1,015 research outputs found

    Space/time/frequency methods in adaptive radar

    Get PDF
    Radar systems may be processed with various space, time and frequency techniques. Advanced radar systems are required to detect targets in the presence of jamming and clutter. This work studies the application of two types of radar systems. It is well known that targets moving along-track within a Synthetic Aperture Radar field of view are imaged as defocused objects. The SAR stripmap mode is tuned to stationary ground targets and the mismatch between the SAR processing parameters and the target motion parameters causes the energy to spill over to adjacent image pixels, thus hindering target feature extraction and reducing the probability of detection. The problem can be remedied by generating the image using a filter matched to the actual target motion parameters, effectively focusing the SAR image on the target. For a fixed rate of motion the target velocity can be estimated from the slope of the Doppler frequency characteristic. The problem is similar to the classical problem of estimating the instantaneous frequency of a linear FM signal (chirp). The Wigner-Ville distribution, the Gabor expansion, the Short-Time Fourier transform and the Continuous Wavelet Transform are compared with respect to their performance in noisy SAR data to estimate the instantaneous Doppler frequency of range compressed SAR data. It is shown that these methods exhibit sharp signal-to-noise threshold effects. The space-time radar problem is well suited to the application of techniques that take advantage of the low-rank property of the space-time covariance matrix. It is shown that reduced-rank methods outperform full-rank space-time adaptive processing when the space-time covariance matrix is estimated from a dataset with limited support. The utility of reduced-rank methods is demonstrated by theoretical analysis, simulations and analysis of real data. It is shown that reduced-rank processing has two effects on the performance: increased statistical stability which tends to improve performance, and introduction of a bias which lowers the signal-to-noise ratio. A method for evaluating the theoretical conditioned SNR for fixed reduced-rank transforms is also presented

    Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    Get PDF
    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme

    Multiple feature-enhanced synthetic aperture radar imaging

    Get PDF
    Non-quadratic regularization based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such features. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse signal representation based on overcomplete dictionaries. Due to the complex-valued nature of the reflectivities in SAR, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field in terms of multiple features, which turns the image reconstruction problem into a joint optimization problem over the representation of the magnitude and the phase of the underlying field reflectivities. We formulate the mathematical framework needed for this method and propose an iterative solution for the corresponding joint optimization problem. We demonstrate the effectiveness of this approach on various SAR images

    Sparse representation-based synthetic aperture radar imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data

    Sparse representation-based SAR imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data

    Mine-suspected Area Reduction Using Aerial and Satellite Images

    Get PDF

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Detecting anomalies in remotely sensed hyperspectral signatures via wavelet transforms

    Full text link
    An automated subpixel target detection system has been designed and tested for use with remotely sensed hyperspectral images. A database of hyperspectral signatures was created to test the system using a variety of Gaussian shaped targets. The signal-to-noise ratio of the targets varied from -95dB to -50dB. The system utilizes a wavelet-based method (discrete wavelet transform) to extract an energy feature vector from each input pixel signature. The dimensionality of the feature vector is reduced to a one-dimensional feature scalar through the process of linear discriminant analysis. Signature classification is determined by nearest mean criterion that is used to assign each input signature to one of two classes, no target present or target present. Classification accuracy ranged from nearly 60% with target SNR at -95dB without any a priori knowledge of the target, to 100% with target SNR at -50dB and a priori knowledge about the location of the target within the spectral bands of the signature

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives
    • …
    corecore