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The speech in telecommunication networks has been traditionally narrowband 

ranging from 300 Hz to 3400 Hz. It can be expected that wideband speech call 

services will increase their foothold in the markets during the coming years.   

 

In this thesis speech coding basics with adaptive multirate wideband (AMR-WB) 

are introduced. The wideband codec widens the speech band to new range from 50 

Hz to 7000 Hz using 16 kHz sampling frequency. In practice the wider band means 

improvements to speech intelligibility and makes it more natural and comfortable to 

listen to. 

 

The main focus of this thesis work is to compare two different wideband earpiece 

integrations. The question is how much the end-user will benefit from using a larger 

earpiece in a mobile phone? To find out speaker performance, objective 

measurements in free field were done for the earpiece modules. Measurements were 

performed also for the phone on head and torso simulator (HATS) by wiring the 

earpieces directly to a power amplifier and with over the air on GSM and WCDMA 

networks. The results of objective measurements showed differences between the 

earpiece integrations especially on low frequencies in frequency response and 

distortion. 

 

Finally the subjective listening test is done for comparison to see if the end-user 

notices the difference between smaller and larger earpiece integrations using 

narrowband and wideband speech samples. Based on these subjective test results it 

can be said that the user can differentiate between two different integrations and that 

a male speaker benefits more from a larger earpiece than a female speaker. 

Keywords:  AMR-WB, wideband speech, earpiece, subjective testing, acoustic 

measurements 
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Perinteisesti puhelinverkoissa välitettävä puhe on ollut kapeakaistaista, kaistan 

ollessa 300 - 3400 Hz. Voidaan kuitenkin olettaa, että laajakaistaiset puhepalvelut 

tulevat saamaan markkinoilla enemmän jalansijaa tulevina vuosina.  

 

Tässä lopputyössä esitellään puheenkoodauksen perusteet laajakaistaisen 

adaptiivisen moninopeuspuhekoodekin (AMR-WB) kanssa. Laajakaistainen 

puhekoodekki laajentaa puhekaistan 50-7000 Hz käyttäen 16 kHz näytetaajuutta. 

Käytännössä laajempi kaista tarkoittaa parannuksia puheen ymmärrettävyyteen ja 

tekee siitä luonnollisemman ja mukavamman kuuloista. 

 

Tämän lopputyön päätavoite on vertailla kahden eri laajakaistaisen 

matkapuhelinkuulokkeen integrointia. Kysymys kuuluu, kuinka paljon käyttäjä 

hyötyy isommasta kuulokkeesta matkapuhelimessa? Kuulokkeiden suorituskyvyn 

selvittämiseksi niille tehtiin objektiivisia mittauksia vapaakentässä. Mittauksia 

tehtiin myös puhelimelle pää- ja torsosimulaattorissa (HATS) johdottamalla kuuloke 

suoraan vahvistimelle, sekä lisäksi puhelun ollessa aktiivisena GSM ja WCDMA 

verkoissa. Objektiiviset mittaukset osoittivat kahden eri integroinnin väliset erot 

kuulokkeiden taajuusvasteessa ja särössä erityisesti matalilla taajuuksilla. 

 

Lopuksi tehtiin kuuntelukoe tarkoituksena selvittää erottaako loppukäyttäjä 

pienemmän ja isomman kuulokkeen välistä eroa käyttäen kapeakaistaisia ja 

laajakaistaisia puhelinääninäytteitä. Kuuntelukokeen tuloksien pohjalta voidaan 

sanoa, että käyttäjä erottaa kahden eri integroinnin erot ja miespuhuja hyötyy 

naispuhujaa enemmän isommasta kuulokkeesta laajakaistaisella puhekoodekilla. 

Hakusanat:  AMR-WB, laajakaistainen puhe, kuuloke, subjektiivinen testaus, 

akustiset mittaukset  
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1. INTRODUCTION 

In telecommunication speech transmission is based nowadays on digital transmission. 

When speaking into the phone's microphone the human speech is in analogical form. 

The microphone transforms the air pressure variations to a digital form with an analog-

to-digital (AD) converter and after that the speech is digital sampled data. The 

traditional telephone system uses a pulse code modulation (PCM) method to do this AD 

conversion. The bit rate of PCM requires bandwidth too much for cellular radio 

transmission and, therefore, the speech information has to be compressed. This 

compression is also called speech coding. 

 

The aim of speech coding in transmission systems is to optimize the speech quality in 

relation to consumed bits and error robustness. There are many different speech coding 

methods. The best coding methods compress the data so that the human ear does not 

sense much difference to the uncompressed version of the speech. From the speech 

codecs standardized for the cellular telephony, adaptive multi-rate wideband speech 

codec (AMR-WB) produces the most natural sound. 

 

The traditional land line and the global systems for mobile communications (GSM) 

network have used the speech bandwidth 300Hz-3400Hz. The first commercial network 

with speech coding method AMR-WB on the bandwidth 50-7000Hz was opened in 

Moldova at September 2009 [24]. The AMR-WB is widely expected to become a new 

standard for mobile voice communications. It can be expected that operators will 

introduce the AMR-WB voice service in many networks around the world in the near 

future.  

 

This thesis focuses on comparing two different earpiece integrations in wideband and 

narrowband speech calls. The idea is to find out how much a user benefits if a larger 

earpiece is used in AMR-WB calls and in AMR-NB calls for comparison. 

 

This paper contains information about hearing and speech, current speech coding 

methods on the market with the upcoming AMR-WB codec. A wideband audio path 

from the antenna to the loudspeaker is introduced. The loudspeaker enclosures affect on 

the overall acoustics and different cavities with leaks is presented.  

 

The objective measurements are done to find out if there is any significant difference 

between the earpieces in free field without the phone, on the head and torso simulator 

(HATS) by using a connection directly from the measurement equipment to the speaker 

on the phone. Also, the phones' audio performances are measured during the call to 

evaluate the performance under the whole audio path. The subjective test is done in 

Oulu Nokia Teknologiakylä site to get information how users sense the difference 

between the two phones. Finally the objective results are compared with subjective test 

results, which heavily support the decision taken. 
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2. BACKGROUND THEORY OF SPEECH AND HEARING 

This chapter introduces the speech properties and coding used in mobile communication 

systems. 

2.1 Speech properties 

Speech is an excellent way to communicate with other people. Visual effects can be 

used to make the speech more effective, but in telephone calls the voice is the only 

available way to communicate. 

Humans have unique characteristics compared to other living creatures on earth: speech. 

It is in everyday usage and self-evident for us, but if something goes wrong then we 

notice how much it means to us. 

The speech is acoustic sound waves from the speaker’s vocal organs to the listener’s 

ears. The smallest posited structural unit of the speech is a phoneme [1]. For example, 

in the Finnish language there are 24 phonemes. The understandable words are made 

from phonemes after another and sentences are formed by placing pauses between the 

sequential phonemes. 

Phonemes can be divided into two groups: voiced and unvoiced phonemes. In the 

Finnish language, the vocal phonemes and some of the consonants (e.g. n, m, j and v) 

are voiced. The parts of the consonants are unvoiced (e.g. k, p, t, f, s and h). The 

unvoiced phonemes are noisy without periodicity. The voiced parts are periodic in the 

time-domain and harmonic structure in the frequency-domain. These properties are 

from vocal tract resonances. There are peaks in the voiced phoneme spectrum and those 

are vocal tract resonance frequencies called formants. The different phonemes can be 

distinguished by looking at the formant structure. Finnish vocal phonemes can be 

differentiated with the first two lowest formants. It is, however desirable that there are 

higher formants included when transmitting a speech signal. 

2.1.1 Speech production 

The speech is produced from a filtering operation, where the stimulus goes through 

about a 17 cm long sound channel (see Figure 1) formed by larynx, pharynx, oral and 

nasal cavity [2]. The sound channel is a physiological filter, which shapes the stimulus 

from the lungs. Different sounds are formed by changing the filtering characteristics. 

These properties change when the profile of the sound channel is shaped with the 

different position of, for example tongue and lips.   
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Figure 1:  The human vocal organs [3].  
  

Voiced sound forming starts from the lungs. Midriff muscle press’ the lungs and causes 

overpressure to the trached. The vocal cords start to vibrate because the air flows from 

the lungs through a small hole between the vocal cords called the glottis. The vibrating 

frequency is called the fundamental frequency, which is about 100 – 110 Hz for males 

and 200 Hz for females. The periodic airflow pulse from the vocal cords is called the 

glottis stimulus. In the end of the sound channel, the filtered glottis stimulus diverges 

from the mouth and changes to audible pressure wave.  

One difference between the voiced and unvoiced sound is that voiced sounds have 

greater amplitude than unvoiced. The waveforms of voiced sounds are exact periodic, 

which is very important from the speech coding point of view. Instead of using the 

glottis stimulus in the unvoiced sounds, they are formed in narrow or closed parts of the 

sound channel. Unvoiced sounds are often similar to random noise and the glottis 

stimulus is not used at all. 

 

One way to present the speech production is to use a simplified source-filter model of 

speech as in Figure 2. This kind of model can be also used in the formant synthesis to 

produce synthetic speech. Voiced sounds are produced from the glottis stimulus and 

unvoiced from noise. Both voiced and unvoiced stimulus are connected to a binary 

switch. After the switch there is an input for a linear filter, which represents other parts 

of the speech production, especially the sound channel [4]. Gain 𝐴0  is needed for 

balancing the speech signal energy on every stimulus and filter combination. The 𝐹0in 

Figure 2 is the fundamental frequency of voiced sounds.  
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Figure 2:  Source-filter model of speech [1]. 

  

2.1.2 Hearing of speech 

The role of the ear is to receive the sound wave from the air and guide it to the hearing 

nervous system. The sensitivity of the human ear is not always so good compared to an 

animal ear, but it has a unique special assignment and ability: speech analysis and 

recognition. The structure of the human ear can be seen in Figure 3. 

The human ear is usually divided into three parts: inner, middle and outer ear. The 

auditory canal ends to the tympanic membrane in the outer ear. Inside the eardrum in 

the middle ear is three bones connected to each other: The hammer, anvil and stirrup. 

These bones transmit and strengthen the sound, but also prevent the wide eardrum 

movement effect to the inner ear. The purpose of the middle ear is to adjust the 

impedances between the air in the outer ear and the liquid in the inner ear. The three 

bones mentioned above act as a mechanical impedance converter by transferring low 

pressure and high particle speed (in air) into high pressure and low particle speed (in 

liquid) [1]. 

The speech recognizing and understanding starts in the inner ear. The cochlea is a very 

sensitive organ, which analyzes the sound and transforms the sound to nerve impulses. 

The semicircular canals are not for hearing, but for human balance.  
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Figure 3:  The structure of human ear [7]. 
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3. FUNDAMENTALS OF GSM CODERS  

3.1 Speech coding basics 

The idea of speech coding is to compress the original sound data as much as possible 

without losing the quality too much [4]. This compression enables the speech 

transmission with smaller resources and increases the amount of information to be 

transmitted with limited resources. 

 
When comparing audio formats, the sound sources have to be selected carefully. The 

normal audio CD has a very good audio quality and to the present day it has been the 

standard physical medium for sale of commercial audio recordings. If the CD audio is 

transmitted with stereo sound, it takes over 1.4 Mbits/s transfer speed. The bandwidth in 

CD is half from the sampling rate 44.1 kHz/2 = 22 kHz. In a traditional telephone 

system, the used bit rate is 64 kbits/s, which is about 1/22 of CD audio data rate called 

PCM. Usually the CD audio quality is compared to all audio formats, where the PCM is 

used to grade speech audio quality. 

 

Before the analog speech is coded to PCM format some signal processing must be done. 

First the original speech signal is filtered and the unwanted signal components are 

removed. The traditional telephone network uses a bandwidth between 300 Hz – 3400 

Hz so the frequencies outside the band are filtered away. After filtering the speech 

signal is then sampled. This means taking samples of the signal at the sampling 

frequency, which is in the PCM case 8 kHz. When sampling is done, the signal values 

are transformed to discrete numerical values or quantized. The quantization is done with 

13 or 14 bits in telephone networks. Finally, after the quantization the signal is coded. 

Signal coding reduces the bits needed for data transmission for instance compressing 

with A- or µ-law decreases the sample to 8 bit with a very small signal quality loss. The 

basic principle of speech coding is shown in Figure 4. 

 

Figure 4:  Speech coding principle from original sound to coded signal. 
  

Speech coding methods are divided into two groups: waveform coders and source 

coders. The waveform coders try to transmit the original signal to the destination and 

keep the same waveform. The idea of source coders is to model the mechanism how the 

waveform is produced by parameters. There are also hybrid coding methods that 

connect both of these methods. 

 

3.1.1 Waveform coders 

Most of the sounds that we hear are vibrations through air. These vibrations can be 

transformed into electrical signals with the help of the microphone. The microphone 

signal is then coded on the desired media. Waveform coders try to preserve the 

electrical signal waveform as much as possible.  



7 

 

The advantage of the waveform coders is that they can be applied to different kinds of 

signals like music, signaling or data transfer. If there is noise added to the signal, 

waveform coders maintain their performance. 

The simplest waveform coding method is pulse-code modulation PCM. It is 

standardized in ITU-T G.711 [5]. PCM transforms the linear 13 or 14 bit samples to 8 

bit one by one according to the standard. Using PCM guarantees very good speech 

quality, but bit rate is fairly high.  

There are several ways to improve pulse-code modulation performance. One is to use 

differential modulation, which is based on prediction of the samples of the signal and 

baseline of PCM. Another method is adaptive quantization, where the size of the 

quantization step is varied allowing the reduction of the required bandwidth for a given 

signal-to-noise ratio. These two coding methods can achieve almost as good speech 

quality as PCM, but with a smaller bit rate. 

There are also other waveform coding methods for example, delta modulation and 

adaptive transform coding. The latter method uses fast transforming algorithms, like 

discrete cosine transform DCT to cut the signal on a large amount of frequency bands. 

The bit amount of frequency band multipliers is selected based on the speech spectrum. 

Delta modulation is one variant of PCM, which uses a very low bit amount to indicate 

the change of the previous sample.  

3.1.2 Source coders 

Vocoders or source coders are developed to achieve efficient speech coding. The speech 

signal is sent to the transmission channel as parameters reducing the bit rate noticeably. 

Even the speech is in parameter form, it can be reconstructed in the receivers end so that 

the human ear senses characteristic parts of the original signal. Most of the vocorders 

are based on the speech production model in Figure 2. 

 

There are many flaws in source coders. Because the vocoders are optimized to speech 

coding, other types of signals suffer more in the coding. Usually the speech quality is 

worse and more synthetic than waveform coders. Vocoders are also talker dependent 

and male voices are typically heard with better quality. If there is noise added to the 

signal, the quality of the coded speech decreases recognizably. Most of the speech 

coders used in telecommunication are based on linear prediction and its variations. 

 

3.1.3 Present speech codecs 

There are many speech codecs available for speech compressing. The most common 

codecs are listed in Table 1. There are several codecs used in mobile communication for 

example typically, the supported codecs in mobile phones are GSM HR, GSM FR, 

GSM EFR and GSM AMR. Also AMR-WB is specified for GSM and WCDMA and the 

first commercial AMR-WB network was launched to consumers on autumn 2009 [24].  

In Table 1 the Mean Opinion Score, MOS means the average quality that listeners 

perceive in a listening test on a scale of 1-5. Values from 4.0 to 4.5 are as good as 

telephone land line, mobile networks are graded 3.5-4.0 and values 2.5-3.5 sound like 

synthetic speech [8]. 
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Table 1:  Most common speech codecs [6] 

Codec Coding method Bit rate (kbit/s) MOS Complexity MIPS 
AMR WB (G.722.2) ACELP 6.60 - 23.85 WB 40 

G.722 SB-ADPCM 48 / 56 / 64 WB 5 

G.711 PCM 64 4.4 0.5 

G.726 ADPCM 16 / 24 / 32 40 2 / 3.2 / 4.0 / 4.2 2 

G.727 E-ADPCM 16 / 24 / 32 40 2 / 3.2 / 4.0 / 4.2 2 

AMR ACELP 4.75 - 12.2 ≤ 4.2 17 

GSM EFR ACELP 12.2 4.2 16 

CDG27 QCELP13 1.0 / 6.2 / 13.3 4.1   

IS-127 ACELP (EVCR) 0.8 / 4 / 8.55 4.1 24 

G.728 LD-CELP 16 4 30 

IS-641 ACELP 7.4 4 15 

G.723.1 A/MP-MLQ CELP 5.2 / 6.2 3.7 / 4.0 16 

G.729 CS-ACELP 8 3.9 20 

G.729a CS-ACELP 8 3.7 11 

GSM FR RPE-LTP 13 3.7 5 - 6 

GSM HR VSELP 5.6 3.6 14 

IS-54 VSELP 7.95 3.5 14 

IS-96-B QCELP 0.8 / 2 / 4 / 8.55 3.5 15 

Inmarsat-Aero MPLPC 8.9 3.5   

TETRA ACELP 4.56 < 3.5 15 

JDC VSELP 6.7 < 3.5   

Inmarsat-M IMBE 4.15 < 3.5 7 

Inmarsat-P AMBE 3.6 < 3.5   

DOD FS 1016 CELP 4.8 3.2 16 

DOD FS prop. MELP 2.4 3.2 40 

Inmarsat-B APC 9.6 / 12.8 3.1 / 3.4 10 

JDC-HR PSI-CELP 3.45 < 3.0   

DOD FS 1015 LPC-10 2.4 2.3 7 

 

The complexity in Table 1 describes how many million instructions per second MIPS 

are calculated. This parameter tells how much the processor requires calculation and 

that way causes computational delay. The processing delay is always minimized during 

the designing process. 

One impact, which is not mentioned in Table 1, is memory consumption. It affects the 

complexity, but it is not noted in this case. The other delays, which are not in Table 1, 

are algorithm, multiplexing and transmission delay. These delays are about the same for 

each speech codec used in mobile networks and for that reason are left out from Table 

1. 

3.2 Linear prediction in speech coding 

Linear predictive coding (LPC) is one of the most powerful speech analysis techniques, 

and one of the most useful methods for encoding good quality speech at a low bit rate. It 

provides extremely accurate estimates of speech parameters, and is relatively efficient 

for computation. Almost all present speech codecs are based on this method [4]. 

3.2.1  Basics of linear prediction 

LPC starts with the assumption that the speech signal is produced by a buzzer at the end 

of a tube. The glottis produces the buzz, which is characterized by its intensity 

(loudness) and frequency (pitch). The vocal tract (the throat and mouth) forms the tube, 

which is characterized by its resonances, which are called formants. 

LPC analyzes the speech signal by estimating the formants, removing their effects from 

the speech signal, and estimating the intensity and frequency of the remaining buzz. The 
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process of removing the formants is called inverse filtering, and the remaining signal is 

called the residue. 

The numbers which describe the formants and the residue can be stored or transmitted 

somewhere else. LPC synthesizes the speech signal by reversing the process: use the 

residue to create a source signal, use the formants to create a filter (which represents the 

tube), and run the source through the filter, resulting in speech. 

3.2.2 Short term prediction 

In LPC analysis the sequentially placed samples’ correlation is utilized efficiently. The 

signal sample value is estimated by forming a linear combination of a few previous 

samples. In linear combination, these previous samples are multiplied by certain 

parameters. When the multipliers and products are added up, the prediction to the 

sample value is obtained. This value is subtracted from the sample value and the 

prediction error, and the residue is attained as a result. 

The prediction is repeated to a certain amount of sequential samples using the same 

coefficient parameters. After this, the square error between the original and predicted 

signal samples is minimized. The result shows the optimal coefficient parameters. The 

filter is a finite impulse response (FIR) type and called the prediction filter. 

3.2.3 Long term prediction 

The long term prediction filter estimates the coming residual peaks at the end of the 

pitch-period and removes the peaks with inverse filtering. After inverse filtering the 

new residual is more like hum, which can be quantized with a small amount of bits. 

The short term predictor’s prediction error signal is like an impulse, which is from the 

voiced speech signal glottis pulses. Describing the impulse signal by a low amount of 

data bits is problematic, which is why the long term predictor is added after short term 

prediction filter. 

3.2.4 Optimization of prediction filter 

In general form the LPC is done at p-degrees, when samples s(n) prediction š(n) 

calculation is done with p previous samples (s(n-1), s(n-2),…,s(n-p)). The coefficient 

parameters are marked on a(k). The expression for prediction is obtained in (1). 

 š 𝑛 =  𝑎 𝑘 𝑠(𝑛 − 𝑘)𝑝
𝑘=1    (1) 

The prediction error called residual can be expressed as: 

 𝑒 𝑛 = 𝑠 𝑛 − š 𝑛 = 𝑠 𝑛 −  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑝
𝑘=1   (2) 

In the infinite length time window, the residual signal energy is expressed as:  

 𝐸 =  𝑒2 𝑛 =   𝑠 𝑛 −  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑝
𝑘=1  

2
𝑛𝑛    (3) 

 =  [𝑛 𝑠2 𝑛 − 2𝑠 𝑛  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑝
𝑘=1  

 +  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑝
𝑘=1  

2
]    (4) 
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The coefficients a(k), 1 ≤ 𝑘 ≤ 𝑝 that realize the mean square error criterion is attained 

when the residual energy’s partial derivatives are set to zero with regard to a(i): 

 
𝜕𝐸

𝜕𝑎 (𝑖)
= 0, 1 ≤ 𝑖 ≤ 𝑝    (5) 

   −2𝑠 𝑛 𝑠 𝑛 − 𝑖 + 2  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑠(𝑛 − 𝑖)𝑝
𝑘=1  𝑛 = 0 (6) 

  𝑠 𝑛 𝑠 𝑛 − 𝑖 =  𝑎 𝑘 𝑠 𝑛 − 𝑘 𝑠 𝑛 − 𝑖 , 1 ≤ 𝑖 ≤ 𝑝𝑝
𝑘=1𝑛  (7) 

The equation (7) can be expressed in the following form: 

  𝑎 𝑘 𝜙 𝑖, 𝑘 = 𝜙 𝑖, 0 , 1 ≤ 𝑖 ≤ 𝑝𝑝
𝑘=1 ,   (8) 

where 𝜙 𝑖, 𝑘 =  𝑠 𝑛 − 𝑖 𝑠(𝑛 − 𝑘)𝑛  

The optimized prediction filter gives the residual energy: 

 𝐸𝑚𝑖𝑛 = 𝜙 0,0 −  𝑎 𝑘 𝜙 0, 𝑘 𝑝
𝑘=1    (9) 

 =  𝑠2 𝑛 −  𝑎 𝑘   𝑠 𝑛 𝑠 𝑛 − 𝑘 𝑛  𝑝
𝑘=1𝑛   (10) 

 = 𝐸𝑜𝑟𝑖𝑔 − 𝐸(𝑝)    (11) 

Equation (11) shows that residual energy 𝐸𝑚𝑖𝑛 can be expressed as the subtraction of 

original signal  𝐸𝑜𝑟𝑖𝑔  and prediction degree dependend energy 𝐸(𝑝) [8]. 

3.2.5 Windowing and autocorrelation method 

There are two ways to calculate LPC, the autocorrelation and covariance methods. The 

autocorrelation method is most often used because it requires less calculation and the 

FIR-filter is always at a minimum phase after optimization. The minimum phase filter is 

necessary so that the infinite impulse response (IIR) filter decoder is stable. 

In theory, the FIR-filter optimization is done in an infinite length time frame, but in 

practice calculation of the speech signal is divided into short segments. The division 

into segments is done by multiplying the speech signal on a window function, which is 

nonzero on the time frame 0 ≤ 𝑛 ≤ 𝑁 − 1. The simplest window function is rectangle 

(w(n)=1, 0 ≤ 𝑛 ≤ 𝑁 − 1), which divides the signal into N sample long segments. The 

most common window functions in LPC are the Hanning and Hamming windows 

described below. 

Hamming:  𝑤 𝑛 = 0.54 − 0.46 cos  
2𝜋𝑛

𝑁−1
 , 0 ≤ 𝑛 ≤ 𝑁 − 1  (12) 

Hanning:  𝑤 𝑛 =
1

2
 1 − cos  

2𝜋𝑛

𝑁−1
  , 0 ≤ 𝑛 ≤ 𝑁 − 1  (13) 

If these two windowing methods (11), (12) are compared to the rectangular window the 

advantage is that Hamming and Hanning decrease the unwanted transitions from the 

beginning and the end of the signal frame. The shapes of Hamming and Hanning 

windows are about the same; the functions gain their maximum value in the middle of 

the time window and their minimum values near zero at the beginning and the end. 

The windowing produces the following signal: 
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 𝑠 𝑛 = 𝑠0 𝑛 𝑤(𝑛)    (14) 

where, 𝑠0 𝑛  is original speech signal, which is continuous and nonzero, w(n) is 

windowing function, which is nonzero at time interval 0 ≤ 𝑛 ≤ 𝑁 − 1, s(n) describes 

the speech signal predicted in LPC-analysis. 

Now the equation (8) term ϕ can be shown as follows: 

 𝜙 𝑖, 𝑘 =  𝑠 𝑛 − 𝑖 𝑠 𝑛 − 𝑘 𝑁−1+𝑝
𝑛=𝑜     (15) 

where 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑘 ≤ 𝑝. 

When n-i=j is placed to Equation (15) 

 𝜙 𝑖, 𝑘 =  𝑠 𝑗 𝑠 𝑗 + 𝑖 − 𝑘 𝑁−1+𝑝−𝑖
𝑗=−𝑖 ,   (16) 

where 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑘 ≤ 𝑝. s(j) is nonzero between 0 ≤ 𝑗 ≤ 𝑁 − 1 because of the 

windowing and for this reason the Equation (16) can be presented as: 

 𝜙 𝑖, 𝑘 =  𝑠 𝑗 𝑠 𝑗 + 𝑖 − 𝑘 
𝑁−1−(𝑖−𝑘)
𝑗=0 ,    (17) 

where 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑘 ≤ 𝑝.  

Equation (17) is the definition of the autocorrelation: 

 𝜙 𝑖, 𝑘 = 𝑅 𝑖 − 𝑘     (18) 

 = 𝑅 𝑘 − 𝑖 =  𝑠 𝑗 𝑠 𝑗 + 𝑖 − 𝑘 
𝑁−1−(𝑖−𝑘)
𝑗=0   (19) 

The result of the optimization can be represented in matrix form: 

 R • A = R′,     (20) 

where R is autocorrelation matrix: 

𝑹 =  

𝑅 0 𝑅 1  ⋯ 𝑅 𝑝 − 1 

⋮ 𝑅 0  ⋱ ⋮
𝑅(𝑝 − 1) 𝑅(𝑝 − 2) ⋯ 𝑅(0)

  

A is a p x 1 size vector with optimal coefficients 

A = (a(1), a(2) … a(p)) 𝑇 

R′ is autocorrelation vector: 

R′ = (R(1), R(2) … R(p)) 𝑇 

The matrix A can be solved from equation (20): 

 A = 𝑹−1 • R′     (21) 

Choosing the predictors degree is quite simple. When using a speech signal the degree 

is chosen by dividing the sample frequency by one thousand and adding a small integer. 

Because mobile networks use sample frequency of 8 kHz, the value for p is 8-12. Also 
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the frame size (N) and window function must be chosen. Usually the N-value is 100-200 

[8]. 

3.2.6 LPC-synthesis 

The LPC synthesis is the reconstruction of the signal which underwent LPC analysis. It 

is achieved by using the stored parameters obtained from LPC analysis. When Equation 

(8) is solved it gives the solution to the prediction filter: 

 𝐴 𝑧 = 1 −  𝑎(𝑘)𝑧−𝑘𝑝
𝑘=1     (22) 

If the speech signal s(n) is filtered through A(z) it gives the same residual as in (2). The 

idea is to code the speech signal information to optimal solved prediction filter 

coefficients and a residual. The coefficients and residual are sent to the receiver end 

with a very low bit rate compared to the waveform type coder PCM. When the 

coefficients and residual are sent to the receiver end, the inverse LPC-synthesis is done. 

The residual is filtered in LPC-synthesis with an IIR-type filter and the result is an 

original speech signal. The synthesis is described the in time domain: 

 𝑠 𝑛 = 𝑒 𝑛 +  𝑎 𝑘 𝑠(𝑛 − 𝑘)𝑝
𝑘=1    (23) 

In the z-domain: 

 𝑆 𝑧 = 𝐸 𝑧 ∙
1

𝐴(𝑧)
= 𝐸(𝑧) ∙ 𝐻(𝑧)   (24) 

The residual can be quantized with a very low bit rate, because it is like noise. This 

property is one of the key things why LPC is such an important method when 

transferring a speech signal. The LPC can be described by the model found in Figure 2. 

The filter system coefficients are updated for every speech frame so that the sound 

frequency attributes are recognizable. The coefficients are retrieved from LPC analysis. 

The voiced sounds fundamental frequency, selection of voiced or unvoiced frame and 

amplification factor G are sent in other parameters [8]. 

3.2.7 Code-Excited Linear Prediction (CELP) speech coding 

The most used analysis-by-synthesis coding method by recent coders is Code excited 

linear prediction, CELP. The idea is quite old, because Atal and Schroeder introduced 

the CELP in 1984 [10]. The advantage of CELP is that it offers high quality speech at a 

low bit rate, but the weakness is intensive computation. The algebraic code excited 

linear prediction ACELP vocoder algorithm is based on the CELP coding model, but 

ACELP codebooks have a specific algebraic structure imposed upon them. The ACELP 

is used in GSM enhanced full rate speech codec (EFR) and the adaptive multi-rate 

(AMR) speech codec. 

The difference between CELP and speech production models (see Figure 2) used by 

other vocorders is the excitation sequence. Instead of quantizing scalar noise stimulus, 

the noise stimulus is viewed as a certain length vector. The CELP coder utilizes a 

codebook which includes a set of speech vectors, typically 256, 512 or 1024 vectors. 

The vector calculated from the noise stimulus is compared to codebook vectors and the 

best matching one is selected. The speech signal compression is achieved by sending 

the index of the selected vector, its scaling factor, LPC coefficients and LTP parameters 

to the receiver. The simplified block diagram is shown in Figure 5. 
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Figure 5:  Simplified block diagram of the CELP analysis model [9]. The speech 

 signal is marked s(n) and the fixed codebook gain factor gc. 

 

CELP coder has short and long-term LPC predictors. In LPC analysis the short-term 

prediction is done for full length speech frames by 20 ms long frames. Long-term 

prediction, on the other hand, is done on shorter sub frames, which are 5 ms long. The 

long-term prediction can be done on the original speech signal (closed-loop method) or 

the residual of short-term prediction (open-loop method). 

Choosing the optimal excitation vector in CELP speech coding is carried out using an 

analysis-by-synthesis technique. First the speech is synthesised for every entry in the 

codebook. When the selection is done, the codeword that produces the lowest error is 

chosen as the excitation. There are Nf vectors in the fixed codebook and every vector 

has NSF samples. All vectors include random sample sequence. The parameters of the 

LPT predictor can be held as an adaptive codebook made of NSF samples. The stimulus 

vector can be estimated by the following equation: 

 𝑢 𝑛 = 𝑔 𝑝𝑣 𝑛 + 𝑔 𝑐𝑐(𝑛),    (25) 

where the gain factor of 𝑔 𝑝  is the fixed codebook and 𝑔 𝑐  is the gain factor for the 

adaptive codebook. The variables v(n) and c(n) are vectors from codebook.  

The CELP synthesis model is presented in [14] and in Figure 6 it is realized based on 

the Figure 2 speech production model. First, the adaptive codebook formed from the 

LPT- predictor’ parameters act as a source for predictable voiced sounds. The fixed 

codebook is a source for unvoiced sounds. The LPC-synthesis filter coefficients are 

from LPC-parameters. Finally, the post filter removes the pre-emphasis from the speech 

signal. 
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Figure 6:  Simplified block diagram of the CELP synthesis model. gp describes 

 the gain factor of adaptive codebook, gc is the gain factor of fixed 

 codebook, v(n) and c(n) are codebook vectors. When c(n) and v(n) vectors 

 are added, the result u(n) is the stimulus vector for LP synthesis. After LP 

 synthesis 𝒔 (𝒏) the post filtering is done and synthesis is complete 𝒔 ′(𝒏) 

 [14]. 

CELP requires heavy computation and because of the codebooks high memory 

capacity. In order to adapt CELP for instance to mobile phones, the memory 

consumption and computation must be smaller and for that reason there are many 

variations of CELP, like algebraic code excitation linear prediction ACELP. The 

advantage of ACELP is that it uses the algebraic codebook, where stimulus vector 

search is done in a smaller vector library and codebook vectors are not saved for the 

sender and transmitter.  
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4. ADAPTIVE MULTI-RATE WIDEBAND CODEC AMR-WB 

In this chapter the Adaptive Multi-Rate speech codec is introduced. The history and 

technical parts are described in brief. 

4.1 History and standardization 

The European Telecommunications Standards Institute, ETSI started a multi-rate speech 

codec standardization program for GSM in 1997. In 1996 the enhanced full rate, EFR 

codec achieved the same speech quality as in traditional landline speech and at same 

time was able to operate with the existing infrastructure. Even though the quality of 

speech was good, the need for error robust speech codec still existed. The need led to 

adaptive multi rate (AMR), which has an advantage that it can allocate data between 

speech coding and channel coding according to network conditions. The ETSI 

standardization program in 1997 was also a competition and winner selection was based 

on quality, complexity and impact on equipment and time schedule. The winner was the 

GSM EFR based codec developed jointly by Nokia, Ericsson and Siemens [9]. The 

Third Generation Partnership Project (3GPP) defined the AMR speech codec as a 

mandatory speech codec for third generation networks. 

The AMR-WB codec standardized by ETSI/3GPP in December 2001 is jointly 

developed by Nokia and VoiceAge [35]. Later in January 2002 it was approved by the 

ITU-T as G.722.2. Before the standardization, a feasibility study and a two-phase 

competition were implemented to find the best codec available. Nokia implementation 

won the competition and beat the other competitors with a clear margin. 

4.2 General description of AMR-WB 

Traditional landline and GSM speech use the frequency band 300-3400 Hz providing a 

quality referred to as toll quality. The new speech codec AMR-WB band is more than 

doubled as can be seen from Figure 7. The sampling rate is increased to 16 kHz from 

AMR-NB 8 kHz and, therefore, the frequency range is possible to extend to the 50-7000 

Hz area. Adding the lower frequencies to the speech the naturalness, presence and 

comfort is increased whereas high frequencies help to differentiate fricative sounds like 

"f" and "s". The human hearing threshold curve is also very sensitive at frequencies 

between 3400-7000 Hz.  

 



16 

 

 

Figure 7:  The hearing threshold of human auditory system with narrowband and 

 wideband frequency range. 

 

AMR-WB is based on the ACELP codec mentioned in section 3.2.7. The codec consists 

of nine source coders operating on the following bitrates 23.85, 23.05, 19.85, 18.25, 

15.85, 14.25, 12.65, 8.85, 6.60 kbit/s. The 12.65 kbit/s is the lowest bit rate, which 

offers high quality wideband speech and the two lower bitrates are meant to be used 

only in temporary severe network conditions. The AMR has the ability to change the bit 

rate during a call and the change works differently in GSM and WCDMA networks. In 

GSM, the bit rate adaptation is done to provide best possible speech quality in various 

network conditions. If radio conditions get worse, more bits are allocated to error 

detection and correction, while lower codec mode is switched on improving overall 

quality. 

 

Unlike in GSM, the network capacity optimization in WCDMA is done by different 

codec modes. However, the mode adaptation is not needed because of radio conditions 

because the same effect is achieved by increasing transmit power. The overall network 

performance and codec mode usage is monitored by the operator, which can adapt 

codec mode usage to maximize throughput and avoid network crowding.  

 

One important advantage of AMR-WB is that it dynamically adapts to the traffic 

conditions. The variable bit rate benefit can be easily seen in Figure 8, where a 30 

second call with varying channel error rate is described. The blue curve is carrier-to-

interference ratio, which describes the guaranteed transmission speed. The red curve 

demonstrates how the AMR-WB speech codec handles the different network 

conditions; it changes the bit rate of the speech codec according to channel errors and 

this way manages to maintain network connection much better under poor conditions 

than constant bit rate codecs. 
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Figure 8:  AMR-WB codec mode adaptation in GSM full rate channel 

 (Carrier-to-Interference ratio, C/I) [11]. 
 

The channel error repairing is managed by power control. This means that if the radio 

conditions are weak, the transmission power is increased. The benefit from changing bit 

rate is the increased network capacity to handle more customers in peak periods by 

decreasing the speech coding bit rate. 

The bit rate in AMR-WB can be selected asymmetric. It means that during a phone call 

the uplink bit rate from a phone towards the base station can be different to the 

downlink from the base station to phone. The speech frame length is 20 ms and the 

operating mode can be changed often. When the network conditions change and the 

suitable operating mode has to be selected, the phone uses the autonomous mode 

forcing the bit rate to a different level. 

4.3 Encoder 

The AMR-WB speech codec is based on ACELP, which means that the AMR coding 

method belongs to source coders. Source coders have lots of computation in their coder 

and the six phased block diagram of AMR can be seen in Figure 9. Pre-processing is 

done to all speech frames, as well as short-term LPC prediction and speech fundamental 

frequency analysis. The codebook searches are performed in sub frames. The specific 

information of the coder can be found from [14]. 
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Figure 9:  Simplified block diagram of the GSM Adaptive Multi-Rate encoder [14], 

 [32]. 

 

In pre-processing the high pass filtering and signal level decreasing are performed. The 

reason for high pass filtering is that the unwanted low level signal components are 

removed. The analysis of the LPC, LTP and fixed codebook parameters at a 12.8 kHz 

sampling rate are performed. Thus a 16 kHz input signal has to be decimated.  

 

The linear predictive analysis (LPC) is a way to approximate a speech sample as a linear 

combination of past speech samples. By minimizing the sum of the squared differences 

between the actual speech samples and the linearly predicted ones, a unique set of 

predictor coefficients can be determined. The short-term prediction is performed using 

an autocorrelation function with a 30 ms asymmetric window. To help computation, 5 

ms in both directions from a window is used as an overhead.  

 

The pitch-lag is related to the speech fundamental frequency analysis or long term 

prediction analysis. Accurate estimation of the pitch-lag parameter is important for the 

subjective quality of the synthesized speech. The search for pitch-lag parameter is 

divided into two parts: The approximation for pitch-lag value is found with an open-

loop pitch search, which speeds up and limits the closed-loop pitch search done in an 

adaptive codebook search. The closed loop refines the open-loop result by finding the 

optimal value in the neighborhood of the open-loop result. The parameters for the 

adaptive codebook are the delay and gain of the pitch filter. An open-loop pitch search 

is done in every other sub frame in the adaptive multi-rate codec. Instead of frequency, 

the time between the voiced sound pulses is measured. 

 

Synthesis and weighting filters are updated for calculating the next sub frame stimulus 

signal in a filter memory update. The adaptive and fixed codebook gains are vector 

quantized using a 6 or 7 bit codebook. 
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Finally, the speech frame is complete and the result is an amount of parameters 

quantized with a certain accuracy. The parameters are used in the receiver end in the 

decoder and a signal similar to the original is reconstructed.  

 

4.4 Decoder 

The function of the decoder is to decode the transmitted parameters and try to obtain the 

reconstructed speech by performing the synthesis. After the decoding the reconstructed 

speech is post filtered and upsampled. Finally, the high-band signal from 6.4 to 7 kHz is 

generated and added to the lower band signal.  The AMR-WB decoder is based on the 

ACELP synthesis model and is simpler than an encoder, meaning less computation. The 

simplified block diagram is shown in Figure 10. 

 

Figure 10:  Simplified block diagram of the adaptive multi-rate decoder [14],[32]. 
  

Decoding of the linear prediction (LP) filter parameters begin with the reconstructing of 

quantized immittance spectral pair (ISP) vectors from the received indices of ISP 

quantization. As in the encoder, the ISP coefficient update is done on every speech 

frame. After that the interpolation is done to obtain 4 interpolated vectors to compute a 

different LP filter at each sub frame [33]. Those vectors are converted to the LP filter 

coefficient domain for each sub frame to synthesize the reconstructed speech. 

 

In every sub frame the adaptive codebook vector is decoded and found by interpolating 

the past excitation using a FIR type filter. The innovative and adaptive codebook gains 

are also decoded and jointly vector quantized. The speech reconstruction is computed 

on this stage and post processing is done before the actual speech synthesis. 

 

The processing before the actual speech synthesis is involved into sub frame part of the 

decoder. One operation is adaptive gain control AGC, which removes the abnormal 

energy variation from the signal [33]. The other is anti-sparseness processing which is 

performed on the two lowest operating modes (8.85 and 6.60 kbit/s) because fixed 

codebook vectors offer such a low amount of information. This reduces the audible 

errors in the synthesized speech. A noise enhancer reduces the fluctuation in the energy 

in stationary signals, which increases the performance in stationary background noise.  
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For high frequencies from 6.4 to 7 kHz, an excitation is generated first to model the 

frequency range. The high frequency part is generated by filling the higher part of the 

spectrum with white noise, which is scaled in the excitation domain. After this the 

conversion to the speech domain is done by shaping the content with a filter derived 

from the same linear predicting (LP) synthesis filter used for synthesizing the 

downsampled signal. Before the speech signal is obtained the high-band speech is 

filtered with a LP and band pass filter from 6.4 to 7 kHz. Finally, the synthesized higher 

band signal is added to the lower band synthesized speech and the final output speech 

signal is completed.  
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5. MOBILE PHONE ACOUSTICS 

In this chapter several factors that affect the quality of heard sound from mobile phone 

earpieces are presented. First, the processing of incoming audio from the speech 

decoder to the loudspeaker is introduced. After that the mechanical part is described by 

introducing  the dynamic loudspeaker, and enclosures with leak types and reasons for 

certain mechanical selections are discussed. 

5.1 Audio path from mobile phone’s antenna to speaker 

When a mobile phone antenna receives the speech signal from the sender, lots of signal 

processing is done before the audible sound from the loudspeaker.  A rough description 

about the downlink path blocks from the speech decoder to the earpiece is shown in 

Figure 11. The important block is speech enhancements, which includes for example 

noise cancelling for removing the noise from received speech and multiband dynamic 

range controller (MDRC), which is described later in Figure 12. 

The equalizer is needed correcting the magnitude response of the earpiece. If the 

loudspeaker cannot  produce enough for instance low frequencies, the equalizer 

parameters can be tuned to increase the signal level on low frequencies. However, one 

disadvantage of this operation is increased distortion. The problem with an equalizer is 

that it fails to take the input signal level into account. This means that if the input signal 

is already loud before the equalizer, in the worse case, it is gained over the theoretical 

limits, which inevitable leads to noticeable distortion in the earpiece. 

Upsampling from 16 kHz to 48 kHz is done to support a suitable sampling rate to the 

hardware audio codec. In the last block in the digital domain, the signal is converted 

from the digital to analog domain in the digital-to-analog (D/A) conversion block.   

In the analog domain, the lowpass filter removes unwanted signal components before 

amplifications. Finally, the analog gain has to be adjusted to a suitable level for the 

earpiece. Before the earpiece a few passive components are added to protect the 

earpiece for instance from voltage peaks. 

 

Figure 11:  Simplified block diagram of the mobile phone earpiece downlink. 
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An important part of downlink audio path is the dynamic range controller DRC. A 

common feature of the DRC is that the input signal level is detected continuously, and 

according to this detection, a defined amplification to signal is performed [34]. The 

mentioned MDRC is an extension for the DRC, a device that divides the full frequency 

band into sub-bands, which are amplified separately. There are different ways to realize 

the DRC [34], but this thesis concentrates on the functional part of it. The basic 

principle is shown in Figure 12 and the meaning of different parts are explained below:  

- Signal deleted: If the input signal level is very low the output signal is deleted by 

dropping the signal level for example -100 dBFS. Usually this kind of weak input 

signal level is noise and deleting it is natural to enhance SNR. 

- Expansion: The level of quiet input sounds are increased and the dynamic range of 

the audio output signal is also increased. The steepness of this part is critical, because 

if the expansion is done too steep the low speech signal levels can be partly lowered 

resulting in audible errors in the earpiece. If the expansion is too mild, unwanted 

noise may be added to the output signal. 

- Amplification: In this stage the input speech signal is amplified for instance 15 dB. 

The input speech signal is somehow normalized in the uplink and the amplification 

area is adjusted to be long enough to cover most of the speech signal. 

- Compression: In simple terms, the loud sounds over a certain threshold are reduced, 

in this case the input signal limit is -30 dBFS. The operation decreases the dynamic 

range of the speech signal, but the advantage is that loud signal levels in a noisy 

environment are not amplified too much. 

- Limitation: To prevent the loud output signal to reach the loudspeaker, the loudest 

output signal level is limited according to the loudspeaker performance. If the 

limitation is neglected, a considerable amount of distortion may be added to the 

output signal.  

 

Figure 12:  Dynamic audio compressor/expander level response [34]. 
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The DRC was introduced in this section because even its performance is not shown in 

the frequency response and distortion measurements, it affects the end-user experience 

heard from the earpiece especially in expansion and limitation parts. 
 

5.2 Audio module in mobile phones 

The speaker plays an important role but acoustics matter as well. Phones with similar a 

earpiece can differ from each other due to different acoustics. The dynamic loudspeaker 

is introduced with different enclosures to give an idea of possible factors that affect the 

sound quality. 

5.2.1 Dynamic loudspeaker 

The dynamic loudspeaker is the most common speaker type in the loudspeaker industry. 

In practice, all speakers used so far in mobile phones are dynamic loudspeakers.  

The basic idea of dynamic loudspeakers is to convert the electrical signal to an 

acoustical signal [18] and can be described as a four-pole model as in Figure 13. The 

input side has voltage and current, where as the output volume velocity and sound 

pressure. With the alternating current in a magnetic field the force tries to move the 

compact coil of wire. If the coil is attached to a large surface it moves the air more 

efficiently giving volume velocity to the air, which is heard as a sound.  

 

Figure 13:  Four-pole network of the speaker [18]. Symbols are: e = input 

 voltage, i = current, Zg = impedance of electrical circuit, q = volume 

 speed of oscillator, p = sound pressure, Zrad = radiation impedance [18]. 

The current in a wire in a magnetic field produces a force on the wire. If a single wire is 

moving in a uniform magnetic field it represents the simplest coil transducer. The coil 

experiences force in the axial direction and the total force is: 

 

 𝐹𝑚𝑎𝑔 = 𝐵𝑙𝑖,     (26) 

where 𝐹𝑚𝑎𝑔 is the force produced by a current i [N], 𝐵 is a magnetic-flux density in tesla 

[T], 𝑖 is the alternating current in amperes [A] and 𝑙 describes the length of wire in the 

magnetic field [m]. 
 

The moving coil loudspeaker system can be presented with an acoustical equivalent 

circuit described by Hall [28]. By taking a closer look at Figure 14, the speaker is 

described by an electro-mechano-acoustical circuit. The coil has electrical resistance Re 

and inductance Le. The amplifier with output impedance Zg supplies voltage Eg which 

drives current ig through the coil. This causes force F=Bli on the cone and coil, with 

resulting motion v. The cone and coil are considered as a mechanical system with a 

mass m and mounting stiffness Cm , including flexing of the material resistance Rm. 

After that, the volume velocity U=vA, where v is the mechanical velocity of the 
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membrane and A is cone area A. Volume velocity U works against the radiation 

impedance Za,rad of the surrounding air to generate sound pressure p. 

 
Figure 14:  Electro-mechano-acoustical circuit of moving coil loudspeaker system. 

 The symbols are explained above the figure in the text [28]. 
 

The structure of a dynamic loudspeaker is quite simple. Usually the wire is wrapped as 

a coil and situated between the magnetic poles. The purpose is to maximize the length 

of the wire where the magnetic field is constant and perpendicular to the wire. As 

mentioned earlier neither the coil itself does move much air, nor produce sound. The 

efficiency is  increased by attaching the coil to a movable, light and relatively large 

surface diaphragm which carries lots of air along with it. Low frequencies generally 

need a larger radiating area, whereas high frequencies are produced with a smaller area. 

In larger speakers, or home stereo speakers, the diaphragm is usually a cone, which is 

fairly stiff and light. The diaphragms in small speakers used in a mobile phones are also 

quite stiff even though the material is thin. 

By looking at Figure 15 the main parts [27] of the dynamic loudspeaker are shown in a 

cross-section picture. However, exactly this kind of shape is not used in mobile phone 

earpiece, but the principle is the same. 

 
Figure 15:  Cross-section sketch of a dynamic loudspeaker [27]. 

To minimize the non-linear response, the permanent magnet must be selected to 

produce a constant field and the voice coil should always have the same amount of turns 

in every displacement inside the gap between the poles [29]. The movement area of the 
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voice coil has to be limited in the constant field area, because if a coil exceeds that area 

the magnetic force Bl drops causing non-linearity. Another problem occurs if the 

speaker diaphragm movement distance is too long and exceeds the linear operation area, 

which may cause mechanical damage to the speaker. In order to reduce impedance 

variation, the chassis is made either to be able to conduct the heat away from the voice 

coil or the chassis endures high temperatures and this way the voice coil stays in a 

stable condition even in harder usage. 

 

Voice coil suspensions keep the speaker membrane accurately centered in the magnet 

gap, which is important enabling only the axial direction movement. One other function 

of the suspension is that, when there is no signal, the membrane is returned back to the 

equilibrium position. 

 

The main reasons for using a dynamic speaker are the low operational voltage, small 

size and low price. There are some drawbacks like low efficiency (usually 1%) and 

frequency response, which is poor at low frequencies due small effective radiating area 

and short membrane movement distance. The simulation of enclosure and speaker 

element for design purpose is fairly straightforward due to the long history of dynamic 

transducer studies.  
 

5.2.2 Leak types, front and back cavity 

A loudspeaker without an enclosure design does not provide very good acoustic 

performance. Usually there are lots of compromises in mobile phone acoustic design 

due purpose of use or mechanical design. The main purpose of mobile phone earpiece is 

to reproduce speech, which has been narrowband until these days. In upcoming years, 

there will be a need for wideband capability and that must be taken into account when 

designing the acoustics for mobile phones. Therefore the front and back cavities with 

different leak types are introduced in this section. 

The front of the loudspeaker 

There are two main possibilities to realize the front part of the speaker, called the front 

resonator and open front. 

Front resonator: The front cavity usually consists of the cavity itself and a cover with 

sound holes. The purpose of the front cavity is to boost high frequencies thus reduce the 

need for equalization. The other function is to provide protection against dust, water and 

other external damage, which could be harmful for the speaker without the front cavity. 

The disadvantage of the front cavity together with the sound holes is that it is a new 

source of tolerance errors, but proper front cavity design can decrease the amount of 

tolerance effects. Also, the cavity requires space, which is not available adequately in 

mobile phone. 

Open front: If there is no space for a front cavity, the speaker can be placed so near the 

phone cover that the cavity is very small or does not exist. This way the acoustic 

resonances are shifted to higher frequencies above the speech band, but the boosting 

effect of the front resonator for the higher speech frequencies in the usable band is lost. 

This leads to much heavier DSP equalization. In addition, the open-front design does 

not include a lowpass feature, which can be used to filter out unwanted for example 

radio frequency (RF) buzzing noise just above the speech signal band. Both of the 

explained implements are shown in Figure 16. 



26 

 

 

Figure 16:  Different mobile phone earpiece front realizations [31]. 
 

Back side of the loudspeaker 

There are four main design and various hybrids available for designers to choose for the 

back side of the loudspeaker. 

Open back: The back of the loudspeaker is left open to the space of air inside the phone. 

This method is the most common in all earpieces [31]. Even if the sound from the back 

of the loudspeaker is routed through the PWB behind the speaker, the realization is 

called open back. The advantages are ease of design and small space consumption. 

Problems can occur on low frequencies if a large external leak is included in the 

mechanics. 

Closed back: In this case the loudspeaker has its back enclosed in a cavity that is sealed 

or contains a small acoustically damped leak. The leak is only connected to ambient air 

or air inside the phone, not to the ear. The good side of this is the isolation to the 

microphone though the air path inside the phone. The downside is that the cavity should 

be large, around a few cm
3
. In practice, the open back realization is preferred for its 

small space occupation offering almost as good a result as the closed back. 

Vented: The idea in vented back enclosure is to work as a bass booster. The earpiece has 

a back cavity that is hermetically sealed apart from an opening with a defined cross-

sectional area and length (pipe) behind the loudspeaker. The gained resonator is tuned 

near the lower limit of the frequency range of the earpiece. To make the vented structure 

to work, the outer end of the vent has to be routed directly or indirectly to the user's ear. 

If this is neglected and the vent is left inside the phone without acoustical connection to 

ear, the performance will be worse than with other implementations. The reason for 

using this design is the boosting effect for low frequencies with lower distortion thus it 

is well suited for a small speaker in wideband designs. The problem with this design is 

the same as with closed back design, which is the required large cavity. 

Tube-loaded: The realization is about the same as vented construction, but this case the 

cavity is much smaller and the vent is narrower and longer. The advantage of this 

method is small bass boost, which is important in wideband implementations. Even a 

relative small speaker with stiff suspension can reach low frequencies but the speaker 

has to handle the required higher displacement. 
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Figure 17:  Four different earpiece enclosure back types used in mobile phone [31]. 
 

Leak types 

Basically there are three different types of leak to put into practice shown in Figure 18. 

 

No leak: When the phone is held against the ear, only the natural leak between the ear 

and the surface of the phone cover is present. This kind of leak is the simplest of all 

realizations having high leak tolerance, which means that the sound of the earpiece is 

relatively insensitive to variations in the leak between the phone and the ear. 

External leak: This case an intentional acoustic leak lets some of the sound pressure 

escape from the ear to the ambient air outside. The leaking occurs even if the phone is 

sealed against the ear. This type of design is common and works well increasing further 

leak tolerance. Also the tuning is easier due the leak. 

Internal leak: The idea is the same as the external leak, except the leak is going from the 

front cavity to the ambient air. Usually this realization performs worse than the external 

leak implementation due to equalization for high frequencies. The internal leak option is 

not recommended, except if the earpiece and integrated hands-free (IHF) speaker have 

to be combined or lack of space prevents other leaks in the phone cover. 

 

Figure 18:  Different leak types used in mobile phone earpiece enclosure [31]. 

 

5.2.3 Loudspeaker implementation in different phone models 

As presented earlier in Chapter 5, good performance depends on many things. There are 

many rival parameters affecting the size of the loudspeaker and enclosure selections. 

The planned phone price defines quite much for example the components that there will 

be in the phone. Mechanical design limits or allows modifications to acoustics as well. 

Some of these factors are listed below: 

 Narrowband or wideband phone 

 Phone price 
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 Dust and water protection 

 Mechanical design 

 Designer's set of parameters 

If the phone is a wideband model the requirement for earpiece sound production 

performance is different to narrowband. Using the small speaker gives more space for 

other components in the phone and can be cheaper, but the low frequencies on 

wideband cannot be reproduced as purely, or at all, as with a larger speaker. The 

mechanical design containing cavities and leaks described earlier with DSP may help, 

but a speaker has its limits and cannot break the physical laws. If the speaker is large, 

lousy mechanical design or audio designers tuning parameters may be ruining the 

advantages that could have been achieved by the speaker. On the other hand, using a 

large speaker gives more margin to audio designers compared to small speakers. 
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6. OBJECTIVE MEASUREMENTS 

It is important to show the objective results, when the subjective results are analyzed. 

The purpose of objective measurements is to find out if there is any distinct differences 

between the speakers 1) without the phones, 2) integrated to the phones without audio 

processing and 3) integrated to the phones with audio processing. First, the theory of 

objective measurements is presented and then the measurements with results of the used 

phones and speakers are shown in this chapter. 

6.1 Theory of audio measurements 

Before the measurement results the theory behind the objective measurements are 

presented in the next three sections. Impulse response, frequency response and 

distortion methods are described to help to understand the measurement results later in 

this chapter. 

6.1.1 Transfer function 

The transfer function describes an ideal system behavior with any kind of stimulus. An 

ideal physical system has four properties [21]:  

 

1) The system can be physically realized means that the system cannot produce an 

output before input is applied.  

 

2) Constant of its parameters when the system is time invariant thus the response of the 

system is constant for all time values.  

 

3) Stability limits the system's output to be a finite signal for a finite input signal. 

 

4) A Linear system is additive and homogeneous. If the output signals are 𝑦1and 𝑦2 with 

input signals 𝑥1 and 𝑥2. An additive system produces a summed output  𝑦1 +   𝑦2 from 

summed input 𝑥1+ 𝑥2. A homogeneous output 𝑐𝑦1is produced from input 𝑐𝑥1, where c is 

a random constant. 

  
Figure 19:  Linear, ideal system h(t) with one input x(t) and output y(t) signals [21]. 
  

The unit impulse function is defined as follows: 

  h(t) = y(t) 

  when 

  x(t) = (t) 

Where h(t) is unit response function of the system, y(t) describes the output of the 

system, x(t) input of the system and (t) is the ideal impulse, i.e. delta function, t is the 

time from the moment when delta function enters the system. The duration of ideal 

impulse is defined to approach to zero, so, in other words, the duration is infinitely 

short.  Also, the amplitude and energy is defined to be infinity and the integral equals 1 

[22]. If the ideal impulse would be used for measuring the speakers of phones in this 
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thesis, the results with good signal-to-noise ratio would contain a high amount of 

distortion, or even worse, break the speakers. It is obvious that these kind of parameters 

are not for the practical part of this thesis but only for theory. 

 

Instead of using the theoretical and unpractical method mentioned earlier, sine sweep is 

used to measure the frequency response of the speakers. The simplest form of sine 

swept frequency measurement is linearly or logarithmically variable sine wave, which is 

fed to the device under measurement, DUT. Output signal represents the magnitude 

response of the device. 

Because the sinusoidal stimulus contains energy concentrated instantaneously at one 

frequency, noise and other artifacts disturbing the measurement can be filtered away by 

using tracking filter, i.e. a narrowband bandpass filter. One advantage of sine sweep is 

its ability to measure simultaneously frequency response and the non-linear distortion 

[36]. According to Farina in [36], from a sine signal used in an exponentially varied 

frequency, it is possible to deconvolve simultaneously the linear impulse response of the 

system and separate impulse responses for each harmonic distortion order. 

6.1.2 Frequency response 

When the system's output spectrum in response to an input signal is of interest, the 

frequency response is the right measure. It often helps designers  to implement systems 

by offering additional information about the system behavior. The characteristics of the 

system can be illustrated by a linear transform of the unit impulse response. The 

transform function of a system can be represented in the Laplace form of the impulse 

response. 

 𝐻 𝑠 =  (𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
    (27) 

where H(s) is the complex-valued transfer function of a system and 𝑠 = 𝜎 + 𝑗𝜔 

describes the complex frequency variable. The Laplace function, like the impulse 

response is defined to begin at t = 0.  

The most powerful method to represent the response in the frequency domain is the 

Fourier transform [21] of the impulse response. 

 𝐻 𝑓 =   𝑡 𝑒−𝑗2𝜋𝑓𝑡∞

0
𝑑𝑡   (28) 

where H(f) is the complex frequency response of the system and f is the real-valued 

frequency.  When 𝜎 = 0 the Fourier transform (28) becomes the transfer function (27) 

and it is investigated on the 𝑗𝜔-axis. The transfer function is not very practical and, 

therefore, the frequency function is used instead. Usually, the absolute value of the 

frequency response called the magnitude response |𝐻 𝑓 |  describes the frequency 

response curves. 

The transform domain representation can be inversed to the time domain by inverse 

Laplace in the s-domain or Fourier in the f-domain transform. 

  𝑡 =
1

𝑗2𝜋
 𝐻 𝑠 𝑒𝑠𝑡𝑑𝑠

𝜎+∞

𝜎−∞
   (29) 

  𝑡 =  𝐻(𝑓)
∞

−∞
𝑒𝑗2𝜋𝑓𝑡𝑑𝑓   (30) 
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where 𝜎 is the real part of the complex frequency variable s. 

6.1.3 Distortion 

If a speaker with a completely linear transfer function would produce an identical output 

signal compared to input signal there could not be any distortion. It is not a surprise that 

a small speaker in mobile phone, capable of producing high sound pressure level cannot 

play undistorted sound. The nonlinear distortion produces unwanted signal components, 

which does not exist in original signal and adds them to the output signal. 

The harmonic distortion appears on a clean sine sound in harmonic components. If the 

spectrum of the signal consists of fundamental frequency A(1) and the amplitude of 𝑖𝑡   
harmonic component A(i), the total harmonic distortion (THD) is defined [1] as 

 𝑑 = 100%
  𝐴(𝑖)2𝑁

𝑖=2

  𝐴(𝑖)2𝑁
𝑖=1

    (31) 

where d is harmonic distortion, 𝐴(𝑖) is amplitude of 𝑖𝑡   harmonic component and N is 

the number of harmonic components. 

The distortion measurements in this thesis are done with all non-harmonic components, 

background noise and noise from measurement equipment. This kind of distortion is 

called THD+N. Not all distortion is a bad thing, mentioned in [1] that low order 

harmonics can make the speech sound more pleasant in a telephone line than 

undistorted speech.  

6.2 Earpiece measurements in free field 

The phones under measurements and the listening test have different size of speakers. 

The physical measurements of the speakers are shown in Appendix A: and Appendix 

B:. Those two speakers were measured in free field to obtain information about the 

speaker performance before integrating it to the mobile phone. Both of the earpieces 

were measured by Lauri Veko in the anechoic room (AR1) at the Salo Nokia premises 

in November 2007. 

6.2.1 Earpiece measurement procedure and equipment 

The earpieces that were under evaluation were measured in the International 

Electrotechnical Commission (IEC) standard baffle (a plate with a hole for speaker). 

The used measurement setup was the following: The measurement adapters for both 

speakers were free air adapters and designed for those two speakers. Basically, the 

adapter had a hole in the front part, where the component sound hole was and the back 

part was open. The measuring distance between the speaker and 1/4" free field 

microphone was 1 cm. The whole measurement setup is shown in Figure 20. The 

measuring equipment is listed in Table 2. 

Table 2:  Test equipment used in measurements of the earpieces in a baffle. 

Instrument Type Comment 

Audio Audio Precision  Control software 

measurement System Two ApWin 

system Cascade   
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Instrument Type Comment 

Audio Audio Precision  Amos XG controls 

Precision 2700 series Audio Precision, ApWin 

Condensator B&K Type 4939 1/4" mic + its preamp 

microphone + B&K Type 2670   

preamplifier     

microphone B&K Nexus Mic amplifier 

amplifier     

Impedance box 1ohm Shunt resistor   

Rotel amplifier Speaker 

amplifier with fixed gain +6dB amplifier 

 

 

Figure 20:  Speaker measurement set-up. A PC controls the Audio analyzer, which 

 brings the measurement data back to the computer. 
 

6.2.2 Results of earpiece measurements 

The speakers under evaluation were measured in a frequency range from 200 Hz to 20 

kHz. The results of the frequency response measurement can be seen in Figure 21 and 

distortion in Figure 22. The input voltage for both measurement was set to 0.179 Vrms. 

Frequency response of the earpieces 

If the wideband codec frequency range 50 - 7000 Hz is examined from the Figure 21, 

the high frequency area near 7 kHz is about the same for both speakers. On the other 

hand, at low frequencies, the small speaker performance is clearly worse than for the 

large one. In fact, the frequencies under 400 Hz are 10 dB more silent on the small 

speaker, which is not possible to compensate in the mechanical design and, therefore, is 

seen later in earpiece integrated to phone in Section 6.3 results.  

 

As can be seen from Figure 21 the large speaker frequency response curve -3 dB point 

is around 300 Hz, when the small speaker has it at about 500 Hz. Also, the frequencies 

between the two resonance peaks (big speaker 400 Hz-5000 Hz, small 600 Hz-7000 Hz) 

varies in the large speaker only 4 dB and the small one 7 dB.  
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Figure 21:  Small and large speaker frequency response in frequency range 200 Hz - 

 20 kHz measured with free air adapter. 
  

Distortion in earpieces in free field 

 

Distortion on both speaker is plotted in the same Figure 22 and notable thing is that 

background noise is also included in the results. However, the small speaker has more 

distortion below 650 Hz ending up to 11%. The frequency band is from 200 Hz to 20 

kHz. 

 

50

60

70

80

90

100

100 1000 10000

M
a
g

n
it

u
d

e
 r

e
s
p

o
n

s
e
 [

d
B

S
P

L
]

Frequency [Hz]

Speaker Frequency Response at 1mW (0.179Vrms)

Small speaker Large speaker



34 

 

 

Figure 22:  Small and large earpiece total harmonic distortion and noise in frequency 

 range 200 Hz - 20 kHz measured with free air adapter. 
 

 

6.3 Measurement for wired earpieces integrated to Nokia mobile phone 

After the free field measurements in Section 6.2, the speakers' performances can be 

compared more or less in a theoretical aspect. If a speaker is measured in a free field 

adapter it does not sound the same way when placed in a proper enclosure. Measuring 

the earpieces wired to the phone means that the earpieces are integrated to the real 

phone without the audio signal processing. Using the  HATS' ear for measurement, the 

results are one step closer to the end-user experience. 

6.3.1 Selection criteria's for phones in the test 

The phones that are measured in the next sections are introduced shortly before the 

measurement procedure. Both of the phones were selected for this thesis on three 

criterias: 1) Phones have different sized speakers 2) Support for AMR-WB codec 

available, 3) is available on the market thus is not just a prototype. The other phone is a 

Nokia 6220 classic introduced in Q208. It has the small speaker measured in Section 

6.2. The other is the wideband phone, the Nokia 6720 classic, introduced in Q209. 

Furthermore, it contains the large speaker. 

6.3.2 Measurement equipment and procedure for wired earpieces 

The idea of this measurement is to get data about the speakers integrated to the phone 

without the influence of audio signal processing. The phones were positioned to HATS 

according to the designers directions (Appendix F: and Appendix G:) and the phone 

earpieces were wired directly to Audio Precision through a B&K power amplifier. After 

the HATS ear the microphone signal was amplified in the B&K microphone multiplexer 

and connected to a PC through Audio Precision. A block diagram of the measurement is 

shown in Figure 23.  
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Table 3:  Used measurement equipment in HATS measurement by wiring the 

 earpieces directly to the power amplifier. 

Instrument Type Comment 

Audio Audio Precision  Control software 

measurement switcher Type ApWin 

system SWR 2122   

Audio Audio Precision  Amos XG controls 

Precision 2700 series Audio Precision, ApWin 

Power B&K Type WR1105 Loudspeaker 

amplifier   amplifier 

Microphone B&K Type 2822 Microphone 

multiplexer   amplifier 

 

Before the actual measurement, the phone covers were opened and wires were soldered 

to the earpiece springs. The proper soldering was confirmed with a multimeter by 

measuring the speakers' resistances, which were about 30 Ω. 

 

Figure 23:  Measurement setup for phones measured on HATS by wiring the 

 earpieces. 
 

The voltages used in the measurement were defined by Audio Precision and are 

presented in Table 4. 

 

Table 4:  The input voltages for phone earpieces measured on HATS. 

Type Input level [dBV] Input level [mVrms] 

ERP -20 114 

DRP -20 114 

DRP -15 202.7 

DRP -10 360.5 

DRP -5 641.1 
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6.3.3 Results of the wired earpiece measurements on HATS 

After the measurements Audio Precision plotted the results to Excel. The frequency 

response and distortion results are shown below. 
 

Frequency response 

When phone measurements on HATS are plotted for different voltages, it can be seen 

that the speaker performance is noticeably different, especially at lower frequencies. 

There is a possibility to measure frequency response with ear-drum reference point 

(DRP) or without ear reference point (ERP) the influence of HATS' ear auditory canal. 

The reason for using DRP is that ERP measurement does not contain distortion 

measurement in Audio Precision due to unlinear distortion at different frequencies. 

Filtering the unlinear distortion would not be such a successful process. However, the 

behavior of the speaker integrated to the phone is clearly shown in the DRP 

measurements. 

 

Figure 24:  Frequency responses on range 100 - 8000 Hz measured on HATS using 

 different input voltage levels in N6720c and N6220c speakers. 
 

The Ear Reference Point (ERP) results are shown for comparison for full audio path 

measurements in Section 6.4. The Nokia 6220c is sealed on the HATS ear better than 

the Nokia 6720c, which can be seen in Figure 25 at frequencies lower than 1 kHz. The 

boosting effect from sealing helps the designer's tuning work to get the phone to fit into 

the 3GPP frequency response mask. The descent of the frequency response of the Nokia 

6220c from 600 Hz to 100 Hz is steeper than for the Nokia 6720c. 
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Figure 25:  Phones measured on HATS ERP position on frequency range 100 - 8000 

 Hz. HATS' ear effect is filtered away by Audio Precision  measurement 

 system. 
 
 
THD+N 

 

In the earpiece total harmonic distortion and noise (THD+N) measurement on different 

voltages, the small speaker performs considerably poorly compared to the large speaker. 

The distortion begins to rise faster than the large speaker under frequencies of 700 Hz. 

The frequencies under 450 Hz for the small speaker THD+N results are inaccurate due 

the incapability of reproducing such low frequencies. Basically, the membrane is so 

small that sound production is impossible at those frequencies. 
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Figure 26:  Nokia 6720c and 6220c THD+N on different earpiece input voltages on 

 HATS. Measured frequency range is 100 - 8000 Hz. 
 

 

6.4 Nokia mobile phone measurements over the air 

The objective 3GGP [26] measurements of two Nokia phone models are shown in this 

section. The idea is to compare over the air results to the speaker measurements done in 

Section 6.2. It is also important to get information about the speaker integration and 

audio path effects in the measurement results. These results describe the end user 

hearing experience during a call. 

6.4.1 Information about the phones in the test 

All mobile phones that are on the market have been measured in a type approval test. 

For this test, the designer defines the nominal volume level, which is a volume level 

between 2/10-9/10. The selected nominal volume levels for both phones are shown in 

Table 5. These volumes were used because the phones have been tuned to fit to the 

masks on these specific levels. 

Table 5:  Nominal volumes of two Nokia phones. 

 

Nokia 6220c 

narrowband 

Nokia 6220c 

wideband 

Nokia 6720c 

narrowband 

Nokia 6720c 

wideband 

Nominal volume 5 4 6 6 
 

The AMR-WB speech codec was enabled in both phones for the tests.  
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6.4.2 Measurement equipment and procedure 

Both of the phones were measured on HATS with 3GPP specification release 7 [26]. 

3GPP specifies test methods to allow the minimum performance requirements for the 

acoustic characteristics of GSM and 3G terminals for both narrow and wideband.  The 

used measurement equipment in 3GPP measurements were proceeded with the list of 

instruments in Table 6. This is the only measurement where Audio Precision was 

replaced by Audio analyzer UPL-16. 

 

Table 6:  Equipment used in 3GPP measurements. 

Instrument Type Comment 

Radio Rohde & Schwarz GSM & WCDMA 

communication CMU 200 network used 

tester     

Rohde & Schwarz Audio analyzer Sents result data to PC 

UPL-16   Amos XG controls it 

Head And Torso B&K Includes artificial ear 

Simulator   with microphone 

microphone B&K Nexus HATS mic amplifier 

amplifier    +20dB 

 

Once the phone was positioned to HATS the measurement was started. A PC controlled 

the UPL, which fed the measurement signal to the radio communication tester and the 

phone earpiece speaker signal was measured on the HATS' ear. Finally, the recorded 

signal from the HATS ear is amplified 20 dB with B&K Nexus. The procedure is shown 

in Figure 27. 

 
 

 
Figure 27:  Measurement setup for phone speaker frequency response and 

 distortion. 
 

 

A picture of HATS used in this measurement and later in Section 7.2 for recording the 

files for subjective test is shown in Figure 28. 
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Figure 28:  Nokia 6720 classic positioned to 3GPP measurements HATS in 

 anechoic chamber. 
 

Network settings for both phones were as in Table 7. 

 

Table 7:  CMU network settings in 3GPP HATS measurement. 

GSM   WCDMA   

PCL 5 Uplink 1852.4 MHz 

TCH 35 Downlink 1932.4 MHz 

Codec mode 12.20 kbits Codec mode 12.65 kbps 

Speech codec low Speech codec  low 

 
 

6.4.3 Measurement results 

To ensure that the phone to be used in the recordings for subjective test is not a faulty 

one, five phones of each model were measured. An average phone was selected based 

on frequency response and distortion measurements. Differences in results between the 

measured phones results were mostly inside ±1 dB.  

 

Frequency response 

 

The frequency response follows the results in the previous Section 6.3.3. The Nokia 

6720c has a flat response, while the Nokia 6220c fails to stay within the limits on 

narrowband (red dash line in Figure 29). 
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Figure 29:  Results from narrow and wideband earpiece frequency response 

 measurements  of two Nokia phones on nominal volumes. Lower and 

 upper limits are solid line for narrowband, wideband lower limit is 

 marked with the dash line. The limits are from 3GPP version release 7. 

 Narrowband bit rate was 12.20 kbit/s whereas on wideband it was 12.65 

 kbit/s. 
 

Distortion 

 

Distortion is presented as separate figures for narrowband and wideband to clarify the 

plotting. The Nokia 6220c performs worse on both narrow and wideband at volume 

levels 4/10 and 5/10. 
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Figure 30:  Measured earpiece distortions on narrowband on nominal and maximum 

 volumes. Narrowband bit rate was 12.20 kbit/s and wideband bit rate was 

 12.65 kbit/s. 

The difference between narrowband and wideband measurement result on the Nokia 

6220c is emphasized by the volume level. The lower the volume, the more distortion 

there is in lower signal levels. 

  

 

Figure 31:  Measured earpiece distortions on wideband using nominal and maximum 

 volumes. Narrowband bit rate was 12.20 kbit/s and wideband bit rate was 

 12.65 kbit/s. 
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6.5 Discussions about the objective measurements 

The objective measurements revealed expected differences between the small and large 

speaker in capabilities of producing sound. The main reason for the differences in 

results is the size of the earpiece membrane, which is discussed in the loudspeaker 

theory Section 5.2.1 and seen in the free field measurement without being integrated to 

the phone results in Section 6.2. After these it could be expected that there will be 

differences in the results when the speakers are integrated to the phone and measured on 

HATS. 

Measurements on HATS illustrate the meaning of acoustics. If the measurements 

without the phone audio processing are compared to 3GPP measurements where the 

phone equalization and other audio enhancements are online, the results revealed that 

audio processing can help to fix the problem by making the frequency response flatter. 

The reason the frequency response is aimed to be flat is simply to avoid emphasizing or 

diminishing certain frequencies, which could harm the understanding of hearing the 

speech.  

The incapability of reproducing low frequencies at a satisfying level for wideband 

speech on a small earpiece can be seen from all measurements done in this chapter. The 

distortion levels at different input voltage levels in Figure 26 revealed the unlinearity of 

distortion on the small earpiece under frequencies of 450 Hz when the large earpiece 

has fairly predictable levels until 100 Hz. In practice, the small earpiece may produce 

audible distortion at low frequencies when the user sets the phone volume level to 

maximum. Naturally, this limits the maximum output level that a designer can allow to 

come out from the small earpiece without distortion. The other option is to damp the 

low frequencies and allow the higher frequencies to sound louder. This option is 

recommended only for narrowband speech and in the Nokia 6220c, the narrowband 

speech is tuned to produce more higher frequencies (500 - 3000 Hz). 

The differences of the two phone earpiece integration is shown on a theoretical level 

and through objective measurements. The larger earpiece integration is 10 dB louder at 

100 Hz and the fundamental frequency of male speech is around 100 Hz. After these 

facts it can be said that the end-user should hear audible differences between the 

realizations. The next chapter tries to find the answer to this and it is interesting to see 

the subjective test results. 
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7. SUBJECTIVE TEST ON TWO EARPIECE INTEGRATIONS 

The background of arranging the listening test is presented and the phases of processing 

the subjective test files are described. In the end the listening test results are shown to 

support the objective results. 

7.1 Overview of subjective testing 

Subjective testing is used in situations where there is no well-proven objective measure 

of audio quality. The objective data can be used for speaker comparison, but the 

objective measurements cannot be used in determining every audible characteristic of 

the speaker. The problem is that human ears with brain analyzing do not process the 

sound as microphones or measuring instruments do. When consumer buys a mobile 

phone and listen to the speaker audio quality, the objective measurement data is not 

available and this way the subjective experience becomes more important.  

Subjective testing is a time consuming process, because a subject grades the 

performance of many samples. Usually, the collected result data is quite sparse and 

some variation occurs in identical samples due to the subject’s personal opinion. 

However, proper test planning and constant testing conditions can decrease the variation 

in the test results. 

Performing a subjective test in an efficient way is a strict process. In [15] the following 

procedure is suggested:  

 Definition of what is to be tested and null hypothesis 

 Selection of test paradigm 

 Creation of test material 

 Definition of sample population 

 Selection of listeners 

 Familiarization and/or training of subjects 

 Running the test 

 Analysis and reporting of results 

7.1.1 Test type and listener selection 

It is important to know that the selected test type affects the time consumption for 

testing. There are several test methods to use for subjective testing [15]: 

- Single stimulus, the mean opinion score (MOS) test belongs to absolute category 

rating. Only one sample at a time is played and evaluated. The benefits are fast speed 

and absolute rating. 

- Paired comparison,  A/B tests are for comparing relative quality of two samples A 

and B. A few different possible comparison methods are: 

o A or B, two possible options which is better. 
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o A or B scale, both samples are rated with the same scale. 

o A or B scale with fixed reference is a test where one of the test samples is the 

known reference and the other is a degraded from the  reference. 

o A or B scale with hidden reference is same as the previous but the reference is 

not known, which enables either samples to be better. 

- A, B or X test is made up of three samples. The idea is to choose, which one of two 

samples, A or B is closer to the quality of X. 

- A, B or C test is a triple stimulus comparison with a hidden reference. Two of three 

samples are similar and one is the reference. The listener decides, which sample of 

the other two samples is different to the reference and evaluates the sample. 

- Rank order has several stimuli to compare. The relative order of the stimuli is rated. 

Rapid ranking is a method of quality. The downside of it is that the perceptual 

distance is unknown between the stimuli. 

When the samples for the listening test were processed, it was time to decide the 

listening test type. Because the differences between the small and large speaker are 

rather small, the sensitive test type was needed. That's why the most convenient test 

type for our purpose was A or B scale with a hidden reference. This method is quite 

slow, but by choosing suitable amount of samples, the test duration was about 30 min 

long.  

The DaGuru listening test software has a few different choices for the mentioned (A/B 

with hidden reference) test method and comparative mean opinion score 3 (CMOS3) 

was selected. CMOS3 has a scale from -3 to 3, which was good enough for the purpose. 

Choosing -3 means a lot worse and 3 a lot better than the first sample. 

An important matter when setting up a listening test is the question of how many 

subjects have to be recruited. Selecting the sample population type affects to the 

decision about the size of the population as well as the reliability of the results. In [19] 

listeners are divided into three groups: 

- Naïve 

o Subjects have not been selected for any discrimination or rating ability 

o Subjects belong to the general public 

o Discrimination and reliability skills are unknown 

o In order to obtain low error variance, 24-32 listeners are required  

- Experienced 

o Subjects have experience in listening to a particular type of sound or product 

o Experience does not promise reliability and repeatability 

- Expert 

o Tested subjects with normal hearing, good discrimination skill and reliability 

o Subject may be over sensitive to aberrations in samples 

o 10 subjects is enough for low error variance  
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7.2 Creation of test material 

Before creating the listening test material the listening method had to be chosen. Several 

different testing methods were discussed with the instructor of this thesis and Nokia 

colleagues, resulting in three final options:  

1) A real phone, listener hears a sample from a real phone in call, which is changed to 

the other one after one sample is heard. 

 Real speaker implementation and call, speaker differences are possibly heard easier 

in a noisy environment 

 Most accurate method as all interferences and problems of recording environment 

are avoided 

- The look of the phone affects the results 

- Hard and laborious usage in the test, phones have to be switched many times 

 

2) Rapid model, large and small speakers are integrated to identical rapid models, which 

are changed after the sample is heard. Signal processing is done on the samples before 

the test. Finally, samples are played from a laptop and fed to the speakers. 

 Real small and large speakers in use 

 The phones' look is identical and does not affect the evaluation 

- Requires pre-work and signal processing before the files are ready for listening 

- Hard and laborious usage in the test, phones have to be switched many times 

 

3) Headphones, samples are recorded with HATS and processed before the test. 

Samples are played from a laptop with headphones for the listeners. 

 Easy for listener 

 Listening test software can be used 

 No phone switching and effect on results by look 

- Requires lots of work before the samples are ready for listening 

- No real implementation 

- Stages in signal processing diminishes large speaker advantages against small one 

- Recording environment and sample processing adds interference to samples 

Despite the heavy processing of samples the headphones were selected to be the 

listening method for the samples. The ease of listening and answering with listening test 

software was a big criteria to end up selecting the headphones. There was a plan to do a 

listening test also in background noise and test intelligibility differences. Usage of 

headphones was not feasible as the headphones damp the background noise.  

Because the listening test was decided to proceed with headphones instead of using real 

phones or rapid models, the sound files had to be processed to sound like a real phone 

call in the listeners ear. Pre-processing the sound files was a laborious process, which is 

described in the nine-step block diagram in Figure 32. 
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Figure 32:  Block diagram of all stages of creating listening test samples. More 

 detailed description of every stage is presented in the following sections. 
 

7.2.1 Full band files and selecting test samples 

The listening test language was decided to select to be Finnish because finding 30 

native English speakers for the listening test would have been a harder task to complete. 

Luckily, the material for arranging the listening test was recorded earlier and selecting 

suitable sentences was a fairly easy task. 

The sound files used in this test were recorded in Tampere Nokia premises in an 

anechoic chamber. There were 4 female and 4 male speakers available to choose from 

reading the same texts. From these 8 readers, 2 male and 2 female speakers were chosen 

for the listening test. Speakers were chosen for this test in a way that their pronouncing 

was clear. The second criterion was that from both gender one speaker had more low 

frequencies and the other had more higher frequencies. This was decided by examining 

the spectrum of each speaker's voice averaged over all sentences found from [19]. 

The speech samples available were several sentences long so the suitable two sentences 

with duration about 10 seconds were selected. There were several different themes 

available and the purpose was to select different one for all 6 sentences. This worked 

out very well and only tar was the subject in two sentences. The idea was to keep 

listeners awake by altering the themes. The sound sample editing process was done on 

Adobe Audition 1.5. 

7.2.2 Lowpass filtering to 7.8 kHz 

The fullband files had to be lowpass filtered for the radio communication tester to avoid 

any possible errors to the sound signals. The selected samples were filtered using a 

lowpass finite length impulse response (FIR) equiripple filter created on Matlab. The 

Matlab code and more specific information about the filter is found from Appendix D:. 

The filter magnitude response is shown below. 
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Figure 33:  The 7.8kHz lowpass filter magnitude response used to the full band 

 samples. Sampling rate was 48000Hz. 
 

7.2.3 Call recording with HATS 

The filtered files were played from a laptop and fed to a Rohde & Schwarz radio 

communicator tester CMU. The laptop output signal level was adjusted according to the 

CMU data sheet [37] to full-range input level in low sensitivity mode. The peak voltage 

level is 1.4V and the laptop soundcard output RMS voltage level was supposed to be -

19.14 dBFS to prevent clipping of the speech signal. The required voltage level is 

calculated from the following equation 

 𝐺𝑑𝐵 = 20log  
𝑥

𝑉𝑟𝑒𝑓
     (32) 

 −19,14𝑑𝐵 = 20𝑙𝑜𝑔  
𝑥

1,4𝑉
    (33) 

 𝑥 = 1,4𝑉 ∗ 10 
−19,14

20
 ≈ 155𝑚𝑉   (34) 

where 𝐺𝑑𝐵  is the desired CMU input gain level in decibels, 𝑉𝑟𝑒𝑓  is the CMU maximum 

input voltage peak level and 𝑥 is the CMU input voltage level for the desired decibel 

value -19.14 dBFS and also the soundcard output voltage level. The result 155 mV was 

measured from soundcard output when a -19 dBFS multitone was played by Adobe 

Audition. The audio signal level in the phone's DSP was traced with a tracing device 

(called Musti) to make sure the signal is not clipped before phone the earpiece. After 

tracing showed that everything is in order, the phones were positioned to HATS and a 

multitone signal was played from the laptop and volume levels were adjusted to be at a 

suitable level for the actual recording process.  

The CMU was used to make the call to the phone in a GSM 900 and WCDMA network. 

Each phone was positioned to HATS according to the designer’s directions. The 

received sound sample was recorded with HATS and amplified 20 dB on the B&K 

Nexus amplifier. Finally, the samples were recorded on laptop using Adobe Audition. A 

more detailed measurement setup is shown in Figure 34 and the equipment is described 

below. 
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Table 8:  Equipment used to record speech from phone earpiece placed on HATS. 

Instrument Type Comment 

Radio Rohde & Schwarz GSM & WCDMA 

communication CMU 200 network used 

tester     

Head And Torso B&K Includes artificial ear 

Simulator   with microphone 

microphone B&K Nexus HATS mic amplifier 

amplifier     

Sound card VX pocket 440 PCMCIA card with IBM 

    thinkpad T41 

Phone signal  Musti Speech signal level 

tracker   traced on phone DSP 

 

Phone volumes were selected to be 6/10 and 10/10, because volume 6/10 is the level 

that user would normally use in daily life and 10/10 is for the noisy environment. The 

maximum level 10/10 was selected to find out if there is audible distortion in the 

recordings with the small earpiece. Also, the speech signal level was higher and the 

background noise was about the same, i.e. SNR was better than 6/10 level. 

 

Figure 34:  Measurement setup for live call recording with HATS. AS = Analog 

 Signal, RF = Radio Frequency. 

7.2.4 Loudness balancing 

When the samples were recorded with HATS, both the nominal and maximum volume 

levels were used in the phones. It is said in [1] that usually the louder the sound is the 

better it sounds to the listener. By aligning the sound level the loudness difference affect 

is minimized and listeners can concentrate on evaluating correct affairs.  

The balancing was done using the loudness batch tool version v1.4 and the following 

parameters were given to the program: Input filename, align all samples to 27 Moore 

average sones, align all samples to 27 Moore dynamic sones, align all samples to within 

15% of the target sones. These parameters resulted in files having a peak amplitude of -

6±1 dBFS and an average RMS power of -31±1 dBFS. 
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7.2.5 Lowpass filtering, wideband 7.8 kHz, narrowband 5.7 kHz 

There was some background noise from cables and measurement equipment added to 

the recorded signal during the call recording with HATS. Also, the phone audio 

hardware causes noise to the output signal. Because of the loudness balancing the noise 

outside the speech signal was amplified and it had to be removed with a FIR equiripple 

lowpass filter. Both narrowband and wideband signals had their own lowpass filters. 

The cutoff frequency for narrowband samples was 5.7kHz and for wideband 7.8kHz. 

 

Figure 35:  Lowpass filter for narrowband samples used to decrease noise outside 

 the speech signal. Sampling frequency was 48000 Hz.  
 

7.2.6 Downsampling from 48 kHz to 24 kHz 

This operation had to be done because the filter in the next step in Section 7.2.7 had 

problems following the measured frequency response of the HATS ear and headphones. 

The options were to select either a high sampling rate 48 kHz with the loss of filter 

accurate on low frequencies or lower the sampling rate to 24 kHz and reproduce the low 

frequencies fairly near to original frequency response. In this case, the low frequencies 

were more important because the main differences between the speakers are under 1 

kHz. Moreover, the sound quality was very good at 24 kHz sampling rate, because it is 

more than 16 kHz minimum sampling rate that wideband requires. The tool for 

downsampling was the ReSampAudio batch tool, which required only to input a file 

name, new sampling rate and output file name for parameters to complete the process. 

7.2.7 HATS ear canal (DRP-ERP) filter 

An important phase in processing the recordings was to eliminate the effect of the 

HATS ear and the headphones from the recorded sound files. For creating the filter, the 

Sennheiser HD256 headphones were placed to the HATS ears and the frequency 

response of those together was measured as in Figure 36. The measurement equipment 

was the same as in Table 3 in full audio path measurements to phone measurements on 

HATS.  

The measured frequency response was inverted to compensate the effect of the HATS's 

ear and headphones. To create a filter of the measured data, the data was read to Matlab 

for further processing. The equalizer was created from the read data by a modified 

Yule-Walker algorithm, which is an add-on to Matlab. The algorithm could not perform 
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at the desired 48 kHz sampling frequency as at 24 kHz and the downsampling had to be 

done as mentioned in Section 7.2.6. The parameters used for the algorithm are presented 

in Table 9 and the result is in Figure 37. 

Table 9:  Parameters in Yule-Walker algorithm used for filter designing to 

 headphones on HATS ear. 

Sampling frequency [Hz] 24000 Other options   

Lower do not care limit [Hz] 100 0 dB loudness correcting on 

Upper do not care limit [Hz] 8000 Uniform weighting on 

Filter order 12 
   

 

Figure 36:  Measurement setup for headphones on HATS. 
 

 

Figure 37:  Filter magnitude response made from measured Sennheiser HD256 + 

 HATS drum and ear reference point data. 
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7.2.8 Upsampling from 24 kHz to 48 kHz 

It was nice to notice after all these stages that DaGuru listening test software was unable 

to play the 24 kHz sample rate files. Therefore, the upsampling operation was done 

purely because of the listening test software. On the other hand, the software was good 

and easy to use so the upsampling was a natural choice instead of finding another 

software tool. The same tool used for downsampling (ReSampAudio) was used for 

upsampling the files from 24 kHz to 48 kHz.  

7.2.9 Noise removal 

After upsampling, the sound samples were fairly noisy especially around 5 kHz because 

the HATS ERP-DRP filter emphasized those frequencies. In narrowband, that peak was 

outside the speech band and it was very disturbing to listen to. The noise was reduced 

by a noise removal tool found from Adobe Audition 1.5.  

 

Figure 38:  Adobe Audition noise reduction parameters used to the listening test 

 samples. 
 

7.2.10 Discussion of the listening test files 

After all stages described in Sections 7.2.1-7.2.9, the samples were ready for the 

listening test. The two figures below are shown to demonstrate the magnitude response 

of male and female speakers on both phones after all recording processing was done as 

presented in Section 7.2. Figure 39 presents the 10 second long averaged wideband 

male and female samples from both phones. 

The differences between the phones are shown in Figure 40 by subtracting the Nokia 

6220c results from the Nokia 6720c results (large speaker - small speaker). Also, the 

subtraction between the male and female samples are shown to demonstrate the 

different magnitude responses between the gender of the speakers. By looking at Figure 

40, it can be seen that the Nokia 6220c emphasizes the frequencies between 200-500 Hz 

and the Nokia 6720c 1.5-4 kHz and especially frequencies below 150 Hz. The greatest 

difference between the samples from the different phones is about 10 dB and it should 

be heard easily by the listeners. Therefore, it is interesting to see the subjective results 

and hear the comments about the samples. 
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Figure 39:  10 seconds long averaged wideband male and female samples from both 

 phones after all recording process was done ready for the listening test. 

 Wideband bit rate was 12.65 kbit/s. 
 

 

 

Figure 40:  Subtraction of Nokia 6720c and 6220c speech samples on wideband. 

 The results of the same gender is shown with a solid line and male-female 

 subtraction (M diff - F Diff) result is marked with a dash line. 
 

7.3 Listening test set-up 

The listening test was held in Oulu Nokia (Elektroniikkatie) premises, in the listening 

room in F-wing during 1.-20.10.2009. The dimensions of the listening room are 440 x 

794 x 242 (w x l x h) and so the volume is approximately 85 m
3
. The listening position 

was set to the middle against of long wall, where the laptop, mouse and headphones 

were located. 
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Figure 41:  Listening test position in the listening room. 
 

Since the discrimination skills of the listeners were not known, 2 additional sample 

pairs (1 narrowband & 1 wideband) with identical samples were included to the 

listening test. There were also 4 sample pairs recorded on the same phone, but on 

different volume levels 6/10 and 10/10. These sample pairs recorded on the same phone 

volume levels were matched with the loudness tool described in Section 7.2.4. By 

looking at the evaluation results of these identical and same phone samples, the skills of 

individual listeners were somehow concluded. 
  

7.3.1 Briefing for the listener 

In order to get listeners to focus on the desired parameters, short briefing has to be held 

before the test. Also, the technical issues were discussed and clarified, like how to use 

the test software. If these preparations are skipped, the users may be uncertain how to 

interact with the software and the test results may vary a lot depending on the listener. 

To avoid any affects on the results just because of lack of information, the following 

items were discussed before the test.  

 

 Test method 

 Content of the test 

 Parameter what listener should evaluate 

 Possible imperfections that should not affect the evaluations 

 What is prohibited 

 Staff location, who to ask if any problems occur 

The headphones orientation and position were instructed to the listeners before the test. 

Also, the user interface was demonstrated to avoid causing confusion to the listeners. 
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7.3.2 User interface 

Because all the listeners and samples were Finnish the user interface language was set to 

Finnish. The listening test software was DaGuru and it was run on a normal laptop with 

Windows XP operating system.  

Using the software was made easy for the listener. First the name and age was given to 

the software and after that 8 practicing sample pairs were played. After practicing, the 

listener had to listen and rate 50 sample pairs, which took about 30 min. The user had to 

listen to a sample pair and grade the recent sample compared to the previous one. When 

the sample pair was evaluated, the next pair was played automatically. If a user wanted 

to listen to the sample pair again, they were instructed not to use more than 2 repetitions 

at save time. The number of evaluated and upcoming samples were on the screen all the 

time as can be seen from Figure 42. 

 

Figure 42:  User interface in the listening test. Two samples have been played and 

 the listeners have to choose how good the latest sample is compared to the 

 previous one. Users can repeat the sample pair by pressing the "Toista" 

 button. 
 

7.4 Results of the subjective test 

After all preparations were done, the subjects took part in the listening test and finally, 

the analyzing was proceeded. Altogether 33 subjects took part in the test, from which 17 

were male and 16 female. The analyzing process and results of the listening test are 

presented in this section. 

7.4.1 How the data is analyzed 

The analysis of the test results was done on Microsoft excel. DaGuru has an excel add-

on, which reads the listening test data for analyzing. The add-on assorts the answers by 

using the first sample as a reference sample and the other as a test sample, which is 

evaluated. The Nokia 6220c was selected to be the reference (just in the analyzing 

phase) and the grading was executed in the following way: If a listener has given grade 

3 to a test sample (Nokia 6720c), the answer is Nokia 6720c grade 3. If the reference 
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and test sample are the other way around, the inverse grading result was given to test 

sample as in Table 10. 

Table 10:  Simplified table of results analyzing process. 

Listener     Analyzer   

First sample Second sample Grade given to second sample Result Grade 

Nokia 6220c Nokia 6720c 2 Nokia 6720c 2 

Nokia 6720c Nokia 6220c -3 Nokia 6720c 3 

 

After the listening test results were arranged as shown in Table 10 the mean opinion 

score, standard deviation and 95% confidence interval were calculated with Excel. The 

equations were the following [20]:  

 Mean: 

 𝑥 =
1

𝑛
 𝑥𝑖

𝑛
𝑖=1     (35) 

 Standard deviation: 

 𝜎 =  
1

𝑛
 (𝑥𝑖 − 𝑥 )2𝑛

𝑖=1     (36) 

 95% confidence interval: 

 𝐶95% = 𝑥 ± 1.96(
𝜎

 𝑛
)    (37) 

where x is vector with all the results, 𝑥  is the mean value of vector x, n is the number of 

given grades, 𝜎  is standard deviation and 𝐶95%  is the 95% confidence interval. The 

purpose of the confidence interval is to indicate the reliability of the results by giving a 

region where the true value of the evaluation result is in probability of the given 

percentage value. A 95% confidence interval is often used and if the two confidence 

intervals do not overlap in the two evaluated items, the values of the items are said to be 

significantly different. 

7.4.2 Analysis of the results 

After all the 33 listeners had taken part to the listening test, it was time to analyze the 

results. There was 17 male and 16 female listeners and the target was 15 male + 15 

female listeners. Because there were 2 sample pairs with identical samples, it was easy 

to select the 2 male and 1 female speakers out from the 33 listeners, who heard the both 

samples worse (-2) or better (2).  
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Figure 43:  Means and 95% confidence intervals of all the scores given for the Nokia 

 6720c compared to the Nokia 6220c. Nominal volume means volume level 

 6/10 and maximum 10/10. The Nokia 6720c got better scores in every case 

 evaluated. 

 

When looking at Figure 43 the it should be kept in mind that N6720c has grades from 

0.61 to 1.73 and N6220c has thereby inverse grades. It can be noted that male speakers 

on wideband benefit significantly more from the large speaker. On the other hand, on 

narrowband the benefit from the large speaker is about the same for both male and 

female speakers. 

In addition to naive and experienced listeners, 7 people from Nokia Oulu 

(Teknologiakylä) electro mechanic audio team were invited to the test. The reason for 

inviting those 7 people were partly because the listening test arrangements had to be 

tested. One other important matter is to obtain information how close the designers 

evaluate the test samples compared to the results of other listeners. The results of all 

listeners are presented in Figure 44. 
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Figure 44:  Means and 95% confidence intervals of all the scores given for the Nokia 

 6720c compared to the Nokia 6220c. Nominal volume means volume level 

 6/10 and maximum 10/10.*7 people from Oulu Nokia (teknologiakylä) 

 electro mechanic audio team took part in the test. 

   

7.5 Discussions about the subjective test  

Using the headphones instead of real phones probably affected the test results. Nokia 

6220c had audible background noise especially with female narrowband speech, which 

may have affected that the Nokia 6720c female speaker narrowband quality was 

evaluated better than wideband quality. The standard deviation became fairly large on 

narrowband nominal volume among the Nokia audio team listeners, because there was 

audible noise in some of the nominal volume listening test files even after noise 

reduction. The listeners were instructed not to take the noise into account, but still it has 

probably affected the grading. The small population size (7) also has an effect on the 

audio team confidence interval. 

The processing of the files was an easy task excluding the small noise problem with the 

narrowband files. The listening experience could have been better if the loudness 

correcting would have been done as the last process before the listening test. A few 

listeners said that a couple of files sounded to be at a different volume level, which 

could have affected the results. 

The listeners said some comments about the darkness of the female sound after the test. 

In practice, all the lowest frequencies were produced by the Nokia 6720c. There is a 

possibility that low frequencies were emphasized too much for a female speaker and 

caused the feeling of dark sound. That may have caused the result that female speaker 

audio quality on both phones were almost equally graded, i.e. near zero on wideband. 
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8. CONCLUSIONS 

The objective of this thesis was to compare the earpiece integrations in a mobile phone 

subjectively. This work contains theory about earpiece integration in mobile phone with 

the analysis of objective and subjective measurements. The results of the subjective test 

indicate that end-users can distinguish between the different earpiece integrations. 

In Chapter 6 the objective measurements were performed and some expectations of 

subjective test results were done. The measurements on HATS showed considerable 

differences on earpiece integrations. Low frequency reproduction on smaller earpiece 

integration was poor due to the earpiece physical limitations discussed in Chapter 5. 

In the light of theory and objective measurements, the results of the subjective test were 

not a surprise. Male speaker benefit clearly because the low frequencies were produced 

much better than the small speaker implementation. Listeners experienced the female 

speakers sound as being too dark, but this can be due to recording, processing and using 

the headphones for listening to the test files. It was interesting to try how the audio 

designers' grades differentiate from normal user listening test results. The Nokia electro 

mechanic audio team from Oulu participated in the test with 7 people and graded the 

samples with the same trend as the other listeners.  

As discussed in Chapter 7, concerning different listening methods, the headphones were 

selected to be the most convenient to use for the listener. However, using another 

listening method could produce even better grades for larger speaker integration. It 

would have been useful to try the listening test with the rapid model under silent and 

noisy conditions. The intelligibility test could have been added to the noisy conditions 

to see if end-users rate the earpiece integrations the same way as in silent environment. 
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10. APPENDICES 

APPENDIX A: Large speaker used in Nokia 6720c mobile phone 

 

Figure 45:  Large speaker dimensions used in Nokia mobile phone in listening test. 

 The dimensions are taken from [16]. 
 

 
Figure 46:  Measures of the large speaker membrane used in Nokia mobile phone 

 in listening test. 
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APPENDIX B: Small speaker used in Nokia 6220c mobile phone 

 

 
Figure 47:  Small speaker dimensions used in Nokia mobile phone in listening test. 

 Dimensions are taken from [17]. 

 
Figure 48:  Membrane measures of small speaker used in Nokia mobile phone in 

 listening test. 
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APPENDIX C: Listening test instructions (in Finnish) 

 

Kuuntelukoeohje  

 

Tässä kuuntelukokeessa kuunnellaan suomenkielisiä puhelinääninäytteitä. Näytteet 

soitetaan pareittain, joista arvioidaan jälkimmäisenä kuultua näytettä verrattuna 

ensimmäiseen asteikolla -3 (Paljon huonompi)…3 (Paljon parempi). Jos jälkimmäinen 

on mielestäsi huonompi kuin ensimmäinen, valitse -3…-1. Jälkimmäisen ollessa 

parempi kuin ensimmäinen, valitse 1...3. Jos et kuule eroa näytteiden välillä, valitse 0. 

Arvioinnin perusteena on, kumpi näytteistä kuulostaa mielestäsi paremmalta.  

  

Äänenvoimakkuus säädetään testin alussa kuuntelijalle sopivaksi, eikä sitä tarvitse 

muuttaa testin aikana. Jos haluat kuulla näyteparin uudelleen, voit toistaa sen 

enimmillään 2 kertaa, jottei testi mene liian pitkäksi.  

 

Kun kuuntelukoe alkaa, ohjelma kysyy nimeäsi ja ikääsi. Voit kirjoittaa sen muodossa 

NimiS 15V, jossa S on sukunimen ensimmäinen kirjain. Aluksi kuunnellaan 8 

harjoitusnäyteparia, jonka jälkeen varsinainen testi alkaa. Tämän jälkeen kuunnellaan 

25 paria nykyisin puhelimissa kuultavaa puhelinääntä, joiden jälkeen tulee 25 paria 

tulevasta laajakaistaisesta puhelinäänestä. 

 

Joissakin näytteissä voi olla häiriöitä (epäjatkuvuus, kohina), joita ei tarvitse huomioida 

näytettä arvioidessa. 

 

Laitathan kännykän äänettömälle testin ajaksi. 

 

Jos kokeen aikana tulee kysyttävää, voit soittaa Sampalle 0440321069. 
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APPENDIX D: Matlab code for 7.8 khz filter 

 
% 8kHz lowpass filter parameters (FIR equiripple) 

% All frequency values are in Hz. 
 
Fs = 48000;   % Sampling Frequency 
  
Fpass = 7700;            % Passband Frequency 
Fstop = 8300;            % Stopband Frequency 
Dpass = 0.057501127785;  % Passband Ripple 
Dstop = 0.001;           % Stopband Attenuation 
dens  = 20;              % Density Factor 
  
% Calculate the order from the parameters using FIRPMORD. 
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]); 
  
% Calculate the coefficients using the FIRPM function. 
b  = firpm(N, Fo, Ao, W, {dens}); 
  
% Sound file is read 
[x, fs, nbits] = wavread('input_file.wav'); 
  
% Sound file is filtered using filter specs above 
y = filter(b,1,x); 
  
% The frequency response of original sound file is calculated 
xF = 20*log10(abs(fft(x))); 
  
% The frequency response of original sound file is plotted 
figure(2); 
plot(xF,'g'); 

 

% Hold is done to plot both curves to same figure   
hold on; 
  
% The frequency response of filtered sound file is calculated 
yF = 20*log10(abs(fft(y))); 
  
% The frequency response of filtered sound file is plotted 
plot(yF,'r'); 
  
% Filtered sound file is written to hard drive 
wavwrite(y,Fs,nbits,'output_file'); 
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APPENDIX E: Matlab code for 5.5 khz lowpass filter 

 
% 5,5kHz lowpass filter parameters. 
% All frequency values are in Hz. 

 
Fs = 48000;  % Sampling Frequency 
  
Fpass = 5500;            % Passband Frequency 
Fstop = 6400;            % Stopband Frequency 
Dpass = 0.057501127785;  % Passband Ripple 
Dstop = 0.001;           % Stopband Attenuation 
dens  = 20;              % Density Factor 
  
% Calculate the order from the parameters using FIRPMORD. 
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]); 
  
% Calculate the coefficients using the FIRPM function. 
b  = firpm(N, Fo, Ao, W, {dens}); 
  
% Sound file is read 
[x, fs, nbits] = wavread('input_file.wav'); 
  
% Sound file is filtered using filter specs above 
y = filter(b,1,x); 
  
% The frequency response of original sound file is calculated 
xF = 20*log10(abs(fft(x))); 
  
% the frequency response of original sound file is plotted 
figure(2); 
plot(xF,'g'); 
hold on; 
  
% the frequency response of filtered sound file is calculated 
yF = 20*log10(abs(fft(y))); 
  
% the frequency response of filtered sound file is plotted 
plot(yF,'r'); 
  
% Filtered sound file is written to hard drive 
wavwrite(y,Fs,nbits,'output_file'); 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

APPENDIX F: Type 4606 hats position table for Nokia 6720c 

 
  

End stopper     Support foot Front Rear 

Endstop [mm] 13 

 
Height[mm] 8 7 

  
  

Offset [-5…5] 0 0 

Centering fork Front Rear Socket position [1-5] Front 4 

Offset [mm] 0 0 Spike [Position] +6,-6 +6,-6 

Socket position [1-5] 1 5 Spike [Type] long long 

 

 
 

Position Miscellaneous 

DA [°] DB [°] DC [°] Pinna type Pressure force [N] 

21 10 2,5 Soft 10 

 

 
 

Nominal volume for Narrowband 6, Wideband 6 
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APPENDIX G: Type 4606 hats position table for Nokia 6220c 

 

 
End stopper     Support foot Front Rear 

Endstop [mm] 16 

 
Height[mm] 8 8 

  
  

Offset [-5…5] 0 0 

Centering fork Front Rear Socket position [1-5] Front 4 

Offset [mm] 0 0 Spike [Position] +6,-6 +6,-6 

Socket position [1-5] 2 3 Spike [Type] long long 
 

 
 

Position Miscellaneous 

DA [°] DB [°] DC [°] Pinna type Pressure force [N] 

21 10 -2 Soft 10 

 

 
 

 
Nominal volume for Narrowband 5, Wideband 4 

 

 


