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Abstract 

	

Availability evaluation of a virtualized system is critical to the wide deployment of cloud computing services. 

Time-based, prediction-based rejuvenation of virtual machines (VM) and virtual machine monitors (VMM), VM 

failover, and live VM migration are common high-availability (HA) techniques in a virtualized system. This paper 

investigates the effect of combination of these availability techniques on VM availability in a virtualized system 

where various software and hardware failures may occur. For each combination, we construct analytic models 

rejuvenation mechanisms improve VM availability; (2) prediction-based rejuvenation enhances VM availability 

much more than time-based VM rejuvenation when prediction successful probability is above 70%, regardless 

failover and/or live VM migration are also deployed; (3) failover mechanism outperforms live VM migration, 

although they can work together for higher availability of VM. In addition, they can combine with software 

rejuvenation mechanisms for even higher availability; (4) and time interval setting is critical to a time-based 

rejuvenation mechanism. These analytic results provide guidelines for deploying and parameter setting of HA 

techniques in a virtualized system. 
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1. Introduction 

System virtualization technology has been widely adopted for academic and industrial purposes. In a virtualized 

system [1], a virtual machine monitor (VMM) is a software layer between (one or more) operating systems and a 

physical hardware able to emulate hardware of a physical machine. Thus, it plays a critical role in the virtualized 

system, often becoming the single point of failure. A virtual machine (VM) emulates a particular computer system, 

running on the top of VMM. Like traditional software, VM and VMM are also subject to software-related problems 

as software aging, bugs, crashes, and so on [2]-[4]. These problems clearly reduce the VM availability and increase 

VM downtime. Without loss of generality, we use application availability and VM availability interchangeably. 

Large downtime of applications may lead to productivity loss and even revenue loss [5][6]. Software rejuvenation, 

failover, and live VM migration are common high availability (HA) techniques used in a virtualized system [7][8]. 

The tremendous growth in the deployment of virtualized systems demands the availability analysis of these systems 

with HA techniques [7].  

State-space models are expressive and popular models applied to availability analysis in different domains, such 

as cluster computing systems, telecommunication systems, or air control systems, among others [9]-[13]. In 

particular, they are found also effective for VM availability analysis [14]. The existing model-based VM availability 

analysis ignored the existence of VMM failures [15]-[17], assumed that one type failure exists in the considered 

system [15][16][18][19], considered only rejuvenation mechanisms [20][21], or considered only a physical host 

[19][22][23]. Thus, their analyses did not capture the effect of live VM migration on VM availability. Similarly, to 

assume only one VM in a host [20][24][25] cannot capture the effect of VM failover on VM availability. 

In this paper, we consider a virtualized system composed with three main components: Main host, Backup host, 

and Management host. Main host includes active and standby (or backup) VMs. Backup host contains only standby 

VMs. Applications are deployed in the active VM. When the active VM fails, different actions may happen 

according to the restoring policy, such as the use of a standby VM on the same host, the migration to the other host, 

or simply the failed VM is restarted. This paper aims to investigate the effect of software rejuvenation, failover, and 

live VM migration techniques on the VM availability in a virtualized system with a variety of failures. We assume 

that these HA techniques are ready to be used and their implementations are out of the scope of this paper. 

The contribution of this paper is three-fold: first, we investigate VM availability in a virtualized system with 

several co-existing failures, including hardware, shared storage, live VM migration, non-aging Mandelbug-related, 
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and aging-related failures (in both VM and VMM). Second, we construct stochastic reward nets (SRN) models for 

each combination of software rejuvenation, failover, and live VM migration in order to analyze the induced effect 

of these techniques over VM availability. We also investigate whether some of these HA techniques could work 

together to improve the VM availability and the capability of this cooperation. Third, we carry out sensitivity 

analysis to investigate the effect of model parameters on the ability of software rejuvenation, failover, and live VM 

migration mechanisms in improving VM availability. 

The proposed SRN models help to select the combination of failure recovery techniques and the parameter 

settings of a given scenario. Our numeric results indicate that: 

(1) Both VMM rejuvenation and VM rejuvenation mechanisms enhance system availability when various 

failures co-exist. 

(2) Prediction-based VM rejuvenation mechanism improves the VM availability in a higher degree than time-

based VM rejuvenation mechanism, when prediction successful probability is above 70% and regardless 

failover and/or live VM migration are deployed. 

(3) Failover mechanism performs better than live VM migration and they can work together for higher 

availability. In addition, they can work with software rejuvenation mechanisms for achieving even higher 

availability. 

(4) Rejuvenation time interval setting is critical to a time-based rejuvenation mechanism. VMM clock interval 

is critical for the ability of live VM migration technique in improving VM steady-state availability. 

The rest of the paper is organized as follows. In Section 2, we discuss the related work about HA techniques and 

model-based VM availability analysis. Section 3 introduces the system architecture considered in this paper. Section 

4 describes SRN models constructed for analysis. The numerical analysis and discussion are presented in Section 5. 

Section 6 concludes this paper and discusses the future work. 

2. Related Work 

Both software failures and hardware component faults may lead to failures into a virtualized system and then 

reduce VM availability. Software failures are caused by inherent software design bugs. In [34], the authors classified 

software bugs into the following three main categories: 

(1) Bohrbug, which manifests a failure when certain fixed set of conditions are met.  
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(2) Non-aging related Mandelbug, whose activation and/or error propagation is complicated and uncertain.  

(3) Aging related Mandelbug, whose activation process is related to an accumulation of errors or resources 

consumption. 

Bohrbug can be easily fixed. The left two kinds of bugs are hard to mitigate. In this paper, we ignore Bohrbugs 

and focus on non-aging related Mandelbugs. Both of the non-aging related Mandelbugs and the aging-related bugs 

occur on the VMMs and VMs subsystems [24]. When the non-aging related Mandelbugs failures happen, the VMM 

or VM would be in crash and need to be repaired. For long-running VMMs and VMs, software aging is one of the 

major causes of software failures [3]. Software aging has been observed in many systems, including web servers 

and enterprise clusters [26][27]. Software aging not only increases the failure rate and thus degrades the system 

performance, but also leads to system crashes [2]. Software rejuvenation [3] is a software fault tolerance technique 

to defend against software aging. This technique gracefully stops the execution of an application/system and 

periodically restarts it at a clean internal state in a proactive manner. Two main kinds of software rejuvenation 

approaches are distinguished: 

• Time-based rejuvenation. Rejuvenation is triggered by a clock counting time. Analytical models help finding 

out the optimal interval to maximize availability and minimize downtime cost. 

• Prediction-based rejuvenation. Rejuvenation is triggered when the system behaviors meet some predefined 

criteria or particular conditions. Machine learning, statistical approaches, structural models, and other 

techniques have been applied to define such conditions.  

Besides software rejuvenation, failover solution and live VM migration are the most common techniques used 

for achieving VM high availability in virtualized systems, such as VMware ESXi [28]. Failover is a backup 

operational mechanism, in which the functions of a system component (e.g., a processor, server, network, or database) 

are assumed by secondary system components when the primary component becomes unavailable due to failure or 

shut-down scheduled. In a virtualized system, failover is achieved by creating an active VM and a standby VM. 

When the active VM suffers a failure or gets ready to be rejuvenated, the standby VM takes over the role of the 

active VM to continue task execution. Live VM migration refers to the process of moving a running VM or 

application between different physical machines without affecting the execution of applications. The information of 

memory, storage, and network connectivity of the original VM is transferred from the original host to the destination 

host. 
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Recently studies have been carried out for the VM availability analysis by adopting analytic modeling approach, 

specially using state-space models. A single server virtualized system with multiple VMs was modeled and analyzed 

in [15][16], where it was shown that the combination of failover mechanism with VM software rejuvenation 

technique enhanced VM availability in these systems. In [17], a continuous-time Markov chain (CTMC) based 

analytical model to capture the behavior of the virtualized clustering system with VM software rejuvenation was 

presented. In particular, system availability with the VM time-based rejuvenation mechanisms under different cluster 

configurations were analyzed, and results showed that the integration of virtualization, clustering, and software 

rejuvenation improved system availability.	All these works [15]-[17] neglected the existence of VMM failures in 

the virtualized system. However, the VMM plays a critical role in improving system availability. In [18], only VMM 

software aging-triggering failures were considered. 

The design of effective approaches for software rejuvenation on a virtualized system in order to improve VM 

availability have also been addressed. In [24], three VM rejuvenation techniques (namely cold-VM rejuvenation, 

warm-VM rejuvenation, and migrate-VM rejuvenation) were proposed for virtualized systems with VMM and VM 

aging-related failures. Their numerical results indicated that migrate-VM rejuvenation outperformed the others as 

long as the VM migration rate was fast enough. Unlike our paper, they assumed only one VM on Main host and no 

prediction-based rejuvenation techniques. Besides the failures mentioned in [24], in this paper we consider shared 

storage failures and non-aging Mandelbugs-related failures. We also consider that the virtualized system is 

composed by two VMs on a host and investigate the ability of failover mechanism. Moreover, we compare the 

abilities of time-based VM rejuvenation and prediction-based rejuvenation techniques in improving VM availability. 

A single-server virtualized system where several VMs are instantiated on a VMM is considered in [19]. However, 

only VMM aging-related failure and time-based VMM rejuvenation techniques were considered. In [20], a system 

architecture with two hosts is analyzed where each host disposed a VM running on the VMM. They proposed a 

hierarchical stochastic model based on Fault Tree and CTMC that described hardware failures of different nature 

(e.g., CPU, memory, power, etc.), software failures (VMs, VMM, application) and corresponding recovery 

behaviors. However, this model does not cover completely the dependencies of behaviors between hardware and 

software subsystems (see Section 3.2). In [21], Nguyen et al. proposed a comprehensive availability model for a 

virtualized system with two hosts where each host runs two VMs on the VMM. They considered diverse failures, 

such as hardware, shared storage, aging-related, and non-aging Mandelbugs-related failures, as well as 

corresponding recovery behaviors modeled with SRN. They used a cold-VM rejuvenation to drastically push a VM 
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in the running state into DOWN state. Failover and live VM migration mechanisms were both ignored in [20]and 

[21]. Furthermore, these works only considered the time-based rejuvenation technique. In this paper, we consider 

software rejuvenation, failover and live VM migration techniques, as well as time-based and prediction-based 

rejuvenation techniques. 

A new hybrid rejuvenation technique which combined time-based rejuvenation mechanism for VMM and 

prediction-based rejuvenation mechanism for VMs was presented in [22]. They demonstrated that such combination 

produced higher system availability and lower downtime cost than using just prediction-based or time-based 

rejuvenation for VMs. SRN models for availability of a single-server virtualized system were presented in [23], 

where the abilities of VM time-based rejuvenation and VM prediction-based rejuvenation were compared. Both 

works considered only one host, and did not consider non-aging Mandelbug-related failures and hardware failures. 

These works used a failover mechanism (active VM and standby VM on the same host), but did not consider live 

VM migration as this paper does. As in [23], we compare VM time-based rejuvenation with VM prediction-based 

rejuvenation, but in a scenario with a variety of failures. 

An availability model of a data center (DC) with live VM migration and failover mechanisms was introduced in 

[24] to ensure the high availability of cloud based businesses. Different failures were considered, such as hardware, 

shared storage, virtual DC failures, among others. Unlike our work, they did not distinguish non-aging Mandelbug-

related failures from aging-related failures for VM. Furthermore, the effect of VMM failure on VM availability was 

analyzed by investigating host hardware failure. Note that VM live migration is performed only when VMM runs 

in virtualized systems. Thus, it is difficult, if not impossible, to analyze the effect of live VM migration on VM 

availability in a virtualized system.  

In [35], the authors proposed a cloud availability model for the cloud data center with three PM pools of switched 

on, standby, and switched off PMs. They only considered PM failures and applied backup PMs for improving 

availability. In [36], the authors applied SRNs to analyze the system availability, which was defined as the 

probability that a job did not traverse any failure states during its execution. They considered as failure any deviation 

of a job execution from the correct life cycle, including queuing failures, running failures, aborts and exiting failures. 

Actually, these failures can be classified to aging-related failure or Non-aging Mandelbug related failure. Job 

checkpointing and job replication were adopted for improving the availability. In our paper, we consider not only 

software failures but also hardware failures. In addition, the recovery techniques considered in our paper include 
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checkpointing, failover and live VM migration. Furthermore, we consider the difference of VM software failures on 

the system availability from VMM. 

3. System Architecture and Component Interaction 

This section first relates the system architecture that we consider in this paper, and then the interplay between 

its components. Note that current cloud data centers may easily adapt their architectures to the proposed scheme 

when enough physical resources are available.  

3.1. Description of the System Architecture 

Figure 1 depicts the system considered in this paper. It is mainly composed of three components: Main host, 

Backup host, and Management host. Main host contains a VMM, which runs an active VM with a desired application, 

and a standby VM. Backup host is a spare host that performs the Main host role when a VM migration occurs. It 

disposes a standby VM used by the failover mechanism after Backup host takes the role of Main host.	Finally, 

Management host is a component responsible for detecting VMM failures and host hardware failures by means of 

specific management tools. VM images or VMM code files are stored in a shared storage within the system. Software 

rejuvenation agent (SRA), installed in each VM, is responsible for the VM rejuvenation operation. Rejuvenation 

manager (RM) is installed in the VMM in order to analyze the behaviors of VMs deployed on this VMM, detect 

anomalies and trigger the rejuvenation of malfunctioning VM. 

 

Figure. 1. System architecture considered in this paper 
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The VMs on the same host inform each other about their health using a heartbeat mechanism when failover is 

deployed. The running state of an active VM can be stored in the shared storage and later sent to the standby VM to 

be recovered. We consider that an active VM may suffer non-aging Mandelbug-related and aging related failures. 

When an active VM suffers from these failures, the active VM stops accepting requests and needs to be repaired. 

Thus, the standby VM plays the role of the active VM during its repair period and takes charge of the tasks. Let us 

remark this change in the standby VM is performed very quickly due to failover mechanism. The malfunctioning 

VM will turn to be standby VM after reparation, rejuvenation, or recovery is completed. 

Live VM migration (when deployed) can be used to migrate the active VM to Backup host when the VMM 

needs to be rejuvenated. This technique moves an active VM, with all the requests and sessions, from Main host to 

Backup host without loss in any in-flight request or session data during the rejuvenation or repair. Pre-copy [29] and 

stay-on methods have been proved to be effective methods in the live VM migration process [24]. Herein, we 

consider pre-copy migration because it causes less downtime. Thus, as response to a VM migration request, the 

memory of the active VM is copied to Backup host without interrupting its operation. 

3.2. Interplay between Components 

Instead of analyzing the overall effect of hardware, non-aging Mandelbug-related, and software aging-related 

failures, we consider the effect of each failure respectively in order to capture realistic behavior of a virtualized 

system. This section introduces the state transitions for each component within the system. In particular, we focus 

on failures in Main host, Backup host, shared storage, VMM, and VMs. Failures occurring on standby VM and 

Management host are ignored. 

Main host and shared storage have two states: UP and FAIL state. For VMM, there exist five states when no 

rejuvenation mechanisms are used: UP state (healthy state without software aging), FP state (probable failing state 

but VMM still runs), FAIL state (a software aging-related failure occurs and then VMM stops running), CRASH 

state (a non-aging Mandelbug-related failure occurs and then VMM stops running), and DOWN state (a hardware 

failure occurs in the host and VMM stops running). When using time-based rejuvenation for VMM, we define an 

additional REJU state to identify when the VMM is ready to be rejuvenated. 

Finally, VM states are different depending on the rejuvenation mechanisms used. In this paper, we consider time-

based and prediction-based rejuvenation mechanisms. When no rejuvenation is applied, an active VM has five states 

similar to states of a VMM: UP state, FP state, FAIL state, CRASH state, and DOWN state. In the latter state, the 
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VMM is not in UP or FP state, or shared storage is in FAIL state. When time-based rejuvenation is applied, there is 

an extra REJU state as VMM does. Similarly, prediction-based rejuvenation mechanism introduces three additional 

states: DETECT state (software aging in VM is detected), UNDETECT state (software aging is undetected) and 

REJU state. 

Since there exists dependencies between components, the change of a component state clearly triggers the 

change of state of its dependent component. In the following, we enumerate the dependencies between the 

components and the related state transitions: 

(1) Between host and VMM. When a host fails into FAIL state, the running VMM (in UP or FP state) moves to 

DOWN state in which the VMM subsystem becomes unavailable. The VMM in DOWN state can restart to UP state 

when the host returns to UP state. When the host goes into FAIL state, the VMM in CRASH, REJU, or FAIL states 

is suspended and reloaded from the memory after the host is repaired. 

(2) Between VMM and VM. When the VMM is in FAIL, DOWN, or CRASH states, the active VM (in UP or 

FP state) then turns to DOWN state and the standby VM is suspended. When the VMM of Main host needs to be 

rejuvenated (e.g., it is REJU state), rejuvenation techniques such as warm-VM reboot [30] and VM migration 

(detailed SRN models are given in Section 4) can be applied to lead VM to UP state again. 

(3) Between shared storage and VM. Recall that VM image files are stored on the shared storage. Thus, the 

state of the shared storage has a great impact on the VM states. When the shared storage fails, the VMs in running 

states (either UP or FP state) move to DOWN state. When the shared storage completes its repairing, the VMs are 

restarted to UP state. When the current state of a VM is not in running state, its operation state is temporarily 

suspended and resumed after the shared storage returns to UP state. 

4. Availability SRN Models 

All time intervals are assumed to follow exponential distributions, except for rejuvenation-triggered intervals. 

As in [38], this paper uses a 10-stage Erlang distribution for approximating these deterministic transitions. SRN 

[31][32] is a formalism widely used in rejuvenation modeling. In order to understand the ability of each HA 

mechanism in improving the VM availability, we develop SRN models for nine policies, described in Table 1. Each 

policy represents a combination of the HA mechanisms. Let ABCD be used to represent a policy. Each item is 

defined as follows: 
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A= { 
= T: denotes that VMM implements a time-based rejuvenation mechanism  

= N: denotes that no HA mechanism is implemented in VMM  

  

B={ 

= T: denotes that VM implements a time-based rejuvenation mechanism 

= P: denotes that VM implements a prediction-based rejuvenation mechanism 

= N: denotes no rejuvenation mechanism is implemented in VM 

  

C= { 
=F: denotes that failover is implemented 

=N: denotes that no failover is implemented 

  

D= { 
=M : denotes that live VM migration is deployed 

=N : denotes that no live VM migration is deployed 

 

Table 1. Description of nine policies used in this paper 

Policy Description 

NNNN No HA technique deployed for VMM and VM 

TNNN Only time-based rejuvenation used for VMM 

TNFN Time-based rejuvenation for VMM and failover mechanism for VM  

TNNM Time-based rejuvenation for VMM and live VM migration for VM  

TTNM Time-based rejuvenation for VMM, live VM migration and time-based rejuvenation for VM  

TPNM Time-based rejuvenation for VMM, live VM migration and prediction-based rejuvenation for VM  

TNFM Time-based rejuvenation for VMM, failover and Live VM migration and no rejuvenation for VM  

TTFM Time-based rejuvenation for VMM, failover and Live VM migration and time-based rejuvenation for VM 

TPFM Time-based rejuvenation for VMM, failover and Live VM migration and prediction-based rejuvenation for VM 

	

4.1. Stochastic Reward Nets 

A Stochastic Reward Net is a stochastic Petri net with many advanced structural and stochastic characteristics 

[31][32]. In SRN, an enabling function (also called a guard) allows to define the enabling function of a transition as 

a marking dependent function. In addition, both arc multiplicities and firing rates are allowed to be marking-

dependent. SRN allow to compute measures of interests by defining reward rates at net level. 

In the following, we first introduce the models for host, shared storage, VMM, VMM clock, and VM clock sub-

models. These models are unchangeable regardless of policies. Next, we describe the models for the policies 

considered in this paper. Table 2 summarized the parameters used in the rest of this section, as well as the 

corresponding transitions and values used for numerical analysis. Most values are set according to [21, 23, 24] and 
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the corresponding references are given in the last column. The values without references are set by ourselves 

according to the values with references. 

Table 2. Default parameters used in the models 

Symbol Description Transition Values(/h) Mean time 

λvfp VM aging-related rate  Tvfp, Tv1fp, Tv2fp  0.005952381 1 week [24] 

λvfail VM aging-related failure rate Tvfail, Tv1fail, Tv2fail 0.013888889 3days [24] 

λcrash VM non-aging Mandelbug related failure rate  Tvcrash, Tv1crash, Tv2crash 0.00034722 120days 

λreup VM non-aging Mandelbug -related repair rate  Tvreup, Tv1reup, Tv2reup 2 30mins 

λvrepair VM repair rate  Tvrepair,Tv1repair, Tv2repair 2 30mins [24] 

λvreju VM rejuvenation rate  Tvreju, Tv1reju, Tv2reju 60 1min [24] 

λswt VM switch rate  Tswt1reju, Tswt2reju 1200 3s [23] 

λvstart VM restart rate  Tvstart, Tv1start, Tv2start 120 30s [24] 

Λinterval VM clock interval - 0.04166667 1day [24] 

λdetect VM detect probability - 0.9 N/A [23] 

λpre VM migration prepare rate  
Tvpre, Tvback, 
Tvfpre, Tvfpback, 

90 40s [[24] 

λmigs VM migration successful probability - 0.9 N/A [24] 

βhfp VMM aging rate, namely rate of transition  Th1fp,Th2fp 0.001388889 1 month [24] 

βhfail VMM aging-related failure rate  Th1fail, Th2fail 0.005952381 1 week [24] 

βcrash VMM non-aging Mandelbug- related failure rate  Th1crash, Th 1crash 0.00046296 90days 

βreup VMM non-aging Mandelbug- related repair rate  Th1reup, Th2reup 0.5 2hours 

βhrepair VMM repair rate  Th1repair, Th2repair 1 1 hour [24] 

βhreju VMM rejuvenation rate  Th1reju, Th2reju 30 2mins [24] 

βhstart VMM restart rate  Th1start, Th2start 60 1min [24] 

βinterval VMM clock interval - 0.005952381 1week [24] 

βwfail Host failure rate  Tw1fail, Tw2fail 0.00023148 180days [21] 

βwrepair Host repair rate  Tw1repair, Tw2repair 0.01388889 3days [21] 

Βssf Shared storage failure rate  Tfail 0.00011574 360 days [21] 

Βssr Shared storage repair rate Trepair 0.01388889 3 days [21] 

 

4.2. SRN Models for System Components 

 Host model, depicted in Figure 2(a), expresses the occurrence of hardware failure and repair process of Main 

host. We consider a system with two hosts. At the beginning, host1 is Main host and host2 is Backup host. After live 

VM migration, host2 becomes Main host and host1 becomes Backup host after repair. When host1 (host2) is Main 
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host, host1 (host2) is at first in UP state, represented by one token in Pw1up (Pw2up) place. When a hardware failure 

occurs, the transition tw1fail (tw2fail) fires and the token in Pw1up (Pw2up) is taken out and deposited in Pw1fail (Pw2fail). 

After the hardware repair process completes, the token is moved from Pw1fail(Pw2fail) to Pw1up (Pw2up) by firing the 

transition Tw1repair (Tw2repair), representing the host in UP state again. 

The shared storage failure and repair process is similar to the host model, as depicted by Figure 2(b). We assume 

that shared storage is in UP state in the general case. Due to unexpected failures, the shared storage shuts down and 

then falls into FAIL state (namely, the token is moved from place Pup to place Pfail). A delay is required to detect the 

fault position of the shared storage and its repairing. Then, the shared storage returns to UP state. 

Figure 2(c) depicts VMM failure and VMM recovery process for Main host1. When host1 (host2) is Main host1, 

at first there is a token in place Ph1up (Ph2up), denoting no software aging exists in the VMM. The VMM software 

aging occurs after continuously running for a period of time. After a while, the transition Th1fp (Th2fp) fires and a 

token is moved from Ph1up (Ph2up) to Ph1fp (Ph2fp). When the transition Th1fail (Th2fail) fires, the token from Ph1fp (Ph2fp) 

is deposited in Ph1fail (Ph2fail) which represents the VMM failure due to software aging. When a non-aging 

Mandelbug-related failure occurs, the VMM in UP state turns directly to CRASH state, represented by the removal 

of token from place Ph1up (Ph2up) and placed in Ph1crash (Ph2crash). When the failure of VMM is detected by the 

management tool that executes in Management host, then VMM enters into the repair process. After VMM is 

repaired, the transition Th1repair (Th2repair) or Th1reup (Th2reup) – depending on the type of failure fires and the token is 

moved from Ph1fail (Ph2fail) or Ph1crash (Ph2crash) to ph1up (Ph2up), denoting that the VMM enters UP state. 

When a hardware failure occurs, the VMM in UP or FP state shuts down at once by firing the transition thidw, 

and the token is deposited in Ph1dw (Ph2dw). As soon as the hardware failure is removed, a token is taken from Ph1dw 

(Ph2dw) to Ph1up (Ph2up), denoting that VMM restarts and enters into UP state. When the VMM is in CRASH, FAIL, 

or REJU state), the VMM is suspended in memory and quickly reloaded to continue normal execution after the 

hardware failure is repaired. 

When the VMM needs to be rejuvenated, the token is moved from Ph1up (Ph2up) or Ph1fp (Ph2fp) to Ph1reju (Ph2reju) 

by firing immediate transitions th1rejt (th2rejt) or th1fprejt (th2fprejt), depending on the current state before rejuvenation 

																																								 																				 	
1As before, we use i = 1 notation to refer to VMM in host1 which performs as Main host and i = 2 to refer to 

VMM in host2. 
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takes place. After the rejuvenation finishes, a token in the Ph1reju (Ph2reju) is moved to Ph1up (Ph2up) only when host is 

in UP state (places Pw1up, Pw2up) and there exists a token in place Ph1clock (Ph2clock). 

 
 (a) Host SRN model 

 
(b) Shared storage SRN model 

 
 (c) VMM SRN model 

 
(d) VMM clock SRN model 

 
(e) VM clock SRN model 

Figure. 2. SRN models for different system components 

 

Figure 2(d) depicts the SRN of the VMM clock, used to trigger VMM time-based rejuvenation with a rate of 

βinterval. When the transition Th1interval (Th2interval) fires after the last boot time, a token is moved from Ph1clock (Ph2clock) 

to ph1policy (ph2policy). The guard function gh1policy in th1policy (th2policy) ensures the VM has been shut down or migrated 

to Backup host. Then, the token in Ph1policy (Ph2policy) is moved to Ph1trigger (Ph2trigger) and the VMM rejuvenation process 

begins. After the VMM rejuvenation completes, the immediate transition th1reset (th2reset) enables and the token in 

Ph1trigger (Ph2trigger) is moved to Ph1clock (Ph2clock) again, which denotes counting the time for executing the next VMM 

rejuvenation period.  

1 Pwiup Pwifail

Twifail

Twirepair

1 Pup Pfail

Tfail

Trepair

1

Phiup

Thifp

Phifp

Thifail

thirejt

thifprejt

Phifail

Thirepair

Phireju

Thireju

thidwPhidw

Thirestart

[ghitrig]

[ghitrig]

[ghirej]

[gwidw]

[gwiup]

Thicrash Phicrash

Thireup

[gwiup]

[gwiup]

[gwiup]

[gwiup]

[gwiup]

1
Phiclock

Phipolicy

thipolicy

thireset

Phitrigger [ghiinterval

[ghipolicy]

[ghireset] Thiinterval

1
Pvclock

Pvpolicy

tvpolicy

tvreset

Pvtrigger [gvinterval]

[gvpolicy]

[gvreset] Tvinterval



	

14	

	

Similarly, Figure 2(e) depicts the VM clock model, used to trigger VM time-based rejuvenation with a rate of 

Λinterval. When transition Tvinterval fires after the last boot time, the token is moved from Pvclock to Pvpolicy. The immediate 

transition tvpolicy is enabled when the VM in UP or FP state and shared storage is in UP state. Then, the token in 

Pvpolicy is deposited in Pvtrigger and the VM rejuvenation process begins. After this process completes, the immediate 

transition tvreset fires and the token in Pvtrigger is placed in Pvclock, which denotes counting the time for executing the 

next VM rejuvenation period. 

4.3. SRN Models for Combination of Policies 

We first describe SRN models for NNNN, TNNN, and TNFN policies, since they have similar sub-models and 

features. As live VM migration is not implemented (i.e., D = N), Backup host is ignored in these policies. Policy 

NNNN consists of four sub-models: (1) Host1 model shown in Figure 2(a); (2) shared storage model shown in 

Figure 2(b); (3) VMM1 model shown in Figure 2(c); and (4) VM model shown in Figure 3(a). Since there is no 

rejuvenation process for VM and no failover mechanism in both policies NNNN and TNNN, they have the same 

VM sub-model. Policy TNNN has an additional sub-model compared to policy NNNN. Namely, the VMM1 clock 

model shown in Figure 2(d). Policy TNFN differs from TNNN just for a special VM model that uses a failover 

mechanism, as depicted in Figure 3(b). Guard functions used in the above models are summarized in Table 3. 

In the following, we explain the Figure 3(a). A VM may suffer from non-aging Mandelbug-related and aging-

related failures. Failure and recovery processes are similar to those in VMM model. Initially, one token exists in 

Pvup, representing the VM is in fully stable state. Later on, the VM transits to FP state, i.e., the token is moved from 

Pvup to Pvfp through the transition Tvfp representing VM software aging. Note that the VM still works in FP state, but 

its failure likelihood increases. Since no VM rejuvenation process is deployed in these policies, the aging VM then 

turns to FAIL state after a certain period of time. This state transition is represented by the token being moved from 

Pvfp to Pvfail, after firing of the transition Tvfail. After VM is repaired, it changes to UP state. That is, the token is 

moved from Pvfail to Pvup. When the VM suffers from non-aging Mandelbug-related failures, the VM falls to CRASH 

state (i.e., the token is moved from Pvup to place Pvcrash) and waits for repair. When places Ph1fail, Ph1dw, or Ph1crash are 

marked, or shared storage is failed, the token is moved from Pvup (or Pvfp) to Pvdw. When the VMM is in UP state (i.e., 

the token is in Ph1up) or FP state (i.e., the token is in Ph1fp) and the shared storage is in UP state, the VM can be 

restarted to UP state (i.e., the token is in place Pvup) by firing the timed transition Tvrestart. When VM is in FAIL or 

CRASH states, it is suspended and a warm-VM reboot mechanism is used later on. 
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(a)  NNNN and TNNN 
 

(b) TNFN 

Figure. 3. SRN models for VM with (a) NNNN and TNNN and (b) TNFN policies 

 

Table 3. Guard functions for NNNN, TNNN and TNFN policies 

Guard Definition 

gw1up if(#(Pw1up)==1) then 1 else 0 

gw1dw if(#(Pw1fail)==1) then 1 else 0 

gs1up if(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1) then 1 else 0 

gs1dw if(#(Ph1fail)==1||#(Ph1dw)==1||#(Ph1crash)==1||#(Pfail)==1) then 1 else 0 

gh1trig if(#(Ph1trigger)==1&&#(Pw1up)==1) then 1 else 0 

gh1rej if(#(Ph1clock)==1&&#(Pw1up)==1) then 1 else 0 

gh1interval if(#(Ph1up)==1||#(Ph1fp)==1) then 1 else 0 

gh1policy if(#(Pvdw)==1) then 1 else 0 

gh1reset If(#(Ph1reju)==1) then 1 else 0 

gvswitch If (#(Phup)==1||#(Phfp)==1&&#(Pup)==1&&(#(Pvcrash)==1||#(Pvfail)==1)) then 1 else 0 

 

Policy TNFN uses failover mechanism (see Figure 3(b)). Thus, there are two VMs (active and standby VM) on 

the VMM. Using a heartbeat mechanism, the running state of the active VM can be stored in the shared storage and 

later be sent to the standby VM. When the active VM suffers from non-aging Mandelbug-related or aging-related 

failures, the active VM stops accepting requests. That is, the token is moved from Pvstandby to Pvup by firing the 

immediate transition tvswitch. Then, the standby VM is responsible of the tasks and plays the role of the active VM 

during its repair period. At the same time, the token is moved from Pvcrash (or Pvfail) to Pvstandby by firing the timed 

transition Tvreup (or Tvrepair). That is, the primary active VM changes to be standby VM after the repair or recovery 

processes complete. 
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Figure. 4. SRN models for VM with TNNM and TTNM policies (places and transitions added by TTNM 
policy are highlighted in gray) 

 

 

Figure. 5. SRN models for VM with TPNM policies  
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Figure. 6. SRN models for VM with TNFM and TTFM policies (places and transitions added by TTFM policy 

are highlighted in gray) 

 

 

Figure. 7. SRN models for VM with TPFM policy  

 

TNNM, TTNM, and TPNM policies use live VM migration to counteract the VMM rejuvenation. The VM 

rejuvenation mechanism is the difference between these policies. Since the failover mechanism is unimplemented, 

there is only one active VM on Main host and there is no standby VM on both Main host and Backup host for each 

policy. TNNM policy consists of eight submodels: (1) Host1 and (2) Host2 models as depicted in Figure 2(a); (3) 

shared storage model shown in Figure 2(b); (4) VMM1 and (5) VMM2 models as depicted in Figure 2(c); (6) VMM1 

and (7) VMM2 clock models shown in Figure 2(d); and (8) VM model shown in Figure 4 (without considering 

1
Pv1up

Tv1crash
Pv1crash Tv1reup

Tv1repair

Tv1restart

Tvfppre
Pvmig

tvmigs

TvprePvpre
tvpres

Tvback Pvback
tvbacks

tvbackf tvpref

Pvmigf

Tv1new
Tv2new

tvmigf

Pvfpback
Tvfpback

tvfpbackf

tvfpbacks

Pvfpbackf

Pv2up

Tv2crash

Pv2crash

Tv2reup

Tv2fptv2fdw

tv2dw

Tv2repair Pv2dw

Tv2restart
tv1rej

Pv1rej

Tv1rej

tv2rej

Pv2rej

Tv2rej

11
Pv1standbytv1switch

Pv2standby tv2switch

Pv2fail Tv2fail
Pv2fp

tv2frej

Pv1fp
Tv1fail Pv1fail

tv1fdw
Tv1fp

Pv1dw

tv1dw

tvf1rej[gs1dw]

[gs1dw]

[gs1up]

[gs1up]

[gs1up]
[gs1up]

[gs1up]

[gs1up]

[gs2up]

[gs2up]

[gs2up] [gs2up]

[gs2up] [gs2up]

[gs2up]

[gs2up]

[gs1up]

[gs1up]

[gv1trig]

[gv1trig]

[gv2trig]

[gv2trig]

[gv1switch_policy][gv2switch_policy]

[gvpre]

[gvpre]

[gvback]

[gvback]

[gs2dw]

[gs2dw]

11

a

1
Pv1up

Tv1fp

Pv1fp
tdetect1

tundetect1

Pundetect1

Pdetect1

Tswt1reju

Pv1reju

Tv1reju

Pv1standbytv1switch

Tv1fail Pv1fail

Tv1repair

tv1dw

Pv1dw

Tv1start

Pv2up

Tv2fp

Pv2fp

Pundetect2

tundetect2tdetect2Pdetect2

Tv2fail
Pv2fail

Tv2repair

Pv2standby

Tswt2reju

Tv2reju

tv2dw
Pv2dw

Tv2start

tv2switch Tvpre

Pvpre
tvpres

tvpref

Tvback Pvback tvbacks

tvbackf

TvudprePvmig

tvmigs

tvmigf

Pvudback tvuds

tvudf

Tvudback

PvmigfPvudf

Tv1newTv2new

[gv1dw][gs2dw]Pv2reju

Tv1crash
Pv1crash Tv1reup

Tv2crashPv2crash

Tv2reup

[gs1up]

[gs1up]

[gs1up]

[gs1up][gs1up]

[gs1up]

[gs1up]

[gs1up]

[gs2up]

[gs2up]

[gs2up]
[gs2up]

[gs2up]

[gs2up]

[gs2up]

[gs2up] [gs2up] [gs2up]

[gvpre]

[gvpre]

[gvback]

[gvback] [gv1switch_policy][gv2switch_policy]



	

18	

	

places and transitions highlighted in gray area). Policies TTNM and TPNM consist of nine and eight submodels, 

respectively. The first seven submodels are the same as in TNNM policy. TTNM policy adds two submodels: VM 

model depicted in Figure 4 (considering places and transitions highlighted in gray area) and VM clock model shown 

in Figure 2(e). On the contrary, TPNM policy only adds the VM model depicted in Figure 5. Guard functions used 

in VM models of these policies are summarized in Table 4.  

Finally, we describe the submodels for TNFM, TTFM, and TPFM policies. TNFM policy consists of eight 

submodels, where (1)-(7) submodels are the same as TNNM policy and (8) VM model as depicted in Figure 6. 

Similarly, TTFM policy consists of nine submodels, while TPFM policy has eight. In both cases, (1)-(7) submodels 

are the same as in TNNM policy. TTFM policy adds two submodels: VM clock model shown in Figure 2(e) and the 

VM model depicted in Figure 6. Note that transitions highlighted in the gray are have a different guard with respect 

to TNFM policy. TPFM policy has the VM model shown in Figure 7. The explanations of these models are similar 

to the ones described previously. Particular guard functions used in VM models of these three policies are 

summarized in Table 5. The reward functions for the nine models are shown in Table 6. Since the failure and 

recovery processes of host, shared storage, and VMM are the same as in those in Section 4.2, in the following we 

focus on the VM models. 

VM model using time-based rejuvenation. First, we explain the VM model for TTNM policy, which uses time-

based rejuvenation for VM. Initially, there exists one token in Pv1up, representing the active VM in fully stable state. 

Later, the active VM transits to FP state (namely, the token is placed in Pv1fp) through the transition Tv1fp representing 

the VM software aging. When VM fails due to software aging occurrence but the VM rejuvenation process is not 

triggered, the token is moved to Pv1fail by firing the transition Tv1fail. After VM completes its repair, it changes to UP 

state. That is, a token is taken from Pv1fail to Pv1up. Finally, when the VM suffers from a non-aging Mandelbug-related 

failure, the VM turns to CRASH state (i.e., a token is taken from Pv1up to Pv1crash) and waits for repair. When the VM 

is rejuvenated, the token is moved from Pv1up (or Pv1fp) to Pv1rej. As soon as the VM rejuvenation process completes, 

the token returns back to pv1up by firing the timed transition Tv1rej. 

When the VMM is in FAIL, DOWN, or CRASH states or if the shared storage fails, the VM in UP or FP state 

changes to DOWN state (i.e., a token is moved from Pv1up or Pv1fp to place Pv1dw). When VM is in FAIL or CRASH 

state at this time, it is suspended and later a warm-VM reboot mechanism is used. When the VMM is in UP or FP 

state (places Ph1up or Ph1fp, respectively) and if the shared storage is UP state, the VM is restarted to UP state (place 

Pv1up) by firing the timed transition Tv1restart. When the VMM starts rejuvenation and the VM is in UP or FP states, 
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the VM will migrate to Backup host whether it is in UP or FP states. If the VM has been migrated to Backup host, 

the failure, recovery, and rejuvenation behaviors of the VM on the VMM2 is equal to the ones on the VMM1. Details 

of the live VM migration process are described in Section 4.4. 

 

Table 4. Guard function of VM Models for TNNM, TTNM and TPNM policies 

Guard Definition 

gw1up if(#(Pw1up)==1) then 1 else 0 

gw1dw if(#(Pw1fail)==1) then 1 else 0 

gh1rej if(#(Ph1clock)==1&&#(Pw1up)==1) then 1 else 0 

gh1trig if(#(Ph1trigger)==1&&#(Pw1up)==1) then 1 else 0 

gw2up if(#(Pw2up)==1) then 1 else 0 

gw2dw if(#(Pw2fail)==1) then 1 else 0 

gh2rej if(#(Ph2clock)==1&&#(Pw2up)==1) then 1 else 0 

gh2trig if(#(Ph2trigger)==1&&#(Pw2up)==1) then 1 else 0 

gh1interval if(#(Ph1up)==1||#(Ph1fp)==1) then 1 else 0 

gh1policy if(#(Pv1up)==0&&#(Pv1fp)==0&&#(Pvpre)==0&&#(Pvmig)==0&&#(Pvback)==0&&#(Pvfpback)==0) then 1 else 0 

gh1reset If(#(Ph1reju)==1) then 1 else 0 

gh2interval if(#(Ph2up)==1||#(Ph2fp)==1) then 1 else 0 

gh2policy if(#(Pv2up)==0&&#(Pv2fp)==0&&#(Pvpre)==0&&#(Pvmig)==0&&#(Pvback)==0&&#(Pvfpback)==0) then 1 else 0 

gh2reset If(#(Ph2reju)==1) then 1 else 0 

gs1up if(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1) then 1 else 0 

gs1dw if(#(Ph1fail)==1||#(Ph1dw)==1||#(Ph1crash)==1||#(Pfail)==1) then 1 else 0 

gs2up if(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1) then 1 else 0 

gs2dw if(#(Ph2fail)==1||#(Ph2dw)==1||#(Ph2crash)==1||#(Pfail)==1) then 1 else 0 

gvpre if(#(Ph1policy)==1&&(#(Ph2up)==1||#(Ph2fp)==1)&&#(Pup)==1) then 1 else 0 

gvback if(#(Ph2policy)==1&&(#(Ph1up)==1||#(Ph1fp)==1)&&#(Pup)==1) then 1 else 0 

gv1trig if(#(Pvtrigger)==1&&#(Pup)==1) then 1 else 0 

gv2trig if(#(Pvtrigger)==1&&#(Pup)==1) then 1 else 0 

gvinterval if(#(Ph1up)==1||#(Ph1fp)==1||#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1) then 1 else 0 

gvpolicy if(#(Ph1up)==1||#(Ph1fp)==1||#(Ph2up)==1||#(Ph2fp)==1) then 1 else 0 

gvreset if(#(Pv1rej)==1||#(Pv2rej)==1) then 1 else 0 
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Table 5. Guard functions of VM models for TNFM, TTFM and TPFM policies 

Guard Definition 

gv1switch_TNFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)) then 1 else 0 

gv2switch_TNFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)) then 1 else 0 

gv1switch_TTFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)||#(Pv1rej)==1)) then 1 else 0 

gv2switch_TTFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)||#(Pv2rej)==1)) then 1 else 0 

gv1switch_TPFM If(#(Ph1up)==1||#(Ph1fp)==1&&#(Pup)==1&&(#(Pv1crash)==1||#(Pv1fail)==1)||#(Pv1reju)==1)) then 1 else 0 

gv2switch_TPFM If(#(Ph2up)==1||#(Ph2fp)==1&&#(Pup)==1&&(#(Pv2crash)==1||#(Pv2fail)==1)||#(Pv2reju)==1)) then 1 else 0 

 

Table 6. Reward rates for computing the steady-state unavailability of different models 

Policy Unavailability condition  

NNNN, TNNN if(#(Pvdw)==1||#(Pvfail)==1||#(Pvcrash)==1) then 1 else 0 

TNFN if(#(Pvdw)==1) then 1 else 0 

TNNM, TTNM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(
Pvfpbackf)==1) then 1 else 0 

TPNM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pdetect1)==1||#(Pv1reju)==1#(Pdetect2)==1||#(Pv2reju)==1||#(
Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(Pvfpbackf)==1) then 1 else 0 

TNFM if(#(Pv1dw)==1||#(Pv1fail)==1||#(Pv1crash)==1||#(Pv2dw)==1||#(Pv2fail)==1||#(Pv2crash)==1||#(Pvmigf)==1||#(
Pvfpbackf)==1) then 1 else 0 

TTFM if(#(Pv1dw)==1||#(Pv2dw)==1||#(Pvmigf)==1||#(Pvfpbackf)==1) then 1 else 0 

TPFM if(#(Pv1dw)==1||#(Pv2dw)==1||#(Pvmigf)==1||#(Pvudf)==1||#(Pdetect1)==1||#(Pdetect2)==1) then 1 else 0 

 

VM model using prediction-based rejuvenation. In this part we detail the VM model for TPNM policy, which 

uses prediction-based rejuvenation for VM (see Figure 5). Initially, there exists a token in Pv1up, representing the 

fully stable state of VM. At time passes, the VM eventually transits to a FP state, that is, a token is taken from Pv1up 

and placed in Pv1fp through the transition Tv1fp representing the software aging of the VM. It is assumed that RM 

detects VM software aging with probability λdetect. Thus, place Pv1fp has two immediate transitions with appropriate 

probabilities for detecting aging or failures. When the aging is detected, the immediate transition tdetect1 fires and the 

token is deposited in Pdetect1. Otherwise (i.e., detection fails), the token in place Pv1fp is deposited in Pundetect1. In 

DETECT state (represented by Pdetect1), the VM finishes its tasks in hand and stops receiving requests. After a 

preparing process, the VM gets ready to be rejuvenated, which is represented by firing of transition Tswt1reju (that is, 

the token is deposited in Pv1reju). When the VM ends rejuvenation, the transition Tv1reju fires and the token is placed 

in Pv1up, which represents the VM is in UP state. In UNDETECT state (place Pundetect1), the token is moved to Pv1fail 

by firing the transition tv1fail when the VM failure occurs due to software aging. Otherwise (i.e., when the VM suffers 
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from a non-aging Mandelbug-related failure), the VM falls to CRASH state (i.e., the token is taken from place Pv1up 

to place Pv1crash). 

As before, when the VMM is in FAIL, DOWN, or CRASH state, or if the shared storage fails, the VM in UP, 

FP, or UNDETECT state changes to DOWN state (i.e., the token is moved from Pv1up, Pv1fp, or Pundetect1 to place 

Pv1dw). When VM is in FAIL, DETECT, REJU, or CRASH states at this time, its execution is suspended and later a 

warm-VM reboot mechanism is used. When the VMM is in UP or FP state and the shared storage is in UP state, 

then the VM is restarted to UP state by firing the timed transition Tv1start. When the VMM is going to be rejuvenated 

and the VM is in UP or FP state, the VM migrates to Backup host whether this host is in UP or FP state as well. 

Once the VM was migrated, failure, recovery, and rejuvenation behaviors of the VM on the VMM2 are similar to 

the ones on the VMM1. The process of live VM migration is described in the sequel. 

4.4. Live VM Migration Process 

 At the beginning, the VM is on the VMM1 of Main host. When the clock of VMM1 requests rejuvenation for 

VMM1, the guard gvpre enables Tvpre and Tvudpre (Tvfppre) for live VM migration as long as VMM2 is available. When 

the live VM migration is completed, the token is deposited in Pv2up and Pundetect2 (Pv2fp) each. Note that the live 

migration may fail with probability (1 − λmigs). When the VM migration fails, transition tvmigf and tvpref are fired and 

the token arrives at Pvmigf. Then, the token is deposited in pv1up by firing the transition Tv1new when the VMM1 is in 

UP or FP state. Otherwise, if the token is deposited in Pv2up (VM is migrated from its UP state) or Pundetect2 (VM is 

migrated from its UNDETECT state) or Pv2fp (VM is migrated from its FP state), VMM1 rejuvenation starts. On the 

contrary, when the token is deposited in Pvpre, Pvmig, Pvudback (Pvfpback) and Pvback, the VMM1 cannot be rejuvenated, 

since VMM1 is still being used and the migration process has not completed yet. 

5. Numerical Analysis and Discussions 

We use the Stochastic Petri Net package (SPNP) tool [31] to carry out numerical analysis of the nine policies 

models. The Gauss-Seidel method [33] is used to improve computation precision. Model parameter values are set 

according to the existing related literature [20]-[24] and summarized in Table 2. In the following, we analyze steady-

state availability, downtime, and parameter sensitivity of the system under aforementioned policies. Note that 

steady-state availability is often specified as a number of nines in Service Level Agreement (SLA) documents as a 

marketing feature [37]. However, using the ‘nines’ has been in question because it could not appropriately reflect 

the variations of steady-state availability with its time of occurrence [37]. Moreover, it is hard to apply the number 
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of nines in modeling and formula. Therefore, as in the existing research papers, this paper uses the probability to 

denote steady-state availability. 

5.1. Steady-State Availability Analysis 

This section performs numerical analysis by using default settings. Table 7 shows the steady-state availability 

(SSA) for each policy. As expected, we observe that the more HA mechanisms deployed, the higher the VM 

availability is. In the sequel, we investigate the effect of VMM clock interval on SSA. 

We first compare NNNN, TNNN, and TNFN policies. As Table 7 indicates, NNNN policy with no rejuvenation 

for VMM and VM achieves the lowest SSA of 0.97168871533. When VMM time-based rejuvenation mechanism 

is considered (TNNN policy), SSA improves to 0.989856441223 and further to 0.991734992389 with VM failover 

mechanism for VM (TNFN policy). Note that the significance of the SSA improvement depends on the concrete 

scenario where it is used. For example, the formula for calculating Downtime (measured in hours) is normally (1-

SSA)×8760. Here, 8760 is the number of hours of 365 days. In this scenario, the SSA improvement 0.018167726 

from NNNN to TNNN becomes significant. 

We now vary the VMM clock interval from 10 hours to 300 hours. Note that this variation has no effect on SSA 

of NNNN policy but effectively affects to SSA of TNNN and TNFN policies. Figure 8 plots the SSA of both TNNN 

and TNFN policies while varying the VMM clock interval from 10 hours to 300 hours. Based on our results, we 

observe that: 

(1) SSA of both TNNN and TNFN policies are improved with the increasing interval of VMM clock when the 

interval is small. For example, less than 90h. This is because the frequently VMM rejuvenation leads to VM 

shut down more often, and then makes the VM SSA lower. 

(2) SSA of both TNNN and TNFN policies stops increasing and starts to decrease when the VMM clock interval 

reaches a certain value. In our numerical analysis, this value is 260 hours for TNNN policy and 160 hours 

for TNFN policy. The reason behind this fact is that the less frequent rejuvenation, the more frequent VMM 

software aging-related failure occurrence. Accordingly, the SSA of VM decreases due to the close 

dependencies between VMM and VM, as mentioned in Section 3.2. 

(3) Failover helps to improve SSA. When the VMM clock interval is set to 10 hours, there is an obvious SSA 

improvement. 
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We then compare the failover mechanism with live VM migration by comparing TNFN, TNNM, and TNFM 

policies. Results are shown in Figure 9. Note that the results of TNFN policy (see Figure 8) are also depicted in this 

figure to highlight the difference between TNFN and TNNM policies. We observe that the SSA of TNNM policy 

increases from 0.989520273 to 0.989847214 when the VMM clock interval ranges from 5 hours to 15 hours. The 

reason is that frequent VMM rejuvenation leads to frequent VM migration and hence, the SSA decreases due to VM 

migration failures. These results suggest to migrate VM so often can be counterproductive. But as the VMM clock 

interval further increases, SSA under TNNM decreases and approximates to SSA under TNNN policy. The reason 

is that the chance of triggering a live VM migration caused by VMM rejuvenation is reduced when the VMM clock 

interval is large. 

Table 7. Steady-state availability (SSA) of the system for each policy under given parameters  

Policy NNNN TNNN TNFN TNNM TTNM 

SSA 0.97168871533 0.98956441223 0.991734992389 0.989617052647 0.998677663722 

 

Policy TPNM TNFM TTFM TPFM 

SSA 0.999436751527 0.998314139248 0.99968371 0.999927083 

 

 

(a) 

 

(b) 

Figure. 8. Steady-state availability of (a) TNNN and (b) TNFN policies 

 

It is also observed that the SSA of TNFM policy increases from 0.997935120797 to 0.998092670444 when the 

VMM clock interval ranges between 20 to 60 hours, since less VMM rejuvenation leads to less VM migration failure 

occurrences and thus, there is a less effect of migration failures. Similarly, when the VMM clock interval is larger 

than 60 hours, the SSA of TNFM policy decreases and even becomes smaller than under small VMM clock interval, 

but still outperforms to TNFN and TNNM policies. The reason is that when the VMM rejuvenation is less frequent 

the VMM may fail easily due to VMM software aging. Hence, the VM has to shut down due to VMM aging failure 

leading to a decreasing of SSA. 
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These results also indicate that failover mechanism performs better than live VM migration mechanism, in terms 

of improving SSA. Recall that TNFN policy with failover mechanism reduces downtime caused by VM aging or 

non-aging Mandelbug-related failures, but however, VM is shut down when VMM fails or rejuvenates. Hence, this 

leads to great transition loss similar to cold-VM rejuvenation. TNNM policy using live VM migration reduces the 

downtime caused by VMM rejuvenation, but downtime caused by VM aging or non-aging Mandelbug related 

failures cannot be overcome. On the contrary, TNFM policy outperforms both TNNM and TNFN policies by using 

failover and live VM migration mechanisms together. In this way, we avoid downtime caused by VM aging and 

non-aging Mandelbug-related failures and also minimize the impact of VMM rejuvenation. As summary, TNFM 

policy outperforms the others, in terms of SSA. 

Finally, we investigate the effect of VM rejuvenation mechanisms on SSA using TNNM, TTNM, and TPNM 

policies. Figure 10 plots the SSA of these policies while varying the VMM clock interval, assuming only live VM 

migration enabled. Both VM time-based and prediction-based rejuvenation mechanisms improve SSA compared 

with no rejuvenation. In addition, the results show that predication-based mechanism outperforms time-based 

mechanism under high software aging detection probability. 

Figure 11 plots the SSA of these policies while varying the VMM clock interval, assuming both VM failover 

and live migration are deployed. These results confirm that: (1) VM rejuvenation is an effective way to improve the 

SSA; and (2) predication-based mechanism performs better than time-based mechanism. In addition, these results 

indicate that the SSA of TTFM and TPFM policies increase slowly as long as the VMM clock interval increases. 

However, after 260 hours, the value of VMM clock interval has little impact on the SSA of these policies (Figure 

12 shows the precise variation of SSA). Figure 11 also shows how the SSA of TNFM policy decreases as the VMM 

clock interval increases, similar to the previous case (see Figure 11). As shown in Figure 10 and Figure 11, the 

combination of failover and live VM migration mechanisms performs better than when individual mechanisms are 

applied. 
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Figure. 9. Steady-state availability of TNFN, TNNM and TNFM policies by varying the VMM clock interval 

 

 
Figure. 10. Steady-state availability of TNNM, TTNM and TPNM policies by varying the VMM clock 

interval 

 

 

Figure. 11. Steady-state availability of TNFM, TTFM and TPFM policies by varying the VMM clock 
interval 
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Figure. 12. Detail of steady-state availability of TTFM and TPFM policies by varying the VMM clock 
interval 

5.2. Downtime Analysis 

Figure 13 shows the downtime per year of the nine policies. Downtime is measured in the order of hours. Results 

show that the best policy is TPFM, achieving a downtime near to 40 minutes, while the worst policy is NNNN that 

achieves a downtime about 248.07 hours. Using failover mechanism reduces the downtime caused by VM non-

aging Mandelbug-related or aging-related failures in active VM, since it is less transaction loss as the tasks reload 

to standby VM quickly. Similarly, using live VM migration technique can also reduce the downtime caused by the 

VMM rejuvenation by migrating the active VM to other host, while the active VM can nearly keep running due to 

pre-copy policy. 

 

Figure. 13. Downtime per year for the nine policies 
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Section 5.1 shown by the effect of VMM clock interval. In this section, we aim to perform the sensitivity analysis 
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and VMM aging rates. This analysis becomes critical to choose an appropriate combination of these HA techniques. 
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5.3.1 Live migration successful probability 

We first remove VM rejuvenation and failover mechanisms to investigate how probability of a successful live 

VM migration affects SSA. We then add VM rejuvenation considering time-based and prediction-based VM 

rejuvenation. These results are shown in Figure 14. We notice that the larger live VM migration successful 

probability, the higher SSA is. In addition, we observe that prediction-based still outperforms time-based VM 

rejuvenation. 

 
(a) 

 
(b) 

 
(c) 

Figure. 14. SSA of (a) TNNM, (b) TTNM and (c) TPNM policies by varying the probability of a live 
VM successful migration  

5.3.2 VM clock interval 

We now further examine the effect of other parameters. Figure 15 depicts how the VM clock interval, 

ranging from 10 to 200 hours, affects SSA in TTNM policy. SSA increases from 0.997940680365 to 

0.998704632303 when VM clock interval ranges from 10 to 40 hours. Note that in TTNM policy without 

failover mechanism, frequent VM rejuvenation may lead to more transaction loss and hence, the SSA will 

decrease. Similarly, SSA starts to decrease when the VM clock interval is bigger than 40 hours since by 

increasing VM clock interval, the VM fails more easily due to VM software aging before its rejuvenation. 

Hence, the appropriate settings of the VMM and VM rejuvenation triggering intervals will maximize the VM 

SSA.  

 

Figure. 15. Steady-state availability of TTNM policy by varying the VM clock interval 
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5.3.3 Aging detection probability 

Figure 16 describes SSA of TPNM policy by varying aging detection probability. As expected, analytical 

results show that a higher aging detection probability leads to a higher SSA. In summary, we observe that a proper 

combination of VMM and VM rejuvenation becomes useful to gain high levels of SSA. 

 

Figure. 16. Steady-state availability of TPNM policy by varying the probability of aging detection 
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(5) The SSA improvement from TNNN to TNNF is larger than from TNNN to TNNM, suggesting failover 

mechanism parameter is more important than probability of successful live VM migration in terms of 

improving SSA.   

 
 

(a) (b)z 

Figure. 17. Steady-state availability under different policies by varying the VM aging time 

 

 

  
(a) (b) 

Figure. 18. Steady-state availability under different policies by varying the VMM aging time 
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availability techniques, in this paper we study VM and VMM time-based and prediction-based rejuvenation, VM 

failover, and live VM migration. Our numerical results indicate that: (i) VMM clock interval is a critical factor for 

the ability of live VM migration technique in improving VM SSA; (ii) the combination of failover mechanism with 

live VM migration significantly improve VM availability; and (iii) VM prediction-based rejuvenation outperforms 

VM time-based rejuvenation, in terms of steady-state availability. 

In this paper, we focus on the VM steady-state analysis. It is known that transient availability evaluation is 

important for a highly dependable system in some cases. We plan to expand the proposed models to analyze the VM 

survivability when a system failure occurs. It is noticed that, as the existing work on analyzing the availability of a 

virtualized system, this paper considered a simple system aging model, namely exponential distribution with fixed 

rate. However, the aging phenomena of a complex system is a result of a variety of factors, including memory 

utilization increase due to memory leaks, resources saturation, and error accumulation, etc.. Thus, we plan to extend 

the proposed modeling and analysis to the virtualized system with a more realistic aging process. In addition, we 

will consider multiple instances of standby and active VM running in the same active host, as well as multiple 

instances of standby VM maintained in the same backup host. Moreover, we will use these analysis results to design 

an automatic parameter setting mechanism for finding the appropriate values to maximize SSA while minimizing 

the cost of each HA technique implementation and deployment.  

Acknowledgements 

The research of Xiaolin Chang was supported by National Natural Science Foundation of China (No. 61572066). 

The research of Ricardo J. Rodríguez was supported in part by the EU Horizon 2020 research and innovation 

program under grant agreement no. 644869 (DICE), by Spanish MINECO project CyCriSec (TIN2014-58457-R), 

and by University of Zaragoza and Centro Universitario de la Defensa under project number UZCUD2016-TEC-

06. 

References 

[1] Ruest, N. and Ruest, D. (2009) Virtualization, A Beginner's Guide.	1 Edition. McGraw-Hill Education. 

[2] Grottke, M. and Trivedi, K.S. (2007) Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate, Computer, 40(2), 107-
109. 

[3] Grottke, M., Matias, R. and Trivedi, K.S. (2008) The fundamentals of software aging. Proceedings of the 2008 IEEE 
International Conference on Software Reliability Engineering Workshops (ISSRE Wksp), pp. 1-6. 

[4] Carrozza, D., Cotroneo, D., Natella, R., Pecchia, A. and Russo, S. (2010) Memory leak analysis of mission-critical 
middleware. Journal of Systems and Software, 83 (9), 1556-1567. 

[5] Tankard, C. (2011) Advanced Persistent threats and how to monitor and deter them. Network Security 2011, 8, 16-19. 



	

31	

	

[6] http://www.stratus.com/assets/aberdeen-maintaining-virtual-systems-uptime.pdf. 

[7] Mina, N., Maria, T. and Ferhat, K. (2016) Availability in the cloud: state of the art. J. Network and Computer Applications, 
60, 54-67. 

[8] VMWare, Automating High Availability (HA) Services with VMware HA, Tech. rep., VMWare, Inc., available at 
https://www.vmware.com/pdf/ vmware_ha_wp.pdf (accessed November 21, 2016) (2006). 

[9] Kanoun, K., Borrel, M., Morteveille, T. and Peytavin, A. (1999) Availability of CAUTRA, a subset of the French air 
traffic control system. IEEE Transactions on Computers, 48 (5), 528-535. 

[10] Ramani, S., Trivedi, K.S. and Dasarathy,B. (2000) Performance analysis of the corba event service using stochastic 
reward nets. Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 238-247. 

[11] Leangsuksun, C., Shen, L., Liu, T., Song, H. and Scott, S.L. (2003) Availability prediction and modeling of high mobility 
OSCAR Cluster. Proceedings of the 2003 IEEE International Conference on Cluster Computing, pp. 380-386. 

[12] Lanus, M., Yin, L. and Trivedi, K.S. (2003) Hierarchical composition and aggregation of state-based availability and 
performability Models. IEEE Transactions on Reliability, 52 (1), 44-52. 

[13] Longo, F., Ghosh, R., Naik, V.K. and Trivedi, K.S. (2011) A scalable availability model for Infrastructure-as-a-Service 
cloud. Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN), pp. 
335-346. 

[14] Trivedi, K.S., Andrade, E. and Machida, F. (2012) Chapter 1 - Combining Performance and Availability Analysis in 
Practice, in: A. Hurson, S. Sedigh (Eds.), Dependable and Secure Systems Engineering, Vol. 84 of Advances in 
Computers, Elsevier, 1-38. 

[15] Thein, T. and Chi, S.D. Park, J.S. (2007) Availability Analysis and Improvement of Software Rejuvenation Using 
Virtualization, Economics and Applied Informatics, (1), 5-14. 

[16] Thein, T., Chi, S.D. and Park, J.S. (2008) Improving Fault Tolerance by Virtualization and Software Rejuvenation. 
Proceedings of the 2nd Asia International Conference on Modeling Simulation (AICMS), pp. 855-860. 

[17] Thein, T. and Chi, S.D. Park, J.S. (2008) Availability modeling and analysis on virtualized clustering with rejuvenation. 
International Journal of Computer Science and Network Security, 8 (9), 72-80. 

[18] Melo, M., Maciel, P., Araujo, J., Matos, R. and Ara´ujo, C. (2013) Availability study on cloud computing environments: 
live migration as a rejuvenation mechanism. Proceedings of the 43rd Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), pp. 1-6. 

[19] Bruneo, D., Distefano, S., Longo, F., Puliafito, A. and Scarpa, M. (2013) Workload-Based Software Rejuvenation in 
Cloud Systems. IEEE Transactions on Computers, 62 (6), 1072-1085. 

[20] Kim, D.S., Machida, F. and Trivedi, K.S. (2009) Availability modeling and analysis of a virtualized system. Proceedings 
of the 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), pp.365-371. 

[21] Nguyen, T.A., Kim, D.S. and Park, J.S. (2014) A comprehensive availability modeling and analysis of a virtualized server 
system using stochastic reward nets, The Scientific World Journal 2014, 18. 

[22] Rezaei, A. and Sharifi, M. (2010) Rejuvenating high available virtualized systems. Proceedings of the International 
Conference on Availability, Reliability, and Security 2010 (ARES), pp.289-294. 

[23] Xu, J., Li, X., Zhong, Y. and Zhang, H. (2014) Availability modeling and analysis of a single-server virtualized system 
with rejuvenation, Journal of Software, 9(1), 129-139. 

[24] Machida, F. and Kim, D.S. Trivedi, K.S. (2013) Modeling and analysis of software rejuvenation in a server virtualized 
system with live VM migration, Performance Evaluation, 70 (3), 212-230. 

[25] Nguyen, T.A., Kim,D.S. and Park, J.S. (2016) Availability modeling and analysis of a data center for disaster tolerance. 
Future Generation Computer Systems, 56, 27-50. 

[26] Grottke, M., Li, L., Vaidyanathan, K. and Trivedi, K.S. (2006) Analysis of software aging in a web Server. IEEE 
Transactions on Reliability, 55 (3), 411–420. 

[27] Alonso, J., Bovenzi, A., Li, J., Wang, Y., Russo, S. and Trivedi, K.S. (2012) Software Rejuvenation: Do IT & Telco 
Industries Use It? Proceedings of the IEEE 23rd International Symposium on Software Reliability Engineering 



	

32	

	

Workshops (ISSREW), pp. 299-304. 

[28] Stephen, A.H. (2010) Systems research and development at VMware. Operating Systems Review, 44(4), 1-2.	

[29] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C. and Pratt, I. Warfield, A. (2005) Live migration of 
virtual machines. Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation- 
Volume 2, NSDI’05, USENIX Association, Berkeley, CA, USA, pp. 273-286. 

[30] Machida, F., Kim, D.S., Park, J.S. and Trivedi, K.S. (2008) Toward optimal virtual machine placement and rejuvenation 
scheduling in a virtualized data center. Proceedings of the 2008 IEEE International Conference on Software Reliability 
Engineering Workshops, pp. 1-3. 

[31] Ciardo, G., Muppala, J. and Trivedi, K.S. (1989) SPNP: stochastic Petri net package. Proceedings of the 3rd International 
Workshop on Petri Nets and Performance Models (PNPM), pp. 142-151. 

[32] Muppala, J., Ciardo, G. and Trivedi, K.S. (1994) Stochastic Reward Nets for Reliability Prediction. Communications in 
Reliability, Maintainability and Serviceability, 1 (2), 9-20. 

[33] Hazewinkel, M. (Ed.) Encyclopaedia of Mathematics Springer, 1994. 

[34] Grottke, M. and Trivedi, K.S. (2005) A classification of software faults. The Journal of Reliability Engineering 
Association of Japan, vol 27, 425-438. 

[35] Ghosh R., Francesco, L., Flavio, F., Stefano, R. and Trivedi, K.S. (2014) Scalable analytics for IaaS cloud availability. 
IEEE Trans. Cloud Computing 2(1), 57-70. 

[36] Marcello, C., Domenico, C., Flavio, F. and Stefano, R. (2016) To Cloudify or Not to Cloudify: The Question for a 
Scientific Data Center. IEEE Trans. Cloud Computing 4(1), 90-103. 

[37] Marcus, E. The myth of the nines, [Online; accessed on November 21,2016], available at 
http://searchstorage.techtarget.com/tip/The-myth-of-the-nines (Aug. 2003). 

[38] Wang, D., Xie, W. and Trivedi, K.S. (2006) Performability analysis of clustered systems with rejuvenation under varying 
workload. Performance Evaluation (64), 247-265. 


