Had a problem
printf("Unable to solve!");

}
stat=dStatus;

// Output the decision variables
for (int i = 1; i<(nom+l); i++)
{

for (int j = 1; j < (JobNo+1); j++)
{

Xnews[i] [j]=dX[index];
index++;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=l ;j<(JobNo+l);j++)

cout«" "«Xnews[i] [j];
}

cout«"the objective is "«dObjective«" and status is "«dStatus«endl;
goto NonnalExit;

ErrorExit:
printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng(pLINGO);

FinalExit:;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 8

This function will generate an optimal reschedule by interfacing with LING03.Lng (MIP[3])
with the objective of minimizing CmaxR

void LING03 (double processingK[][500],double XoldK[10][500],double XnewsK[10][500],
double ESK[],int JobNoK,double& statK,double& dobj)

{
char cScript[256]; //LINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]= {0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object
pLSenvLINGO pLINGO;

pLINGO = LScreateEnvLng();
if (IpLINGO)
{

printf("Can"t create LINGO environment!\n");
goto FinalExit;

}

// Open LINGO's log file
nError = LSopenLogFileLng(pLINGO, "LING03.log");
if (nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

H @POINTER(l)
JobsNo[0]=(double)JobNoK; HAssign the nb o f jobs
nError = LSsetPointerLng(pLINGO, JobsNo, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng(pLINGO, dnom, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(3)
double datas3[1000];

for (int i = 0; i<(nom); i++) //Transfer the "processing" double array to "datas3" single array
for (int j = 0; j < (JobNoK); j++)

datas3[i * JobNoK + j] = processingK[i+l][j+l];
nError = LSsetPointerLng(pLINGO, datas3, &nPointersNow);
if (nError) goto ErrorExit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6 9

// @POINTER(4)
double datas4[1000];
for (int i = 0; i<(nom); i++) I I Transfer the "Xold" double array to "datas4" single array

for (int j = 0; j < (JobNoK); j++)
datas4[i * JobNoK + j] = XoldK[i+l][j+l];

nError = LSsetPointerLng(pLINGO, datas4, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(5)
nError - LSsetPointerLng(pLINGO, ESK, &nPointersNow);
if (nError) goto ErrorExit;

II @POINTER(6)
nError = LSsetPointerLng(pLINGO, &dObjective, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng(pLINGO, dX, &nPointersNow);
if (nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy(cScript, "SET ECHOIN 1 \n TAKE LING03.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng(pLINGO, cScript);
if (nError) goto ErrorExit;

// Close the log file
LScloseLogFileLng(pLINGO);

// Any problems?
if (nError || dStatus != LS_STATUS_GLOBAL_LNG)
{

// Had a problem
printf("Unable to solve!");

}
statK=dStatus;

// Output the decision variables
for (int i = 1; i<(nom+l); i++)
{

for (int j = 1; j < (JobNoK+1); j++)
{

XnewsK[i] [j]=dX[index];
index++;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 0

for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=l;j <(JobNoK+1) J ++)

cout«" "«XnewsK[i][j];
}

cout«"the objective is "«dObjective«" and status is "«dStatus«endl;
dobj=dObjective;

goto NormalExit;
ErrorExit:

printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng(pLINGO);

FinalExit:;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 1

This function will generate an optimal reschedule by interfacing with LING04.Lng (MIP[4])with
the objective of minimizing the number of shifted jobs while CmaxR is constrained

to be at its optimum (the value obtained using LING03.Lng (MIP[3]))

void LING04 (double processingZ[][500],double XoldZ[10][500],double XnewsZ[10][500],
double ESZ[],int JobNoZ,double& statZ,double dobjZ)

{
char cScript[256]; 11 LINGO interface
double dObjective, dStatus=-l.;
double dnom[] = {nom};
double JobsNo[]= {0} ,Obj ecta[]={0};
double dX[1000]={0};
int nError=-l, nPointersNow;
int index = 0,nM=l;

// create the LINGO environment object
pLSenvLINGO pLINGO;

pLINGO = LScreateEnvLng();
if (IpLINGO)
{

printf("Can"t create LINGO environment!\n");
goto FinalExit;

}

// Open LINGO's log file
nError = LSopenLogFileLng(pLINGO, "LING04.log");
if (nError) goto ErrorExit;

// Pass memory transfer pointers to LINGO

// @POINTER(l)
JobsNo[0]=(double)JobNoZ; //Assign the nb o f fobs
nError = LSsetPointerLng(pLINGO, JobsNo, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(2)
nError = LSsetPointerLng(pLINGO, dnom, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(3)
double datas3[1000];

for (int i = 0; i<(nom); i++) //Transfer the "processing" double array to "datas3" single array
for (int j = 0; j < (JobNoZ); j++)

datas3[i * JobNoZ + j] = processingZ[i+l][j+l];
nError = LSsetPointerLng(pLINGO, datas3, &nPointersNow);
if (nError) goto ErrorExit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 2

// @P0INTER(4)
double datas4[1000];
for (int i = 0; i<(nom); i++) t/Transfer the "Xold" double array to "datas4"single array

for (int j = 0; j < (JobNoZ); j++)
datas4[i * JobNoZ + j] = XoldZ[i+l][j+l];

nError = LSsetPointerLng(pLINGO, datas4, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(5)
nError = LSsetPointerLng(pLINGO, ESZ, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(6)
Obj ecta[0]=dobj Z;
nError = LSsetPointerLng(pLINGO, Objecta, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(7)
nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);
if (nError) goto ErrorExit;

// @POINTER(8)
nError = LSsetPointerLng(pLINGO, dX, &nPointersNow);
if (nError) goto ErrorExit;

// Here is the script we want LINGO to run
strcpy(cScript, "SET ECHOIN 1 \n TAKE LING04.Lng \n GO \n QUIT \n");

// Run the script
nError = LSexecuteScriptLng(pLINGO, cScript);
if (nError) goto ErrorExit;

// Close the log file
LScloseLogFileLng(pLINGO);

II Any problems?
if (nError || dStatus != LS STATUS GLOBAL LNG)
{ // Had a problem

printf("Unable to solve!");
}

statZ=dStatus;

// Output the decision variables
for (int i = 1; i<(nom+l); i++)
{

for (int j = 1; j < (JobNoZ+1); j++)
{

XnewsZ[i] [j]=dX[index];
index++;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int i=l;i<(nom+l);i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=l ;j<(JobNoZ+l);j++)

cout«" "«XnewsZ[i][j];
}

cout«"status is "«dStatus«endl;
goto NormalExit;

ErrorExit:
printf("LINGO Error Code: %d\n", nError);

NormalExit:
LSdeleteEnvLng(pLINGO);

FinalExit:;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 4

APPENDIX B: RSR IMPLEMENTATION CODE IN VISUAL C++

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

275

The main function used for Robust System (Appendix A) can be used for the RSR implementation
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGOl, sort, jobposit, jobposup, and assign functions are described in Appendix A. The
only change needed is for the assign function where only RSR should be applied.

The RSR rule function is shown below

void RepairRulel (int mach,float SI[][500], float FI[][500], float ReF[], int thenumero[],int jobpi[],
double datam[][500], int joplaces[][500], float& matchc, int& nschedule, float finisia[])

{

float awal[10] [500]={0}, ekher[10][500]= {0} ,petit=0,finitio[l 0] [500]={0};
int index=0,matchsignal=0;

for(int i=l; i<(nom +1); i++) //Use temporary S andFarrays so the original won't b modified
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

awal[i][j]=SI[i][j];
ekher[i] [j]=FI[i] [j];
finitio[i][j]=FI[i][j];

}
}

int k = 0, lecmax=0;
awal[mach] [jobpi[mach]]=ReF[mach];
ekher[mach][jobpi[mach]]= awal[mach][jobpi[mach]] + datam[mach][joplaces[mach][jobpi[mach]]];

while((ekher[mach][jobpi[mach] + k] > awal[mach][(jobpi[mach] +k+l)]) && ((jobpi[mach]+k)
<thenumero[mach]))

{
if((jobpi[mach] + k+1) = thenumero[mach]) //if the next job is the last, we need to stop
{

awal[mach][(jobpi[mach] +k +1)] = ekher[mach][jobpi[mach] + k];
ekher[mach][jobpi[mach] + k +1] = awal[mach][(jobpi[mach] +k +1)] +

datam[mach][joplaces[mach][jobpi[mach] + k+1]];
finisia[mach] = ekher[mach][jobpi[mach] + k +1]; //update the finish time of the

//machine
matchsignal=l;
nschedule=l;
break;

}
awal[mach][(jobpi[mach] +k+l)] = ekher[mach][jobpi[mach] + k];
ekher[mach][jobpi[mach] + k +1] = awal[mach][(jobpi[mach] +k +1)] +

datam[mach][joplaces[mach][jobpi[mach] + k+1]];
k = k+1;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 6

if(jobpi[mach]+k = thenumero[mach]) lllf this is the last job
{

fmisia[mach] = ekher[mach][jobpi[mach] + k];
}

for(int i=l; i<(nom +1); i++) IIReupdate the start and finish o f the jobs
{

for(int j=l ;j<(thenumero[i]+l);j++)
{

SI[i][j]=awal[i][j];
FI[i][j]= ekher[i][j];

}
}

for(int i=l ;i<(nom +1); i++) IIget the makespan
{

if(FI[i][thenumero[i]] > lecmax)
{

lecmax=FI[i] [thenumero[i]];
}

}

if(nschedule = 1) 11 in the case o f the last job
{

matchc = matchc + (lecmax - ReF[mach]);
cout«"match current "«m atchc«" because of "«lecmax - ReF[mach]«endl;

}
else llif not last job
{

matchc = matchc + (awal[mach][jobpi[mach] + k+1] - ReF[mach]);
cout«"match current "«m atchc«" because of "«ekher[mach][jobpi[mach] + k] -

ReF[mach]«endl;
}
} IIEnd of function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 7

APPENDIX C: FJR IMPLEMENTATION CODE IN VISUAL C++

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 8

The main function used for Robust System (Appendix A) can be used for the FJR implementation
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGO 1, sort, jobposit, jobposup, and assign functions are described in Appendix A. The
only change needed is for the assign function where only FJR should be applied.

The FJR mle function is shown below

void RepairRule2 (float locati[],float findposi[], int machi,float SE[][500], float FE[][500], float
RepF[], int lenumero[],int jobsp[], double datap[][500], int jplas[][500], float& mathc, int&
jobcount, float fini[])

{

float awal[10][500]={0}, ekher[10][500]={0},awil[10][500]={0},
ekhir[l 0][500]= {0} ,track[nom]={0} ,path[nom]={0} ,wpath[nom]={0} ,residle[nom]={0},
compi[nom]={0};

int joblocat[nom]={0}, ma7al[10][500]={0}, ma7il[10][500]={0};
int fitsignal=0,k=0,states=0,petitindex=0jindex=0;
bool hobbi=true, karen=false;
float petit=0,makespani=0;

for(int i=l; i<(nom +1); i++) // Use temporary S and F arrays so the original job-machine
IIassignment won't be modified

{
for(int j=l ;j <(lenumero [i]+1);j ++)
{

awal[i][j]=SE[i][j];
awil[i][j]=SE[i][j];
ekherfi] D']=FE[i] □];
ekhir [i] [j] =FE [i] [j];
ma7al[i]|j]=jplas[i][j];
ma7il[i][j]=jplas[i][j];

}
}

for(int i=l; i<(nom +1); i++) IIGet the jobs "on the right" locations on each machine
{

joblocat[i]=jobposup (track,lenumerojobsp,i,locati,findposi,datapjplas);
if(i = machi) llfor the down machine, locate the job after the down job
{

joblocat[i] = jobsp[i]+l;
track[i]=RepF[i]; I I Because it can only start once the repair finishes

}
}

jindex=jplas[machi] [jobsp[machi]];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7 9

for(int i=l; i<(nom +1); i++) I I assume the down job will be fitted on each machine to determine
I/which one is more appropriate

{
path[i]=track[i]+datap[i][jindex];
wpath[i]=path[i]; //Use it in case we can not fit the job on any machine

)

while(hobbi)
{

karen=false;
for(int i=l ;i<(nom +1); i++) //Check if we still have jobs to shift in order to fit the down job
{

if((lenumero[i]) >= (joblocat[i]+k))
{

karen=true;
}
else
{

path[i]=l 000000; //assigned a large number so this path is not chosen
}

}
if(karen=false)
{

hobbi=false;
break;

}

for(int i=l; i<(nom +1); i++)
{

if(path[i] <= SE[i][joblocat[i]+k]) //check if the job can be fitted on any or all the
//machines

{
residle[i]=SE[i][joblocat[i]+k] - path[i];
fitsignal=l;

}
}
if(fitsignal = 1) //in case the job has been fitted on a machine, check where it'll be more

//economical
{

petit=0;
for(int i=l; i<(nom +1); i++) //Locate the machine where the job can be

//processed with minimal cost
{

if (residle[i] > petit)
{

petit = residle[i];
petitindex = i;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 0

if(petitindex != machi) I/Update the number of shifted jobs
{

j obcount=j obcount+1;
}

//Update the matchup time
mathc=mathc+(SE[petitindex][joblocat[petitindex]+k] - RepF[machi]);

lenumero[petitindex]=lenumero[petitindex] +1;

for(int j=joblocat[petitindex]+l ; j < lenumero[petitindex] +1; j++) //shift the jobs on
//recipient machine

{
awal[petitindex] [j]=awil[petitindex] [j-1];
ekher[petitindex] [j]=ekhir[petitindex] [j-1];
ma7al[petitindex][j]=ma7il[petitindex][j-l];

}
HStart updating the recipient machine

awaltpetitindex][joblocat[petitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitmdex]] = track[petitindex] +datap[petitindex][jindex];
ma7al[petitindex][joblocat[petitindex]] =jindex;
if(k > 0)
{ //update the shiftedjobs requiredfor fitting

for(int j=joblocat[petitindex]; j <(joblocat[petitindex] +k);j++)
{

awal[petitindex][j +1] = ekher[petitindex][j];
ekher[petitindex][j +1] = awal [petitindex] [j +1]+

datap[petitindex] [jplas[petitindex] [j+1]];
}

}

for(int j = l ; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j3;
FE[petitindex][j] = ekher[petitindex][j];
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; //Start updating the giver machine

for(int j=jobsp[machi]; j <(lenumero[machi] +l);j++)
{

awal[machi][j] = SE[machi][j+l];
ekher[machi][j] = FE[machi][j+l];
ma7al[machi][j] = jplas[machi][j+l];

}

for(int j = l ; j<(lenumero[machi] +1); j++)
{

SE[machi]0] = awal[machi][j];
FE[machi][j] = ekher[machi][j];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 1

jplas [machi] [j] = ma7al[machi][j];
} //Finished updating the giver machine

hobbi=false;
}
else IINeed to Shift more jobs in order to fit the down job
{

k=k+l;
for(int i=l; i<(nom +1); i++) /'/update the tracking variable "path "
{

path[i]=path[i]+datap[i][jplas[i][joblocat[i]+k]];
}

}

} HEnd o f while loop

if(karen = false) lli.e. we ran out ofjobs and couldn't jit the down job on any machine
{ llln this case, we will just jit it to the machine with the smallest path

petit=l000000000;
petitindex=0;

for(int i=l; i<(nom +1); i++) HUse temporary S andFarrays so the original won't be
IImodified

{
for(int j=l ;j<(lenumero[i]+l);j++)
{

awal[i]0']=SE[i][j];
ekher[i] [j]=FE[i] [j];
ma7al [i] [j] =jplas[i] [j];

}
}
for(int i=l; i<(nom +1); i++) I/update the tracking variable "wpath"
{

for(int j =j oblocat [i] ;j <(lenumero [i]+1) ;j ++)
{

wpath[i]=wpath[i]+datap[i] [jplas[i] [j]];
}

}
I/Locate the machine where the job can be processed with minimal cost

for(int i=l; i<(nom +1); i++)
{

if (wpath[i] < petit)
{

petit = wpath[i];
petitindex = i;
cout«"chosen machine "«petitindex«endl;

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 2

if(petitindex != machi) I/Update the number o f shiftedjobs
{

jobcount=jobcount+l;
}

lenumero[petitindex]=lenumero[petitindex] +1; I/Start updating the recipient machine
Hshifts the job on recipient machine

for(int j=lenumero[petitindex]; j > joblocatfpetitindex]; j —)
{

ma7 al [petitindex] [j]=ma7al [petitindex] [j -1];
}

awal[petitindex][joblocattpetitindex]] = track[petitindex];
ekher[petitindex][joblocat[petitindex]] = track[petitindex] + datap[petitindex][jindex];
ma7al[petitindex][joblocat[petitindex]] = jindex;

for(int j =j oblocat [petitindex] ;j <lenumero [petitindex] ;j ++)
{

awal[petitindex] [j+1]=ekher[petitindex] [j];
ekher[petitindex] [j+1]=awal[petitindex] [j+1] +

datap[petitindex][ma7al[petitindex] [j+1]];
}

for(int j= l; j<(lenumero[petitindex] +1); j++)
{

SE[petitindex][j] = awal[petitindex][j];
FE[petitindex][j] = ekher[petitindex][j];
jplas[petitindex][j] = ma7al[petitindex][j];

} //Finished updating the recipient machine

lenumero[machi]=lenumero[machi] -1; //Start updating the giver machine

ma7al[machi][jobsp[machi]] =jplas[machi][jobsp[machi]+l];
awal[machi][jobsp[machi]] = track[machi];
ekher[machi][jobsp[machi]] = awal[machi][jobsp[machi]]

+datap[machi][ma7al[machi][jobsp[machi]]];

for(int j=jobsp[machi]+l; j <(lenumero[machi] +l);j++)
{

ma7al[machi][j] = jplas[machi][j+l];
awal[machi][j] = ekher[machi][j-l];
ekher[machi][j] = awal[machi][j] +datap[machi][ma7al[machi][j]];

}
for(int j= l; j<(lenumero[machi] +1); j++)
{

SE[machi][j] = awal[machi][j];
FE[machi][j] = ekher[machi][j];
jplas[machi][j] = ma7al[machi][j];

} //Finished updating the giver machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 3

makespani=0;

for(int i=l;i<(nom +l);i++) HGet the new makespan
{

if(FE[i][lenumero[i]] > makespani)
{

makespani = FE[i][lenumero[i]];
}

}

mathc=mathc+(makespani - RepF[machi]); //Update the matchup time
cout«"the new makespan is "«makespani«endl;

} I I End of I f

} I/End of the function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 4

APPENDIX D: CR IMPLEMENTATION CODE IN VISUAL C++

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 5

The main function used for Robust System (Appendix A) can be used for the CR implementation
(after deleting the unnecessary code lines; for example, the average usage of the rules)

inputdata, LINGOl, LING02, LING03, LING04, sort, jobposit, jobposup, and assign functions are
described in Appendix A. The only change needed is for the assign function where only CR

should be applied.

The CR rule function is shown below.

void RepairRule5 (float locatO[],float findpO[], int machO,float SO[][500], float FO[][500], float
RepFO[], int lenumeroO[],int jobspO[], double datapO[][500], int jplasO[][500], float&
mathcO, int& jobcount, float finiO[])

{

float awal[10][500]={0}, ekher[10][500]={0},track[nom]={0},residle[nom]={0},ES[nom] = {0},
LF[nom] = {0};

float petit=0, makespan=0,LatestS=0;
int states=0, joblocat[nom]={0}, ma7al[10][500]={0},ResJobs[noj]={0} jindex=0,Njob[noj]={0},

c[nom]={0};
int JobsNo = 0;
bool jiji=true,karen=true,lello=true;
double SPANS[nom]={0}, Xjobs[10][500]={0},Xnew[10][500]={0},Xnewer[10][500]={0},

ProcJobs[l 0] [500]={0} ,status=l 0,ESt[nom]={0} ,obj ect=0,statu=8;

for(int i=l; i<(nom +1); i++) //Use temporary jplas arrays so the original won't b modified
{

for(int j=l ;j<(lenumeroO[i]+l);j++)
{

awal[i][j]=SO[i][j];
ekher[i][j]=FO[i][j];
ma7al[i][j]=jplasO[i][j];

}
}

for(int i=l; i<(nom +1); i++) //Get the jobs locations on each machine
{

joblocat[i]=jobposup (track,lenumeroOjobspO,i,locatO,fmdpO,datapOjplasO);
if(i = machO) //for the down machine, locate the down job
{

joblocat[i] = jobspO[i];
}

}

for(int i=l; i<(nom +1); i++) //Get the ES on each machine
{

ES[i]= track[i];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 6

if(i = machO) 11 for the down machine, ES is just after the repair
{

ES[i] = RepFO[i];
}
ESt[i-l]=double(ES[i]); I/Keep a double array for Lingo

}

int matchlncrease=0; //This is used to increase the match-up when it's not enough

for(int i=l;i<(nom +1); i ++)
{

for(int j=joblocat[i] J<(lenumeroO[i] +1); j++)
{

JobsNo = JobsNo +1; //Increment nb o f jobs
ResJobs[JobsNo]=jplasO[i][j]; //these r the jobs located after the breakdown
Xjobs[i][JobsNo]=l;

}
}

for(int i =1; i<(nom+l);i++) //Get the processing time array
{

for(int j=l; j<(JobsNo +l);j++)
{

ProcJobs[i][j] = datapO[i][ResJobs[j]];
}

}
LING03 (ProcJobs,Xjobs,Xnew,ESt,JobsNo,status,object);
if(status=0) HLING03 found an optimal solution
{

LING04 (ProcJobs,Xjobs,Xnewer,ESt, JobsNo,statu,obj ect);
if(statu=0) Hwe were able to min nb o f shifted jobs
{

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

Xnew[i] [j]=Xnewer[i] [j];
}

}
}

for (int i=l ;i<nom+l ;i++)
{

cout«"the decisions on machine " « i « " are: "«endl;
for(int j=1 ;j <JobsNo+1 ;j ++)

cout«" "«Xnew[i][j];
}
jiji=false;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 7

for (int i=l; i< (nom+1); i++) //Update the new places o f the jobs
{

for(intj=l;j <(JobsNo+l); j++)
{

if((Xnew[i][j] - Xjobs[i][j])<0) t/Machine i lost the job (joblocatjij+j - 1)
{

lenumeroO[i]=lenumeroO[i]-l;
}

if((Xnew[i][j] - Xjobs[i][j]) > 0) //Machine won the job (ResJobsjjj)
{

lenumeroO[i]=lenumeroO[i]+l;
j obcount=j obcount+1; //update the shifted jobs

}
}

}

for(int i=l ;i<nom +1 ;i++)
{

for(int j=l ;j<JobsNo+l ;j++)
{

if(Xnew[i][j]==l)
{

Njob[i]=Njob[i]+l;
jplasO[i][joblocat[i]+Njob[i]-l]=ResJobs[j];
if(Njob[i]=l)
{

SO [i] [j oblocat[i]+Nj ob [i] -1]=ES [i];
}
else
{

SO[i][joblocat[i]+Njob[i]-l]=FO[i][joblocat[i]+Njob[i]-2];
}
FO[i][j°blocat[i]+Njob[i]-l]=SO[i][joblocat[i]+Njob[i]-l] +

ProcJobs[i][j];
}

}
}

}

for(int i=l;i<(nom +l);i++)
{

if(FO[i][lenumeroO[i]] > makespan)
{

makespan = FO[i][lenumeroO[i]];
}

}
mathcO = mathcO + (makespan - ES [machO]); HMatch-up time required

} //End o f Complete rescheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E: LINGO MODELS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8 9

LING01 .Lng where MIP[1] is implemented. The objective function is to minimize the
makespan in order to attain optimal initial schedules

for the unrelated parallel machine problem

/>
■>>

I

MODEL:

DATA:
N_OJ=@pointer(1);
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1. .N_0_J/;
MACHINES/1.. N_0_M/;
LINKS(MACHINES,JOBS):PROCESSING,XI;
ENDSETS

1DEFINE NUMBER OF JOBS;
IDEFINE NUMBER OF MACHINES;

[robj] MIN=C; ! OBJECTIVE FUNCTION;

@FOR(JOBS(J):
@SUM(M ACHINES(I): (XI(I, J)))=1);

@FOR(MACHINES(I):

IFIRST CONSTRAINT;

! SECOND CONSTRAINT;
@SUM(JOBS(J):XI(I,J)* PROCESSING(I,J)) < C);

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); !THIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3);
@pointer(4) - rObj;
@pointer(5) = @status();
@pointer (6) = XI;

enddata

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 9 0

This is LING02.Lng where MIP[2] is implemented. The objective function is to minimize the
number of shifted jobs at a minimal match-up time in the PR rule J.

MODEL:

DATA:
N_OJ=@pointer(1);
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ..N O J/; 1DEFINE NUMBER OF JOBS;
MACHINES/1.. N O M/: SPAN; IDEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=(@SUM(LINKS(I,J): Y(I,J))); !OBJECTIVE FUNCTION;

@FOR(JOBS(J): lEnsure that every job will be assigned to only 1 machine;
@SUM(MACfflNES(I):(XI(I,J)))=l);

@FOR(MACHINES(I): ! SECOND CONSTRAINT;
@SUM(JOBS(J):XI(I,J)* PROCESSING(I,J)) < SPAN(I));

@FOR (LINKS(I,J):
XO(I,J) - XI(I,J)-Y(I,J) < 0); IConstraint 1 for absolute value;

@FOR (LINKS(I,J):
-XO(I,J) + XI(I,J)-Y(I,J) < 0); IConstraint 2 for absolute value;

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); 1THIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3);
XO=@pointer(4);
SPAN=@pointer(5);
@pointer(6) = rObj;
@pointer(7) = @status();
@pointer (8) = XI;

enddata

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 9 1

This is LING03.Lng where MIP[3] is implemented. The objective function is to minimize the
makespan in CR rule

MODEL:

DATA:
N_OJ=@pointer(1);
NO_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ..N_OJ/; !DEFINE NUMBER OF JOBS;
MACHINES/1.. N_0_M/: ES; !DEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=C; ! OBJECTIVE FUNCTION;

@FOR(JOBS(J): lEnsure that every job will be assigned to only 1 machine;
@SUM(MACHINES(I): (XI(I, J)))= 1);

@FOR(MACHINES(I): !SECOND CONSTRAINT;
@SUM(JOBS(J):(XI(I,J)* PROCESSING(I,J))) +ES(I) < C);

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); !THIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCES SING=@pointer(3);
XO=@pointer(4);
ES=@pointer(5);
@pointer(6) = rObj;
@pointer(7) = @status();
@pointer (8) = XI;

enddata

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 9 2

This is LING04.Lng where MIP[4] is implemented. The objective function is to minimize the
number of shifted jobs, while the makespan is constrained to be at its optimum,

i.e. the value obtained from MIP[3]

MODEL:

DATA:
N_0_J=@pointer(1);
N_0_M=@pointer(2);

ENDDATA

SETS:
JOBS/1 ,.N_OJ/; !DEFINE NUMBER OF JOBS;
MACHINES/1.. N_0_M/: ES; !DEFINE NUMBER OF MACHINES;
LINKS(MACHINES,JOBS):PROCESSING,XI,XO,Y;
ENDSETS

[robj] MIN=(@SUM(LINKS(I,J): Y(I,J))); '.OBJECTIVE FUNCTION;

@FOR(JOBS(J): !Ensure that every job will be assigned to only 1 machine;
@SUM(MACHINES(I): (XI(I, J)))= 1);

@FOR(MACHINES(I): !SECOND CONSTRAINT;
@SUM(JOBS(J):(XI(I,J)* PROCESSING(I,J))+ES(I)) < jiji);

@FOR (LINKS(I,J):
XO(I,J) - XI(I,J)-Y(I,J) < 0); IConstraint 1 for absolute value;

@FOR (LINKS(I,J):
-XO(I,J) + XI(I,J)-Y(I,J) < 0); IConstraint 2 for absolute value;

@FOR (LINKS(MACHINES,JOBS):@BIN(XI)); ITHIS FUNCTION WILL MAKE THE
DECISION VARIABLES BINARY;

data:
PROCESSING=@pointer(3);
XO=@pointer(4);
ES=@pointer(5);
jiji=@pointer(6);
@pointer(7) = @status();
@pointer (8) = XI;

enddata

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A Robust Reactive Scheduling System with Application to Parallel Machine Scheduling
	Recommended Citation

	tmp.1552566314.pdf.nfBGo

