387 research outputs found

    The status of textile-based dry EEG electrodes

    Get PDF
    Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review

    Get PDF
    To demonstrate the wearable flexible/stretchable health-monitoring sensor, it is necessary to develop advanced functional materials and fabrication technologies. Among the various developed materials and fabrication processes for wearable sensors, carbon-based materials and textile-based configurations are considered as promising approaches due to their outstanding characteristics such as high conductivity, lightweight, high mechanical properties, wearability, and biocompatibility. Despite these advantages, in order to realize practical wearable applications, electrical and mechanical performances such as sensitivity, stability, and long-term use are still not satisfied. Accordingly, in this review, we describe recent advances in process technologies to fabricate advanced carbon-based materials and textile-based sensors, followed by their applications such as human activity and electrophysiological sensors. Furthermore, we discuss the remaining challenges for both carbon- and textile-based wearable sensors and then suggest effective strategies to realize the wearable sensors in health monitoring

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Choice of Piezoelectric Element over Accelerometer for an Energy-Autonomous Shoe-Based System

    Get PDF
    Shoe-based wearable sensor systems are a growing research area in health monitoring, disease diagnosis, rehabilitation, and sports training. These systems—equipped with one or more sensors, either of the same or different types—capture information related to foot movement or pressure maps beneath the foot. This captured information offers an overview of the subject’s overall movement, known as the human gait. Beyond sensing, these systems also provide a platform for hosting ambient energy harvesters. They hold the potential to harvest energy from foot movements and operate related low-power devices sustainably. This article proposes two types of strategies (Strategy 1 and Strategy 2) for an energy-autonomous shoe-based system. Strategy 1 uses an accelerometer as a sensor for gait acquisition, which reflects the classical choice. Strategy 2 uses a piezoelectric element for the same, which opens up a new perspective in its implementation. In both strategies, the piezoelectric elements are used to harvest energy from foot activities and operate the system. The article presents a fair comparison between both strategies in terms of power consumption, accuracy, and the extent to which piezoelectric energy harvesters can contribute to overall power management. Moreover, Strategy 2, which uses piezoelectric elements for simultaneous sensing and energy harvesting, is a power-optimized method for an energy-autonomous shoe system

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers

    Get PDF
    Wearable strain sensors have attracted research interest owing to their potential within digital healthcare, offering smarter tracking, efficient diagnostics, and lower costs. Unlike rigid sensors, fiber‐based ones compete with their flexibility, durability, adaptability to body structures as well as eco‐friendliness to environment. Here, the sustainable fiber‐based wearable strain sensors for digital health are reviewed, and material, fabrication, and practical healthcare aspects are explored. Typical strain sensors predicated on various sensing modalities, be it resistive, capacitive, piezoelectric, or triboelectric, are explained and analyzed according to their strengths and weaknesses toward fabrication and applications. The applications in digital healthcare spanning from body area sensing networks, intelligent health management, and medical rehabilitation to multifunctional healthcare systems are also evaluated. Moreover, to create a more complete digital health network, wired and wireless methods of data collection and examples of machine learning are elaborated in detail. Finally, the prevailing challenges and prospective insights into the advancement of novel fibers, enhancement of sensing precision and wearability, and the establishment of seamlessly integrated systems are critically summarized and offered. This endeavor not only encapsulates the present landscape but also lays the foundation for future breakthroughs in fiber‐based wearable strain sensor technology within the domain of digital health

    QoS in Body Area Networks: A survey

    Get PDF
    Body Area Networks (BANs) are becoming increasingly popular and have shown great potential in real-time monitoring of the human body. With the promise of being cost-effective and unobtrusive and facilitating continuous monitoring, BANs have attracted a wide range of monitoring applications, including medical and healthcare, sports, and rehabilitation systems. Most of these applications are real time and life critical and require a strict guarantee of Quality of Service (QoS) in terms of timeliness, reliability, and so on. Recently, there has been a number of proposals describing diverse approaches or frameworks to achieve QoS in BANs (i.e., for different layers or tiers and different protocols). This survey put these individual efforts into perspective and presents a more holistic view of the area. In this regard, this article identifies a set of QoS requirements for BAN applications and shows how these requirements are linked in a three-tier BAN system and presents a comprehensive review of the existing proposals against those requirements. In addition, open research issues, challenges, and future research directions in achieving these QoS in BANs are highlighted.</jats:p
    • 

    corecore