4,629 research outputs found

    3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications

    Full text link
    This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.Comment: 7 pages, 6 figures, ICC 2015 (London, UK, to appear

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    System architecture study of an orbital GPS user terminal

    Get PDF
    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Comparison of Wideband Earpiece Integrations in Mobile Phone

    Get PDF
    Perinteisesti puhelinverkoissa vÀlitettÀvÀ puhe on ollut kapeakaistaista, kaistan ollessa 300 - 3400 Hz. Voidaan kuitenkin olettaa, ettÀ laajakaistaiset puhepalvelut tulevat saamaan markkinoilla enemmÀn jalansijaa tulevina vuosina. TÀssÀ lopputyössÀ esitellÀÀn puheenkoodauksen perusteet laajakaistaisen adaptiivisen moninopeuspuhekoodekin (AMR-WB) kanssa. Laajakaistainen puhekoodekki laajentaa puhekaistan 50-7000 Hz kÀyttÀen 16 kHz nÀytetaajuutta. KÀytÀnnössÀ laajempi kaista tarkoittaa parannuksia puheen ymmÀrrettÀvyyteen ja tekee siitÀ luonnollisemman ja mukavamman kuuloista. TÀmÀn lopputyön pÀÀtavoite on vertailla kahden eri laajakaistaisen matkapuhelinkuulokkeen integrointia. Kysymys kuuluu, kuinka paljon kÀyttÀjÀ hyötyy isommasta kuulokkeesta matkapuhelimessa? Kuulokkeiden suorituskyvyn selvittÀmiseksi niille tehtiin objektiivisia mittauksia vapaakentÀssÀ. Mittauksia tehtiin myös puhelimelle pÀÀ- ja torsosimulaattorissa (HATS) johdottamalla kuuloke suoraan vahvistimelle, sekÀ lisÀksi puhelun ollessa aktiivisena GSM ja WCDMA verkoissa. Objektiiviset mittaukset osoittivat kahden eri integroinnin vÀliset erot kuulokkeiden taajuusvasteessa ja sÀrössÀ erityisesti matalilla taajuuksilla. Lopuksi tehtiin kuuntelukoe tarkoituksena selvittÀÀ erottaako loppukÀyttÀjÀ pienemmÀn ja isomman kuulokkeen vÀlistÀ eroa kÀyttÀen kapeakaistaisia ja laajakaistaisia puhelinÀÀninÀytteitÀ. Kuuntelukokeen tuloksien pohjalta voidaan sanoa, ettÀ kÀyttÀjÀ erottaa kahden eri integroinnin erot ja miespuhuja hyötyy naispuhujaa enemmÀn isommasta kuulokkeesta laajakaistaisella puhekoodekilla.The speech in telecommunication networks has been traditionally narrowband ranging from 300 Hz to 3400 Hz. It can be expected that wideband speech call services will increase their foothold in the markets during the coming years. In this thesis speech coding basics with adaptive multirate wideband (AMR-WB) are introduced. The wideband codec widens the speech band to new range from 50 Hz to 7000 Hz using 16 kHz sampling frequency. In practice the wider band means improvements to speech intelligibility and makes it more natural and comfortable to listen to. The main focus of this thesis work is to compare two different wideband earpiece integrations. The question is how much the end-user will benefit from using a larger earpiece in a mobile phone? To find out speaker performance, objective measurements in free field were done for the earpiece modules. Measurements were performed also for the phone on head and torso simulator (HATS) by wiring the earpieces directly to a power amplifier and with over the air on GSM and WCDMA networks. The results of objective measurements showed differences between the earpiece integrations especially on low frequencies in frequency response and distortion. Finally the subjective listening test is done for comparison to see if the end-user notices the difference between smaller and larger earpiece integrations using narrowband and wideband speech samples. Based on these subjective test results it can be said that the user can differentiate between two different integrations and that a male speaker benefits more from a larger earpiece than a female speaker

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Signals in the Soil: Underground Antennas

    Get PDF
    Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference in how EM waves propagate during aboveground (AG) and underground (UG) communications. For the third challenge above, it is to be noted that lateral waves are dominant component in EM during UG2UG communication and suffer lowest attenuation as compared to other, direct and reflected, components. Therefore, antennas used for over-the-air (OTA) communication will not be suitable for UG communication because of impedance mismatch. This chapter focuses on developing a theoretical model for understanding the impact of soil on antenna by conducting experiments in different soil types (silty clay loam, sandy, and silt loam soil) and indoor testbed. The purpose of the model is to predict UG antenna resonance for designing efficient communication system for IOUT. Based on the model a wideband planar antenna is designed considering soil dispersion and soil–air interface reflection effect which improves the communication range five times from the antennas designed only for the wavelength change in soil. Furthermore, it also focuses on developing an impedance model to study the effect of changing wavelength in underground communication. It is also discussed how soil–air interface and soil properties effect the return loss of dipole antenna

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process
    • 

    corecore