139,011 research outputs found

    A Virtual Environment for Remote Testing of Complex Systems

    Get PDF
    Complex systems, realized by integration of several components or subsystems, pose specific problems to simulation environments. It is, in fact, desirable to simulate the complex system altogether, and not component by component, since the operation of the single part depends on the surrounding system and an early verification can prevent damages and save time for modifications. The availability of detailed and validated models of the single parts is therefore critical. This task may be difficult to achieve. In fact, in industrial applications, where a system can be a mix of different devices produced by different manufacturers, the physical device may not be accessible to the modeler for proprietary or safety concerns. Starting from this point, the idea of creating a virtual environment able to test the real single component remotely, employing simulators with remote signal processing capability, has been considered. In this paper a methodology for remote model validation is presented. The effectiveness of the approach is experimentally verified locally and remotely. For the remote testing, in particular, the physical device under test is located at the Politecnico di Milano, Italy, and the Virtual Test Bed model is located at the University of South Carolina

    The augmented reality framework : an approach to the rapid creation of mixed reality environments and testing scenarios

    Get PDF
    Debugging errors during real-world testing of remote platforms can be time consuming and expensive when the remote environment is inaccessible and hazardous such as deep-sea. Pre-real world testing facilities, such as Hardware-In-the-Loop (HIL), are often not available due to the time and expense necessary to create them. Testing facilities tend to be monolithic in structure and thus inflexible making complete redesign necessary for slightly different uses. Redesign is simpler in the short term than creating the required architecture for a generic facility. This leads to expensive facilities, due to reinvention of the wheel, or worse, no testing facilities. Without adequate pre-real world testing, integration errors can go undetected until real world testing where they are more costly to diagnose and rectify, e.g. especially when developing Unmanned Underwater Vehicles (UUVs). This thesis introduces a novel framework, the Augmented Reality Framework (ARF), for rapid construction of virtual environments for Augmented Reality tasks such as Pure Simulation, HIL, Hybrid Simulation and real world testing. ARF’s architecture is based on JavaBeans and is therefore inherently generic, flexible and extendable. The aim is to increase the performance of constructing, reconfiguring and extending virtual environments, and consequently enable more mature and stable systems to be developed in less time due to previously undetectable faults being diagnosed earlier in the pre-real-world testing phase. This is only achievable if test harnesses can be created quickly and easily, which in turn allows the developer to visualise more system feedback making faults easier to spot. Early fault detection and less wasted real world testing leads to a more mature, stable and less expensive system. ARF provides guidance on how to connect and configure user made components, allowing for rapid prototyping and complex virtual environments to be created quickly and easily. In essence, ARF tries to provide intuitive construction guidance which is similar in nature to LEGOR pieces which can be so easily connected to form useful configurations. ARF is demonstrated through case studies which show the flexibility and applicability of ARF to testing techniques such as HIL for UUVs. In addition, an informal study was carried out to asses the performance increases attributable to ARF’s core concepts. In comparison to classical programming methods ARF’s average performance increase was close to 200%. The study showed that ARF was incredibly intuitive since the test subjects were novices in ARF but experts in programming. ARF provides key contributions in the field of HIL testing of remote systems by providing more accessible facilities that allow new or modified testing scenarios to be created where it might not have been feasible to do so before. In turn this leads to early detection of faults which in some cases would not have ever been detected before

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness ñ€“ Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    Virtualisation of the test environment for signalling

    Get PDF
    ERTMS is a well-known, well-performing technology applied all over the world but it still lacks flexibility when it comes to authorisation and certification procedures. The key of its success in the future lies as much in cost reduction as in simplification of placing in service procedures. This holds true for the implementation of a new subsystem and even more so for new software releases related to subsystems already in service. Currently the placing in service process of ETCS components and subsystems requires a large amount of tests due to the complexity of the signalling systems and the different engineering rules applied. The S2R Multi-Annual Action Plan states that the effort and time consumption of these onsite tests are at least 30% for any particular project. VITE research project (VIrtualisation of the Test Environment) aims at reducing these onsite tests to a minimum while ensuring that laboratory tests can serve as evidence for valid system behaviour and are accepted by all stakeholders involved in the placing in service process. This paper presents the first VITE results

    Experiences modelling and using object-oriented telecommunication service frameworks in SDL

    Get PDF
    This paper describes experiences in using SDL and its associated tools to create telecommunication services by producing and specialising object-oriented frameworks. The chosen approach recognises the need for the rapid creation of validated telecommunication services. It introduces two stages to service creation. Firstly a software expert produces a service framework, and secondly a telecommunications ‘business consultant' specialises the framework by means of graphical tools to rapidly produce services. Here the focus is given to the underlying technology required. In particular, the advantages and disadvantages of SDL and tools for this purpose are highlighted
    • 

    corecore