4,348 research outputs found

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

    Get PDF
    Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.Comment: 29 pages, 8 figures, 11 table
    corecore