70 research outputs found

    Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

    Full text link
    In principle, reinforcement learning and policy search methods can enable robots to learn highly complex and general skills that may allow them to function amid the complexity and diversity of the real world. However, training a policy that generalizes well across a wide range of real-world conditions requires far greater quantity and diversity of experience than is practical to collect with a single robot. Fortunately, it is possible for multiple robots to share their experience with one another, and thereby, learn a policy collectively. In this work, we explore distributed and asynchronous policy learning as a means to achieve generalization and improved training times on challenging, real-world manipulation tasks. We propose a distributed and asynchronous version of Guided Policy Search and use it to demonstrate collective policy learning on a vision-based door opening task using four robots. We show that it achieves better generalization, utilization, and training times than the single robot alternative.Comment: Submitted to the IEEE International Conference on Robotics and Automation 201

    Multi-Task Domain Adaptation for Deep Learning of Instance Grasping from Simulation

    Full text link
    Learning-based approaches to robotic manipulation are limited by the scalability of data collection and accessibility of labels. In this paper, we present a multi-task domain adaptation framework for instance grasping in cluttered scenes by utilizing simulated robot experiments. Our neural network takes monocular RGB images and the instance segmentation mask of a specified target object as inputs, and predicts the probability of successfully grasping the specified object for each candidate motor command. The proposed transfer learning framework trains a model for instance grasping in simulation and uses a domain-adversarial loss to transfer the trained model to real robots using indiscriminate grasping data, which is available both in simulation and the real world. We evaluate our model in real-world robot experiments, comparing it with alternative model architectures as well as an indiscriminate grasping baseline.Comment: ICRA 201

    Quantile QT-Opt for Risk-Aware Vision-Based Robotic Grasping

    Full text link
    The distributional perspective on reinforcement learning (RL) has given rise to a series of successful Q-learning algorithms, resulting in state-of-the-art performance in arcade game environments. However, it has not yet been analyzed how these findings from a discrete setting translate to complex practical applications characterized by noisy, high dimensional and continuous state-action spaces. In this work, we propose Quantile QT-Opt (Q2-Opt), a distributional variant of the recently introduced distributed Q-learning algorithm for continuous domains, and examine its behaviour in a series of simulated and real vision-based robotic grasping tasks. The absence of an actor in Q2-Opt allows us to directly draw a parallel to the previous discrete experiments in the literature without the additional complexities induced by an actor-critic architecture. We demonstrate that Q2-Opt achieves a superior vision-based object grasping success rate, while also being more sample efficient. The distributional formulation also allows us to experiment with various risk distortion metrics that give us an indication of how robots can concretely manage risk in practice using a Deep RL control policy. As an additional contribution, we perform batch RL experiments in our virtual environment and compare them with the latest findings from discrete settings. Surprisingly, we find that the previous batch RL findings from the literature obtained on arcade game environments do not generalise to our setup.Comment: Camera-ready version for RSS 2020. Contains 8 pages, 7 figure

    Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping

    Full text link
    Instrumenting and collecting annotated visual grasping datasets to train modern machine learning algorithms can be extremely time-consuming and expensive. An appealing alternative is to use off-the-shelf simulators to render synthetic data for which ground-truth annotations are generated automatically. Unfortunately, models trained purely on simulated data often fail to generalize to the real world. We study how randomized simulated environments and domain adaptation methods can be extended to train a grasping system to grasp novel objects from raw monocular RGB images. We extensively evaluate our approaches with a total of more than 25,000 physical test grasps, studying a range of simulation conditions and domain adaptation methods, including a novel extension of pixel-level domain adaptation that we term the GraspGAN. We show that, by using synthetic data and domain adaptation, we are able to reduce the number of real-world samples needed to achieve a given level of performance by up to 50 times, using only randomly generated simulated objects. We also show that by using only unlabeled real-world data and our GraspGAN methodology, we obtain real-world grasping performance without any real-world labels that is similar to that achieved with 939,777 labeled real-world samples.Comment: 9 pages, 5 figures, 3 table

    Integrative disease classification based on cross-platform microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disease classification has been an important application of microarray technology. However, most microarray-based classifiers can only handle data generated within the same study, since microarray data generated by different laboratories or with different platforms can not be compared directly due to systematic variations. This issue has severely limited the practical use of microarray-based disease classification.</p> <p>Results</p> <p>In this study, we tested the feasibility of disease classification by integrating the large amount of heterogeneous microarray datasets from the public microarray repositories. Cross-platform data compatibility is created by deriving expression log-rank ratios within datasets. One may then compare vectors of log-rank ratios across datasets. In addition, we systematically map textual annotations of datasets to concepts in Unified Medical Language System (UMLS), permitting quantitative analysis of the phenotype "distance" between datasets and automated construction of disease classes. We design a new classification approach named ManiSVM, which integrates Manifold data transformation with SVM learning to exploit the data properties. Using the leave one dataset out cross validation, ManiSVM achieved the overall accuracy of 70.7% (68.6% precision and 76.9% recall) with many disease classes achieving the accuracy higher than 80%.</p> <p>Conclusion</p> <p>Our results not only demonstrated the feasibility of the integrated disease classification approach, but also showed that the classification accuracy increases with the number of homogenous training datasets. Thus, the power of the integrative approach will increase with the continuous accumulation of microarray data in public repositories. Our study shows that automated disease diagnosis can be an important and promising application of the enormous amount of costly to generate, yet freely available, public microarray data.</p

    OBO (ON BEHALF OF) MULTI FACTOR AUTHENTICATION

    Get PDF
    The present disclosure relates to an authentication method to enable a person to authenticate transaction on behalf of the cardholder. On behalf of (OBO) authentication allows the card holder to designate an authorized user to authenticate on behalf of them for multi factor authentication, login or any other operation. When the cardholder initiates the transaction, a request to authorize the transaction may be sent to the authorized user, and the authorize user may approve the transaction on behalf of the cardholder
    • …
    corecore