
	

1	

	

Modeling and Analysis of High Availability Techniques in a
Virtualized System

Xiaolin Changab*, Tianju Wangab, Ricardo J. Rodríguezc, Zhenjiang Zhangd
aBeijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong

University, P. R. China
bSchool of Computer and Information Technology, Beijing Jiaotong University, P. R. China

cCentro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
dSchool of Electronics and Information Engineering, Beijing Jiaotong University, P. R. China

Abstract

	

Availability evaluation of a virtualized system is critical to the wide deployment of cloud computing services.

Time-based, prediction-based rejuvenation of virtual machines (VM) and virtual machine monitors (VMM), VM

failover, and live VM migration are common high-availability (HA) techniques in a virtualized system. This paper

investigates the effect of combination of these availability techniques on VM availability in a virtualized system

where various software and hardware failures may occur. For each combination, we construct analytic models

rejuvenation mechanisms improve VM availability; (2) prediction-based rejuvenation enhances VM availability

much more than time-based VM rejuvenation when prediction successful probability is above 70%, regardless

failover and/or live VM migration are also deployed; (3) failover mechanism outperforms live VM migration,

although they can work together for higher availability of VM. In addition, they can combine with software

rejuvenation mechanisms for even higher availability; (4) and time interval setting is critical to a time-based

rejuvenation mechanism. These analytic results provide guidelines for deploying and parameter setting of HA

techniques in a virtualized system.

Keywords: Live VM migration, Software aging, Software rejuvenation, Stochastic Reward Nets, Virtual Machine,
Virtual Machine Monitor

	

																																								 																				 	
*	Corresponding author, Email address: xlchang@bjtu.edu.cn (Xiaolin Chang)

	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289993572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	

2	

	

1. Introduction

System virtualization technology has been widely adopted for academic and industrial purposes. In a virtualized

system [1], a virtual machine monitor (VMM) is a software layer between (one or more) operating systems and a

physical hardware able to emulate hardware of a physical machine. Thus, it plays a critical role in the virtualized

system, often becoming the single point of failure. A virtual machine (VM) emulates a particular computer system,

running on the top of VMM. Like traditional software, VM and VMM are also subject to software-related problems

as software aging, bugs, crashes, and so on [2]-[4]. These problems clearly reduce the VM availability and increase

VM downtime. Without loss of generality, we use application availability and VM availability interchangeably.

Large downtime of applications may lead to productivity loss and even revenue loss [5][6]. Software rejuvenation,

failover, and live VM migration are common high availability (HA) techniques used in a virtualized system [7][8].

The tremendous growth in the deployment of virtualized systems demands the availability analysis of these systems

with HA techniques [7].

State-space models are expressive and popular models applied to availability analysis in different domains, such

as cluster computing systems, telecommunication systems, or air control systems, among others [9]-[13]. In

particular, they are found also effective for VM availability analysis [14]. The existing model-based VM availability

analysis ignored the existence of VMM failures [15]-[17], assumed that one type failure exists in the considered

system [15][16][18][19], considered only rejuvenation mechanisms [20][21], or considered only a physical host

[19][22][23]. Thus, their analyses did not capture the effect of live VM migration on VM availability. Similarly, to

assume only one VM in a host [20][24][25] cannot capture the effect of VM failover on VM availability.

In this paper, we consider a virtualized system composed with three main components: Main host, Backup host,

and Management host. Main host includes active and standby (or backup) VMs. Backup host contains only standby

VMs. Applications are deployed in the active VM. When the active VM fails, different actions may happen

according to the restoring policy, such as the use of a standby VM on the same host, the migration to the other host,

or simply the failed VM is restarted. This paper aims to investigate the effect of software rejuvenation, failover, and

live VM migration techniques on the VM availability in a virtualized system with a variety of failures. We assume

that these HA techniques are ready to be used and their implementations are out of the scope of this paper.

The contribution of this paper is three-fold: first, we investigate VM availability in a virtualized system with

several co-existing failures, including hardware, shared storage, live VM migration, non-aging Mandelbug-related,

	

3	

	

and aging-related failures (in both VM and VMM). Second, we construct stochastic reward nets (SRN) models for

each combination of software rejuvenation, failover, and live VM migration in order to analyze the induced effect

of these techniques over VM availability. We also investigate whether some of these HA techniques could work

together to improve the VM availability and the capability of this cooperation. Third, we carry out sensitivity

analysis to investigate the effect of model parameters on the ability of software rejuvenation, failover, and live VM

migration mechanisms in improving VM availability.

The proposed SRN models help to select the combination of failure recovery techniques and the parameter

settings of a given scenario. Our numeric results indicate that:

(1) Both VMM rejuvenation and VM rejuvenation mechanisms enhance system availability when various

failures co-exist.

(2) Prediction-based VM rejuvenation mechanism improves the VM availability in a higher degree than time-

based VM rejuvenation mechanism, when prediction successful probability is above 70% and regardless

failover and/or live VM migration are deployed.

(3) Failover mechanism performs better than live VM migration and they can work together for higher

availability. In addition, they can work with software rejuvenation mechanisms for achieving even higher

availability.

(4) Rejuvenation time interval setting is critical to a time-based rejuvenation mechanism. VMM clock interval

is critical for the ability of live VM migration technique in improving VM steady-state availability.

The rest of the paper is organized as follows. In Section 2, we discuss the related work about HA techniques and

model-based VM availability analysis. Section 3 introduces the system architecture considered in this paper. Section

4 describes SRN models constructed for analysis. The numerical analysis and discussion are presented in Section 5.

Section 6 concludes this paper and discusses the future work.

2. Related Work

Both software failures and hardware component faults may lead to failures into a virtualized system and then

reduce VM availability. Software failures are caused by inherent software design bugs. In [34], the authors classified

software bugs into the following three main categories:

(1) Bohrbug, which manifests a failure when certain fixed set of conditions are met.

	

4	

	

(2) Non-aging related Mandelbug, whose activation and/or error propagation is complicated and uncertain.

(3) Aging related Mandelbug, whose activation process is related to an accumulation of errors or resources

consumption.

Bohrbug can be easily fixed. The left two kinds of bugs are hard to mitigate. In this paper, we ignore Bohrbugs

and focus on non-aging related Mandelbugs. Both of the non-aging related Mandelbugs and the aging-related bugs

occur on the VMMs and VMs subsystems [24]. When the non-aging related Mandelbugs failures happen, the VMM

or VM would be in crash and need to be repaired. For long-running VMMs and VMs, software aging is one of the

major causes of software failures [3]. Software aging has been observed in many systems, including web servers

and enterprise clusters [26][27]. Software aging not only increases the failure rate and thus degrades the system

performance, but also leads to system crashes [2]. Software rejuvenation [3] is a software fault tolerance technique

to defend against software aging. This technique gracefully stops the execution of an application/system and

periodically restarts it at a clean internal state in a proactive manner. Two main kinds of software rejuvenation

approaches are distinguished:

• Time-based rejuvenation. Rejuvenation is triggered by a clock counting time. Analytical models help finding

out the optimal interval to maximize availability and minimize downtime cost.

• Prediction-based rejuvenation. Rejuvenation is triggered when the system behaviors meet some predefined

criteria or particular conditions. Machine learning, statistical approaches, structural models, and other

techniques have been applied to define such conditions.

Besides software rejuvenation, failover solution and live VM migration are the most common techniques used

for achieving VM high availability in virtualized systems, such as VMware ESXi [28]. Failover is a backup

operational mechanism, in which the functions of a system component (e.g., a processor, server, network, or database)

are assumed by secondary system components when the primary component becomes unavailable due to failure or

shut-down scheduled. In a virtualized system, failover is achieved by creating an active VM and a standby VM.

When the active VM suffers a failure or gets ready to be rejuvenated, the standby VM takes over the role of the

active VM to continue task execution. Live VM migration refers to the process of moving a running VM or

application between different physical machines without affecting the execution of applications. The information of

memory, storage, and network connectivity of the original VM is transferred from the original host to the destination

host.

	

5	

	

Recently studies have been carried out for the VM availability analysis by adopting analytic modeling approach,

specially using state-space models. A single server virtualized system with multiple VMs was modeled and analyzed

in [15][16], where it was shown that the combination of failover mechanism with VM software rejuvenation

technique enhanced VM availability in these systems. In [17], a continuous-time Markov chain (CTMC) based

analytical model to capture the behavior of the virtualized clustering system with VM software rejuvenation was

presented. In particular, system availability with the VM time-based rejuvenation mechanisms under different cluster

configurations were analyzed, and results showed that the integration of virtualization, clustering, and software

rejuvenation improved system availability.	All these works [15]-[17] neglected the existence of VMM failures in

the virtualized system. However, the VMM plays a critical role in improving system availability. In [18], only VMM

software aging-triggering failures were considered.

The design of effective approaches for software rejuvenation on a virtualized system in order to improve VM

availability have also been addressed. In [24], three VM rejuvenation techniques (namely cold-VM rejuvenation,

warm-VM rejuvenation, and migrate-VM rejuvenation) were proposed for virtualized systems with VMM and VM

aging-related failures. Their numerical results indicated that migrate-VM rejuvenation outperformed the others as

long as the VM migration rate was fast enough. Unlike our paper, they assumed only one VM on Main host and no

prediction-based rejuvenation techniques. Besides the failures mentioned in [24], in this paper we consider shared

storage failures and non-aging Mandelbugs-related failures. We also consider that the virtualized system is

composed by two VMs on a host and investigate the ability of failover mechanism. Moreover, we compare the

abilities of time-based VM rejuvenation and prediction-based rejuvenation techniques in improving VM availability.

A single-server virtualized system where several VMs are instantiated on a VMM is considered in [19]. However,

only VMM aging-related failure and time-based VMM rejuvenation techniques were considered. In [20], a system

architecture with two hosts is analyzed where each host disposed a VM running on the VMM. They proposed a

hierarchical stochastic model based on Fault Tree and CTMC that described hardware failures of different nature

(e.g., CPU, memory, power, etc.), software failures (VMs, VMM, application) and corresponding recovery

behaviors. However, this model does not cover completely the dependencies of behaviors between hardware and

software subsystems (see Section 3.2). In [21], Nguyen et al. proposed a comprehensive availability model for a

virtualized system with two hosts where each host runs two VMs on the VMM. They considered diverse failures,

such as hardware, shared storage, aging-related, and non-aging Mandelbugs-related failures, as well as

corresponding recovery behaviors modeled with SRN. They used a cold-VM rejuvenation to drastically push a VM

	

6	

	

in the running state into DOWN state. Failover and live VM migration mechanisms were both ignored in [20]and

[21]. Furthermore, these works only considered the time-based rejuvenation technique. In this paper, we consider

software rejuvenation, failover and live VM migration techniques, as well as time-based and prediction-based

rejuvenation techniques.

A new hybrid rejuvenation technique which combined time-based rejuvenation mechanism for VMM and

prediction-based rejuvenation mechanism for VMs was presented in [22]. They demonstrated that such combination

produced higher system availability and lower downtime cost than using just prediction-based or time-based

rejuvenation for VMs. SRN models for availability of a single-server virtualized system were presented in [23],

where the abilities of VM time-based rejuvenation and VM prediction-based rejuvenation were compared. Both

works considered only one host, and did not consider non-aging Mandelbug-related failures and hardware failures.

These works used a failover mechanism (active VM and standby VM on the same host), but did not consider live

VM migration as this paper does. As in [23], we compare VM time-based rejuvenation with VM prediction-based

rejuvenation, but in a scenario with a variety of failures.

An availability model of a data center (DC) with live VM migration and failover mechanisms was introduced in

[24] to ensure the high availability of cloud based businesses. Different failures were considered, such as hardware,

shared storage, virtual DC failures, among others. Unlike our work, they did not distinguish non-aging Mandelbug-

related failures from aging-related failures for VM. Furthermore, the effect of VMM failure on VM availability was

analyzed by investigating host hardware failure. Note that VM live migration is performed only when VMM runs

in virtualized systems. Thus, it is difficult, if not impossible, to analyze the effect of live VM migration on VM

availability in a virtualized system.

In [35], the authors proposed a cloud availability model for the cloud data center with three PM pools of switched

on, standby, and switched off PMs. They only considered PM failures and applied backup PMs for improving

availability. In [36], the authors applied SRNs to analyze the system availability, which was defined as the

probability that a job did not traverse any failure states during its execution. They considered as failure any deviation

of a job execution from the correct life cycle, including queuing failures, running failures, aborts and exiting failures.

Actually, these failures can be classified to aging-related failure or Non-aging Mandelbug related failure. Job

checkpointing and job replication were adopted for improving the availability. In our paper, we consider not only

software failures but also hardware failures. In addition, the recovery techniques considered in our paper include

	

7	

	

checkpointing, failover and live VM migration. Furthermore, we consider the difference of VM software failures on

the system availability from VMM.

3. System Architecture and Component Interaction

This section first relates the system architecture that we consider in this paper, and then the interplay between

its components. Note that current cloud data centers may easily adapt their architectures to the proposed scheme

when enough physical resources are available.

3.1. Description of the System Architecture

Figure 1 depicts the system considered in this paper. It is mainly composed of three components: Main host,

Backup host, and Management host. Main host contains a VMM, which runs an active VM with a desired application,

and a standby VM. Backup host is a spare host that performs the Main host role when a VM migration occurs. It

disposes a standby VM used by the failover mechanism after Backup host takes the role of Main host.	Finally,

Management host is a component responsible for detecting VMM failures and host hardware failures by means of

specific management tools. VM images or VMM code files are stored in a shared storage within the system. Software

rejuvenation agent (SRA), installed in each VM, is responsible for the VM rejuvenation operation. Rejuvenation

manager (RM) is installed in the VMM in order to analyze the behaviors of VMs deployed on this VMM, detect

anomalies and trigger the rejuvenation of malfunctioning VM.

Figure. 1. System architecture considered in this paper

Mai n Host

Har dwar e

St andby VM

OS

SRA

APP

Act i ve VM

OS

SRA

APP

VMM

RM

Backup Host

Har dwar e

St andby VM

OS

SRA

APP

VMM

RM

Management
Host

Har dwar e

OS

Management
Tool

Shared storage

Hear t beat
Li ve

mi gr at i on

Net work

	

8	

	

The VMs on the same host inform each other about their health using a heartbeat mechanism when failover is

deployed. The running state of an active VM can be stored in the shared storage and later sent to the standby VM to

be recovered. We consider that an active VM may suffer non-aging Mandelbug-related and aging related failures.

When an active VM suffers from these failures, the active VM stops accepting requests and needs to be repaired.

Thus, the standby VM plays the role of the active VM during its repair period and takes charge of the tasks. Let us

remark this change in the standby VM is performed very quickly due to failover mechanism. The malfunctioning

VM will turn to be standby VM after reparation, rejuvenation, or recovery is completed.

Live VM migration (when deployed) can be used to migrate the active VM to Backup host when the VMM

needs to be rejuvenated. This technique moves an active VM, with all the requests and sessions, from Main host to

Backup host without loss in any in-flight request or session data during the rejuvenation or repair. Pre-copy [29] and

stay-on methods have been proved to be effective methods in the live VM migration process [24]. Herein, we

consider pre-copy migration because it causes less downtime. Thus, as response to a VM migration request, the

memory of the active VM is copied to Backup host without interrupting its operation.

3.2. Interplay between Components

Instead of analyzing the overall effect of hardware, non-aging Mandelbug-related, and software aging-related

failures, we consider the effect of each failure respectively in order to capture realistic behavior of a virtualized

system. This section introduces the state transitions for each component within the system. In particular, we focus

on failures in Main host, Backup host, shared storage, VMM, and VMs. Failures occurring on standby VM and

Management host are ignored.

Main host and shared storage have two states: UP and FAIL state. For VMM, there exist five states when no

rejuvenation mechanisms are used: UP state (healthy state without software aging), FP state (probable failing state

but VMM still runs), FAIL state (a software aging-related failure occurs and then VMM stops running), CRASH

state (a non-aging Mandelbug-related failure occurs and then VMM stops running), and DOWN state (a hardware

failure occurs in the host and VMM stops running). When using time-based rejuvenation for VMM, we define an

additional REJU state to identify when the VMM is ready to be rejuvenated.

Finally, VM states are different depending on the rejuvenation mechanisms used. In this paper, we consider time-

based and prediction-based rejuvenation mechanisms. When no rejuvenation is applied, an active VM has five states

similar to states of a VMM: UP state, FP state, FAIL state, CRASH state, and DOWN state. In the latter state, the

	

9	

	

VMM is not in UP or FP state, or shared storage is in FAIL state. When time-based rejuvenation is applied, there is

an extra REJU state as VMM does. Similarly, prediction-based rejuvenation mechanism introduces three additional

states: DETECT state (software aging in VM is detected), UNDETECT state (software aging is undetected) and

REJU state.

Since there exists dependencies between components, the change of a component state clearly triggers the

change of state of its dependent component. In the following, we enumerate the dependencies between the

components and the related state transitions:

(1) Between host and VMM. When a host fails into FAIL state, the running VMM (in UP or FP state) moves to

DOWN state in which the VMM subsystem becomes unavailable. The VMM in DOWN state can restart to UP state

when the host returns to UP state. When the host goes into FAIL state, the VMM in CRASH, REJU, or FAIL states

is suspended and reloaded from the memory after the host is repaired.

(2) Between VMM and VM. When the VMM is in FAIL, DOWN, or CRASH states, the active VM (in UP or

FP state) then turns to DOWN state and the standby VM is suspended. When the VMM of Main host needs to be

rejuvenated (e.g., it is REJU state), rejuvenation techniques such as warm-VM reboot [30] and VM migration

(detailed SRN models are given in Section 4) can be applied to lead VM to UP state again.

(3) Between shared storage and VM. Recall that VM image files are stored on the shared storage. Thus, the

state of the shared storage has a great impact on the VM states. When the shared storage fails, the VMs in running

states (either UP or FP state) move to DOWN state. When the shared storage completes its repairing, the VMs are

restarted to UP state. When the current state of a VM is not in running state, its operation state is temporarily

suspended and resumed after the shared storage returns to UP state.

4. Availability SRN Models

All time intervals are assumed to follow exponential distributions, except for rejuvenation-triggered intervals.

As in [38], this paper uses a 10-stage Erlang distribution for approximating these deterministic transitions. SRN

[31][32] is a formalism widely used in rejuvenation modeling. In order to understand the ability of each HA

mechanism in improving the VM availability, we develop SRN models for nine policies, described in Table 1. Each

policy represents a combination of the HA mechanisms. Let ABCD be used to represent a policy. Each item is

defined as follows:

	

10	

	

A= {
= T: denotes that VMM implements a time-based rejuvenation mechanism

= N: denotes that no HA mechanism is implemented in VMM

B={

= T: denotes that VM implements a time-based rejuvenation mechanism

= P: denotes that VM implements a prediction-based rejuvenation mechanism

= N: denotes no rejuvenation mechanism is implemented in VM

C= {
=F: denotes that failover is implemented

=N: denotes that no failover is implemented

D= {
=M : denotes that live VM migration is deployed

=N : denotes that no live VM migration is deployed

Table 1. Description of nine policies used in this paper

Policy Description

NNNN No HA technique deployed for VMM and VM

TNNN Only time-based rejuvenation used for VMM

TNFN Time-based rejuvenation for VMM and failover mechanism for VM

TNNM Time-based rejuvenation for VMM and live VM migration for VM

TTNM Time-based rejuvenation for VMM, live VM migration and time-based rejuvenation for VM

TPNM Time-based rejuvenation for VMM, live VM migration and prediction-based rejuvenation for VM

TNFM Time-based rejuvenation for VMM, failover and Live VM migration and no rejuvenation for VM

TTFM Time-based rejuvenation for VMM, failover and Live VM migration and time-based rejuvenation for VM

TPFM Time-based rejuvenation for VMM, failover and Live VM migration and prediction-based rejuvenation for VM

	

4.1. Stochastic Reward Nets

A Stochastic Reward Net is a stochastic Petri net with many advanced structural and stochastic characteristics

[31][32]. In SRN, an enabling function (also called a guard) allows to define the enabling function of a transition as

a marking dependent function. In addition, both arc multiplicities and firing rates are allowed to be marking-

dependent. SRN allow to compute measures of interests by defining reward rates at net level.

In the following, we first introduce the models for host, shared storage, VMM, VMM clock, and VM clock sub-

models. These models are unchangeable regardless of policies. Next, we describe the models for the policies

considered in this paper. Table 2 summarized the parameters used in the rest of this section, as well as the

corresponding transitions and values used for numerical analysis. Most values are set according to [21, 23, 24] and

	

11	

	

the corresponding references are given in the last column. The values without references are set by ourselves

according to the values with references.

Table 2. Default parameters used in the models

Symbol Description Transition Values(/h) Mean time

λvfp VM aging-related rate Tvfp, Tv1fp, Tv2fp 0.005952381 1 week [24]

λvfail VM aging-related failure rate Tvfail, Tv1fail, Tv2fail 0.013888889 3days [24]

λcrash VM non-aging Mandelbug related failure rate Tvcrash, Tv1crash, Tv2crash 0.00034722 120days

λreup VM non-aging Mandelbug -related repair rate Tvreup, Tv1reup, Tv2reup 2 30mins

λvrepair VM repair rate Tvrepair,Tv1repair, Tv2repair 2 30mins [24]

λvreju VM rejuvenation rate Tvreju, Tv1reju, Tv2reju 60 1min [24]

λswt VM switch rate Tswt1reju, Tswt2reju 1200 3s [23]

λvstart VM restart rate Tvstart, Tv1start, Tv2start 120 30s [24]

Λinterval VM clock interval - 0.04166667 1day [24]

λdetect VM detect probability - 0.9 N/A [23]

λpre VM migration prepare rate
Tvpre, Tvback,
Tvfpre, Tvfpback,

90 40s [[24]

λmigs VM migration successful probability - 0.9 N/A [24]

βhfp VMM aging rate, namely rate of transition Th1fp,Th2fp 0.001388889 1 month [24]

βhfail VMM aging-related failure rate Th1fail, Th2fail 0.005952381 1 week [24]

βcrash VMM non-aging Mandelbug- related failure rate Th1crash, Th 1crash 0.00046296 90days

βreup VMM non-aging Mandelbug- related repair rate Th1reup, Th2reup 0.5 2hours

βhrepair VMM repair rate Th1repair, Th2repair 1 1 hour [24]

βhreju VMM rejuvenation rate Th1reju, Th2reju 30 2mins [24]

βhstart VMM restart rate Th1start, Th2start 60 1min [24]

βinterval VMM clock interval - 0.005952381 1week [24]

βwfail Host failure rate Tw1fail, Tw2fail 0.00023148 180days [21]

βwrepair Host repair rate Tw1repair, Tw2repair 0.01388889 3days [21]

Βssf Shared storage failure rate Tfail 0.00011574 360 days [21]

Βssr Shared storage repair rate Trepair 0.01388889 3 days [21]

4.2. SRN Models for System Components

 Host model, depicted in Figure 2(a), expresses the occurrence of hardware failure and repair process of Main

host. We consider a system with two hosts. At the beginning, host1 is Main host and host2 is Backup host. After live

VM migration, host2 becomes Main host and host1 becomes Backup host after repair. When host1 (host2) is Main

	

12	

	

host, host1 (host2) is at first in UP state, represented by one token in Pw1up (Pw2up) place. When a hardware failure

occurs, the transition tw1fail (tw2fail) fires and the token in Pw1up (Pw2up) is taken out and deposited in Pw1fail (Pw2fail).

After the hardware repair process completes, the token is moved from Pw1fail(Pw2fail) to Pw1up (Pw2up) by firing the

transition Tw1repair (Tw2repair), representing the host in UP state again.

The shared storage failure and repair process is similar to the host model, as depicted by Figure 2(b). We assume

that shared storage is in UP state in the general case. Due to unexpected failures, the shared storage shuts down and

then falls into FAIL state (namely, the token is moved from place Pup to place Pfail). A delay is required to detect the

fault position of the shared storage and its repairing. Then, the shared storage returns to UP state.

Figure 2(c) depicts VMM failure and VMM recovery process for Main host1. When host1 (host2) is Main host1,

at first there is a token in place Ph1up (Ph2up), denoting no software aging exists in the VMM. The VMM software

aging occurs after continuously running for a period of time. After a while, the transition Th1fp (Th2fp) fires and a

token is moved from Ph1up (Ph2up) to Ph1fp (Ph2fp). When the transition Th1fail (Th2fail) fires, the token from Ph1fp (Ph2fp)

is deposited in Ph1fail (Ph2fail) which represents the VMM failure due to software aging. When a non-aging

Mandelbug-related failure occurs, the VMM in UP state turns directly to CRASH state, represented by the removal

of token from place Ph1up (Ph2up) and placed in Ph1crash (Ph2crash). When the failure of VMM is detected by the

management tool that executes in Management host, then VMM enters into the repair process. After VMM is

repaired, the transition Th1repair (Th2repair) or Th1reup (Th2reup) – depending on the type of failure fires and the token is

moved from Ph1fail (Ph2fail) or Ph1crash (Ph2crash) to ph1up (Ph2up), denoting that the VMM enters UP state.

When a hardware failure occurs, the VMM in UP or FP state shuts down at once by firing the transition thidw,

and the token is deposited in Ph1dw (Ph2dw). As soon as the hardware failure is removed, a token is taken from Ph1dw

(Ph2dw) to Ph1up (Ph2up), denoting that VMM restarts and enters into UP state. When the VMM is in CRASH, FAIL,

or REJU state), the VMM is suspended in memory and quickly reloaded to continue normal execution after the

hardware failure is repaired.

When the VMM needs to be rejuvenated, the token is moved from Ph1up (Ph2up) or Ph1fp (Ph2fp) to Ph1reju (Ph2reju)

by firing immediate transitions th1rejt (th2rejt) or th1fprejt (th2fprejt), depending on the current state before rejuvenation

																																								 																				 	
1As before, we use i = 1 notation to refer to VMM in host1 which performs as Main host and i = 2 to refer to

VMM in host2.

	

	

13	

	

takes place. After the rejuvenation finishes, a token in the Ph1reju (Ph2reju) is moved to Ph1up (Ph2up) only when host is

in UP state (places Pw1up, Pw2up) and there exists a token in place Ph1clock (Ph2clock).

 (a) Host SRN model

(b) Shared storage SRN model

 (c) VMM SRN model

(d) VMM clock SRN model

(e) VM clock SRN model

Figure. 2. SRN models for different system components

Figure 2(d) depicts the SRN of the VMM clock, used to trigger VMM time-based rejuvenation with a rate of

βinterval. When the transition Th1interval (Th2interval) fires after the last boot time, a token is moved from Ph1clock (Ph2clock)

to ph1policy (ph2policy). The guard function gh1policy in th1policy (th2policy) ensures the VM has been shut down or migrated

to Backup host. Then, the token in Ph1policy (Ph2policy) is moved to Ph1trigger (Ph2trigger) and the VMM rejuvenation process

begins. After the VMM rejuvenation completes, the immediate transition th1reset (th2reset) enables and the token in

Ph1trigger (Ph2trigger) is moved to Ph1clock (Ph2clock) again, which denotes counting the time for executing the next VMM

rejuvenation period.

1 Pwiup Pwifail

Twifail

Twirepair

1 Pup Pfail

Tfail

Trepair

1

Phiup

Thifp

Phifp

Thifail

thirejt

thifprejt

Phifail

Thirepair

Phireju

Thireju

thidwPhidw

Thirestart

[ghitrig]

[ghitrig]

[ghirej]

[gwidw]

[gwiup]

Thicrash Phicrash

Thireup

[gwiup]

[gwiup]

[gwiup]

[gwiup]

[gwiup]

1
Phiclock

Phipolicy

thipolicy

thireset

Phitrigger [ghiinterval

[ghipolicy]

[ghireset] Thiinterval

1
Pvclock

Pvpolicy

tvpolicy

tvreset

Pvtrigger [gvinterval]

[gvpolicy]

[gvreset] Tvinterval

	

14	

	

Similarly, Figure 2(e) depicts the VM clock model, used to trigger VM time-based rejuvenation with a rate of

Λinterval. When transition Tvinterval fires after the last boot time, the token is moved from Pvclock to Pvpolicy. The immediate

transition tvpolicy is enabled when the VM in UP or FP state and shared storage is in UP state. Then, the token in

Pvpolicy is deposited in Pvtrigger and the VM rejuvenation process begins. After this process completes, the immediate

transition tvreset fires and the token in Pvtrigger is placed in Pvclock, which denotes counting the time for executing the

next VM rejuvenation period.

4.3. SRN Models for Combination of Policies

We first describe SRN models for NNNN, TNNN, and TNFN policies, since they have similar sub-models and

features. As live VM migration is not implemented (i.e., D = N), Backup host is ignored in these policies. Policy

NNNN consists of four sub-models: (1) Host1 model shown in Figure 2(a); (2) shared storage model shown in

Figure 2(b); (3) VMM1 model shown in Figure 2(c); and (4) VM model shown in Figure 3(a). Since there is no

rejuvenation process for VM and no failover mechanism in both policies NNNN and TNNN, they have the same

VM sub-model. Policy TNNN has an additional sub-model compared to policy NNNN. Namely, the VMM1 clock

model shown in Figure 2(d). Policy TNFN differs from TNNN just for a special VM model that uses a failover

mechanism, as depicted in Figure 3(b). Guard functions used in the above models are summarized in Table 3.

In the following, we explain the Figure 3(a). A VM may suffer from non-aging Mandelbug-related and aging-

related failures. Failure and recovery processes are similar to those in VMM model. Initially, one token exists in

Pvup, representing the VM is in fully stable state. Later on, the VM transits to FP state, i.e., the token is moved from

Pvup to Pvfp through the transition Tvfp representing VM software aging. Note that the VM still works in FP state, but

its failure likelihood increases. Since no VM rejuvenation process is deployed in these policies, the aging VM then

turns to FAIL state after a certain period of time. This state transition is represented by the token being moved from

Pvfp to Pvfail, after firing of the transition Tvfail. After VM is repaired, it changes to UP state. That is, the token is

moved from Pvfail to Pvup. When the VM suffers from non-aging Mandelbug-related failures, the VM falls to CRASH

state (i.e., the token is moved from Pvup to place Pvcrash) and waits for repair. When places Ph1fail, Ph1dw, or Ph1crash are

marked, or shared storage is failed, the token is moved from Pvup (or Pvfp) to Pvdw. When the VMM is in UP state (i.e.,

the token is in Ph1up) or FP state (i.e., the token is in Ph1fp) and the shared storage is in UP state, the VM can be

restarted to UP state (i.e., the token is in place Pvup) by firing the timed transition Tvrestart. When VM is in FAIL or

CRASH states, it is suspended and a warm-VM reboot mechanism is used later on.

	

15	

	

(a) NNNN and TNNN

(b) TNFN

Figure. 3. SRN models for VM with (a) NNNN and TNNN and (b) TNFN policies

Table 3. Guard functions for NNNN, TNNN and TNFN policies

Guard Definition

gw1up if(#(Pw1up)==1) then 1 else 0

gw1dw if(#(Pw1fail)==1) then 1 else 0

gs1up if(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1) then 1 else 0

gs1dw if(#(Ph1fail)==1||#(Ph1dw)==1||#(Ph1crash)==1||#(Pfail)==1) then 1 else 0

gh1trig if(#(Ph1trigger)==1&&#(Pw1up)==1) then 1 else 0

gh1rej if(#(Ph1clock)==1&&#(Pw1up)==1) then 1 else 0

gh1interval if(#(Ph1up)==1||#(Ph1fp)==1) then 1 else 0

gh1policy if(#(Pvdw)==1) then 1 else 0

gh1reset If(#(Ph1reju)==1) then 1 else 0

gvswitch If (#(Phup)==1||#(Phfp)==1&&#(Pup)==1&&(#(Pvcrash)==1||#(Pvfail)==1)) then 1 else 0

Policy TNFN uses failover mechanism (see Figure 3(b)). Thus, there are two VMs (active and standby VM) on

the VMM. Using a heartbeat mechanism, the running state of the active VM can be stored in the shared storage and

later be sent to the standby VM. When the active VM suffers from non-aging Mandelbug-related or aging-related

failures, the active VM stops accepting requests. That is, the token is moved from Pvstandby to Pvup by firing the

immediate transition tvswitch. Then, the standby VM is responsible of the tasks and plays the role of the active VM

during its repair period. At the same time, the token is moved from Pvcrash (or Pvfail) to Pvstandby by firing the timed

transition Tvreup (or Tvrepair). That is, the primary active VM changes to be standby VM after the repair or recovery

processes complete.

1

Pvup

Tvcrash

Pvcrash
Tvreup

Tvfp

Pvfp

Tvfail

Pvfail

Tvrepair

tvfdw

tvdw

Pvdw

Tvrestart [gs1up] [gs1up]

[gs1up]

[gs1up]

[gs1up]

[gs1up]

[gs1dw]

[gs1dw]

1

Pvcrash

1
Pvstandby

tvswitch

tvfdw

tvdw
[gs1dw]

[gs1dw]Pvdw

Tvrestart
[gs1up]

Pvup

Tvcrash

[gs1up] Tvreup
[gs1up]

Tvrepair

[gs1up]

Tvfp
[gs1up]

Pvfp

Tvfail
[gs1up]

Pvfail

[gvswitch]

	

16	

	

Figure. 4. SRN models for VM with TNNM and TTNM policies (places and transitions added by TTNM
policy are highlighted in gray)

Figure. 5. SRN models for VM with TPNM policies

1 Pv1up

Tv1crash
Pv1crash Tv1reup

Tv1fp

Pv1fp Tv1fail Pv1fail

Tv1repair

tv1fdw

tv1dw

Pv1dw

Tv1restart

Tvfppre

Pvmigtvmigs

TvprePvpre
tvpres

Tvback Pvback tvbacks

tvbackf tvpref

Pvmigf

Tv1new
Tv2new

tvmigf

PvfpbackTvfpback

tvfpbackf

tvfpbacks

Pvfpbackf

Pv2fp

Pv2up

Tv2crash

Pv2crash

Tv2reup

Tv2fp

tv2fdw

tv2dw

Tv2fail

Tv2repair

Pv2dw

Tv2restart

tv1rej

tvf1rej

Pv1rej

Tv1rej

tvf2rej

tv2rej

Pv2rej

Tv2rej

[gs1up]

[gs1up]
[gs1up]

[gs1up]

[gs1up]

[gs1up]
[gs1up]

[gs1up]
[gv1trig]

[gv1trig]

[gs2up]

[gs2up]

[gs2up]

[gs2up] [gs2up]

[gs2up]

[gs2up]
[gs1dw]

[gs1dw]

[gs2dw]

[gs2dw]
[gv2trig]

[gv2trig]

[gs2up]

[gvback]

[gvback]

[gvpre]

[gvpre]

1

Pv1up

Tv1fp

Pv1fp

tdetect1
tundetect1

Pundetect1

Pdetect1

Tswt1reju

Pv1reju

Tv1reju

Tv1fail Pv1fail

Tv1repair

tv1dw

Pv1dw

Tv1start

Pv2up

Tv2fp

Pv2fp

Pundetect2

tundetect2
tdetect2Pdetect2

Tv2failPv2fail

Tv2repair

Tswt2reju

Tv2reju

tv2dw

Pv2dw

Tv2start

Tvpre
Pvpretvpres

tvpref

Tvback Pvback
tvbacks

tvbackf

TvudprePvmig

tvmigs

tvmigf

Pvudback tvuds

tvudf

Tvudback

Pvmigf
Pvudf

Tv1newTv2new

[gv1dw]

[gs2dw]

[gvpre]

[gvback]

Pv2reju

Tv1crash
Pv1crash

Tv1reup
Tv2crash

Pv2crash

Tv2reup

[gs1up]

[gs1up]

[gs1up]
[gs1up]

[gs1up]

[gs1up]
[gs1up]

[gs1up]

[gs2up]

[gs2up]

[gs2up]

[gs2up]
[gs2up]

[gs2up]

[gs2up][gs2up]

[gvpre]

[gvback]

[gs1up][gs2up]

	

17	

	

Figure. 6. SRN models for VM with TNFM and TTFM policies (places and transitions added by TTFM policy

are highlighted in gray)

Figure. 7. SRN models for VM with TPFM policy

TNNM, TTNM, and TPNM policies use live VM migration to counteract the VMM rejuvenation. The VM

rejuvenation mechanism is the difference between these policies. Since the failover mechanism is unimplemented,

there is only one active VM on Main host and there is no standby VM on both Main host and Backup host for each

policy. TNNM policy consists of eight submodels: (1) Host1 and (2) Host2 models as depicted in Figure 2(a); (3)

shared storage model shown in Figure 2(b); (4) VMM1 and (5) VMM2 models as depicted in Figure 2(c); (6) VMM1

and (7) VMM2 clock models shown in Figure 2(d); and (8) VM model shown in Figure 4 (without considering

1
Pv1up

Tv1crash
Pv1crash Tv1reup

Tv1repair

Tv1restart

Tvfppre
Pvmig

tvmigs

TvprePvpre
tvpres

Tvback Pvback
tvbacks

tvbackf tvpref

Pvmigf

Tv1new
Tv2new

tvmigf

Pvfpback
Tvfpback

tvfpbackf

tvfpbacks

Pvfpbackf

Pv2up

Tv2crash

Pv2crash

Tv2reup

Tv2fptv2fdw

tv2dw

Tv2repair Pv2dw

Tv2restart
tv1rej

Pv1rej

Tv1rej

tv2rej

Pv2rej

Tv2rej

11
Pv1standbytv1switch

Pv2standby tv2switch

Pv2fail Tv2fail
Pv2fp

tv2frej

Pv1fp
Tv1fail Pv1fail

tv1fdw
Tv1fp

Pv1dw

tv1dw

tvf1rej[gs1dw]

[gs1dw]

[gs1up]

[gs1up]

[gs1up]
[gs1up]

[gs1up]

[gs1up]

[gs2up]

[gs2up]

[gs2up] [gs2up]

[gs2up] [gs2up]

[gs2up]

[gs2up]

[gs1up]

[gs1up]

[gv1trig]

[gv1trig]

[gv2trig]

[gv2trig]

[gv1switch_policy][gv2switch_policy]

[gvpre]

[gvpre]

[gvback]

[gvback]

[gs2dw]

[gs2dw]

11

a

1
Pv1up

Tv1fp

Pv1fp
tdetect1

tundetect1

Pundetect1

Pdetect1

Tswt1reju

Pv1reju

Tv1reju

Pv1standbytv1switch

Tv1fail Pv1fail

Tv1repair

tv1dw

Pv1dw

Tv1start

Pv2up

Tv2fp

Pv2fp

Pundetect2

tundetect2tdetect2Pdetect2

Tv2fail
Pv2fail

Tv2repair

Pv2standby

Tswt2reju

Tv2reju

tv2dw
Pv2dw

Tv2start

tv2switch Tvpre

Pvpre
tvpres

tvpref

Tvback Pvback tvbacks

tvbackf

TvudprePvmig

tvmigs

tvmigf

Pvudback tvuds

tvudf

Tvudback

PvmigfPvudf

Tv1newTv2new

[gv1dw][gs2dw]Pv2reju

Tv1crash
Pv1crash Tv1reup

Tv2crashPv2crash

Tv2reup

[gs1up]

[gs1up]

[gs1up]

[gs1up][gs1up]

[gs1up]

[gs1up]

[gs1up]

[gs2up]

[gs2up]

[gs2up]
[gs2up]

[gs2up]

[gs2up]

[gs2up]

[gs2up] [gs2up] [gs2up]

[gvpre]

[gvpre]

[gvback]

[gvback] [gv1switch_policy][gv2switch_policy]

	

18	

	

places and transitions highlighted in gray area). Policies TTNM and TPNM consist of nine and eight submodels,

respectively. The first seven submodels are the same as in TNNM policy. TTNM policy adds two submodels: VM

model depicted in Figure 4 (considering places and transitions highlighted in gray area) and VM clock model shown

in Figure 2(e). On the contrary, TPNM policy only adds the VM model depicted in Figure 5. Guard functions used

in VM models of these policies are summarized in Table 4.

Finally, we describe the submodels for TNFM, TTFM, and TPFM policies. TNFM policy consists of eight

submodels, where (1)-(7) submodels are the same as TNNM policy and (8) VM model as depicted in Figure 6.

Similarly, TTFM policy consists of nine submodels, while TPFM policy has eight. In both cases, (1)-(7) submodels

are the same as in TNNM policy. TTFM policy adds two submodels: VM clock model shown in Figure 2(e) and the

VM model depicted in Figure 6. Note that transitions highlighted in the gray are have a different guard with respect

to TNFM policy. TPFM policy has the VM model shown in Figure 7. The explanations of these models are similar

to the ones described previously. Particular guard functions used in VM models of these three policies are

summarized in Table 5. The reward functions for the nine models are shown in Table 6. Since the failure and

recovery processes of host, shared storage, and VMM are the same as in those in Section 4.2, in the following we

focus on the VM models.

VM model using time-based rejuvenation. First, we explain the VM model for TTNM policy, which uses time-

based rejuvenation for VM. Initially, there exists one token in Pv1up, representing the active VM in fully stable state.

Later, the active VM transits to FP state (namely, the token is placed in Pv1fp) through the transition Tv1fp representing

the VM software aging. When VM fails due to software aging occurrence but the VM rejuvenation process is not

triggered, the token is moved to Pv1fail by firing the transition Tv1fail. After VM completes its repair, it changes to UP

state. That is, a token is taken from Pv1fail to Pv1up. Finally, when the VM suffers from a non-aging Mandelbug-related

failure, the VM turns to CRASH state (i.e., a token is taken from Pv1up to Pv1crash) and waits for repair. When the VM

is rejuvenated, the token is moved from Pv1up (or Pv1fp) to Pv1rej. As soon as the VM rejuvenation process completes,

the token returns back to pv1up by firing the timed transition Tv1rej.

When the VMM is in FAIL, DOWN, or CRASH states or if the shared storage fails, the VM in UP or FP state

changes to DOWN state (i.e., a token is moved from Pv1up or Pv1fp to place Pv1dw). When VM is in FAIL or CRASH

state at this time, it is suspended and later a warm-VM reboot mechanism is used. When the VMM is in UP or FP

state (places Ph1up or Ph1fp, respectively) and if the shared storage is UP state, the VM is restarted to UP state (place

Pv1up) by firing the timed transition Tv1restart. When the VMM starts rejuvenation and the VM is in UP or FP states,

	

19	

	

the VM will migrate to Backup host whether it is in UP or FP states. If the VM has been migrated to Backup host,

the failure, recovery, and rejuvenation behaviors of the VM on the VMM2 is equal to the ones on the VMM1. Details

of the live VM migration process are described in Section 4.4.

Table 4. Guard function of VM Models for TNNM, TTNM and TPNM policies

Guard Definition

gw1up if(#(Pw1up)==1) then 1 else 0

gw1dw if(#(Pw1fail)==1) then 1 else 0

gh1rej if(#(Ph1clock)==1&&#(Pw1up)==1) then 1 else 0

gh1trig if(#(Ph1trigger)==1&&#(Pw1up)==1) then 1 else 0

gw2up if(#(Pw2up)==1) then 1 else 0

gw2dw if(#(Pw2fail)==1) then 1 else 0

gh2rej if(#(Ph2clock)==1&&#(Pw2up)==1) then 1 else 0

gh2trig if(#(Ph2trigger)==1&&#(Pw2up)==1) then 1 else 0

gh1interval if(#(Ph1up)==1||#(Ph1fp)==1) then 1 else 0

gh1policy if(#(Pv1up)==0&&#(Pv1fp)==0&&#(Pvpre)==0&&#(Pvmig)==0&&#(Pvback)==0&&#(Pvfpback)==0) then 1 else 0

gh1reset If(#(Ph1reju)==1) then 1 else 0

gh2interval if(#(Ph2up)==1||#(Ph2fp)==1) then 1 else 0

gh2policy if(#(Pv2up)==0&&#(Pv2fp)==0&&#(Pvpre)==0&&#(Pvmig)==0&&#(Pvback)==0&&#(Pvfpback)==0) then 1 else 0

gh2reset If(#(Ph2reju)==1) then 1 else 0

gs1up if(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1) then 1 else 0

gs1dw if(#(Ph1fail)==1||#(Ph1dw)==1||#(Ph1crash)==1||#(Pfail)==1) then 1 else 0

gs2up if(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1) then 1 else 0

gs2dw if(#(Ph2fail)==1||#(Ph2dw)==1||#(Ph2crash)==1||#(Pfail)==1) then 1 else 0

gvpre if(#(Ph1policy)==1&&(#(Ph2up)==1||#(Ph2fp)==1)&&#(Pup)==1) then 1 else 0

gvback if(#(Ph2policy)==1&&(#(Ph1up)==1||#(Ph1fp)==1)&&#(Pup)==1) then 1 else 0

gv1trig if(#(Pvtrigger)==1&&#(Pup)==1) then 1 else 0

gv2trig if(#(Pvtrigger)==1&&#(Pup)==1) then 1 else 0

gvinterval if(#(Ph1up)==1||#(Ph1fp)==1||#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1) then 1 else 0

gvpolicy if(#(Ph1up)==1||#(Ph1fp)==1||#(Ph2up)==1||#(Ph2fp)==1) then 1 else 0

gvreset if(#(Pv1rej)==1||#(Pv2rej)==1) then 1 else 0

	

20	

	

Table 5. Guard functions of VM models for TNFM, TTFM and TPFM policies

Guard Definition

gv1switch_TNFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)) then 1 else 0

gv2switch_TNFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)) then 1 else 0

gv1switch_TTFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)||#(Pv1rej)==1)) then 1 else 0

gv2switch_TTFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)||#(Pv2rej)==1)) then 1 else 0

gv1switch_TPFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)||#(Pv1reju)==1)) then 1 else 0

gv2switch_TPFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)||#(Pv2reju)==1)) then 1 else 0

Table 6. Reward rates for computing the steady-state unavailability of different models

Policy Unavailability condition

NNNN, TNNN if(#(Pvdw)==1||#(Pvfail)==1||#(Pvcrash)==1) then 1 else 0

TNFN if(#(Pvdw)==1) then 1 else 0

TNNM, TTNM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(
Pvfpbackf)==1) then 1 else 0

TPNM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pdetect1)==1||#(Pv1reju)==1#(Pdetect2)==1||#(Pv2reju)==1||#(
Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(Pvfpbackf)==1) then 1 else 0

TNFM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(
Pvfpbackf)==1) then 1 else 0

TTFM if(#(Pv1dw)==1||#(Pv2dw)==1||#(Pvmigf)==1||#(Pvfpbackf)==1) then 1 else 0

TPFM if(#(Pv1dw)==1||#(Pv2dw)==1||#(Pvmigf)==1||#(Pvudf)==1||#(Pdetect1)==1||#(Pdetect2)==1) then 1 else 0

VM model using prediction-based rejuvenation. In this part we detail the VM model for TPNM policy, which

uses prediction-based rejuvenation for VM (see Figure 5). Initially, there exists a token in Pv1up, representing the

fully stable state of VM. At time passes, the VM eventually transits to a FP state, that is, a token is taken from Pv1up

and placed in Pv1fp through the transition Tv1fp representing the software aging of the VM. It is assumed that RM

detects VM software aging with probability λdetect. Thus, place Pv1fp has two immediate transitions with appropriate

probabilities for detecting aging or failures. When the aging is detected, the immediate transition tdetect1 fires and the

token is deposited in Pdetect1. Otherwise (i.e., detection fails), the token in place Pv1fp is deposited in Pundetect1. In

DETECT state (represented by Pdetect1), the VM finishes its tasks in hand and stops receiving requests. After a

preparing process, the VM gets ready to be rejuvenated, which is represented by firing of transition Tswt1reju (that is,

the token is deposited in Pv1reju). When the VM ends rejuvenation, the transition Tv1reju fires and the token is placed

in Pv1up, which represents the VM is in UP state. In UNDETECT state (place Pundetect1), the token is moved to Pv1fail

by firing the transition tv1fail when the VM failure occurs due to software aging. Otherwise (i.e., when the VM suffers

	

21	

	

from a non-aging Mandelbug-related failure), the VM falls to CRASH state (i.e., the token is taken from place Pv1up

to place Pv1crash).

As before, when the VMM is in FAIL, DOWN, or CRASH state, or if the shared storage fails, the VM in UP,

FP, or UNDETECT state changes to DOWN state (i.e., the token is moved from Pv1up, Pv1fp, or Pundetect1 to place

Pv1dw). When VM is in FAIL, DETECT, REJU, or CRASH states at this time, its execution is suspended and later a

warm-VM reboot mechanism is used. When the VMM is in UP or FP state and the shared storage is in UP state,

then the VM is restarted to UP state by firing the timed transition Tv1start. When the VMM is going to be rejuvenated

and the VM is in UP or FP state, the VM migrates to Backup host whether this host is in UP or FP state as well.

Once the VM was migrated, failure, recovery, and rejuvenation behaviors of the VM on the VMM2 are similar to

the ones on the VMM1. The process of live VM migration is described in the sequel.

4.4. Live VM Migration Process

 At the beginning, the VM is on the VMM1 of Main host. When the clock of VMM1 requests rejuvenation for

VMM1, the guard gvpre enables Tvpre and Tvudpre (Tvfppre) for live VM migration as long as VMM2 is available. When

the live VM migration is completed, the token is deposited in Pv2up and Pundetect2 (Pv2fp) each. Note that the live

migration may fail with probability (1 − λmigs). When the VM migration fails, transition tvmigf and tvpref are fired and

the token arrives at Pvmigf. Then, the token is deposited in pv1up by firing the transition Tv1new when the VMM1 is in

UP or FP state. Otherwise, if the token is deposited in Pv2up (VM is migrated from its UP state) or Pundetect2 (VM is

migrated from its UNDETECT state) or Pv2fp (VM is migrated from its FP state), VMM1 rejuvenation starts. On the

contrary, when the token is deposited in Pvpre, Pvmig, Pvudback (Pvfpback) and Pvback, the VMM1 cannot be rejuvenated,

since VMM1 is still being used and the migration process has not completed yet.

5. Numerical Analysis and Discussions

We use the Stochastic Petri Net package (SPNP) tool [31] to carry out numerical analysis of the nine policies

models. The Gauss-Seidel method [33] is used to improve computation precision. Model parameter values are set

according to the existing related literature [20]-[24] and summarized in Table 2. In the following, we analyze steady-

state availability, downtime, and parameter sensitivity of the system under aforementioned policies. Note that

steady-state availability is often specified as a number of nines in Service Level Agreement (SLA) documents as a

marketing feature [37]. However, using the ‘nines’ has been in question because it could not appropriately reflect

the variations of steady-state availability with its time of occurrence [37]. Moreover, it is hard to apply the number

	

22	

	

of nines in modeling and formula. Therefore, as in the existing research papers, this paper uses the probability to

denote steady-state availability.

5.1. Steady-State Availability Analysis

This section performs numerical analysis by using default settings. Table 7 shows the steady-state availability

(SSA) for each policy. As expected, we observe that the more HA mechanisms deployed, the higher the VM

availability is. In the sequel, we investigate the effect of VMM clock interval on SSA.

We first compare NNNN, TNNN, and TNFN policies. As Table 7 indicates, NNNN policy with no rejuvenation

for VMM and VM achieves the lowest SSA of 0.97168871533. When VMM time-based rejuvenation mechanism

is considered (TNNN policy), SSA improves to 0.989856441223 and further to 0.991734992389 with VM failover

mechanism for VM (TNFN policy). Note that the significance of the SSA improvement depends on the concrete

scenario where it is used. For example, the formula for calculating Downtime (measured in hours) is normally (1-

SSA)×8760. Here, 8760 is the number of hours of 365 days. In this scenario, the SSA improvement 0.018167726

from NNNN to TNNN becomes significant.

We now vary the VMM clock interval from 10 hours to 300 hours. Note that this variation has no effect on SSA

of NNNN policy but effectively affects to SSA of TNNN and TNFN policies. Figure 8 plots the SSA of both TNNN

and TNFN policies while varying the VMM clock interval from 10 hours to 300 hours. Based on our results, we

observe that:

(1) SSA of both TNNN and TNFN policies are improved with the increasing interval of VMM clock when the

interval is small. For example, less than 90h. This is because the frequently VMM rejuvenation leads to VM

shut down more often, and then makes the VM SSA lower.

(2) SSA of both TNNN and TNFN policies stops increasing and starts to decrease when the VMM clock interval

reaches a certain value. In our numerical analysis, this value is 260 hours for TNNN policy and 160 hours

for TNFN policy. The reason behind this fact is that the less frequent rejuvenation, the more frequent VMM

software aging-related failure occurrence. Accordingly, the SSA of VM decreases due to the close

dependencies between VMM and VM, as mentioned in Section 3.2.

(3) Failover helps to improve SSA. When the VMM clock interval is set to 10 hours, there is an obvious SSA

improvement.

	

23	

	

We then compare the failover mechanism with live VM migration by comparing TNFN, TNNM, and TNFM

policies. Results are shown in Figure 9. Note that the results of TNFN policy (see Figure 8) are also depicted in this

figure to highlight the difference between TNFN and TNNM policies. We observe that the SSA of TNNM policy

increases from 0.989520273 to 0.989847214 when the VMM clock interval ranges from 5 hours to 15 hours. The

reason is that frequent VMM rejuvenation leads to frequent VM migration and hence, the SSA decreases due to VM

migration failures. These results suggest to migrate VM so often can be counterproductive. But as the VMM clock

interval further increases, SSA under TNNM decreases and approximates to SSA under TNNN policy. The reason

is that the chance of triggering a live VM migration caused by VMM rejuvenation is reduced when the VMM clock

interval is large.

Table 7. Steady-state availability (SSA) of the system for each policy under given parameters

Policy NNNN TNNN TNFN TNNM TTNM

SSA 0.97168871533 0.98956441223 0.991734992389 0.989617052647 0.998677663722

Policy TPNM TNFM TTFM TPFM

SSA 0.999436751527 0.998314139248 0.99968371 0.999927083

(a)

(b)

Figure. 8. Steady-state availability of (a) TNNN and (b) TNFN policies

It is also observed that the SSA of TNFM policy increases from 0.997935120797 to 0.998092670444 when the

VMM clock interval ranges between 20 to 60 hours, since less VMM rejuvenation leads to less VM migration failure

occurrences and thus, there is a less effect of migration failures. Similarly, when the VMM clock interval is larger

than 60 hours, the SSA of TNFM policy decreases and even becomes smaller than under small VMM clock interval,

but still outperforms to TNFN and TNNM policies. The reason is that when the VMM rejuvenation is less frequent

the VMM may fail easily due to VMM software aging. Hence, the VM has to shut down due to VMM aging failure

leading to a decreasing of SSA.

0.98956400

0.98956410

0.98956420

0.98956430

0.98956440

0.98956450

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TNNN

0.99173470
0.99173475
0.99173480
0.99173485
0.99173490
0.99173495
0.99173500
0.99173505

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TNFN

	

24	

	

These results also indicate that failover mechanism performs better than live VM migration mechanism, in terms

of improving SSA. Recall that TNFN policy with failover mechanism reduces downtime caused by VM aging or

non-aging Mandelbug-related failures, but however, VM is shut down when VMM fails or rejuvenates. Hence, this

leads to great transition loss similar to cold-VM rejuvenation. TNNM policy using live VM migration reduces the

downtime caused by VMM rejuvenation, but downtime caused by VM aging or non-aging Mandelbug related

failures cannot be overcome. On the contrary, TNFM policy outperforms both TNNM and TNFN policies by using

failover and live VM migration mechanisms together. In this way, we avoid downtime caused by VM aging and

non-aging Mandelbug-related failures and also minimize the impact of VMM rejuvenation. As summary, TNFM

policy outperforms the others, in terms of SSA.

Finally, we investigate the effect of VM rejuvenation mechanisms on SSA using TNNM, TTNM, and TPNM

policies. Figure 10 plots the SSA of these policies while varying the VMM clock interval, assuming only live VM

migration enabled. Both VM time-based and prediction-based rejuvenation mechanisms improve SSA compared

with no rejuvenation. In addition, the results show that predication-based mechanism outperforms time-based

mechanism under high software aging detection probability.

Figure 11 plots the SSA of these policies while varying the VMM clock interval, assuming both VM failover

and live migration are deployed. These results confirm that: (1) VM rejuvenation is an effective way to improve the

SSA; and (2) predication-based mechanism performs better than time-based mechanism. In addition, these results

indicate that the SSA of TTFM and TPFM policies increase slowly as long as the VMM clock interval increases.

However, after 260 hours, the value of VMM clock interval has little impact on the SSA of these policies (Figure

12 shows the precise variation of SSA). Figure 11 also shows how the SSA of TNFM policy decreases as the VMM

clock interval increases, similar to the previous case (see Figure 11). As shown in Figure 10 and Figure 11, the

combination of failover and live VM migration mechanisms performs better than when individual mechanisms are

applied.

	

25	

	

Figure. 9. Steady-state availability of TNFN, TNNM and TNFM policies by varying the VMM clock interval

Figure. 10. Steady-state availability of TNNM, TTNM and TPNM policies by varying the VMM clock

interval

Figure. 11. Steady-state availability of TNFM, TTFM and TPFM policies by varying the VMM clock
interval

0.9890
0.9900
0.9910
0.9920
0.9930
0.9940
0.9950
0.9960
0.9970
0.9980
0.9990

5 10 15 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TNFN

Policy TNNM

Policy TNFM

0.9890
0.9900
0.9910
0.9920
0.9930
0.9940
0.9950
0.9960
0.9970
0.9980
0.9990
1.0000

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TNNM

Policy TTNM

Policy TPNM

0.9950
0.9955
0.9960
0.9965
0.9970
0.9975
0.9980
0.9985
0.9990
0.9995
1.0000
1.0005

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TNFM

Policy TTFM

Policy TPFM

	

26	

	

Figure. 12. Detail of steady-state availability of TTFM and TPFM policies by varying the VMM clock
interval

5.2. Downtime Analysis

Figure 13 shows the downtime per year of the nine policies. Downtime is measured in the order of hours. Results

show that the best policy is TPFM, achieving a downtime near to 40 minutes, while the worst policy is NNNN that

achieves a downtime about 248.07 hours. Using failover mechanism reduces the downtime caused by VM non-

aging Mandelbug-related or aging-related failures in active VM, since it is less transaction loss as the tasks reload

to standby VM quickly. Similarly, using live VM migration technique can also reduce the downtime caused by the

VMM rejuvenation by migrating the active VM to other host, while the active VM can nearly keep running due to

pre-copy policy.

Figure. 13. Downtime per year for the nine policies

5.3. Sensitivity Analysis

Previous results show that software rejuvenation, failover, and live migration techniques are effective HA

mechanisms for improving VM availability. Parameter values can, however, produce influence on model results as

Section 5.1 shown by the effect of VMM clock interval. In this section, we aim to perform the sensitivity analysis

in terms of live migration successful probability, VM rejuvenation clock interval, aging detection probability, VM

and VMM aging rates. This analysis becomes critical to choose an appropriate combination of these HA techniques.

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

St
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

VMM clock interval(h)

Policy TTFM

Policy TPFM

0

50

100

150

200

250

VM
 d

ow
nt

im
e

pe
r a

 y
ea

r
(h

ou
r)

	

27	

	

5.3.1 Live migration successful probability

We first remove VM rejuvenation and failover mechanisms to investigate how probability of a successful live

VM migration affects SSA. We then add VM rejuvenation considering time-based and prediction-based VM

rejuvenation. These results are shown in Figure 14. We notice that the larger live VM migration successful

probability, the higher SSA is. In addition, we observe that prediction-based still outperforms time-based VM

rejuvenation.

(a)

(b)

(c)

Figure. 14. SSA of (a) TNNM, (b) TTNM and (c) TPNM policies by varying the probability of a live
VM successful migration

5.3.2 VM clock interval

We now further examine the effect of other parameters. Figure 15 depicts how the VM clock interval,

ranging from 10 to 200 hours, affects SSA in TTNM policy. SSA increases from 0.997940680365 to

0.998704632303 when VM clock interval ranges from 10 to 40 hours. Note that in TTNM policy without

failover mechanism, frequent VM rejuvenation may lead to more transaction loss and hence, the SSA will

decrease. Similarly, SSA starts to decrease when the VM clock interval is bigger than 40 hours since by

increasing VM clock interval, the VM fails more easily due to VM software aging before its rejuvenation.

Hence, the appropriate settings of the VMM and VM rejuvenation triggering intervals will maximize the VM

SSA.

Figure. 15. Steady-state availability of TTNM policy by varying the VM clock interval

0.9892

0.9893

0.9894

0.9895

0.9896

0.9897

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9St

ea
dy

-s
ta

te
 av

ai
la

bi
lit

y

Live VM migration successful
probability

Policy TNNM

0.9986755

0.998676

0.9986765

0.998677

0.9986775

0.998678

0.1 0.3 0.5 0.7 0.9

St
ea

dy
-s

ta
te

 av
ai

la
bi

lit
y

Live VM migration successful
probability

Policy TTNM
0.9993

0.9994

0.9994

0.9995

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9St

ea
dy

-s
ta

te
 av

ai
la

bi
lit

y

Live VM migration successful
probability

PolicyTPNM

0.9974
0.9976
0.9978
0.9980
0.9982
0.9984
0.9986
0.9988

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0St

ea
dy

-s
ta

te
 av

ai
la

bi
lit

y

VM clock interval(h)

Policy TTNM

	

28	

	

5.3.3 Aging detection probability

Figure 16 describes SSA of TPNM policy by varying aging detection probability. As expected, analytical

results show that a higher aging detection probability leads to a higher SSA. In summary, we observe that a proper

combination of VMM and VM rejuvenation becomes useful to gain high levels of SSA.

Figure. 16. Steady-state availability of TPNM policy by varying the probability of aging detection

5.3.4 VM and VMM aging rates

This section shows the effects of both VM and VMM aging rates on SSA. All VMs on the same VMM share the

physical memory. Thus, both VM and VMM aging rates depend on the workload running on the system, in terms

of VMs and the software running on them. Thus, this section results could reflect the effect of varying workload on

the capability of each policy. The above numerical analysis results validate the ability of predication-based VM

rejuvenation mechanism. Thus, we focus on investigating NNNN, TNNN, TNFN, TNNM, TPNM, TNFM, and

TPFM. Numerical analysis is carried out by varying VM aging time from 2 days to 12 and varying VMM from 15

days to 45 days, respectively. Figure 17(a) and Figure 18 (a) show the results. Figure 17(b) and Figure 18 (b) detail

the variation of steady-state availability under TPFM, TNFM and TPNM. These results confirm the conclusion of

Section 5.1 about the capability of each policy. We could observe that

(1) VMM time-based rejuvenation mechanism significantly improves VM steady-state availability.

(2) Failover mechanism works better than live migration mechanism, verified by Figure 9 results.

(3) VM predication-based rejuvenation technique could further improve steady-state probability.

(4) The SSA improvement from TNNM to TPNM is larger than from TNNM to TNFM, suggesting probability

of detecting aging successfully is more important than failover mechanism parameter in terms of improving

SSA.

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

St
ea

dy
-s

ta
te

 av
ai

la
bi

lit
y

Probability of detecting aging successfully

Policy TPNM

	

29	

	

(5) The SSA improvement from TNNN to TNNF is larger than from TNNN to TNNM, suggesting failover

mechanism parameter is more important than probability of successful live VM migration in terms of

improving SSA.

(a) (b)z

Figure. 17. Steady-state availability under different policies by varying the VM aging time

(a) (b)

Figure. 18. Steady-state availability under different policies by varying the VMM aging time

6. Conclusions and Future Work

This paper applies Stochastic Reward Nets to analyze the effect of diverse high-availability techniques on the

VM steady-state availability in a virtualized system composed of three components (a main host and a backup host

containing a VMM and VMs, respectively, and a management host) connected to a shared storage, under a variety

of failures. In particular, we consider main host, backup host, shared storage, VMM, and VM failures. As high-

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

2 3 4 5 6 7 8 9 10 11 12

TPFM TNFM TPNM TNNM
TNFN TNNN NNNN

St
ea

dy
-s

ta
te

pr
ob

ab
ili

ty

VM againg time (Day)

0.9980

0.9985

0.9990

0.9995

1.0000

2 3 4 5 6 7 8 9 10 11 12

TPFM TNFM TPNM

St
ea

dy
-s

ta
te

pr
ob

ab
ili

ty

VM againg time (Day)

0.9700

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

15 20 25 30 35 40 45

TPFM TNFM TPNM TNNM
TNFN TNNN NNNN

St
ea

dy
-s

ta
te

pr
ob

ab
ili

ty

VMM againg time (Day)

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

15 20 25 30 35 40 45

TPFM TNFM TPNM

St
ea

dy
-s

ta
te

pr
ob

ab
ili

ty

VMM againg time (Day)

	

30	

	

availability techniques, in this paper we study VM and VMM time-based and prediction-based rejuvenation, VM

failover, and live VM migration. Our numerical results indicate that: (i) VMM clock interval is a critical factor for

the ability of live VM migration technique in improving VM SSA; (ii) the combination of failover mechanism with

live VM migration significantly improve VM availability; and (iii) VM prediction-based rejuvenation outperforms

VM time-based rejuvenation, in terms of steady-state availability.

In this paper, we focus on the VM steady-state analysis. It is known that transient availability evaluation is

important for a highly dependable system in some cases. We plan to expand the proposed models to analyze the VM

survivability when a system failure occurs. It is noticed that, as the existing work on analyzing the availability of a

virtualized system, this paper considered a simple system aging model, namely exponential distribution with fixed

rate. However, the aging phenomena of a complex system is a result of a variety of factors, including memory

utilization increase due to memory leaks, resources saturation, and error accumulation, etc.. Thus, we plan to extend

the proposed modeling and analysis to the virtualized system with a more realistic aging process. In addition, we

will consider multiple instances of standby and active VM running in the same active host, as well as multiple

instances of standby VM maintained in the same backup host. Moreover, we will use these analysis results to design

an automatic parameter setting mechanism for finding the appropriate values to maximize SSA while minimizing

the cost of each HA technique implementation and deployment.

Acknowledgements

The research of Xiaolin Chang was supported by National Natural Science Foundation of China (No. 61572066).

The research of Ricardo J. Rodríguez was supported in part by the EU Horizon 2020 research and innovation

program under grant agreement no. 644869 (DICE), by Spanish MINECO project CyCriSec (TIN2014-58457-R),

and by University of Zaragoza and Centro Universitario de la Defensa under project number UZCUD2016-TEC-

06.

References

[1] Ruest, N. and Ruest, D. (2009) Virtualization, A Beginner's Guide.	1 Edition. McGraw-Hill Education.

[2] Grottke, M. and Trivedi, K.S. (2007) Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate, Computer, 40(2), 107-
109.

[3] Grottke, M., Matias, R. and Trivedi, K.S. (2008) The fundamentals of software aging. Proceedings of the 2008 IEEE
International Conference on Software Reliability Engineering Workshops (ISSRE Wksp), pp. 1-6.

[4] Carrozza, D., Cotroneo, D., Natella, R., Pecchia, A. and Russo, S. (2010) Memory leak analysis of mission-critical
middleware. Journal of Systems and Software, 83 (9), 1556-1567.

[5] Tankard, C. (2011) Advanced Persistent threats and how to monitor and deter them. Network Security 2011, 8, 16-19.

	

31	

	

[6] http://www.stratus.com/assets/aberdeen-maintaining-virtual-systems-uptime.pdf.

[7] Mina, N., Maria, T. and Ferhat, K. (2016) Availability in the cloud: state of the art. J. Network and Computer Applications,
60, 54-67.

[8] VMWare, Automating High Availability (HA) Services with VMware HA, Tech. rep., VMWare, Inc., available at
https://www.vmware.com/pdf/ vmware_ha_wp.pdf (accessed November 21, 2016) (2006).

[9] Kanoun, K., Borrel, M., Morteveille, T. and Peytavin, A. (1999) Availability of CAUTRA, a subset of the French air
traffic control system. IEEE Transactions on Computers, 48 (5), 528-535.

[10] Ramani, S., Trivedi, K.S. and Dasarathy,B. (2000) Performance analysis of the corba event service using stochastic
reward nets. Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 238-247.

[11] Leangsuksun, C., Shen, L., Liu, T., Song, H. and Scott, S.L. (2003) Availability prediction and modeling of high mobility
OSCAR Cluster. Proceedings of the 2003 IEEE International Conference on Cluster Computing, pp. 380-386.

[12] Lanus, M., Yin, L. and Trivedi, K.S. (2003) Hierarchical composition and aggregation of state-based availability and
performability Models. IEEE Transactions on Reliability, 52 (1), 44-52.

[13] Longo, F., Ghosh, R., Naik, V.K. and Trivedi, K.S. (2011) A scalable availability model for Infrastructure-as-a-Service
cloud. Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN), pp.
335-346.

[14] Trivedi, K.S., Andrade, E. and Machida, F. (2012) Chapter 1 - Combining Performance and Availability Analysis in
Practice, in: A. Hurson, S. Sedigh (Eds.), Dependable and Secure Systems Engineering, Vol. 84 of Advances in
Computers, Elsevier, 1-38.

[15] Thein, T. and Chi, S.D. Park, J.S. (2007) Availability Analysis and Improvement of Software Rejuvenation Using
Virtualization, Economics and Applied Informatics, (1), 5-14.

[16] Thein, T., Chi, S.D. and Park, J.S. (2008) Improving Fault Tolerance by Virtualization and Software Rejuvenation.
Proceedings of the 2nd Asia International Conference on Modeling Simulation (AICMS), pp. 855-860.

[17] Thein, T. and Chi, S.D. Park, J.S. (2008) Availability modeling and analysis on virtualized clustering with rejuvenation.
International Journal of Computer Science and Network Security, 8 (9), 72-80.

[18] Melo, M., Maciel, P., Araujo, J., Matos, R. and Ara´ujo, C. (2013) Availability study on cloud computing environments:
live migration as a rejuvenation mechanism. Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 1-6.

[19] Bruneo, D., Distefano, S., Longo, F., Puliafito, A. and Scarpa, M. (2013) Workload-Based Software Rejuvenation in
Cloud Systems. IEEE Transactions on Computers, 62 (6), 1072-1085.

[20] Kim, D.S., Machida, F. and Trivedi, K.S. (2009) Availability modeling and analysis of a virtualized system. Proceedings
of the 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), pp.365-371.

[21] Nguyen, T.A., Kim, D.S. and Park, J.S. (2014) A comprehensive availability modeling and analysis of a virtualized server
system using stochastic reward nets, The Scientific World Journal 2014, 18.

[22] Rezaei, A. and Sharifi, M. (2010) Rejuvenating high available virtualized systems. Proceedings of the International
Conference on Availability, Reliability, and Security 2010 (ARES), pp.289-294.

[23] Xu, J., Li, X., Zhong, Y. and Zhang, H. (2014) Availability modeling and analysis of a single-server virtualized system
with rejuvenation, Journal of Software, 9(1), 129-139.

[24] Machida, F. and Kim, D.S. Trivedi, K.S. (2013) Modeling and analysis of software rejuvenation in a server virtualized
system with live VM migration, Performance Evaluation, 70 (3), 212-230.

[25] Nguyen, T.A., Kim,D.S. and Park, J.S. (2016) Availability modeling and analysis of a data center for disaster tolerance.
Future Generation Computer Systems, 56, 27-50.

[26] Grottke, M., Li, L., Vaidyanathan, K. and Trivedi, K.S. (2006) Analysis of software aging in a web Server. IEEE
Transactions on Reliability, 55 (3), 411–420.

[27] Alonso, J., Bovenzi, A., Li, J., Wang, Y., Russo, S. and Trivedi, K.S. (2012) Software Rejuvenation: Do IT & Telco
Industries Use It? Proceedings of the IEEE 23rd International Symposium on Software Reliability Engineering

	

32	

	

Workshops (ISSREW), pp. 299-304.

[28] Stephen, A.H. (2010) Systems research and development at VMware. Operating Systems Review, 44(4), 1-2.	

[29] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C. and Pratt, I. Warfield, A. (2005) Live migration of
virtual machines. Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-
Volume 2, NSDI’05, USENIX Association, Berkeley, CA, USA, pp. 273-286.

[30] Machida, F., Kim, D.S., Park, J.S. and Trivedi, K.S. (2008) Toward optimal virtual machine placement and rejuvenation
scheduling in a virtualized data center. Proceedings of the 2008 IEEE International Conference on Software Reliability
Engineering Workshops, pp. 1-3.

[31] Ciardo, G., Muppala, J. and Trivedi, K.S. (1989) SPNP: stochastic Petri net package. Proceedings of the 3rd International
Workshop on Petri Nets and Performance Models (PNPM), pp. 142-151.

[32] Muppala, J., Ciardo, G. and Trivedi, K.S. (1994) Stochastic Reward Nets for Reliability Prediction. Communications in
Reliability, Maintainability and Serviceability, 1 (2), 9-20.

[33] Hazewinkel, M. (Ed.) Encyclopaedia of Mathematics Springer, 1994.

[34] Grottke, M. and Trivedi, K.S. (2005) A classification of software faults. The Journal of Reliability Engineering
Association of Japan, vol 27, 425-438.

[35] Ghosh R., Francesco, L., Flavio, F., Stefano, R. and Trivedi, K.S. (2014) Scalable analytics for IaaS cloud availability.
IEEE Trans. Cloud Computing 2(1), 57-70.

[36] Marcello, C., Domenico, C., Flavio, F. and Stefano, R. (2016) To Cloudify or Not to Cloudify: The Question for a
Scientific Data Center. IEEE Trans. Cloud Computing 4(1), 90-103.

[37] Marcus, E. The myth of the nines, [Online; accessed on November 21,2016], available at
http://searchstorage.techtarget.com/tip/The-myth-of-the-nines (Aug. 2003).

[38] Wang, D., Xie, W. and Trivedi, K.S. (2006) Performability analysis of clustered systems with rejuvenation under varying
workload. Performance Evaluation (64), 247-265.

