948 research outputs found

    Analysis of Software Aging in a Web Server

    Get PDF
    A number of recent studies have reported the phenomenon of “software aging”, characterized by progressive performance degradation and/or an increased occurrence rate of hang/crash failures of a software system due to the exhaustion of operating system resources or the accumulation of errors. To counteract this phenomenon, a proactive technique called 'software rejuvenation' has been proposed. It essentially involves stopping the running software, cleaning its internal state and/or its environment and then restarting it. Software rejuvenation, being preventive in nature, begs the question as to when to schedule it. Periodic rejuvenation, while straightforward to implement, may not yield the best results, because the rate at which software ages is not constant, but it depends on the time-varying system workload. Software rejuvenation should therefore be planned and initiated in the face of the actual system behavior. This requires the measurement, analysis and prediction of system resource usage. In this paper, we study the development of resource usage in a web server while subjecting it to an artificial workload. We first collect data on several system resource usage and activity parameters. Non-parametric statistical methods are then applied for detecting and estimating trends in the data sets. Finally, we fit time series models to the data collected. Unlike the models used previously in the research on software aging, these time series models allow for seasonal patterns, and we show how the exploitation of the seasonal variation can help in adequately predicting the future resource usage. Based on the models employed here, proactive management techniques like software rejuvenation triggered by actual measurements can be built. --Software aging,software rejuvenation,Linux,Apache,web server,performance monitoring,prediction of resource utilization,non-parametric trend analysis,time series analysis

    Software Aging Analysis of Web Server Using Neural Networks

    Full text link
    Software aging is a phenomenon that refers to progressive performance degradation or transient failures or even crashes in long running software systems such as web servers. It mainly occurs due to the deterioration of operating system resource, fragmentation and numerical error accumulation. A primitive method to fight against software aging is software rejuvenation. Software rejuvenation is a proactive fault management technique aimed at cleaning up the system internal state to prevent the occurrence of more severe crash failures in the future. It involves occasionally stopping the running software, cleaning its internal state and restarting it. An optimized schedule for performing the software rejuvenation has to be derived in advance because a long running application could not be put down now and then as it may lead to waste of cost. This paper proposes a method to derive an accurate and optimized schedule for rejuvenation of a web server (Apache) by using Radial Basis Function (RBF) based Feed Forward Neural Network, a variant of Artificial Neural Networks (ANN). Aging indicators are obtained through experimental setup involving Apache web server and clients, which acts as input to the neural network model. This method is better than existing ones because usage of RBF leads to better accuracy and speed in convergence.Comment: 11 pages, 8 figures, 1 table; International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.3, May 201

    Proactive cloud management for highly heterogeneous multi-cloud infrastructures

    Get PDF
    Various literature studies demonstrated that the cloud computing paradigm can help to improve availability and performance of applications subject to the problem of software anomalies. Indeed, the cloud resource provisioning model enables users to rapidly access new processing resources, even distributed over different geographical regions, that can be promptly used in the case of, e.g., crashes or hangs of running machines, as well as to balance the load in the case of overloaded machines. Nevertheless, managing a complex geographically-distributed cloud deploy could be a complex and time-consuming task. Autonomic Cloud Manager (ACM) Framework is an autonomic framework for supporting proactive management of applications deployed over multiple cloud regions. It uses machine learning models to predict failures of virtual machines and to proactively redirect the load to healthy machines/cloud regions. In this paper, we study different policies to perform efficient proactive load balancing across cloud regions in order to mitigate the effect of software anomalies. These policies use predictions about the mean time to failure of virtual machines. We consider the case of heterogeneous cloud regions, i.e regions with different amount of resources, and we provide an experimental assessment of these policies in the context of ACM Framework

    Proactive software rejuvenation solution for web enviroments on virtualized platforms

    Get PDF
    The availability of the Information Technologies for everything, from everywhere, at all times is a growing requirement. We use information Technologies from common and social tasks to critical tasks like managing nuclear power plants or even the International Space Station (ISS). However, the availability of IT infrastructures is still a huge challenge nowadays. In a quick look around news, we can find reports of corporate outage, affecting millions of users and impacting on the revenue and image of the companies. It is well known that, currently, computer system outages are more often due to software faults, than hardware faults. Several studies have reported that one of the causes of unplanned software outages is the software aging phenomenon. This term refers to the accumulation of errors, usually causing resource contention, during long running application executions, like web applications, which normally cause applications/systems to hang or crash. Gradual performance degradation could also accompany software aging phenomena. The software aging phenomena are often related to memory bloating/ leaks, unterminated threads, data corruption, unreleased file-locks or overruns. We can find several examples of software aging in the industry. The work presented in this thesis aims to offer a proactive and predictive software rejuvenation solution for Internet Services against software aging caused by resource exhaustion. To this end, we first present a threshold based proactive rejuvenation to avoid the consequences of software aging. This first approach has some limitations, but the most important of them it is the need to know a priori the resource or resources involved in the crash and the critical condition values. Moreover, we need some expertise to fix the threshold value to trigger the rejuvenation action. Due to these limitations, we have evaluated the use of Machine Learning to overcome the weaknesses of our first approach to obtain a proactive and predictive solution. Finally, the current and increasing tendency to use virtualization technologies to improve the resource utilization has made traditional data centers turn into virtualized data centers or platforms. We have used a Mathematical Programming approach to virtual machine allocation and migration to optimize the resources, accepting as many services as possible on the platform while at the same time, guaranteeing the availability (via our software rejuvenation proposal) of the services deployed against the software aging phenomena. The thesis is supported by an exhaustive experimental evaluation that proves the effectiveness and feasibility of our proposals for current systems

    Modeling and analysis of high availability techniques in a virtualized system

    Get PDF
    Availability evaluation of a virtualized system is critical to the wide deployment of cloud computing services. Time-based, prediction-based rejuvenation of virtual machines (VM) and virtual machine monitors, VM failover and live VM migration are common high-availability (HA) techniques in a virtualized system. This paper investigates the effect of combination of these availability techniques on VM availability in a virtualized system where various software and hardware failures may occur. For each combination, we construct analytic models rejuvenation mechanisms to improve VM availability; (2) prediction-based rejuvenation enhances VM availability much more than time-based VM rejuvenation when prediction successful probability is above 70%, regardless failover and/or live VM migration is also deployed; (3) failover mechanism outperforms live VM migration, although they can work together for higher availability of VM. In addition, they can combine with software rejuvenation mechanisms for even higher availability; (4) and time interval setting is critical to a time-based rejuvenation mechanism. These analytic results provide guidelines for deploying and parameter setting of HA techniques in a virtualized system

    A survey on elasticity management in PaaS systems

    Full text link
    [EN] Elasticity is a goal of cloud computing. An elastic system should manage in an autonomic way its resources, being adaptive to dynamic workloads, allocating additional resources when workload is increased and deallocating resources when workload decreases. PaaS providers should manage resources of customer applications with the aim of converting those applications into elastic services. This survey identifies the requirements that such management imposes on a PaaS provider: autonomy, scalability, adaptivity, SLA awareness, composability and upgradeability. This document delves into the variety of mechanisms that have been proposed to deal with all those requirements. Although there are multiple approaches to address those concerns, providers main goal is maximisation of profits. This compels providers to look for balancing two opposed goals: maximising quality of service and minimising costs. Because of this, there are still several aspects that deserve additional research for finding optimal adaptability strategies. Those open issues are also discussed.This work has been partially supported by EU FEDER and Spanish MINECO under research Grant TIN2012-37719-C03-01.Muñoz-EscoĂ­, FD.; Bernabeu AubĂĄn, JM. (2017). A survey on elasticity management in PaaS systems. Computing. 99(7):617-656. https://doi.org/10.1007/s00607-016-0507-8S617656997Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of Electrical and Computer Science, Massachusetts Institute of Technology, USAAjmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610Almeida S, LeitĂŁo J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA, pp 1411–1416Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In: Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM 56(5):55–63Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD). NY, USA, New York, pp 761–772Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in software development: a survey. IEEE Trans Softw Eng 30(5):295–310Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, pp 164–177Bennani MN, MenascĂ© DA (2005) Resource allocation for autonomic data centers using analytic performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co., ISBN 1-884777-29-5Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USABloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice. Softw Eng J 8(2):102–108Caballer M, Segrelles Quilis JD, MoltĂł G, Blanquer I (2015) A platform to deploy customized scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329Calatrava A, Romero E, MoltĂł G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service providers. Comput Netw 57(3):795–810Casalicchio E, MenascĂ© DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: ACM Cloud Autonomic Computing Conference (CAC), FL, USA, Miami, pp 1–10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4Copil G, Trihinas D, Truong HL, Moldovan D, Pallis G, Dustdar S, Dikaiakos MD (2014) ADVISE—A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on Service-Oriented Computing (ICSOC), France, Paris, pp 275–290Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation studies. ACM J Emerg Technol 10(1):8:1–8:34Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud computing: a survey. Ann Telecommun 70(15):289–309Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization. In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi, India, pp 431–445de Juan-MarĂ­n R, Decker H, ArmendĂĄriz-ĂĂ±igo JE, BernabĂ©u-AubĂĄn JM, Muñoz-EscoĂ­FD (2015) Scalability approaches for causal multicast: a survey. Computing (in press)de Miguel M, Lambolais T, Hannouz M, BetgĂ©-Brezetz S, Piekarec S (2000) UML extensions for the specification and evaluation of latency constraints in architectural models. In: Workshop on Software and Performance (WOSP), Ottawa, Canada, pp 83–88Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66–71Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and Linux containers. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216Gambi A, Hummer W, Truong HL, Dustdar S (2013) Testing elastic computing systems. IEEE Internet Comput 17(6):76–82Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and estimation of software aging. In: 9th International Symposium on Software Reliability Engineering (ISSRE), Paderborn, Germany, pp 283–292Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, pp 102–111Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In: 6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada, pp 9–16Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Exp 44(3):369–390Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD thesis, FacultĂ€t fĂŒr Mathematik, Informatik und Statistik, Ludwig-Maximilians-UniversitĂ€t MĂŒnchen, Munich, GermanyHasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI, USA, pp 1327–1334Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–87Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology. Tech. rep. IBM PressHuebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput Surv 40(3):7Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hypervisors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 269–276IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th edIosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation in service compositions. Computing 95(6):453–492Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud resource demand provisioning. In: 11th International Conference on Data Mining (ICDM), Vancouver, Canada, pp 1104–1109Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group, Internet Engineering Task ForceKephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 61–72Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475Knauth T, Fetzer C (2014) DreamServer: truly on-demand cloud services. In: International Conference on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev 44(2):35–40Lang W, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans Knowl Data Eng 26(6):1447–1463Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 896–899Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Computer system analysis using queueing network models. Prentice Hall, Upper Saddle RiverLeitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS), Florida, USA, Miami, pp 369–376Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J Syst Softw 84(12):2123–2138Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona, Spain, pp 13–18Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud applications. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY, USA, pp 1115–1118Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4):559–592Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D, Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and Application Metrics at Scale. ISBN 978-1-4493-2970-9Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed Systems (SRDS). Nara, Japan, pp 311–320Medina V, GarcĂ­a JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput Surv 46(3):30Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology, Special Publication 800-145MenascĂ© DA, Bennani MN (2006) Autonomic virtualized environments. In: International Conference on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28MenascĂ© DA, Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning. In: 35th International Computer Measurement Group Conference, Dallas, TX, USAMenascĂ© DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform Eval 64(7–8):646–663Miedes E, Muñoz-EscoĂ­ FD (2010) Dynamic switching of total-order broadcast protocols. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, pp 457–463Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the cloud. PhD thesis, UniversitĂ© d’Evry-Val d’Essonne, FranceMohamed M, Amziani M, BelaĂŻd D, Tata S, Melliti T (2015) An autonomic approach to manage elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61Mohd Yusoh ZI (2013) Composite SaaS resource management in cloud computing using evolutionary computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, AustraliaMontero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput computing clusters. J Parallel Distrib Comput 71(6):750–757Morabito R, KjĂ€llman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp 386–393Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud computing. Springer, Berlin, pp 235–263Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Williamsburg, VA, USA, pp 1–10Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon, Portugal, pp 289–302Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE), Sorrento, Italy, pp 279–287Parzen E (1960) A survey on time series analysis. Tech. rep., n. 37, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA, USAPascual-Miret L, GonzĂĄlez de MendĂ­vil JR, BernabĂ©u-AubĂĄn JM, Muñoz-EscoĂ­ FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. PolitĂšcnica de ValĂšncia, Valencia, SpainPopek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421Potter S, Nieh J (2005) AutoPod: Unscheduled system updates with zero data loss. In: 2nd International Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University of British Columbia, Vancouver, CanadaReinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems. Perform Eval 67(8):676–693Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 500–507Ruiz-Fuertes MI, Muñoz-EscoĂ­ FD (2009) Performance evaluation of a metaprotocol for database replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara Falls, New York, USA, pp 32–38Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81Seifzadeh H, Abolhassani H, Moshkenani MS (2013) A survey of dynamic software updating. J Softw Evol Process 25(5):535–568Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis, Minnesota, USA, pp 559–570Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS) Workshop, Hyderabad, India, pp 509–518Shen Z, Subbiah S, Gu X, Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv 48(3):42:1–42:46Smith CU (1980) The prediction and evaluation of the performance of software from extended design specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USASmith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, FakultĂ€t IV Elektronik und Informatik, Technischen UniversitĂ€t Berlin, Berlin, GermanySoltesz S, Pötzl H, Fiuczynski ME, Bavier AC, Peterson LL (2007) Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference, Lisbon, Portugal, pp 275–287Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, Stumm M, Auslander MA, Ostrowski M, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration. In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis (paper 269), School of Computing, University of North Florida, USAStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems (SRDS). Montreal, QC, Canada, pp 68–73Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeToosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47Vaquero GonzĂĄlez LM, Rodero-Merino L, CĂĄceres J, Lindner MA (2009) A break in the clouds: towards a cloud definition. Comput Commun Rev 39(1):50–55Varrette S, Guzek M, Plugaru V, Besseron X, Bouvry P (2013) HPC performance and energy-efficiency of Xen, KVM and VMware hypervisors. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. IEEE Comput 39(11):12–14Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-oriented clouds. Softw Pract Exp 41(5):469–493Whitaker A, Cox RS, Shaw M, Gribble SD (2005) Rethinking the design of virtual machine monitors. IEEE Comput 38(5):57–62Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises (IWAISE), Tunis, Tunisia, pp 22–28Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in th

    Autonomic Rejuvenation of Cloud Applications as a Countermeasure to Software Anomalies

    Get PDF
    Failures in computer systems can be often tracked down to software anomalies of various kinds. In many scenarios, it could be difficult, unfeasible, or unprofitable to carry out extensive debugging activity to spot the causes of anomalies and remove them. In other cases, taking corrective actions may led to undesirable service downtime. In this article we propose an alternative approach to cope with the problem of software anomalies in cloud-based applications, and we present the design of a distributed autonomic framework that implements our approach. It exploits the elastic capabilities of cloud infrastructures, and relies on machine learning models, proactive rejuvenation techniques and a new load balancing approach. By putting together all these elements, we show that it is possible to improve both availability and performance of applications deployed over heterogeneous cloud regions and subject to frequent failures. Overall, our study demonstrates the viability of our approach, thus opening the way towards it adoption, and encouraging further studies and practical experiences to evaluate and improve it
    • 

    corecore