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Abstract 

This paper proposes a robot navigation scheme using wireless visual sensors deployed in an environment. 

Different from the conventional autonomous robot approaches, the scheme intends to relieve massive on-board 

information processing required by a robot to its environment so that a robot or a vehicle with less intelligence can 

exhibit sophisticated mobility. A three-state snake mechanism is developed for coordinating a series of sensors to 

form a reference path. Wireless visual sensors communicate internal forces with each other along the reference snake 

for dynamic adjustment, react to repulsive forces from obstacles, and activate a state change in the snake body from a 

flexible state to a rigid or even to a broken state due to kinematic or environmental constraints. A control snake is 

further proposed as a tracker of the reference path, taking into account the robot’s non-holonomic constraint and 

limited steering power. A predictive control algorithm is developed to have an optimal velocity profile under robot 

dynamic constraints for the snake tracking. They together form a unified solution for robot navigation by distributed 

sensors to deal with the kinematic and dynamic constraints of a robot and to react to dynamic changes in advance. 

Simulations and experiments demonstrate the capability of a wireless sensor network to carry out low-level control 

activities for a vehicle. 

 

Keywords: Snake algorithm, wireless visual sensors, mobile robot navigation, distributed robot system. 
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1. Introduction 

A large body of robotics research to date has focused on the development of a large and smart “brain” to 

enable robot autonomy [1-4].They are, however, facing a bottleneck of complexity due to the uncertainties in an 

unstructured environment. Although the techniques have been developed fruitfully [5], they are still not robust enough 

to deliver autonomous robots for our daily life. Steering away from this autonomous intelligence approach, this paper 

investigates the collaborative control strategy of distributed sensors in an intelligent environment to alleviate the 

uncertainties faced by a robot. When sensors are distributed in an environment to provide pervasive intelligence [6, 7], 

a mobile robot with less on-board intelligence can exhibit a high degree of mobility. It relieves the massive 

requirement for centralized computation on-board the robot into a distributed sensor network where the sensor nodes 

can provide distributed information and processing capability to the robot.  

Pervasive intelligence in an environment can significantly simplify decision making and control in many 

applications, which has led to a new wave of research on cyber-physical systems [7, 8]. One example is the 

Ubiquitous Robotic Companion (URC) which was developed to enable automated integration of networked robots 

into ubiquitous computing environments [9]. Robotic Ecology was introduced in the PEIS project [10] to enable 

robots to interact with distributed sensors and actuators in an intelligent environment. This approach simplified 

complex tasks of on-board functionalities by interactions with inter-connected PEIS components in the environment. 

Cloud robotics has recently emerged to expand a robot's knowledge beyond its physical body, so that a robot can 

become smaller, cheaper, and smarter [11]. In these systems, pervasive intelligence provided semantically 

interpretable information to a robot for decision making at the symbolic level [9, 12] but left low-level skills such as 

navigation to the robot. There is a trade-off between distributed intelligence and robot on-board intelligence. For the 

navigation of a simple and cheap robot, which has very limited on-board intelligence, a system with wireless visual 

sensors distributed in a building was developed in a project WiME(Wireless Mosaic Eyes) [13] by the authors. In this 

system, each sensor covers a small area in the environment and the wireless sensors were organized to a purposed 

network for navigation, where all navigation functions, including perception, localization, path planning, and motion 
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control, were conducted by wireless sensors in the environment rather than on-board robots. A mobile robot controlled 

by such a visual sensor network is only equipped with a wireless receiver for command receiving and actuator driving 

but without a high computational capability on-board. Deploying such a sensor network in an environment is 

economically feasible when a large number of vehicles need to be controlled in a certain area, such as navigation of 

wheelchairs in a care centre and AGVs around a production line, trading environment intelligence for expensive on-

board intelligence in every robot. This paper presented the algorithms developed in the WiME project to achieve 

pervasive intelligence guided navigation.  

Autonomous navigation is an application which would benefit greatly from external intelligence. The 

pervasive intelligence provided by the sensors can greatly simplify the complexity faced by a robot in an environment, 

which causes the robust problem and hinders the broad application of autonomous robots. Initially, a distributed 

sensor network can provide a topological map of the environment. The routing to a geographic goal becomes querying 

a sensor sequence from the sensor network. The distributed sensors then become active landmarks for robot 

localization, which is more reliable and efficient than localization using on-board sensors. Finally with a static camera 

configuration mounted in the environment rather than on a mobile robot, the intelligent environment will facilitate 

both perception and control. Each sensor will be in charge of a local region and therefore will face less uncertainty 

and exhibit higher reliability. Wireless sensors have been used to provide navigation services in several applications. 

Intelligent transport systems with distributed sensors can provide vehicles with information about the conditions in its 

surrounding environment [14], and they can even provide vehicles with navigational services [15]. Wireless sensors 

can also actively locate and guide the visually impaired to avoid risk [16] and navigate people out of dangerous areas 

[17]. The current research into wireless sensor network-based robot navigation took a hierarchical approach. 

Distributed sensors were coordinated for high level activities only, for example localization [18, 19], routing [20], or 

event driven behaviour coordination [21]. A significant number of tasks of low level perception and control were left 

to the robots, which have not been well studied. This paper is an attempt to develop techniques for low-level 

navigation control of a robot or a vehicle assisted by distributed environment intelligence.  

To achieve autonomous navigation, a hierarchical architecture is often used to coordinate activities, for 

example the Nested Hierarchical Controller(NHC) [22]. There are three main functions, i.e. SENSE, PLAN and ACT, 
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to be designed and implemented. A world model, for example the map of a building, has to be defined offline or leant 

through sensor fusion. Based on the world model, the PLAN carries out mission planning for setting a goal, navigation 

planning for generating discrete motion sequence and pilot planning for generating continuous trajectories to drive a 

robot using the ACT. All of them rely on real-time sensor readings in the SENSE. The SENSE block is used to 

perceive the environment and link the physical world with the virtual world model in a computer, which has to sample 

raw sensor data, extract low-level features, and retrieve high-level semantics about the world. If an environment is 

deployed with wireless sensors for navigation, the topology of the wireless sensor network forms a nature world 

model and a robot does not need to maintain it on-board. The mission planning in PLAN is a command to a 

destination, such as “go to John’s office”, sent wirelessly to the sensor network. The navigation planning task of 

PLAN can be accomplished by saving a routing table in every wireless sensor; for example a multiple Bloom 

filter[23] was used in the WiME project. This paper presents navigation techniques to implement visual detection in 

SENSE, pilot planning in PLAN and control in ACT in a wireless sensor network. This is a challenge task as 

navigation requires high real-time performance but wireless sensors are often resource-scarce, with limited memory, 

computational power and communicational bandwidth. Therefore a snake based approach is proposed in this paper to 

accomplish path planning, trajectory generation and motion control in a distributed wireless sensor network. Working 

in this way, a vehicle with less on-board intelligence can navigate under guidance from an intelligent environment. 

Snakes, also termed as Active Contour Models [24], are techniques broadly used in computer vision for image 

segmentation and contour tracking. The determination of the presence of an object depends not only on the image 

details at a specific point, but also on the properties of an object’s shape. Similar concepts have been applied to path 

planning, such as elastic bands [25], virtual springs [26, 27], and snake planner for redundant manipulators [28]. A 

snake is defined as a flexible entity that is deformable by applying internal and external forces, which can be 

represented in the configuration space of a robot as an admissible path. The deformation of a snake body is caused by 

the interaction of adjacent joints. It appears to be suitable for distributed implementation of this research since it 

requires only neighbouring information exchange. The information flow along a snake evolves to make it energy-

optimal as a whole and constraint compliant locally. However existing methods have been presented for centralized 

off-line planning and their potential for on-line distributed applications in an intelligent environment has been ignored. 
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For example, Zhou et al [29] proposed a snake based controller for the correction of the tracking paths of wheelchairs. 

It uses on-board sensors and therefore is a local motion controller. In fact, sensors distributed in an environment 

provide an infrastructure to carry out both global path planning and local motion control, which can deal with dynamic 

changes in the environment and predict future uncertainties more effectively.  

The control technique proposed in this paper is a distributed solution for both path planning and motion 

control of a mobile robot possessing minimum on-board intelligence. Instead of relying on centralized control in the 

robot, the networked wireless visual sensors are deployed and used to perceive the environment. The perceived 

information is processed and fused through collaboration among the networked sensors to dynamically form an 

optimal and collision-free R-snake (Reference snake) serving as a reference path for the robot to track. An A-snake 

(Accompanied snake) algorithm is proposed as a feedback control mechanism to guide the mobile robot subject to 

constraints to follow the R-snake. A predictive control scheme is further proposed for the optimization of the A-snake 

tracking, considering dynamic constraints and future path shape on the way. The time optimal control is attempted in 

this paper; but the predictive control approach can be extended to other performance indices, such as energy 

optimization, smoothest driving etc. The novelty of this approach can be summarized as below 

1) The snake can be an efficient distributed implementation for robot navigation. Each resource-scarce 

wireless sensor is only in charge of a local area for local perception and path evolution to respond 

dynamic changes in the environment. 

2) The snake can be an efficient coordination mechanism to link local sensors together to form a global path 

in the environment, taking into account robot kinematic and dynamic constraints. Adjacent wireless 

sensors are cooperated together by the snake with less communication. 

3) Predictive control can be an effective method to overcome communication delay during robot real-time 

tracking. To overcome the slow communication rate when sending control commands from the wireless 

sensor network to the robot, the robot is driven to follow a predicted trajectory between any two 

communication frames. The predicted control is optimal based on the latest information received from the 

wireless network.   
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The rest of the paper is organized as follows. Section two presents the reference snake algorithm to form a 

collision-free path for a robot with a curvature constraint. The A-snake controller is discussed in section three 

followed by predictive control for A-snake tracking in section four. Simulation and experiment results and conclusions 

are given in section five and section six respectively. 

2. R-snake as a path planner  

When distributed visual sensors are deployed in an in-door environment along passages for robot navigation, 

every sensor observes a small area and can be linked via wireless communication to form a topological map for the 

navigation. It greatly confined the search space in individual sensors for path planning. For a given destination, a 

reference path, called reference snake(R-snake), is generated as a series of control points distributed in visual sensors 

or image planes to form a collision-free path to the destination. Bloom filter based routing [23] links sensors into a 

chain from robot current position to the destination.  

Wavefront expansion in a cell decomposition map and potential field in a continuous map are two typical 

methods used in autonomous robots [1]. The methods focus on collision free path finding. One of the basic yet 

important requirements of mobile robot path planning is to satisfy the mobile robot kinematic constraints during the 

planning phase [30]. Research efforts have been focused on satisfying the robot non-holonomic and curvature 

constraints. For example, Liang et al [31] presented a non-holonomic path planning method considering curvature 

constraint and length minimization for a car-like robot based on cubic spirals. Nelson [32] presented two types of 

continuous steering functions to generate continuous curvature curves: a) Cartesian quintics for lane changes and b) 

polar splines for symmetric turns of arbitrary-angle. Based on the latter, Ge et al[33] investigated the use of a polar 

polynomial curve to construct a path that changes continuously in curvature and satisfies the dynamic constraints. 

Recently, stochastic trajectory planning, such as CHOMP [3] and STOMP [4], were proposed as efficient algorithms 

for planning in a high-dimensional and complex space. CHOMP used gradient method to search for optimal solution 

considering the smoothness of a trajectory over a segment of the trajectory. It has been successfully applied in motion 

planning of high dimensional manipulation systems. STOMP algorithm is a very general planning algorithm and can 

take into account system dynamics and constraints. These algorithms are more suitable to planning in a complex 
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environment for a high degree of freedom (DOF) robot. They often need several hundred iterations to find a path, 

which hinders their applications in distributed sensors having limited computational and communicational capability. 

In fact, deploying sensors in an environment has greatly reduced the uncertainties and confined the search space for 

the planning. Computation for global optimization can be avoided. Sampling-based planning algorithms [34] are more 

appealing to real-time applications, using random sampling and graph growing. They can deal with various constraints 

and can be adopted as a global planner to generate initial R-snake if the environment has complex obstacles, although 

non-holonomic constraints of mobile robots have not been considered. Laumond et al [35] presented a planning 

algorithm for non-holonomic robots, which includes collision-free path generation without considering non-holonomic 

constraints, linking two configurations to transfer a robot to the path, and optimization to have near-minimal length. 

The approach was efficient because it separated constrained planning from collision-free path planning. However it 

used a centralized implementation to implement all the three steps and did not consider dynamic constraints for robot 

control. For distributed path planning using wireless sensors, especially in a dynamically changing environment, the 

lack of centralized information makes it much harder to plan a path to reach a global goal in real-time, which 

conforms to various constraints. This paper takes a similar approach to separate constrained planning from collision-

free path planning. The R-snake generates a collision-free path first and then an A-snake is generated to approach the 

R-snake with non-holonomic constraints. Dynamic constrained prediction control is further applied to control robot 

movement. The proposed snake approach is in fact a cooperation mechanism to support distributed planning and takes 

into account kinematic and dynamic constraints, including non-holonomic constraints.  

2.1. Snake model 

Let ip be a point representing Cartesian configuration ),( cp
i

cp
i yx  in space 2R , where Zi  and Z  is the set 

of integers. For a positive integer n,  nppp ,...,, 10  denotes a sequence of configurations in space 2R . A snake is 

created by connecting adjacent coordinates sequentially. Each ip  is a control point, which can be moved by exerted 

internal and external forces from obstacles and other control points. An obstacle iq  is defined as a circle with a radius 

od , centred at ),( o
i

o
i yx . The total number of obstacles in a physical space covered by a vision sensor node is m. Then 
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the objective of the snake algorithm is to adjust the n control points  nppp ,...,, 10  dynamically for keeping the robot 

with a safe distance from m obstacles mqq ,...,1 , satisfying a given curvature constraint and maintaining the shortest 

path length from its start point to the goal point via intermediate control points. 

Define internal and external energy functions in space 2R  as the energy caused by attractive actions from 

adjacent control points and repulsive actions from obstacles respectively; the total energy, snakeE , of a snake can be 

expressed as , 

externalinternalsnake EEE   (1)

where the internal energy, internalE ==Eelastic+Ecurvature, is concerned with the intrinsic actions of the snake, such as its 

shape and length, while the external energy, externalE =Eobstacle, is concerned with the effect from the environment, such 

as obstacles. 

The first term in the internal energy is defined as elastic energy. The associated elastic force attracts control 

points each other in order to minimize the energy. This force causes contraction of the snake to reduce the length. The 

elastic energy is expressed as 
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1

2

1 )(
n

i
iiiieelastic ppppkE

 

 
(2)

To impose the curvature constraint on snake control point i, its preceding node and succeeding node exert 

pulling forces, 1it  and 1it , on it to reduce the bending of two line segments. When the bending angle, i.e. the 

curvature, is small,   , the forces are defined to be zero. Thus the corresponding bending energy can be 

defined as below with angle   in the interval ],(  : 

2( ) ,| |

0,
c

curvature

k
E

others

      
 
  

(3)

where R  represents the maximum angle to have zero potential; kc is a positive coefficient.  

The external energy is proportional to the distance between obstacles and the control points. When the 
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distance is more than a barrier d0, the energy reduces to zero. The repulsive external energy is defined as, 
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dddqpk
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(4)

where m is the number of obstacles. 

To minimize the energy of a snake, ip needs to move along the negative energy gradient direction. The total 

force, snakeF , exerted on it, in terms of internalE  and externalE  can be expressed as:  

)()( int
external

ext
internal

externalinternalsnake

EE

FFF

 


 

where, int  and ext  are positive gains to represent the force strength;   is the gradient operator.  

Let of  be the obstacle force, ef  be the elastic force and curvaturef  be the curvature constraints force. We 

have the total resultant force:  

curvature
i

e
i

o
i

snake
i fffF   (5)

The detailed obstacle, elastic and curvature forces can be found in [36].  

2.2. Three States of a Snake 

In a distributed environment, a snake is segmented into small portions among wireless visual sensors and 

deformed by exerted local forces. Although dedicated curvature forces are designed to reduce its bending, the 

curvature constrains of a robot can be violated if segments of the snake in different sensors are not coordinated 

properly. In comparison with the global coordination in the centralized snakes [25, 29], a distributed coordination 

mechanism is essential for the applications in wireless sensor networks.  The mechanism can be referred to the 

vertebras of a snake. Different from a rubber band, a snake body can become rigid when it bends to a certain limit. 

Further bending will cause the vertebra to break. Hence, three states are defined for a distributed snake: 

Flexible state: in which a control point can be moved freely by the forces in (5), from the obstacles and the 
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neighbouring nodes. This state happens when the curvature of a control point is less than the maximum allowed 

curvature threshold or the resultant force is trying to reduce the curvature. 

Rigid state: in which a control point and its neighbours move as a rigid body under the forces from 

surrounding obstacles and the neighbouring nodes. The relative positions between control points of a rigid body 

remain unchanged during its moving in order not to violate the curvature constraint. 

Broken state: in which a snake segment in the rigid state is broken under a big force from obstacles due, for 

example, a moving obstacle has pushed away the snake as a whole too much from its initial path or the curvature 

constraint has to be completely violated for the robot to traverse. After the segment is broken, the snake will be 

recovered by searching an alternative safe path in the local area. It is concerned with both global path cost and local 

curvature constraint.   

In order to coordinate distributed control points for state transition, every control point is encapsulated into a 

software component which can exchange information with other control points through communication. Intuitively, 

the interactions between neighbouring segments of a nature snake body through the inner force determined by their 

relative positions. This is the case under the flexible state, control points are adjusted freely without violating any 

constraints by exchanging coordinates or inner forces with other control points. However, more data exchanges are 

required when the control points are under the rigid state. Because these control points are linked rigidly, their motions 

have to be synchronized and as a result signals need to be passed to all connected control points which are in the rigid 

state. The information exchange flow between control points ip  is shown in Fig. 1.  

 

Fig. 1. Information exchange flow between control points 
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Let ),( 11  ii yx , ),( ii yx  and ),( 11  ii yx be the coordinates of control points 1ip  ip  and 1ip  respectively. 

From the definition of the energy and force functions in section 0, the coordinates are the information required by 

control point ip  from 1ip  and 1ip  when it is in the flexible state. If only elastic force exists, the snake will shrink 

to its minimum length. If external obstacle forces exist, the snake will avoid obstacles and evolve to equilibrium 

according to the exerted forces. If there is an intruder detected by a wireless sensor, the snake will dynamically deform 

in such a way that each control point will exert a force to its neighbours until the force flow pass through all nodes, to 

reach equilibrium again. 

Points 1ip , ip  and 1ip  in the rigid state implies that these three control points have reached or exceeded 

the curvature constraint. They will behave collectively as a single rigid body with unchanged relative positions. Points 

2ip  and 2ip  will also be part of this rigid body in order to maintain the curvature constraints for 1ip  and 1ip . For 

a rigid body, applied forces can be equivalent to a single resultant force and a resultant moment at a point. Thus each 

control point ip  in the rigid body will add up coordinates and force/moment received from its preceding node 1ip  to 

have ),( c
i

c
i yx  and ),( c

i
c

i Mf , and then pass them to its succeeding node 1ip . When the last node in the rigid body 

is reached, it will pass back the final centroid coordinates ),( backback yx and the resultant forces and moment 

),( backback Mf  to the preceding nodes in order to generate movements for all control points as a whole rigid body.  

A state machine is developed to manage the state transition, as shown in Fig. 2.  

 

0,,0||||  curvature
i

r
i

curvature
i ffandf



0,,0  curvature
i

r
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curvature
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i

r
i

curvature
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Fig.2. State machine for state transition 
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Flexible state to rigid state: 

The curvature force is designed to resist bending. If a control point moves within a limited range, as defined in 

Equation (3), the curvature force is 0. If the curvature force curvature
if


 becomes nonzero and the resultant force vector 

r
if


  of ip  is in the opposite direction of the curvature vector, i.e. to bend more, this control point will change from its 

current flexible state to the rigid state.  The transition condition can be expressed as, 

0,,0||||  curvature
i

r
i

curvature
i ffandf



 
(6)

Rigid state to flexible state 

If the curvature force curvature
if


 is zero or the resultant force vector r
if


 of the control point ip  is in the same 

direction of the curvature vector, the control point will be in the flexible state with the following transition condition, 

0,,0||||  curvature
i

r
i

curvature
i fforf



 
(7)

Flexible state to broken state 

Regardless of the reason, if the distance between an obstacle and the control point is less than the sum of the 

control point’s radius and the obstacle’s radius, the control point is at the risk of colliding with the obstacle. The snake 

path should enter into the broken state to search a new path. The precondition for this change is as follow, 

max
1|||| ff o

i  


 
(8)

where 1  is a threshold constant and )( 32
max   ocp ddf ; 2  and 3  are positive constants; cpd  is the radius 

of the control point and od is the radius of an obstacle. 

Rigid state to broken state 

In the rigid state, the resultant force exerted on an individual control point is synchronized to 

)( back
i

backback ppMf  , where backp  is the centroid of the rigid body. Thus the internal force of ip  , including 

the elastic force and the curvature force, can be calculated as, 
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o
i

back
i

backback
i

internal
i fppMff  ))((  (9)

When the total internal force increases to or above a threshold, due to a very long path or an excessive 

bending, the control point will enter into the broken state for searching an alternative path:  

max
4|||| ff internal

i  


 (10)

where 4  is a positive constant.       

Broken state to flexible state 

In the broken state, the whole snake should be re-initiated by a global path search algorithm. In our WiME 

system, Dijkstra search [37] is performed in the visual node on its image plane where the snake is broken to regenerate 

an R-snake from robot current position leading to the destination. The sampling-based algorithm [34] can be an 

alternative approach to improve the initialization efficiency, if each visual sensor has to control a large area and the 

environment is complex. If the re-initiation is successful, a new path is obtained and all control points will return to 

the flexible state. Otherwise another attempt to re-initiate a new path will be made. There is no direct state transfer 

from the broken state to the rigid state because a re-initiated snake is always in its flexible state.  

The existence of the broken state allows a new snake to be searched if the current snake has evolved to be too 

poor in terms of path length or bending. It avoids the problem of the conventional snake approaches that the global 

cost could be very high because of the continuity of a snake with only local gradient search. 

3. A-snake as a tracker 

In order to follow the R-snake, distributed visual sensors need to perceive robot’s position and heading 

direction and guide the robot to correct any tracking error subject to various constraints, such as non-holonomic 

constraint, limited driving force and steering torque. The control of a non-holonomic system has been a challenge to 

control system design, where the system suffers a constraint on its instant velocity, such as the restriction on the lateral 

velocity of a moving wheel [35]. It was proven that point stabilization cannot be achieved with a smooth and time-

invariant state-feedback control law [38]. Therefore time-varying control laws [39, 40] and discontinuous feedback 
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laws [41-43] were developed. The difficulty can be alleviated by generating a reference path for robot to track [44, 

45], where both kinematic and dynamic constraints can be taken into account during the reference path planning. The 

current research usually considers a pre-determined path, although dynamic modification of the path can be carried 

out to deal with a dynamic environment [46]. However in a distributed sensor environment, the local views of 

individual sensors and the asynchrony among them make a sensor node difficult to have steady information about the 

whole R-snake. A local path growing mechanism, i.e. the A-snake, is proposed to track the R-snake, using less 

information from other sensors and satisfying kinematic and dynamic constraints during the course. For each sampled 

image, an A-snake will grow from the current sensor node observing the robot along the R-snake with robot’s 

maximum driving power.   

3.1. Desired direction to approach the R-snake  

Define a coordinate system as shown in Fig. 3. The doted circles represent the R-snake control points to be 

tracked by the robot. d  is a desired direction which the robot should follow for reducing any deviation from the R-

snake;   is the robot’s current direction; i


and j


 are the unit tangential vector and normal vector of the robot; 0i


is 

the tangential direction on the nearest reference control point; r


 is the robot’s location vector, 0r


 is the vector of the 

nearest control point on the R-snake; e  is the direction error between the desired direction and the robot’s current 

direction;  is a proportional gain for the deviation control. An A-snake is a local path from the robot current position 

and direction converging to the R-snake, subject to robot’s dynamic and kinematic constraints.  
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Fig. 3. Coordinates definitions 

To determine a proper desired direction d  which can lead a robot to track the R-snake, assume the position 

error vector between the robot current position and the R-snake to be, 

rrre

  0  
(11)

Construct a Lyapunov function V such that 

0 e
T

e rrV


 
(12)

The derivative of the above function with respect to the arc length s  can be obtained as, 
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(13)

Substitute (11) into (13), one can get, 

)(2

)(2

0

0

iir

s

r

s

r
r

s

V

T
e

T
e


















 

If the robot’s direction can be controlled according to, 
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then, 

02 1 



e
T

e rr
s

V  
 

(15)

According to Lyapunov theorem and from (12) and (15), one can draw the conclusion that if the robot’s 

heading toward direction of (14), i.e. id


 , the position error between the robot and the R-snake will be reduced 

to zero asymptotically.  

3.2. Dynamic model and the constraint to the A-snake 

However, due to the limited steering torque and non-holonomic constraint of a wheeled robot, the robot 

cannot change its heading direction instantly. An A-snake is introduced as a guide path for the robot to approach the 

desired direction d  defined by the vector i


in (14). The motion of a wheeled robot can be modelled as, 
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where ( , )Tr x y


 is the robot position vector; i


 is the unit vector of its tangential direction; v  is the robot 

velocity;   is the robot angular velocity, k  is the trajectory curvature.  

After differentiating the above equation, the acceleration and the angular acceleration of the robot are given as 

below, 
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where j


 is the unit normal vector of the robot. 

According to Newton’s law, the dynamic equation of a wheeled robot can be obtained as, 



 

18 
 



















)()(

                             

                                       

2

2

s

k
vkvJkvkvJ

kMvMvf

vMF
friction

d







  (18)

where Fd is the driving force of the robot and τ is the steering torque;  frictionf  is the lateral friction on the wheels; s  

is the arc length along the snake, M  and J  are the mass and the inertia of the robot. 

From (18), one can see that if τ  is bounded, there is a trade-off between the driving velocity v  and the 

derivative of curvature
s

k




. If 
s

k




 is very large, the driving speed has to be very low. This is equivalent to the 

situation that a robot can make a sharp turn only if it is very slow. For a smooth and fast driving, considering a 

saturated torque max , a limitation on 
s

k




 is imposed as the following,  

b
s

k





 

(19)

where b is a positive constant.  

3.3. A-snake generation 

A nonlinear control algorithm as shown in Fig. 4 is designed to generate the heading direction   to follow the 

desired d  for a robot with a limited steering torque. If let 
s

k
u




 , the generated direction   can always satisfy 

constraint (19) because bu || . 

 

Fig. 4. Heading direction generation of an A-snake 
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Theorem 1: Let L  be a constant coefficient factor,  RL , e be the orientation error between d  and the robot 

direction , b  be the maximum curvature derivative a robot can follow. If the given desired direction d  is constant, 

then e and 
s

e




 converge to 0 with oscillation by the control scheme defined in Fig.4. 

Proof: The orientation error between d  and the robot direction   is defined as  

  de
 

(20)

If d  is constant, then  
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From Fig. 4, let 
 

e
s

e
LQ 





 

(22)

Then we can generate the curvature derivative u  for the robot to track as 

 Qsignbu
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 (23)

where, 
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so that constraint (19)  is satisfied.  

Considering the 2nd order system (21), the phase plane trajectory can be derived as, 



 u

de

d
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where 
s

e




 .  

Rewrite the above equation gives 

uded   

Integrate it to obtain,  

 Ceu 2
2
1 

 

where C is a constant. The trajectories in the phase plane e-   shown in Fig. 5 are parabolas intersected with the 

switch line Q , and the direction of the trajectory is clockwise. If 0L , then e  and
s

e




  converge to 0. 

 

Fig. 5. Phase track of e and   

Theorem 1 provides a mechanism to generate robot heading direction to follow the desired d  under 

constraint (19). However, the result is for a constant d  which is not the case in general. The following theorem states 

that the convergence can still be guaranteed if the change of d   is limited in a range. 
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Theorem 2: If a change of direction d  satisfies the condition of    bL
s

e

s
L d 








2

2
, sliding mode happens 

on the switch line Q so that e  and
s

e




 converge to 0 along the sliding plane by the control scheme in Fig.4. 

Proof: Let (22) be the sliding plane of sliding model control[47]  

The sliding mode condition can be verified as 
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From (20) and (23), one has,
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If  bL
s

e

s
L d 








2

2
,   one can get 0





s

Q
Q  

The sliding mode happens with a sliding plane 0Q , which leads e and 
s

e




 converge to 0.  

Therefore the proposed control scheme in Fig. 4 can be a tracker of d  for a robot to track the R-snake. The 

generated heading direction   can always satisfy the constrained derivative of curvature. However in a wireless visual 

sensor, the sampling rate could be low due to limited computational capacity and ad hoc communication. The robot 

has to carry out an inner model[48] based tracking if the new sensing information is not available. The internal 
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simulation is conducted to generate an A-snake in order to track the stored R-snake: 

1) capture an image and extract the robot’s current position )0( and )0( ir


from the image;  

2) determine robot’s deviation er


from the nearest control point on the R-snake and the corresponding direction 0i


 of 

the R-snake. The desired d  is obtained by (14) for R-snake tracking;  

3) feed the d  into the controller in Fig. 4 to generate the heading direction   and the associated k for the robot to 

track; 

4) using the robot kinematics in (16)  with sv   to grow the A-snake: 
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Robot new position can be calculated with a step Δ:

 

dsisrsr
s

s
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; 

5) Go to step 2) to grow the A-snake for n steps  )(,),0( nrr





, as shown in Fig. 6; 

When the next image is sampled, a new A-snake will be generated from 1) to 5) again. This process is 

repeated and can be extended to the successive sensor nodes if needed. Therefore, the A-snake can be considered as an 

inner controller for the R-snake tracking to cope with a slow sampling rate of wireless sensor networks, satisfying the 

non-holonomic constraint of a wheeled robot with a bounded steering torque.  

4. Predictive control for optimal A-snake tracking 

The A-snake provides a constraint compliant path for a robot to track. The path needs to be provided with 

explicit time scale, i.e. temporal planning[46], subject to various robot dynamic constraints. The forward velocity 

provides an additional degree of freedom for possible optimization of the tracking. However, for conventional 

autonomous robots, the tracking speed has to compromise with safety due to the limitedly local view of on-board 

sensors. Optimal tracking is not easy to be practically implemented. In our system, the sensors are pervasive in the 
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environment. The far-sight provided by a distributed sensor network opens up the opportunity for the optimal control 

of vehicles. A vehicle can respond to a change on its way in advance and be driven with optimal time or energy in a 

dynamic environment. A predictive control approach is developed in this section to achieve time-optimal tracking, 

taking into account the geometric features of the future path to be tracked, subject to various dynamic constraints. 

Predictive Control is a technique to achieve optimal control by predicting future system behaviours[49]. One 

advantage of model predictive control is its ability to handle constraints[50]. For an autonomous vehicle, predictive 

capability is essential and therefore model based predictive control was applied to achieve optimal path tracking 

subject to vehicle constraints[51-53], where the approach of model predictive control is applied to a linearized robot 

model for optimization of a quadratic objective function. For an uncertain and dynamic environment, predictive 

capability is more important for a mobile robot. A rolling optimization algorithm was thus proposed in [54]. In our 

project, a dynamic environment is observed by a group of visual sensors, which can have a slow feedback rate. Thanks 

to the open-loop optimization of predictive control, we can carry on tracking if new update is not available. A rolling 

window optimization is proposed in this paper for application to sensor network controlled robot with dynamic 

constraints.   

Define a rolling window with length l  along the A-snake as shown in Fig.6, which could be distributed in 

several wireless sensors and evolved asynchronously. In every sampling period, the optimal driving force and steering 

torque are calculated in the window. The l -window will roll forward one step for the next sampled image. Working in 

this way repeatedly, a vehicle can react to possible risks on its way in advance and use its driving capacity sufficiently.  

r


j


i
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Fig.6. Robot, A-snake and rolling window 

In a rolling window l , the time-optimal control for a wheeled robot (18) can be formulated as: 
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with boundary conditions: 0)(,)0( 0  lvvv r ; subject to 
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where A is the A-snake; )(sv  is the velocity profile of the robot along the A-snake; 0rv is the sampled velocity of the 

robot; frictionf  is the friction of tires with coefficient   and normal force N ; dF  and   are the driving force and 

steering torque of the robot with the upper bounds of dFmax and max ,  respectively. The objective function in (27) for 

predictive control is to minimize the robot’s travelling time Γ  along the snake from its current location to the end of 

the l -window. Equation 0)( lv  implies that the robot needs to have the capability to stop at the end of the rolling 

window, in order to respond to the worst possible circumstance which is not observable through the current rolling 

window. Other performance indices can be applied for the optimization in the rolling window, for example equation 

  
l

As
FF

dsFLΓ
dd 0,,

),(min)(min 


 for a minimum-energy problem, where  ,FL  is the 

battery consumption function of the robot. A numerical algorithm is developed for efficiently solving the time-optimal 

problem in this paper. 

In order to optimize (27), the area under the velocity profile )(sv  needs to be maximized, subject to robot 

dynamics (18) and constraints (28), which include non slippage, bounded driving force and bounded steering torque. 

A numerical solution is developed for the optimization, which is achieved by finding the maximum uniform velocity 

in the l-window first and then accelerating/decelerating with the highest driving power to approach the maximum 

velocity.  
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1) The maximum uniform velocity 

From the dynamic model in (18), the maximum speed v of a robot is constrained by the limited 

friction max)( Nf friction  : 

||||

)( maxmax2
max k

g

kM

N
v f


  (29)

and the bounded steering torque max  : 

skJ
v
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where maxv  is the maximum uniform velocity with 0v  substituted into (18). This is the maximum reachable 

velocity for a robot to travel without any cost on acceleration or deceleration.  

Thus the maximum uniform velocity can be obtained as, 

 maxmaxmax ,min fvvv   (31)

In order to optimize the two-boundary value problem in (27), the optimal v(s) in the l-window is calculated by 

squeezing the velocity profile from the two boundaries using the maximum acceleration/deceleration, so that the area 

under v(s) can be maximized, as shown in Fig. 7.  

2) The maximum acceleration  

From the dynamic model in (18), the maximum positive acceleration can be obtained with the force and 

torque constraints. 
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If maxvv  , then 0max a , this implies that a positive acceleration exists. Therefore, the acceleration 
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process has to be bounded by maxv  in (31). We have 

),min( maxmaxmax   aaa F  (33)

3) The maximum deceleration 

Similarly, the maximum negative deceleration can be obtained as 
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A negative deceleration exists if the velocity is bounded by maxv . 

The squeezing optimization is numerically implemented by segmented uniform acceleration/deceleration from 

the two boundary velocities with an incremental step  : 

For the acceleration at s , forward planning is carried out 

   max
22 2)()( svsv  (35)

For the deceleration at s , backward planning is carried out 

   max
22 2)()( svsv  (36)

During the squeezing process, it is needed to ensure that )(  sv and )(  sv in (35) and (36) do not exceed 

maxv  for the segment in between. If this happens at any point #s , the velocity profile for the segment from )(  sv  

to )()( #max# svsv   has to be calculated first. The process continues until the acceleration segment and the 

deceleration segment encounter. The whole velocity profile can be obtained by repeating this squeezing process for 

the remaining segments. Working in this way, the area of )(sv  is maximized and therefore the travelling time is 

minimized. The generated velocity profile tells the robot when to accelerate or decelerate in advance in order to safely 

track the dynamic snake in the predictive l-window. The algorithm can be summarized as below and is shown in 
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Fig.7:  

1) according to the current A-snake, obtain the maximum uniform velocities maxv  from (31) in rolling window l ; 

2) initialize the squeezing process with the boundary conditions: initial state 0)0(,0 rvvs    and terminal state 

0)(,   lvls ; 

3) forward/backward planning of v / v  in parallel. If   vv , increase v  by (35) and   ss . If   vv , 

increase v  by (36) and   ss ;  

4) if   ss and v(s)<vmax(s) for any ],[  sss , go to 3) 

5) if max# )( vsv   at #s  between  ss ~ , create two new segments,  #~ ss and ss ~#  and go to 3) for their 

planning; 

6) if s s   but there are any unplanned segment, go to 3) for their planning;  

7) the full velocity profile v(s), ],0[ ls , is sent to the robot for its control at time t : 
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8) shift the rolling window one step forward; 

9) for every servo period Γ , )( nΓtF d   and )( nΓt   will be continuously generated by the robot from the 

obtained velocity profile v(s), until a new v(s) is received from a vision sensor; 

10) for every image sampling period, the visual sensor will update the A-snake and go to 1). 
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Fig.7. Rolling window optimization for trajectory generation (assume 00 rv ) 

The rolling window optimization utilizes information of the A-snake l-distance in advance to achieve time-

optimal tracking. The open-loop format of the predictive control also alleviates the difficulty of control latency, which 

is common in wireless sensor based applications due to their ad-hoc communication and limited on-board capacity.     

5. Simulation and experiment results 

5.1. Overview of the experiment components and functional modules  

Two key components were implemented in the mosaic eyes supported robot navigation experiment system as 

shown in Fig.8: networked visual sensors and the mobile robot. There are two processing loops in each visual 

sensor: the SENSE loop is dedicated for image processing to capture the foreground images, to detect intrusion by 

comparing the foreground images with background one and to fulfil the robot localization; the PLAN&ACT loop 

utilizes the intrusion and robot localization data shared by the SENSE loop and snake segments information 

exchanged with neighbouring visual sensors to deform the R-snake in real time to maintain a collision free reference 

snake to destination. Taking input from the R-snake adjustment module and determined by whether the robot is in its 

coverage area, the A-snake trajectory generation and predictive control algorithms will selectively run. Only when a 

robot is observed by a visual sensor, the visual sensor plans a series of motion commands; and only when the robot is 

under the control of a visual sensor, the visual sensor sends the motion control command series to the robot wirelessly. 

The mobile robot is responsible for receiving motion control commands from the visual sensors and executing the 
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commands to drive and steer according to the commands.  

 

Fig.8. Experiment system components and functional modules 

5.2. Control scheme simulations 

In order to verify the effectiveness of the proposed snake based predictive control, simulations have been 

carried out, in response to dynamic obstacles in the environment. Fig.9 shows a result for a 0.56(kg) robot with the 

constraints of limited curvature derivative 2|| u , the friction coefficient μmax=0.6, Fmax=4.4(N), τmax=2.0(N.m), and 

the maximum speed 1.5 (m/s). 

The environment is monitored by a mosaic of visual sensors. Through internal force communication among 

the sensors, an R-snake forms a safe path to a destination.  When an obstacle is detected by a visual sensor (shown in 

Fig.9(a)) on the way, the R-snake starts to bend for the avoidance. A rolling window (l=50) is opened for the 

predictive control. First, the A-snake is generated to guide the robot’s tracking with the constrained curvature 

derivative 2|| u , as shown in Fig.9(a). The velocity profile is then optimized with μmax , Fmax and τmax. The solid line 

in Fig.9(b) shows the maximum uniform velocity of (31) for the A-snake path. Because of the position error between 

the robot and the R-snake, the A-snake tries to approach the R-snake with the maximum curvature derivative at the 

beginning. Due to this high curvature derivative, the maximum velocity in part A is reduced to 0.9m/s, although the 
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highest speed of the robot is 1.5m/s. Near the obstacle area, part B of Fig.9(b), the higher curvature limits the 

maximum speed to avoid wheel slippage. The rolling window based prediction thus allows the robot to take actions in 

advance to avoid the obstacle. After the obstacle area has been passed in part C of Fig. 9(b), the A-snake converges to 

the R-snake. The smoother path makes the maximum velocity go up to 1.5m/s. 

From 8(b), one can see the planned velocity has a similar trend as the maximum velocity, with a zero initial 

speed for the robot. At the end of the rolling window, the robot is supposed to be stoppable to cope with the worst 

situation unseen through the rolling window. From the planned acceleration, one can see that the generated 

acceleration is always within the limitation of 0.2 2/ sm . 

Robot
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(a) Deformable snake with A-snake     (b) Maximum velocity, planned velocity and acceleration 

 

(c) Planned curvature derivative, curvature and orientation 
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Fig. 9. Trajectory of A-snake 

Fig.9(c) shows the planned curvature derivative, curvature and robot heading orientation. The curvature 

derivative is kept in the range; it switches between -2 and 2 because the bang-bang controller in Fig.4 to correct any 

directional error. 

5.3. Experiments of robot navigation by wireless visual sensors  

Trajectory tracking of a model-car under control of the WiME network is experimented. Four wireless visual sensors 

mounted on ceiling are used to form a closed and continuously running circle so that each sensor has a neighboring 

sensor on each side, one on the left and another on the right as shown in Fig. 10. The visual sensor is developed based 

on iMote2 microcontroller board [55] where all path planning and trajectory generation are implemented and all 

computation tasks are performed. Each visual sensor has a 100MHz PXA271 XScale Processor, 256kB SRAM, 32MB 

Flash and 32MB SDRAM on-board, It also equipped with OV7620 vision sensor module [56] which has a maximum 

resolution of 640x480 and 30 frames per second capturing capability. With cc2420 transceiver it is IEEE 802.15.4 

communication enabled.  

 

Fig.10. WiME intelligent environment 

An independent remote control console is set up to communicate with the visual sensors for navigation 

request and working status monitoring. The model-car (mobile robot) is controlled by a Motorola MC9S12DT128B 

CPU which is used to execute the received commands from the wireless sensors and control the actuator. The control 
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console and the model-car are IEEE 802.15.4 communication enabled too. A communication protocol is developed for 

R-snake evolving, A-snake generation and predictive control between wireless sensors and a robot. The model-car is 

colour-marked for facilitating image based measurement of robot’s position and orientation.  

 

Fig.11. The real time experiments of robot control by a visual sensor network 

Fig.11 shows the experiments of the proposed planning and control scheme. Each figure displays four images 

captured by the four sensors, with their identities to be 30, 40, 50 and 60 from top-right one to count anti-clockwise. In 

Fig.11(a), the robot is controlled by eye (30) heading to the control area of eye (60). The sparse white circles with 

numbers in the centre represent the R-snake that the robot should follow; the green circles are the generated A-snakes. 
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The white rectangle blobs represent dynamic obstacles. As one can see in Fig.11(a), the dynamic obstacles are within 

the views of eyes 30, 40 and 50 but out of the sight of eye 60. In Fig.11(b), an obstacle appears within the sight of eye 

(60). At this point, the robot is under the control of eye (30) but eye (30) is not aware of the existence of the new 

obstacle. With the information exchange between eye (60) and eye (30), the R-snake is updated to avoid the obstacle. 

In Fig.11(c), the robot control is handed over from eye (30) to eye (60). The figures show that, with the predictive path 

updated by eye (30) and with the control of eye (60), the robot has successfully avoided the obstacle (Fig.11 (d)) and 

continued to move along the updated R-snake. 

 

Fig. 12. Robot control and velocity (driving force Fd: dot; steering torque : dashed; velocity v: solid) 

The corresponding control and driving velocity are shown in Fig.12. It shows that the driving force and the 

steering torque are both kept within the allowable ranges. The sign changes in the steering torque indicate the 

feedback regulation of the predictive control in order to track the snake, although the predictive optimization is carried 

out in an open-loop manner for each single prediction in the l-window. The robot speed was 0.76(m/s) when data 

collection started as shown in Fig.11(a). Since there were no dynamic obstacles in the view of eye (60), the path was 

stabilized at a straight line to minimize the distance. When the obstacle was detected by eye (60), it propagated this 

information by deform the path in eye (60) and then further to the path in eye (30) as shown in Fig.11(b). As far as the 

robot was concerned, it can maintain a high speed to go through the overlapped area of eye (30) and eye (60). The 
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robot decelerated when it approached the obstacle in order to avoid slippage (Fig.11(c)) and resumed a high speed 

again after passing the obstacle (Fig.11(d)). 

The average CPU processing times for the software modules in individual visual sensor are listed in Table 1. 

The appearance of the robot does not increase the processing time for image processing modules in SENSE loop whist 

A-snake trajectory generation and predictive control modules has a significant increments of the processing time. 

As seen from Table 1, a complete cycle when the robot is in the coverage area of a visual sensor (with robot in 

view) takes about 380ms CPU processing time of the iMote2 PXA271 XScale Processor. The total time of a cycle 

when the robot is out of the visual sensor’s coverage (without robot in view) is around 260ms without robot in view. 

Given the maximum speed 1m/s of the model car and set the granularity of each step as 40ms, one can obtain 0.04m 

maximum travel distance by the robot in each step. The processing time was calculated based on a 15 predicted step 

series of motion command planned in one cycle. These 15 steps will last about 0.6 seconds which is about one and 

half the image processing time and ensures a smooth motion of the robot. Since the PLAN&ACT is a separate 

processing loop from the SENSE one, and the total processing time of PLAN&ACT loop is less than 120 ms in one 

cycle, Kalman filter algorithm has been implemented to fuse the captured visions with predicted to complement the 

slow image processing process.  

Table 1 Module processing time in visual sensor 

Processing module Without robot in view(ms) With robot in view(ms) 
Image sampling 89.203 89.469 
Intrusion detection 146.323 192.927 
Robot localization 2.454 2.235 
R-snake adjustment(communication time excluded)  10.220 12.990 
A-snake trajectory generation 1.797 56.080 
Predictive control 1.800 26.111 
Communications 
(sending motion commands to robot and exchanging 
information with neighbouring visual sensors) 

3.803 18.411 

This experiment confirms the effectiveness and capability of the snake algorithm to be implemented on 

distributed resource-scarce wireless visual sensors to coordinate and achieve a successful global navigation of a low 

intelligent robot. In addition, the slow communication rate was overcome by sending a series of motion control 

commands based on a predicted trajectory.  
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Theoretically, there is no limit on the number of visual sensors in the system since one visual sensor only 

processes its own coverage area, communicates with its neighbour nodes and controls the robot in its local view. By 

increasing the number of the visual sensor, the total computing capability on the planning coordinated by the deployed 

snake algorithm could compete with any existing super computer for navigation in a large area.    

The algorithms presented in this paper were practically implemented with wireless visual sensors mounted on 

the ceiling for wheelchair navigation in a building. The only processor on-board the wheelchair was an 8-bit Atmega 

128L, which was used to link the visual sensor network wirelessly through the IEEE 802.15.4 protocol and to drive 

the two differential wheels of the wheelchair. Such a low-performance processor is not powerful enough to carry out 

global navigation. However, the snake distributed in visual sensor network can provide enough distributed intelligence 

to control the wheelchair. A demonstration video of wheelchair navigation in the building can be found in [13].  

5.4.  Complexity Comparison with Centralised Algorithms 

The snake based path planning scheme takes a different approach from the well-known centralised algorithms 

such as potential field path planning [57] or Laumond’s motion planner [35]. It is proposed for real-time navigation of 

a mobile robot using a wireless sensor network, rather than a centralised controller. Thanks to the communications 

between neighbouring nodes, a whole path managed by a sequence of sensors can become collision-free and satisfy 

robot constraints in response to dynamic obstacles, where each sensor only handles one segment of the whole path. 

Similar to the Laumond’s motion planner, the proposed scheme generates an R-snake to be collision-free from 

dynamic obstacles and further an A-snake to be non-holonomic. 

At first R-snake method is compared with the potential field method which is a typical method for avoiding 

dynamic obstacles with a set goal. Assume there are n sensors in an R-Snake and each sensor perceives m obstacles at 

most. Because the R-snake is evolved in n sensors simultaneously, the number of operations for the whole path is 

O(m). This is the complexity for the obstacles detection and the R-snake deformation. As a comparison with potential 

field method, the robot is exerted with repulsion forces from obstacles that are nm in total. Hence the figure for 

potential field method is O(mn), n times higher than the snake based approach, due to its centralised nature.  

In order to satisfy non-holonomic and curvature constraints, Laumond’s method subdivides the initial 
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collision-free path so that the two configurations of any subdivided path-segments are linked by the minimal-length 

feasible trajectories that must be collision-free and respect the constraints. Let   be the arc length of the initial path 

and s  be the smallest size of path division, the complexity of the algorithm to find a collision free minimal length 

curve could reach O( s/ +K) where K is the number of original subpaths. Therefore, it involves a whole path scan 

and is suitable for off-line planning in a known environment. The proposed A-snake algorithm is a feedback controller 

to track the R-snake and to satisfy non-holonomic and limited torque constraints. The implementation can be very 

efficient for real-time tracking as shown in Fig.4. If a single step is t  , generating n steps along the A-snake takes a 

fixed time of O(n t ) and uses only local information. Therefore, it is more suitable to distributed implementation.  

6. Conclusions 

This paper has proposed a distributed predictive control scheme for navigation of a robot with a low degree of 

intelligence, utilizing a wireless visual sensor network in an environment. The scheme is based on a reference snake 

and a control snake maintained in the wireless network, taking into account robot constraints and a dynamic 

environment. The reference snake has three-states in order to facilitate collaborated planning of a collision-free and 

constraint-compliant path by distributed sensors. A tracking controller is further developed, which consists of the 

control snake to correct tracking error and a predictive control mechanism to optimize tracking speed under dynamic 

and kinematic constraints of a wheeled robot. The proposed path planning and control are suitable for distributed 

implementation and can deal with communication latency of wireless sensor networks. Both simulation and 

experiment have been carried out to verify that the proposed method offers an effective distributed solution for 

integrating robot navigation, path planning, trajectory generation and motion control into a unified snake-based 

mechanism. While the current research seldom focuses on low-level motion control using pervasive intelligence in an 

environment, the results of this paper demonstrates that the distributed sensors are able to provide automatic 

navigation service, for example, greatly growing CCTV cameras can be used to enhance the mobility of vehicles with 

less on-board intelligence, such as indoor wheelchairs for aging and disabled people. In future, research on sampling 

based planning for initializing the reference snake will be carried out to improve efficiency of its initialization and 

recovering from a broken state, where two issues need to be addressed:  
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1) Communication protocol to support sampling across several wireless sensors and;  

2) Sampling-based planning for a robot with non-holonomic constraints. 
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