1,345 research outputs found

    Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets

    Get PDF
    Using a camera,the visual object tracking is one of the most important process in searching the spot of moving object over the time. In the case of the object moves fast relative to the frame rate,the visual object tracking is difficult task. The active contour evolution algorithm which is used for the tracking of object in a given frame of an image sequence. Active contour based visual object tracking using the level sets is proposed which does not consider the camera either stationary or moving. We present a framework for active contour-based visual object tracking using the level sets. The main components of our framework consist of the contour-based tracking initialization, colour-based contour evolution, the adaptive shape-based contour evolution for the non-periodic motions, the dynamic shape-based contour evolution for the periodic motions and handling of the abrupt motions. For the contour-based tracking initialization, we use an optical flow-based algorithm for the automatically initializing contours at the first frame. In the color-based contour evolution, we use Markov random field theory to measure correlations between values of the neighboring pixels for the posterior probability estimation.In the adaptive shape-based contour evolution, we combined the global shape information and the local color information to hierarchically develop gradually the contour, and a flexible shape updating model is made. In the dynamic shape based contour evolution, a shape mode transition matrix is gain to characterize the temporal correlations of the object shapes. In the handling of abrupt motions, particle swarm optimization (PSO) is used to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. DOI: 10.17762/ijritcc2321-8169.15013

    Real-Time Salient Closed Boundary Tracking via Line Segments Perceptual Grouping

    Full text link
    This paper presents a novel real-time method for tracking salient closed boundaries from video image sequences. This method operates on a set of straight line segments that are produced by line detection. The tracking scheme is coherently integrated into a perceptual grouping framework in which the visual tracking problem is tackled by identifying a subset of these line segments and connecting them sequentially to form a closed boundary with the largest saliency and a certain similarity to the previous one. Specifically, we define a new tracking criterion which combines a grouping cost and an area similarity constraint. The proposed criterion makes the resulting boundary tracking more robust to local minima. To achieve real-time tracking performance, we use Delaunay Triangulation to build a graph model with the detected line segments and then reduce the tracking problem to finding the optimal cycle in this graph. This is solved by our newly proposed closed boundary candidates searching algorithm called "Bidirectional Shortest Path (BDSP)". The efficiency and robustness of the proposed method are tested on real video sequences as well as during a robot arm pouring experiment.Comment: 7 pages, 8 figures, The 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) submission ID 103

    Active skeleton for bacteria modeling

    Full text link
    The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.Comment: Published in Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationto appear i

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    A snake-based scheme for path planning and control with constraints by distributed visual sensors

    Get PDF
    YesThis paper proposes a robot navigation scheme using wireless visual sensors deployed in an environment. Different from the conventional autonomous robot approaches, the scheme intends to relieve massive on-board information processing required by a robot to its environment so that a robot or a vehicle with less intelligence can exhibit sophisticated mobility. A three-state snake mechanism is developed for coordinating a series of sensors to form a reference path. Wireless visual sensors communicate internal forces with each other along the reference snake for dynamic adjustment, react to repulsive forces from obstacles, and activate a state change in the snake body from a flexible state to a rigid or even to a broken state due to kinematic or environmental constraints. A control snake is further proposed as a tracker of the reference path, taking into account the robot’s non-holonomic constraint and limited steering power. A predictive control algorithm is developed to have an optimal velocity profile under robot dynamic constraints for the snake tracking. They together form a unified solution for robot navigation by distributed sensors to deal with the kinematic and dynamic constraints of a robot and to react to dynamic changes in advance. Simulations and experiments demonstrate the capability of a wireless sensor network to carry out low-level control activities for a vehicle.Royal Society, Natural Science Funding Council (China

    Segmentation of Myocardial Boundaries in Tagged Cardiac MRI Using Active Contours: A Gradient-Based Approach Integrating Texture Analysis

    Get PDF
    The noninvasive assessment of cardiac function is of first importance for the diagnosis of cardiovascular diseases. Among all medical scanners only a few enables radiologists to evaluate the local cardiac motion. Tagged cardiac MRI is one of them. This protocol generates on Short-Axis (SA) sequences a dark grid which is deformed in accordance with the cardiac motion. Tracking the grid allows specialists a local estimation of cardiac geometrical parameters within myocardium. The work described in this paper aims to automate the myocardial contours detection in order to optimize the detection and the tracking of the grid of tags within myocardium. The method we have developed for endocardial and epicardial contours detection is based on the use of texture analysis and active contours models. Texture analysis allows us to define energy maps more efficient than those usually used in active contours methods where attractor is often based on gradient and which were useless in our case of study, for quality of tagged cardiac MRI is very poor
    corecore