
Heriot-Watt University

The Augmented Reality Framework: An

Approach to the Rapid Creation of Mixed

Reality Environments and Testing

Scenarios

Benjamin Charles Davis

April 2, 2009

Submitted for the degree of

Doctor of Philosophy in Electrical Engineering

on completion of research in the

Oceans Systems Laboratory,

School of Engineering and Physical Sciences.

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Abstract

Debugging errors during real-world testing of remote platforms can be time consuming and expensive

when the remote environment is inaccessible and hazardous such as deep-sea. Pre-real world testing

facilities, such as Hardware-In-the-Loop (HIL), are often not available due to the time and expense

necessary to create them. Testing facilities tend to be monolithic in structure and thus inflexible

making complete redesign necessary for slightly different uses. Redesign is simpler in the short term

than creating the required architecture for a generic facility. This leads to expensive facilities, due

to reinvention of the wheel, or worse, no testing facilities. Without adequate pre-real world testing,

integration errors can go undetected until real world testing where they are more costly to diagnose

and rectify, e.g. especially when developing Unmanned Underwater Vehicles (UUVs).

This thesis introduces a novel framework, the Augmented Reality Framework (ARF), for rapid

construction of virtual environments for Augmented Reality tasks such as Pure Simulation, HIL,

Hybrid Simulation and real world testing. ARF’s architecture is based on JavaBeans and is therefore

inherently generic, flexible and extendable. The aim is to increase the performance of constructing,

reconfiguring and extending virtual environments, and consequently enable more mature and stable

systems to be developed in less time due to previously undetectable faults being diagnosed earlier in

the pre-real-world testing phase. This is only achievable if test harnesses can be created quickly and

easily, which in turn allows the developer to visualise more system feedback making faults easier to

spot. Early fault detection and less wasted real world testing leads to a more mature, stable and

less expensive system.

ARF provides guidance on how to connect and configure user made components, allowing for

rapid prototyping and complex virtual environments to be created quickly and easily. In essence,

ARF tries to provide intuitive construction guidance which is similar in nature to LEGO R© pieces

which can be so easily connected to form useful configurations.

ARF is demonstrated through case studies which show the flexibility and applicability of ARF to

testing techniques such as HIL for UUVs. In addition, an informal study was carried out to asses the

performance increases attributable to ARF’s core concepts. In comparison to classical programming

methods ARF’s average performance increase was close to 200%. The study showed that ARF was

incredibly intuitive since the test subjects were novices in ARF but experts in programming. ARF

provides key contributions in the field of HIL testing of remote systems by providing more accessible

facilities that allow new or modified testing scenarios to be created where it might not have been

feasible to do so before. In turn this leads to early detection of faults which in some cases would not

have ever been detected before.

Acknowlegdements

• Thanks to the EPSRC for funding this project.

• Thanks to David M. Lane and Yvan Petillot for providing supervision through-

out the duration of this project.

• Thanks to Jonathan Evans for unofficial help in the begginning and support in

pushing ARF into use.

• Many thanks to Chris Sotzing, Nick Johnson and Joel Cartwright for their

continual usage of ARF and providing constant feedback.

• Many thanks to William Davis for help in proof reading this thesis, and Samuel

Davis for providing wingman support at crucial times.

Publications

1. Davis, B.C.; Lane, D.M. (2008) Enhanced Testing of Autonomous Underwater

Vehicles using Augmented Reality and JavaBeans : Underwater Vehicles, In-Tech

Book, http://www.intechweb.org/books.php

2. Davis, B.C.; Patron, P.; Lane, D.M. (2007) An Augmented Reality Architecture

for the Creation of Hardware-in-the-Loop and Hybrid Simulation Test Scenarios

for Unmanned Underwater Vehicles : Oceans 2007

3. Davis, B.C.; Patron, P.; Arredondo, M.; Lane, D.M. (2007) Augmented Reality

and Data Fusion techniques for Enhanced Situational Awareness of the Under-

water Domain: OCEANS 2007 - Europe

Abbreviations

ALI - Abstraction Layer Interface

ARF - Augmented Reality Framework

AUV - Autonomous Underwater Vehicle

AR - Augmented Reality

AV - Augmented Virtuality

DIS - Distributed Interactive Simulation

DVE - Distributed Virtual Environment

DVL - Doppler Velocity Logger

GPS - Global Positioning System

GUI - Graphical User Interface

HMD - Head Mounted Display

HIL - Hardware-in-the-loop

HS - Hybrid Simulation

IDE - Integrated Development Environment

INS - Inertial Navigation System

JVM - Java Virtual Machine

JAR - Java Archive

OM - Online Monitoring

MHIL - Multiple Hardware-in-the-loop

OSL - Ocean Systems Laboratory

PS - Pure Simulation

ROV - Remotely Operated Vehicle

SIL - Software-in-the-loop

SLAM - Simultaneous Localisation and Mapping

UML - Unified Modelling Language

UUV - Unmanned Underwater Vehicle

VRML - Virtual Reality Modelling Language

VR - Virtual Reality

X3D - Extensible 3D

XML - Extensible Mark-up Language

XMSF - Extensible Modelling and Simulation Framework

XSLT - Extensible Stylesheet Language Transforms (XSL Transforms)

Contents

1 Introduction 14

1.1 Software Development . 15

1.2 Autonomous Underwater Vehicle Testing 16

1.3 Problem Statement . 17

1.4 The Solution . 17

1.4.1 Guided Construction by Analogy: LEGO R© 18

1.5 Key Contributions . 19

1.5.1 Key Applications . 20

1.6 Overview . 21

2 Literature Review 23

2.1 Augmented Reality . 23

2.1.1 Mixed Reality Continuum . 25

2.1.2 Synchronisation Issues . 25

2.1.2.1 Registration Problem 26

2.1.3 Applications of Augmented Reality 27

2.1.3.1 Augmented Scene Modelling 29

2.2 Autonomous Underwater Vehicles . 30

2.2.1 Autonomous Vehicle Architecture 32

2.2.2 AUV Catagories . 34

2.2.3 Communication Problems with AUVs 34

2.3 Hardware-in-the-loop and associated Testing Techniques 35

2.3.1 Considerations of Hardware-in-the-Loop Systems 37

2.3.1.1 Distributed Virtual Environments 37

1

2.3.1.2 Sensor Simulation 38

2.3.2 A Taxonomy of Working Modes 40

2.3.3 AR, Testing and UUVs . 43

2.3.3.1 HS and AR . 43

2.3.3.2 HIL and AV/AR . 44

2.3.4 Summary . 45

2.4 Other Potential Usages and Requirements 45

2.4.1 Applications of AUVs . 45

2.4.2 Testing and Visualisation of Cooperating Multi-Agent AUVs . 47

2.4.3 Mission Planning . 50

2.4.4 Computer Games and Mission Planning 50

2.4.5 3D Mission Planning . 52

2.4.5.1 AUV Workbench . 53

2.4.6 Remote Awareness . 55

2.5 Existing Simulation Testing Frameworks 57

2.6 Existing Augmented Reality Frameworks 59

2.7 Visual Programming . 61

2.8 Ocean Systems Laboratory Technologies 64

2.8.1 Underwater Vehicles . 64

2.8.1.1 Nessie and RAUVER 64

2.8.2 Implications for ARF . 66

2.9 Summary and Conclusion . 67

3 Functional Design 69

3.1 Functional Requirements . 69

3.1.1 Collated Requirements from Literature Review 69

3.1.2 Collated Goals . 71

3.1.3 Required Features . 71

3.2 Architecture Overview . 73

3.2.1 Component Interactions . 73

3.2.2 Interaction with the User Interface 76

3.3 Summary . 79

2

4 Implementation Design 80

4.1 Review of Required Technologies . 81

4.1.1 Why Java? . 81

4.1.2 Java3D . 82

4.1.3 JavaBeans . 83

4.1.4 BeanInfo Objects . 86

4.1.5 OceanSHELL: Distributed Communications Protocol 87

4.1.5.1 Abstraction Layer Interface (ALI) 88

4.1.6 Extensible Markup Language (XML) 89

4.2 Novel Concepts . 90

4.2.1 Testing the Concepts . 95

4.3 The Architecture . 96

4.3.1 ARF Components . 96

4.3.1.1 ARF 3D Components 97

4.3.1.2 Component Management 100

4.3.1.3 Component Communications 102

4.3.2 Architecture Structure . 103

4.3.2.1 Selecting a JavaBean and Creating the Property Sheet 104

4.3.2.2 Guided Construction for Connecting and Instantiating

JavaBeans . 106

4.4 Virtual World Design . 108

4.5 Summary . 110

5 Implementation Guide 112

5.1 A Guide to the ARF User Interface 113

5.1.1 The BeanBoard . 114

5.1.2 The Java3D SceneGraph . 116

5.1.2.1 SceneGraph View Modes 118

5.1.2.2 Live and Dead SceneGraphs 118

5.1.3 The PropertySheet . 119

5.1.4 Editing Event Listeners . 122

5.1.5 Guided Construction . 124

3

5.1.6 Loading and Saving a Project 126

5.1.7 Importing and Exporting SuperComponents 127

5.1.8 Virtual world control and navigation 131

5.2 Java3D Virtual World . 131

5.2.1 ARF Java3D Universe Structure 132

5.2.2 Java3D SceneGraph Modifications 133

5.2.2.1 Java3D Capability Restrictions 135

5.2.3 ARF Java3D Components . 135

5.2.3.1 Sensor Interaction with Virtual World 136

5.3 JavaBeans Backbone . 136

5.3.1 Creating JavaBeans . 137

5.3.2 BeanInfo Objects . 138

5.3.2.1 Creating a Manifest 139

5.3.3 Custom Instantiation of JavaBeans 139

5.3.4 Initializable Interface . 141

5.3.5 Importing JavaBeans using the JarRepository 142

5.3.6 ARF Interface Extensions . 143

5.3.6.1 Threads . 143

5.3.6.2 Initializable Interface 144

5.3.6.3 ARFBean . 145

5.3.6.4 Menu Interface . 146

5.3.7 Java Event Communications 147

5.3.8 OceanSHELL Communications 148

5.3.9 The Project class . 150

5.3.9.1 Loading and Saving the Project 152

5.3.10 BeanBoard and Scenegraph facilities 153

5.3.10.1 SuperComponent Helper Algorithms 154

5.3.11 Swing Component Addition 155

5.3.11.1 Setting the Main Component 155

5.3.11.2 Adding and Arranging Multiple Components 156

5.3.11.3 ConfigurablePanel How-To 156

4

5.4 Summary . 158

6 Testing 160

6.1 Test Design . 160

6.1.1 Performance Metric . 161

6.1.1.1 Quantitative Metrics 162

6.1.1.2 Qualitative Metrics 162

6.1.2 Test Goal . 163

6.2 Test Design Analysis . 164

6.2.1 Analysis Findings . 164

6.3 Test Exercices . 165

6.3.1 Overheads and Requirements 167

6.4 Results Discussion . 167

6.4.1 Task Complexity . 168

6.4.2 Configurability and Extendability tests 170

6.4.2.1 Configuration Speed Tests (feature 6 and 5) 171

6.4.2.2 Extendibility Testing (feature 2) 173

6.4.2.3 SuperComponent Tests (feature 9 and 5) 176

6.4.3 Virtual Environment Creation using Java3DBeans 176

6.4.4 Participant Skills . 178

6.4.5 Assistance Requirements . 179

6.5 Summary . 180

7 Use Test Cases 183

7.1 RAUVER AUV Simulator . 185

7.1.1 RAUVER components . 186

7.1.2 ALI components . 188

7.1.3 Summary . 190

7.2 Nessie II AUV Developmental Testing 190

7.2.1 Planner Testing Components 191

7.2.2 Nav System Testing Components 195

7.2.3 Summary . 198

5

7.3 Nessie III AUV Developmental Testing 198

7.3.1 ProportionalIntegralDerivative (PID) Controller Tuning 200

7.3.2 Mission Planner Testing using Sensor Simulation 203

7.3.3 Autopilot Visual Servoing for Object Collision Testing 204

7.3.4 SAUC-E Mission Logging and Replay Suite 206

7.3.5 ARF Modules required for Nessie III and SAUC-E 207

7.3.6 Time Analysis . 210

7.3.7 Conclusions and Upgrades . 211

7.3.8 Summary . 212

7.4 Multi-vehicle Testing of DELPHÍS . 212

7.4.1 Testing DELPHÍS . 214

7.4.1.1 Integrating DELPHÍS on REMUS 215

7.4.1.2 Multiple Hardware-in-the-loop Testing of DELPHÍS . 216

7.4.1.3 Real world testing of Nessie III using DELPHÍS . . . 217

7.4.1.4 Real world testing of REMUS using DELPHÍS . . . 217

7.4.2 Multi-vehicle Trial using REMUS and Nessie III 218

7.4.3 Time analysis . 220

7.4.4 Summary . 221

7.5 RAUBoat I: Autonomous Surface Vehicle Testing 222

7.5.1 Time analysis . 223

7.6 Autotracker: Testing of Autonomous Pipeline Inspection System . . . 224

7.6.1 Additional Components Required 224

7.6.2 Summary . 226

7.7 BAUUV: Obstacle Detection and Avoidance Testing 226

7.7.1 Hybrid Simulation . 229

7.7.2 Summary . 231

7.8 SeeByte Ltd: SeeTrack Offshore Remote Awareness System Testing . 233

7.8.1 Tuning Problems . 234

7.8.2 Module Development . 235

7.8.3 System Architecture . 235

7.8.4 Advantages of using ARF to test STOS 237

6

7.8.5 Cost Savings . 237

7.8.6 New ARF Components . 238

7.9 SeeByte Ltd: PAIV AUV Developmental Testing 240

7.9.1 1st Milestone: FAT (Factory Acceptance Tests) 241

7.9.1.1 Requirements . 241

7.9.1.2 Results . 242

7.9.1.3 Problems detected during testing 246

7.9.2 PAIV Integration Tests . 246

7.9.2.1 New ARF Components 247

7.9.3 Time Analysis . 248

7.9.4 Summary . 248

7.10 Future Opportunities . 249

7.10.1 DELPHÍS: CopeHil Down Scenario 249

7.10.2 SLAM Testing . 251

7.10.3 Mine Counter Measures using Sidescan Sonar 251

8 General Discussion 252

8.1 ARF’s Uses . 252

8.2 Flexibility . 254

8.2.1 Distributed Communication and Location Transparency . . . 255

8.3 Extendibility . 256

8.4 Scenario Creation . 258

8.5 Summary . 259

9 Conclusions and Recommendations 261

9.1 Further Work . 263

9.1.1 Limitations of Work . 266

9.1.2 Future Applications and Research 267

A Accompanying CD-ROM 269

B Extra PropertyEditors 270

7

C ARF Components 272

C.1 ARF Programming . 277

D ARF Performance Tests 278

E APT Results Sheet Design 283

F RAW Results Data 287

G Nessie III log file example 290

8

List of Figures

1.1 Software Development Cycle . 15

1.2 Thesis Structure . 22

2.1 Milgrim’s Technology Centric Continuum 25

2.2 Nessie III and Remus AUVs deployed ready for mission start 31

2.3 Autonomous Vehicle Generic Architecture Diagram 33

2.4 Hardware-in-the-loop . 36

2.5 Terrain Following of an avatar up a hill - simulating gravity. 39

2.6 Reality Continuum combined with Testing Types 40

2.7 Observation and Plan View examples 52

2.8 Michel Sanner’s ViPEr - Visual dataflow system for structural biology 62

2.9 Nessie III and RAUVER Mk2 . 65

2.10 REMUS AUV . 65

3.1 Entity Interaction Diagram . 74

3.2 User Interface Interaction Diagram 78

4.1 Example Java3D SceneGraph . 83

4.2 The Bean Builder visual programming environment 85

4.3 This diagram shows how OceanSHELL provides the backbone for switch-

ing between real and simulated (topside) components for use with

HS/HIL. 88

4.4 Example of the options guided construction can provide 91

4.5 Layers of Granularity: viewed through the architecture 93

4.6 ARF Architecture Layers . 98

9

4.7 Java3D SceneGraph of the Universe 99

4.8 Class interaction diagram of Project, BeanBoard and SceneGraph . . 101

4.9 ALI Simulated Components Interconnection Diagram 103

4.10 The User Interface Layout using the Architecture Parts 104

4.11 JavaBean Selection and PropertySheet Generation 105

4.12 PropertySheet Generation using Introspection of a JavaBean 106

4.13 Guided construction using the BeanBoard, PropertyDescriptor and

JarRepository . 107

5.1 ARF GUI Overview . 113

5.2 BeanBoard represented as a list, SceneGraph as tree 115

5.3 Adding to the BeanBoard or SceneGraph 115

5.4 JavaBean which has its own options menu using the Menuable interface 116

5.5 Java3D SceneGraph and ARF SceneGraph Views 119

5.6 Live and Dead SceneGraphs . 120

5.7 PropertySheet of an ARFTransformGroup Java3DBean 121

5.8 Changing PropertySheet visibility to event listeners only 121

5.9 Selecting event listeners with guided construction 123

5.10 Removing an Event Listener . 124

5.11 GuidedConstruction PropertyEditor before and after connection . . . 125

5.12 Instantiation and selection of JavaBean using Guided Construction

PropertyEditor . 125

5.13 Java3DBeans can’t be added to BeanBoard using guided construction 126

5.14 The File menu . 126

5.15 Saving a project . 127

5.16 Exporting a SuperComponent from the SceneGraph view 128

5.17 Exporting a SuperComponent . 129

5.18 Importing SuperComponents . 130

5.19 ARF virtual world navigation using camera controls 131

5.20 ARF’s SceneGraph wrapper structure 133

5.21 Working around Java3D SceneGraph Restrictions 134

5.22 Example JavaBean code . 137

10

5.23 Example JavaBean manifest . 140

5.24 Methods for custom serialisation and instantiation of Java classes . . 141

5.25 The JarRepository Manager . 142

5.26 Extending SimpleOshReceiver to provide specific OceanSHELL func-

tionality . 151

5.27 Setting ConfigurablePanel editable 156

5.28 Setting ConfigurablePanel not editable 157

5.29 Two canvas3Ds . 158

6.1 Construction Time Comparison between ARF and Netbeans 169

6.2 Perceived Construction Complexity Comparison between ARF and Net-

beans . 169

6.3 Reconfiguration Time Comparison . 172

6.4 Save and Load times for an ARF Project 172

6.5 Time taken to create a JAR file containing JavaBeans 174

6.6 Time taken to add a JAR file to ARF’s JAR Repository 175

6.7 Time taken to configure the new JavaBean using ARF’s Guided Con-

struction . 175

6.8 SuperComponent Creation and Import Times 177

6.9 Virtual Environment Creation Times using ARF 178

6.10 Test Participant Skills . 179

6.11 Assistance and Documentation Requirements 180

7.1 Applications of ARF demonstrated by the use cases 184

7.2 RAUVER Simulated Components Interconnection Diagram 186

7.3 RAUVER Virtual Scenario . 188

7.4 ALI Simulated Components Interconnection Diagram 189

7.5 Nessie II . 192

7.6 Nessie 2 Mission Tester . 197

7.7 Nessie III . 199

7.8 Nessie III Hardware Architecture . 200

7.9 Nessie III Software Architecture . 202

11

7.10 Simulated object detectors and hyrdrodynamic model allowing mission

planning and autopilot to be tested. 205

7.11 Nessie III doing real object detection for testing the mission planner

and autopilot. 205

7.12 Nessie III log playback in ARF showing the state of the object detec-

tions made and path of the vehicle as time progresses. 208

7.13 ARF Simulating 4 AUVs using DELPHÍS 214

7.14 Real AUV Position Vs Acoustic Updated Position 216

7.15 REMUS Vip Software and ARF viewing Acoustic Updates from Mul-

tiple AUVs . 218

7.16 DELPHÍS Mission Status displayed in ARF 219

7.17 RAUBoat Mission Observation and GPS/Compass Testing 222

7.18 Simulated sidescan, multi-beam and corresponding simulator view . . 225

7.19 Simulated Sonar of Obstacles . 228

7.20 The BAUUV Pure Simulation Scenario: showing sonar field of view

and simulated sonar image (bottom-left) 229

7.21 This diagram shows how OceanSHELL provides the backbone for switch-

ing between real and simulated (topside) components for use with Hy-

brid Simulation. 230

7.22 Detected obstacles did not always align with simulated obstacles when

AUV was moving, thus facilitating algorithm visualisation and provid-

ing implementation debugging. 232

7.23 Seaeye Falcon ROV with RDI Workhorse DVL fitted 234

7.24 SeeTrack Offshore User Interface . 236

7.25 PAIV Oil Field Scenario 1: for simulating pipeline installation inspec-

tion tasks . 244

7.26 PAIV Big Tank Scenario 2 . 245

7.27 PAIV Test Scenario in Subsea7 Aberdeen 247

7.28 PAIV AUV tracking the walls of a conical test tank 249

7.29 DELPHÍS: Being used to Coordinate UAVs 250

G.1 Example of an SAUC-E XML log file 290

12

List of Tables

6.1 Averaged Results for Exercises 1b and 2a 170

6.2 Reasons user’s required assistance when using ARF 181

6.3 Reasons user’s required assistance when using Netbeans 181

7.1 Nessie III Time Analysis: Time required to create components 211

7.2 DELPHÍS Time Analysis: Component and Scenario Creation 220

7.3 RAUBoat Time Analysis: Scenario and Component Creation 223

7.4 PAIV Time Analysis: Scenario and Component Creation 248

8.1 Summary of how requirements from section 3.1.3 are met. 260

13

Chapter 1

Introduction

This thesis addresses the problem of reducing the amount of real world testing re-

quired for a remote platform, in order to reduce costs, improve software quality and

save time. This is achieved by concentrating on improving the available pre-real-world

testing facilities, or more specifically providing a mechanism for testing facilities to be

created quickly and easily. To achieve this, a generic extendible modular framework

of components is required. The components of which can be arranged in a multitude

of different ways allowing for many virtual environments and testing scenarios to be

realised. This will enable scenarios to be constructed quickly, and as such signifi-

cantly increase the quantity of available developmental testing resources. The first

improvement over conventional testing methods is to allow the user to interpret data

output by the remote platform in a variety of different ways and display this data in

an intuitive form i.e. virtual reality representation. The developer can then identify

problems more quickly because the virtual environment provides a 3rd person per-

spective making problems easier to spot. The framework will allow for user made

components to be incorporated so that re-design is never necessary and so that new

techniques for synchronising real and virtual data can be easily implemented and then

used in a multitude of different applications.

In addition to reducing the required amount of real-world testing time, it is also

vital to reduce the amount of time needed to actually create the testing scenarios

so that adequate pre-real-world testing is not sidelined due to high testing harness

creation time and consequently high expense.

14

1.1 Software Development

The software integration stage of software development projects can be tedious and

time consuming. This is often due to the specification being too relaxed and not

defined strongly enough. As a project is split up into its component parts specific

information on how the components interact is not always known a-priori. Conse-

quently, the interactions between different components may not adhere to exactly the

same standard. Generally this is due to the data interfaces not being specified strictly

enough in the design. This causes unforeseen errors at the integration stage where

components are tested working together for the first time. These errors can be po-

tentially dangerous and often go undetected until the latter phase of the testing cycle

when more rigorous testing is carried out by end users, often doing things unforeseen

and unanticipated by the programmers.

Figure 1.1: Software Development Cycle

This is particularly problematic when developing remote platforms; the platform

may be inaccessible when it is in its intended environment, making the last phases of

testing difficult, and consequently debugging very difficult and time consuming (Fig-

ure 1.1 shows the iterations through the integration testing phase). Often it is more

costly to rectify problems during the later phases of testing, thus leading to larger

costs which could have been avoided if testing facilities had been available throughout

project development. A particularly applicable example being the development of Un-

manned Underwater Vehicles (UUVs), and more specifically Autonomous Underwater

Vehicles [1] (AUVs).

15

1.2 Autonomous Underwater Vehicle Testing

UUVs highlight a more specific problem; underwater vehicles are expensive due to

water proofing to cope with the incredibly high pressures of deepest oceans (the

pressure increases by 1 atmosphere every 10m). The underwater environment itself

is both hazardous and inaccessible which increases the costs of operations due to

the necessary safety precautions. Therefore, the cost of real world testing, the later

phase of the testing cycle, is particularly expensive in the case of UUVs. Couple

this with poor communications with the remote platform, due to slow acoustic com-

munications, makes debugging very difficult and time consuming. This incurs huge

expenses, or more likely, places large constraints on the amount of real world testing

that can be feasibly done. It is paramount that for environments which are haz-

ardous/inaccessible, such as sea, air and space, that large amounts of unnecessary

real world testing be avoided at all costs. In a perfect world, different types of mixed

reality testing facilities would be available to do most of the testing of the platform

before hand. However, due to the expense of creating specific virtual reality testing

facilities themselves, adequate testing is not always done before real world testing.

This leads to failed software projects crippled by costs, or worse a system which is

unreliable due to inadequate testing.

Testing facilities are themselves problematic to develop and as a consequence often

ignored due to the expense of producing them in the first place. Simple tests created

by the programmer serve their purpose but only test what the programmer expects

to happen, which is often not the same as what is actually specified. Unexpected

errors then arise during the integration of software components. Unexpected errors

may be as simple as another component not following communications procedures

strictly enough, or simply due to some misunderstanding, or more usually because

documentation is inadequate or interface specifications were never specified correctly

in the design phase. Consequently, as much integrated testing as possible should be

carried out throughout module development so that these errors are detected early

when they can be easily rectified, rather than during real world testing.

For these reasons testing facilities need to be made widely accessible to scientists

16

working on a multi-component project, so that continuous testing with both real and

simulated components can be executed throughout project development. In order for

this to be achieved a testing harnesses need to be quick and simple to create and

highly flexible so that it can be used to test a multitude of different things.

1.3 Problem Statement

This thesis addresses the problem of reducing the amount of real world testing required

for a remote platform, in order to reduce costs, improve software quality and save time.

The problem remains of how to produce a generic pre-real-world virtual reality testing

framework which allows for simulation components and real systems to be connected

quickly and easily without having to program a new virtual environment from scratch

each time. This thesis provides a framework which provides these features.

1.4 The Solution

This thesis presents a novel framework, the Augmented Reality Framework (ARF),

for the rapid construction of virtual environments for use in Augmented Reality (AR)

applications, such as the mixed reality testing of embedded systems operating in

remote environments. ARF embraces a generic, extendable architecture based on

JavaBeans [2] and Java3D [3] to provide a component based virtual environment which

can be easily extended. ARF makes use of visual programming and introspection

techniques to infer information about user’s components, which is then used to provide

guided construction for the interconnection of components. This allows for rapid

prototyping enabling multiple testing combinations and virtual reality scenarios to be

realised quickly for a multitude of different applications.

Mixed reality techniques can be used to render data visually in order to increase

the situational awareness of the operator, and also provide simulation of systems and

sensors for testing the remote platform. ARF provides the ability for all pre-real-world

testing facilities to be realised. Consequently, increasing the rate at which errors are

detected and hence developing a more robust system in less time.

17

ARF provides the required functionality by incorporating a set of visualisation

tools, a distributed communication protocol and many simulated modules and sen-

sors. Most importantly, ARF provides a generic architecture so that new simulated

sensors and systems can be easily added to ARF’s component base for use in poten-

tially limitless applications such as in Hybrid Simulation (HS) [4, 5] (both real and

virtual sensors working together). ARF incorporates the OceanSHELL [6] distributed

communication protocol providing external communication allowing for the seamless

substitution of real for virtual modules.

Most importantly ARF provides the ability for unlimited extension by allowing

components to be easily created and added to ARF by the user. Therefore, if a

particular component in ARF hasn’t already been created, it is easily added since ARF

is based upon the JavaBeans architecture. In effect, ARF is a JavaBeans development

environment which is geared towards augmented reality and testing with the added

enhancement of providing guided construction to the user. Guided construction is

demonstrated by the analogy of LEGO R©.

1.4.1 Guided Construction by Analogy: LEGO R©

LEGO R©[7] inherently provides intuitive guidance as to how it can be constructed. The

guidance architecture provides small limitations on the things it can do, however, this

makes it simpler for the user to use. For most purposes it can be used to create

an approximation to a real structure, or make something just as good as. If the

real structures cannot be created due to the limitations of the LEGO R© pieces, the

designers of LEGO R© go back to their raw materials (a lower level) and produce a new

higher level object. Take for example the LEGO R© Tree. It is very hard to construct

a sensible looking tree out of existing LEGO R© pieces, therefore the designers dropped

down a level of complexity and made a LEGOR© tree from raw materials and made

it have the same LEGO R© connection interface so that it can be connected to other

LEGO R© objects. There are 3 main types of LEGO R©: Basic, Normal and Technic.

All LEGO R© types have different components but can all be connected together. The

way LEGO R© can be interconnected and constructed is inherent in its design, the user

can see how pieces can be fitted together and can therefore experiment and create

18

new structures by connecting them together in different ways.

The same can be said for Java and JavaBeans. Java uses class and interface types

to specify which types of objects can be connected. However, although these allow

objects to be connected, there is no particular way of showing the user how they can be

interconnected in an intuitive fashion. Therefore, by combining JavaBeans with extra

graphical technologies such as GUIs and JavaBeans Property editors, ARF is able

to provide a guided medium which the user can utilise to link components together.

The next step is to use Java3D to provide Java3DBeans, an extension to Java3D and

JavaBeans created specifically for use in ARF, which provides the user with a virtual

world where virtual components can be used to represent real world objects. ARF

provides the necessary intuitive mechanisms that show the user how components can

be linked together, not too dissimilar to LEGO R©. ARF provides this via its guided

construction mechanisms.

To go one step further a communications library called OceanSHELL[6] is also

incorporated as a set of components which allows for the mixing of both virtual and

real data. This flexibility means that virtual components can be swapped for real

components, enabling a whole new set of uses for the architecture: for example HIL

and other types of mixed reality testing. ARF now becomes incredibly applicable to

the development of remote platforms such as UUVs, and meanwhile, maintains its

application to normal integration testing and software development via JavaBeans.

The proof here is that by providing an intuitive interface, LEGO R© makes con-

struction of components easier to achieve. Therefore, since ARF provides intuitive

user interfaces for connecting components, it should make constructing scenarios out

of those components easier to achieve, since it is using a similar technique as LEGO R©

but through a slightly different visual mechanism.

1.5 Key Contributions

The primary focus of this thesis is improving the testing facilities for remote platforms.

This is achieved by increasing the speed at which testing scenarios can be created.

In turn this is achieved by providing a very flexible architecture which can be easily

19

extended and reconfigured by the user. In order to increase the speed of scenario

construction, information about component interfaces is transformed by a guidance

mechanism which gives the user options about how components can be connected, thus

reducing the need to consult documentation or know which components are available.

ARF is not restricted to testing applications for UUVs, since the virtual environment

and generic architecture can be used to create virtual scenarios for many types of

applications including Augmented Reality. However, the main focus of this thesis

relates to applications to UUVs. Improving pre-real-world testing facilities through

the use of virtual simulations of UUVs allows for higher level software modules to

be continually tested throughout development, and consequently vastly reduces the

amount of integration errors and problems occurring during real world tests and leads

to a more mature, more reliable system. This thesis has improved the accessibility and

flexibility of simulation, hardware-in-the-loop (HIL), Hybrid Simulation (HS) and real

world testing facilities enabling them to be created quickly and easily. When some

functionality is not available in ARF, due to some missing component, a component

can be easily created and added by the programmer. This allows ARF to grow and

be used for potentially many different uses. The time savings ARF provides can be

easily converted to cost savings when applied to testing of new systems for AUVs.

Real world testing is expensive and as such needs to not be wasted and kept to as

little as necessary.

1.5.1 Key Applications

Apart from improving HIL testing facilities, ARF provides a facility which enables

faults to be detected throughout testing and during online monitoring of the systems

due to being able to quickly and easily add new feedbacks to the virtual environment

to display outputs of systems running on the vehicle. ARF demonstrates how having

the facilities to do this means that errors which would normally take a long time to

debug can be found easily. An example of this is given in section 7.7.

20

1.6 Overview

The rest of this thesis is dedicated to explaining the various different parts of ARF

including design, implementation, and examples of current and future usages and how

ARF benefits them. Chapter 7 discusses use cases which demonstrate flexibility and

performance of ARF. These are backed up by low level testing of ARF’s architecture

discussed in the testing Chapter 6. Firstly, some background literature about the

concepts upon which ARF was conceived are discussed, and also the requirements

and the niche which ARF fulfils are identified. Figure 1.2 gives an overview of the

thesis structure illustrating which parts are unrelated and run in parallel.

21

Figure 1.2: Thesis Structure

22

Chapter 2

Literature Review

This chapter provides an analysis of the relevant research in the areas of interest not

limited to: augmented reality, underwater vehicles, simulation, visualisation, testing

techniques and related technologies such as: multiple cooperating robots, mission

planning, remote awareness and monitoring systems. Many key points and usages

need to be considered when designing the Augmented Reality Framework. Since the

problem being addressed by ARF is very broad, technologies and ideas are derived

from many fields of research not limited to the underwater domain or even that of

robotics. Topics such as visual programming are covered as this provides another

method for constructing programs and potentially creating HIL testing scenarios and

simulations.

For each area of research an overview will be given, and any relevant inferences

which can be drawn from it will be discussed regarding their impact on the design of

ARF.

To begin with this review will look into the field of Augmented Reality, as this has

close ties with simulation and virtual environments which are used to provide testing

facilities for underwater platforms.

2.1 Augmented Reality

Changing a persons/entities perception of the real world by adding virtual objects to

the real world is defined as Augmented Reality (AR) [8, 9]. AR generally relies on

23

either the user wearing a special head mounted display, or the virtual objects being

directly projected via a projector onto the real world. The latter of the two is a

more rigid setup. AR is usually achieved using a see-through Head Mounted Display

(HMD) [10], or by using a Virtual Reality (VR) headset (non see through HMD)

and sensing the real world with video cameras before it is augmented with virtual

objects. However, AR generally refers to human users having their real world view

augmented with virtual data. If referring instead to some abstract entity, such as a

robot, AR merely means altering that entities view of the real world, so the device

used to alter the view of reality is specific to the way the entity perceives that reality.

AR and VR are very useful for synthetic simulations of robots in their environments,

and particularly AUVs as identified by Brutzman [11] who discusses the idea of a

virtual world for an AUV.

AR is a more encompassing term than those used in testing of robotics, such as

hardware-in-the-loop or hybrid-simulation, hence why this review focuses on AR as

well as robotics related issues. The relevance of AR to robotics is discussed in more

detail in section 2.3.

The framework being designed should provide applications for AR, but not be

restricted to merely augmenting the perspective of some entity, such as a robot. For

example, if a robot were driving around photographing corridors of a building, a

virtual environment could be augmented with the photographic data from the robots

cameras. Images could be positioned correctly in the virtual environment by keeping

the virtual representation of the robot in synchronization with the robot’s position

in the real environment. Virtual objects also placed in the virtual environment could

then be superimposed on the original images by simulating the cameras of the robot

in the virtual environment. The virtual camera information would then be sent back

to the robot’s systems for processing, i.e. the robot would see the virtual objects

superimposed on the real environment. This would be augmented reality from the

robot’s perspective, otherwise known as Hybrid Simulation (HS) (See section 2.3.3.1).

The reverse of this is plotting the real sensor data in to the virtual environment for the

operator to see. This is called Augmented Virtuality (AV). AV can be described as

putting real data into the virtual world, in other words, augmenting the virtual view

24

with real data. Therefore a requirement is to provide both AR and AV simultaneously

in order to accommodate all the potential usages. In general, a “reality” is being

augmented for some entity, be it a virtual or real entity, hence the name given to the

research of this thesis is the “Augmented Reality Framework”.

2.1.1 Mixed Reality Continuum

Ronald T. Azuma[8] discusses Milgrim’s Reality-Virtuality Continuum[12] of mixed

reality (see figure 2.1) which describes the continuum from reality to virtual reality,

and all the hybrid stages in between such as augmented reality and augmented vir-

tuality. Any framework for testing of robots will certainly need to be able to provide

facilities for all stages of the reality continuum. The required framework could tech-

nically be referred to as a mixed reality framework. Mixed reality inherently places

the requirement for communication with external platforms.

Figure 2.1: Milgrim’s Technology Centric Continuum

2.1.2 Synchronisation Issues

Consider a person who is wearing a see through HMD; AR for humans can cause

various problems disorientating the person wearing the see through HMD. These are

mainly due to virtual and real world synchronization issues, e.g. by the time the

computer has calculated where the user is looking and generated the graphics for the

virtual objects in the correct place on the HMD, the user has probably moved a little

more and therefore the images of virtual and real are not aligned. This can cause

dizziness or motion sickness for the user. These are known as “dynamic errors”[13, 8].

25

One way of making sure that the real and virtual images are in synchronization is to

use a non-see-through HMD. The real world is recorded by video camera and then

the image from this is augmented with the virtual data. Therefore, the frames of

the video camera and the frames of the virtual graphics are kept in synchronisation.

However, the user may still experience lag from when they move to when they see the

picture updated in their HMD as the real images are also delayed now as well as the

virtual images. A greater loss is experienced due to lower resolution of the real world

and the inability for the human to change where they are focusing, or move their eyes

(unless eyeball movements are mimicked by the cameras).

These types of end-to-end delay errors reduce as technology improves and com-

puter processors get faster, thus reducing lag time. Other techniques such as move-

ment prediction can help to minimise the discrepancies between the real and the

virtual worlds.

2.1.2.1 Registration Problem

The other main problem of all AR systems is that of Registration [14, 15] i.e. cal-

culating exactly where the person is and where they are looking. Even the slightest

error of a few millimetres can mean that the user can see discrepancies between the

virtual view alignment and the real world. These errors can only really be reduced

by more accurate methods of measuring the user’s position, and by reducing the time

between taking a position reading and displaying the data to the user.

The other types of errors are “static errors”[8] which are errors caused by inaccu-

rate calibration of position sensing equipment and calibration of display for the user.

It is quite difficult to calibrate a see-through HMD for a person because there are lots

of different factors to take account of, for example the distance between a persons’

eyes and their field of view. If not calibrated properly the user will see the virtual

world not aligning correctly with the real world. This can cause motion sickness and

is therefore not advisable. Non see-through HMDs are perhaps better for this reason

but they have a problem of being incredibly low resolution compared with that of the

human eye.

These problems do not necessarily need any attention when dealing with remote

26

environments because with remote environments there is always going to be a com-

munication delay and sometimes no communication at all (as in the case of AUVs).

Therefore the main problem is not that of synchronisation because the virtual envi-

ronment will inherently be lagged behind the real anyway, so a few extra milliseconds

lag will not make much difference, also virtual lag can be controlled and accounted

for. However, registration and retrieving accurate position information is definitely

required, but this is the job of the vehicle positioning systems and is not necessarily

a problem which needs be addressed directly by this thesis since it should be handled

by the robot’s navigation systems. Most AUVs have a lot of expensive equipment

for exactly calculating the orientation and position of the vehicle, although over time

these are subject to drift. If the framework is being used for simulation and testing

then it may be that a module is required to simulate the errors of the vehicle’s naviga-

tion systems. However, this is up to the designer of the specific module to implement

in their own way, as every navigation system will be different, and for most on land

applications, there is usually relatively accurate navigation through GPS.

Robots, such as AUVs, also have problems with registration. Often when data is

downloaded the same features in images will appear in different locations due to navi-

gational drift. Systems which analyse this data on the fly can match the same features

identified in different images to correct the robots position against navigational drift.

This is called Simultaneous Localisation and Mapping (SLAM) [16]. These types of

feature detection and alignment can be used in outdoor AR systems to help match the

real geometry [14] of the surroundings to a virtual mock-up to help reduce alignment

problems, or track the features to provide more accurate position information. This

really identifies the requirement that no matter what the external system is, be it for

human AR applications or autonomous robots, synchronisation of the real and virtual

environments is required.

2.1.3 Applications of Augmented Reality

AR and AV are relatively new fields of research and only recently have graphics

processors, computer processors and display technology become mature enough to

enable the development of cost effective applications. AR has been used in education

27

and training as well as entertainment [17]. When a user is more involved in an

experience, i.e. they are simply immersed in the scene in a natural way with the

ability to interact with it, they actually learn a lot more from the experience. This is

mainly due to there being no complicated user interface to learn in order to control

movement and interactions. The user can simply look, move and interact with things

in the same way as they would in real life making the task of observation and control

very intuitive.

It is easy to see how this kind of technology would be very useful for an operator

controlling a vehicle/robot in a remote environment. The third person perspective

created by a virtual reality view of the environment allows the operator to gain bet-

ter situational awareness about the surroundings of the robot, and thus make more

informed decisions when deciding how to move the vehicle. The virtual environment

can also be used to display the data the remote vehicle is gathering in an augmented

virtuality manner. For instance, if the remote vehicle is an underwater vehicle, the

data from the vehicle’s sensors, such as sidescan sonar data which is rather like a pho-

tograph, or a bathymetric sonar which measures the bathymetry below the vehicle,

can be rendered in the virtual environment in real-time. This gives the operator a bet-

ter picture of the remote environment in which the vehicle is operating and increases

their situational awareness. If the controls for the vehicle were intuitive, similar to

a computer game, then anyone would be able to operate the vehicle within seconds.

(To learn more about how computer games could influence ARF’s design see section

2.4.4).

AR has already been used for remotely monitoring and operating underwater

vehicles. A wearable[18] AR system has been developed which utilises a see-through

HMD so that when operators are walking around the deck of a ship, they are able to

see the position of the vehicle displayed on the HMD in relation to the real world, in a

similar fashion to a Head Up Display (HUD) in a fighter plane. This is useful because

vehicles are hard to see from the surface as they are underwater. There is no reason

that the HMD of the operator could not be powered by the proposed framework,

i.e. using it to generate the virtual graphics which are superimposed on top of the

real world through the HMD. This places a requirement that the framework should

28

support plug-able modules so that new display devices and control devices can be used

to view the environment and to move the virtual camera around in synchronisation

with the real environment.

2.1.3.1 Augmented Scene Modelling

The principle concern of most AR applications is adding extra data to the real envi-

ronment making it more understandable for a human and consequently increase the

efficiency of working in that environment, e.g. highlighting areas of interest to the

user. In environments such as underwater, where visibility is poor, highlighting and

identifying certain items, such as structures, helps the operator orientate themselves.

For example, the video camera feed from a robot could be augmented to show where

the structures are in the distance. This is simple for an environment where the layout

is known a priori, such as oil field structures and well-heads, but when in unstruc-

tured, unknown environments highlighting things of interest to the operator would

be even more useful, but more difficult. A robot may come across some unknown

structure and it may take readings from it with various different sensors, such as

video and acoustic sensors, if underwater, to find out the distance and shape of the

object. This data could then be combined and used to either highlight the structure

using wire-frame (or something similar) or used to match the geometric properties of

the structure to a known structure in a database[19]. This functionality would have

to be part of a specific module. Again this highlights the need for the framework to

support user modules which provide all these uses.

If the framework were to be extensively modular, a data interpretation and visu-

alisation module could be created which looks at all the collected data, live or after

the robot’s mission is complete, and augment the virtual environment with the extra

information and objects for the operator to see. One such example could be a module

which allows the user to select and display various types of data, e.g. collected real

data, virtual data added by a user, detected data or pseudo real data which rep-

resents identified structures or objects (chapter 7.7 discusses obstacle detection and

avoidance. This shows how ARF is used to render data for the operator to see).

This concludes the AR section. Many of the concepts of mixed reality are dis-

29

cussed later in the applications of testing robots, and more specifically underwater

robots. The next research area to be reviewed is underwater robotics. This will focus

primarily on problems associated with underwater vehicles, and then more specifically

how testing facilities can drastically improve reliability and maturity of underwater

platforms.

2.2 Autonomous Underwater Vehicles

An Autonomous Underwater Vehicle (AUV) [1] is a type of unmanned underwater ve-

hicle (UUV). The difference between AUVs and Remotely Operated vehicles (ROVs)

is that AUVs employ intelligence, such as sensing and automatic decision making,

allowing them to think for themselves. ROVs are controlled remotely by human op-

erator with power and communications running down a tether. AUVs can operate

for long periods of time without communication from an operator as AUVs execute

a predefined mission which must be completed before returning to base. An operator

can design missions for more than one AUV and monitor their progress concurrently.

In contrast to ROVs which require at least one pilot per ROV to control them. In-

herently the cost of using AUVs should be drastically reduced compared with using

ROVs as long as the technology on the AUV is mature enough to do the task well.

AUVs have no tether or physical connection with surface vessels, such as boats,

and therefore are free to move without restriction. Consequently, AUVs can be smaller

and have lower powered thrusters than ROVs. This is partially due to not needing

to drag a cable but also to conserve battery power. Consequently, AUVs are capable

of going to greater depths far more easily and into highly structured environments

which would prove hazardous to an ROV due to its tether.

In general, autonomous vehicles [20] can go where humans cannot or do not want

to go, or in more relaxed terms they are suited to doing the “the dull, the dirty,

and the dangerous” tasks. One of the main driving forces behind AUV development

is automating tedious tasks which take a long time to do manually using an ROV;

these can include oceanographic surveys, oil/gas pipeline inspection, cable inspection,

clearing of underwater mine fields, etc. What these have in common is they are tedious

30

for humans to do or require expensive skills.

Figure 2.2: Nessie III and Remus AUVs deployed ready for mission start

Autonomous vehicles are capable of receiving initial mission data, moving to a

different location, executing the mission, and then returning with the results of the

completed task, be it survey data or just a status of as to how well the mission went.

These vehicles are well suited to labour intensive or repetitive tasks, and can perform

their jobs faster and with higher accuracy than humans. The ability to venture into

hostile or contaminated environments is something which makes AUVs particularly

useful. However, the main advantage of using AUVs over ROVs is that the amount

of support required for an ROV is huge. ROVs require tether management, a large

powerful boat which can sustain rough seas, a boat crew and highly trained ROV

pilots. This causes the price per day of using ROVs to be very high. On the other

hand, AUVs only require deployment and collection which allows the boat to do other

tasks in the meantime (see figure 2.2). A much smaller deployment boat can also be

used and therefore a much smaller crew. Realistically, AUVs cost more to develop,

due to the intelligent systems onboard. However, once created many AUVs can be

used in parallel by one operator and one ship, i.e. the benefits outweigh the initial

development costs.

31

2.2.1 Autonomous Vehicle Architecture

Figure 2.3 shows an overview of the standard parts of an autonomous vehicle archi-

tecture. The majority of the intelligence of an AUV is contained in the deliberative

and executive layers. This architecture is representative of a standard tri-level archi-

tecture which contains 3 main layers; the deliberative, executive and reactive. The

reactive layer is called the functional layer in this diagram because it contains more

systems than just manoeuvring (which is what reactive suggests). The general trend

is that the deliberative layer contains the mission plan and the goals which are to be

achieved by each mission. The executive layer takes the mission plan and assesses how

the autonomous vehicle should carry out the mission. This then sends commands to

the reactive/functional layer which controls the motion of the vehicle and its sensors.

For example, a system such as obstacle avoidance is part of the reactive layer because

it is not up to the mission executive to take account of obstacles and move around

them. Therefore if an obstacle is detected the obstacle avoidance system would cir-

cumnavigate the obstacle to arrive at the waypoint issued by the mission executive. If

a waypoint cannot be reached due to some reason it is up to the mission executive to

realise this and execute a different part of the mission if possible and mark the failed

leg as unachievable. More about mission planning and mission execution is discussed

in section 2.4.3.

Intelligent systems, such as mission executive or obstacle avoidance, take time and

lots of testing to develop to a high standard. Hence why a generic framework which

is capable of providing all the functionality of the synthetic environment and user

interface layers would be very useful for reducing development time. The ability to

test different elements of the tri-level architecture using one testing framework would

be advantageous. Therefore a testing framework needs to be able to be substituted

easily for various real systems in the functional layer. For example, sensor simulation

and vehicle motion could be provided by a synthetic environment so that the obstacle

avoidance system, of the functional layer could be tested with the executive and

deliberative layers running the system as a whole in virtual reality, rather than having

to do expensive real world testing.

32

Figure 2.3: Autonomous Vehicle Generic Architecture Diagram

33

2.2.2 AUV Catagories

Many different sorts of AUVs exist and their purposes range tremendously:

• Voyager class (e.g. Gliders) - these tend to be quite small, torpedo shaped

with fins, and very efficient because they use ocean currents as transport which

helps save power. They usually have adjustable buoyancy which allows them to

move vertically in water column allowing them to glide horizontally using their

fins/wings. They have long endurance and are used for large scale sporadic

surveying of the oceans.

• Survey class - These are usually torpedo shaped for good hydrodynamics al-

lowing for long range missions. These are generally larger than gliders and size

varies depending on how much endurance the AUV requires and how large the

required payload sensors are. They are larger to accommodate the more ac-

curate navigation systems and sensing equipment. They are used for shorter

distance missions than gliders but can carry out detailed surveys in a timely

manner (hours or days).

• Inspection class - These are usually capable of moving in 4 to 6 degrees of

freedom which makes them incredibly useful for inspecting complex structures

and navigating through cluttered environments.

For more specific AUVs and their applications see sections 2.8 and 7.

2.2.3 Communication Problems with AUVs

Communication with AUVs is problematic. Underwater acoustic communications are

slow and unreliable. This causes problems when trying to test AUVs and monitor

mission progress because real-time status information cannot always be retrieved from

the AUV whilst in use. However, an AUV operator is much more comfortable if they

monitor the AUV. Since this is not always possible due to communications problems,

using simulation between acoustic updates helps provide tele-presence. If a simulated

version of the same mission is kept in synchronisation with the real mission, the

operator will have a good idea of AUV position and intent at any one time, as they

34

can see this from the virtual environment. This type of simulation helps install more

trust in the operator of the AUV. Periodically, the simulated AUV will be updated

by real data from the real AUV (This is known as Remote Presence). If acoustic

communications are not available the AUV may come to the surface to exchange data

and/or gain a GPS position update.

Therefore there is a requirement for the ability to synchronise real and virtual

systems. This is a big problem since there could potentially be many different types

of systems for a generic framework to support. Therefore, a mechanism which allows

the user to provide special modules for synchronising internal and external systems

needs to be included in the design. This also implies that the different types of

external communication protocols should also be supported, in order to interact with

different types of platform.

There are many applications for AR and AUV tele-presence which require the same

functionality. This review now looks at the specific requirements of testing facilities

for robotic platforms, specifically AUVs, and looks closely at the similarities to AR.

2.3 Hardware-in-the-loop and associated Testing

Techniques

When creating robots for remote environments it is not always feasible to test the

robot in its intended environment. This can be due to a number of reasons, the main

ones being risk, expense and accessibility [21, 22]. However, it is very important

that the systems are tested as a whole to make sure all the component parts interact

correctly. The problem is that some parts of the software that produce output rely on

the remote environment for input e.g. from sonar or video input. Therefore, it is the

purpose of a synthetic environment to simulate the outputs of the sensors/systems

which interact with the remote environment. These systems could include video,

sound, navigation, environmental measurement sensors etc and their functionality

must be replicated in a synthetic environment. The simulated sensors are plugged

into the higher level systems of the robot to test that those higher level systems work

correctly. This allows the robot to be tested in different environmental conditions

35

with varying features and types of terrain. Therefore the robot can be tested on

many different scenarios which would be difficult to do in reality. This is very useful

when designing software modules for the robot, which are specific to a certain sort

of terrain/environment type because the environment can be tailored to the specific

needs of the system being tested. Setting up complicated test scenarios in the real

world may not be feasible even if the environment itself is easily accessible. For

example, if testing tracking of multiple underwater oil pipelines, it may be to expensive

to do this in the real environment and also too hard to diagnose any errors (see

AUTOTRACKER in section 7.6). This type of testing is referred to as Hardware-

in-the-loop (HIL) [23] or Robot-in-the-loop [24]. In essence a hardware-in-the-loop

test bed is simply an extension to an existing distributed simulator, or Distributed

Virtual Environment (DVE) [25]. This allows the robot to interact with the virtual

environment rather than with the real environment i.e. placing the robot in virtual

reality.

Figure 2.4: Hardware-in-the-loop

Hardware-in-the-loop testing requires that the hardware/sensors/modules of the

robot being tested are simulated in order to provide the robot with the knowledge

that it is interacting with the real environment (see figure 2.4). The problem then

becomes the task of creating the virtual environment and all the simulated sensors re-

quired by the robot’s higher level systems. In most cases as a new robot/environment

combination is realised, a new simulator is designed in order to test it, or an older

one is upgraded to accommodate the new robot/environment. However upgrading an

older synthetic environment is not always that straightforward, and creating a new

36

simulator entirely from scratch is often just as uneconomical.

2.3.1 Considerations of Hardware-in-the-Loop Systems

Many HIL testing environments are currently available, however, most of them are

platform or environment specific. For example, CoreSIM [23, 21] is a HIL testing facil-

ity for robots in a sub-sea environment. It discusses different approaches to HIL and

also how their own “CoreSim” synthetic environment operates. The papers mainly

discuss the synchronisation of modules via logical clocks, and the communication sys-

tem which the modules use to communicate. One issue the author identifies is that

some modules such as high fidelity sensor simulations are sometimes very hard to sim-

ulate accurately and may take longer, in terms of computation, than the real module.

This creates the problem of how to synchronise the system, the simplest way being

that the system runs as fast as the slowest module, or that the system is distributed

over many machines to make use of parallel processing. One computer processor may

not always be powerful enough to simulate the virtual world and all simulated sensors

required. Therefore, any new architecture needs to be easily distributable over as

many computers as required and provide the mechanisms for distributed processes

to communicate (see section 4.1.5 on the OceanSHELL distributed communications

protocol).

2.3.1.1 Distributed Virtual Environments

Since HIL is an inherently distributed concept, with some of the modules running on

the robot’s hardware and some within the virtual environment, it should not make any

difference to the robot where the simulated modules are being executed. The robot

doesn’t know which machine the virtual environment is running on, therefore if (n)

computers are creating the synthetic environment instead of 1 it will be transparent

to the robot. As long as the modules/sensors have a mechanism for communicating

their inputs and outputs, this means the simulated sensors could be distributed over

different machines anywhere. This is known as a Distributed Virtual Environment

(DVE) [25]. Inherently this functionality needs implementing by any virtual environ-

ment capable of HIL. Therefore, using multiple environments distributed over many

37

computers is merely an extension to the concepts of HIL.

2.3.1.2 Sensor Simulation

For robots, the sensor types can be split into 2 different categories:

• Proprioceptive sensors - measure information about the vehicle state, e.g. posi-

tion, velocity, hull temperature, water leak sensor etc.

• Exterioceptive sensors - measure information about the surrounding external

environment, e.g. sonar, video, echo sounder, x-ray vision, temperature sensors,

ultrasonic rangers, compass (this senses magnetic field, however this is very

easily simulated in software).

Since it is the external (remote) environment that is being simulated using virtual

reality, some of these sensors become increasingly difficult to simulate accurately in

real-time (i.e. the time spent by the real sensor to gather data). For example, sonar

is computationally expensive to simulate due to the way sonar sound waves interact

with the surrounding environment. Sonar works by producing a sound pulse in a

certain direction, and then waiting for the reflections which bounce off the remote

environment. However, in order to simulate this in a 3D virtual world each sonar

pulse has to be traced through the virtual world and see where it intersects with the

surrounding geometry, and then see how much would be reflected back. In computer

graphics this technique is known as ray tracing and is very slow. A very realistic

simulated sonar would also ray trace the reflected sound waves as well to see how

they are reflected off the environment also. As a consequence this might produce

double reflections of objects similar to real sonar images. In some circumstances the

programmer can cheat if a less realistic output is required. For example, in the case of

sidescan and bathymetric sonar the graphics processor can be used to output all the

depths values of each pixel on the screen. This can then be modified to look like the

sonar data. Therefore computationally expensive methods can be avoided if quality

of simulation is not that important.

One problem with the CoreSIM [21] synthetic environment is that it does not

provide the facility to test other non sub-sea environments straight off the rack; a

38

specific external module would have to be programmed and fitted into the architecture

some how. This also applies to new sensors; they are not easily added to the simulation

environment. Configurations have to be manually adjusted to allow the modules to

interact. In essence all modules are standalone.

A new simulation framework should provide the flexibility for applications in any

given domain. Most applications merely require a change in vehicle model, such as

hydrodynamics in the case of underwater, terrain following with gravity etc, to sim-

ulate the interactions with the different environments. In essence, the only difference

between any of these environments is how the simulated vehicle interacts with the

virtual environment geometry. For example, in the virtual environment a land oper-

ated vehicle would implement some sort of terrain following algorithm because in the

real world it would be affected by gravity which holds it on the terrain.

Each vehicle model type should simply be a component of a modular virtual

environment. In order for a virtual environment to provide this it must have enough

scope in the software design to accommodate all different vehicle specifications and

provide the ability for them to interact with the virtual environment in different ways.

Different sensors will be required for implementing the different vehicle models, e.g.

a collision detection ray used for terrain following (see figure 2.5).

Figure 2.5: Terrain Following of an avatar up a hill - simulating gravity.

In essence the framework should simply be a virtual version of the real world, i.e.

all things that can be done in the real world can be easily implemented in the virtual

world, and thus all simulation will be able to be carried out in the virtual world. A

39

problem with such a generic architecture for building virtual environments is that a

faster version of the same simulation could conceivably be created using a simpler

model of the real world. For example the simulated sonars discussed earlier use ray

tracing to trace the sounds pulse, however there are certain ways of ordering and

pruning the 3D data which reduces the amount of intersection testing required and

consequently improves performance. A generic set of modules may not always provide

the method with highest performance because of the trade off between being generic

and highly specialised. Therefore the framework architecture should itself be generic

allowing for specialised, high performance, modules to be easy integrated. Then new

user made components can be integrated which provide specific optimised functional-

ity, e.g. a special 3D renderer could be used for ray tracing to provide sonar images.

In order for a framework to be more useful it therefore needs to be easily extendible.

Therefore, if a new component is particularly useful it can be shared amongst the

scientific community for use in other simulations. New components should be easily

implemented and added to the frameworks component base. For a simulation frame-

work to be truly generic and be applicable to many applications, it needs to be able to

naturally evolve without having to reprogram the whole environment. Extendibility

needs to be at the core of its architecture.

2.3.2 A Taxonomy of Working Modes

Figure 2.6: Reality Continuum combined with Testing Types

The hybrid stages between real and virtual are known as augmented reality [9]

40

and augmented virtuality [9]. Figure 2.6 shows how the reality continuum discussed

earlier correlates with testing techniques. The hybrid reality concepts are built upon

by the ideas of HIL testing and Hybrid Simulation. The NEPTUNE [4] system fur-

thers the definitions of virtual environment uses via a taxonomy of 6 working modes.

NEPTUNE provides methods for executing most types of testing and can therefore

be considered to be the state of the art. However, it does not provide the extendibil-

ity and flexibility required for doing testing in all domains. The working modes are

discussed are and correlated to augmented reality below:

• OFFLINE - Pure Simulation [4] (PS) - Simulated time may be faster or slower

than real-time, e.g. if a simulated sonar takes a lot longer than the real thing

then simulated time must be slowed down in order to let the sonar complete.

This is used to do individual testing of each module before integration onto the

intended platform.

• ONLINE - Pure Simulation (PS) - The simulation runs in real time and as

a result puts performance requirements on the modules within the simulated

system. Having a distributed architecture is one way of helping to make sure

that every module can comply with the time constraints.

• HIL - Hardware-in-the-loop [23] is where most of the computation is actually

done on the robot’s hardware, in contrast to OFFLINE and ONLINE where

all the systems run as part of the simulation. However, the robots actions

are diverted to the virtual environment simulation rather than the real world

systems. The robot may also receive its inputs from simulated sensors, such as

sonars, running in the virtual environment. This is very useful for integration

testing as the entire system can be tested as a whole allowing for any system

integration errors to be detected in advance of real world trials.

• HS - Hybrid Simulation [22, 26, 4, 27, 28, 5] - This involves testing the platform

in its intended environment in conjunction with some simulated sensors driven

from a virtual world. For example, virtual objects can be added to the real

world and the exterioceptive sensor data altered so that the robot thinks that

something in the sensor dataset is real. This type of system is used if some

41

higher level modules are not yet reliable enough to be trusted to behave as

intended. Consequently, fictitious data is used instead, augmented with current

data, as inputs to these systems. This is so that if a mistake is made it does not

damage the platform. An example of this would be obstacle avoidance system

testing on an AUV (see example in section 7.7).

• OM - Online Monitoring - Real world testing - Can use the 3D virtual world for

online monitoring of the robot in its remote environment. This is the last stage

of testing i.e. all systems are trusted and the platform is ready for testing in the

intended environment. Therefore, all integration errors should have been fixed

in the previous stages otherwise this stage is very time consuming and therefore

expensive.

• TR - Operator Training - This is where the operator interacts instead with a

virtual world simulating a robot and learns how to control the robot without

needing the real robot, i.e. training the operator, thus requiring less expensive

real world testing time.

The NEPTUNE paper discusses lots of different simulators which each implement

one or more of the working modes described above, and therefore those simulators

will not be covered here since they are a lot less advanced than the NEPTUNE

simulator. The NEPTUNE simulator employs all the working modes described above

and is consequently a very useful virtual environment for those reasons. However, one

problem with it is that it is particularly restricted to underwater applications in its

present state and is far too specific to be extended easily. However, it identifies many

uses for virtual environments such as sensor simulation, operator training and online

monitoring. It has most of the constituent parts required for the building blocks for

a good testing framework, but in its present state is not generic enough. One of

the main focuses of this research is increasing the speed of the creation of virtual

environments for any use, which NEPTUNE does not facilitate.

42

2.3.3 AR, Testing and UUVs

The different types of testing correspond to different stages of the reality continuum

(See figure 2.6).

AR and AV refer to how the reality or virtual reality is altered respectively. In

the case of AR, simulated data is added to the real world perception of some entity.

For example, sonar data on an AUV could be altered so that it contains fictitious

objects, i.e. objects which are not present in the real world, but which are present

in the virtual world. This can be used to test the higher level systems of an AUV

such as obstacle detection (see obstacle detection and avoidance example in Section

7.7). A virtual world is used to generate synthetic sensor data which is then mixed

with the real world data. The virtual world has to be kept in precise synchronization

with the real world. This is known as the registration problem discussed previously.

The accuracy of registration is dependent on the accuracy of the position/navigation

systems. Registration is a well known problem with underwater vehicles when trying

to match different sensor datasets to one another for visualisation. Accurate regis-

tration is paramount for displaying the virtual objects in the correct position in the

simulated sensor data.

AV is the opposite of AR, i.e. instead of being from a person’s perspective it is

from the virtual world’s perspective - the virtual world is augmented with real data.

For example, real data collected by real sensors on an AUV is rendered in real time

in the virtual world in order to recreate the real world in virtual reality. This can

be used for online monitoring and operator training as the operator can see how the

AUV is situated in the remote environment, thus increasing situational awareness.

2.3.3.1 HS and AR

Hybrid Simulation is where the platform operates in its intended environment in con-

junction with some sensors being simulated in real time using a synchronized virtual

environment. Similarly to AR, the virtual environment is kept in synchronization

using position data transmitted from the remote platform. Simulated sensors are

attached to the virtual reality version of the remote platform and moved around in

synchronization with the real platform. Simulated sensors collect data from the vir-

43

tual world and transmit the data back to the real systems on the remote platform.

The remote platform systems then interpret this data as if it were real. It is impor-

tant that the simulated data is very similar to the real data so that the higher level

systems cannot distinguish between the two.

Other environments, such as Song’s [22] and Neptune [4] provide hybrid simulation.

However, Song makes the assumption that all simulation processing can be executed

on one computer and thus relies on one computer having enough processing power to

simulate all required sensors. This is because the modules communicate via shared

memory and mutex locks rather than message passing over a network. This speeds up

the performance of the simulator slightly, but makes it inflexible. Therefore, message

passing is favoured due to the location transparency it provides.

In summary, the real platform’s perception of the real environment is being aug-

mented with virtual data. Hence HS is inherently AR. An example of a real scenario

where AR testing procedures are useful is in the case of obstacle detection and avoid-

ance in the underwater environment by an AUV in section 7.7.

2.3.3.2 HIL and AV/AR

HIL is another type of mixed reality testing. The platform is not situated in its

intended environment, but is instead fooled into thinking that it is. This is achieved

by simulating all required exterioceptive sensors using a virtual environment. Virtual

sensor data is then sent to the real platform’s systems instead of real data. The

outputs of the platform’s higher level systems, which rely on the simulated data, can

then be relayed back and displayed in the virtual environment. This can help show

the system developer that the robot is interpreting the simulated sensor data correctly

and responding accordingly. In HIL all the sensors and systems that interact directly

with the real environment are simulated. Vehicle navigation systems are a good

example since these use exterioceptive sensors, actuators and motors to determine

position. Using simulated sensors means that the developer can specify exactly the

data which will be fed into the systems being tested. This is complicated to do

reliably in the real environment as there are too many external factors which cannot

be controlled. Therefore, HIL actually places the robot in virtual reality. Sometimes

44

a virtual environment is augmented with the feedback of the platform’s data for

observation, hence HIL is AV as well. Thus HIL and HS are both deemed to be mixed

reality concepts.

2.3.4 Summary

It becomes clear that PS, HIL, HS are a subset of the main capabilities defined

by AR, AV and VR. Therefore a new generic framework could support all of these

capabilities and the working modes defined in section 2.3.2. This review now looks

into other applications of virtual environments and existing implementations of testing

frameworks.

2.4 Other Potential Usages and Requirements

This section looks at some background on other aspects of AUV development which

need be considered when designing the framework. Although the framework should be

flexible enough to be used on AUV unrelated tasks, it is impossible to conceive every

possible application. Thus some of the main areas of AUV development are discussed

and some other related topics are also discussed for their contributions towards this

research. This shall start by looking at some of the uses of AUVs.

2.4.1 Applications of AUVs

The UUV Masterplan [29] is a document by the Department of Defence which outlines

research topics that are seen as useful and vital to the further development of UUVs.

This document is very specific to military applications but a lot of the techniques

described can also be used for other, non-military, applications, e.g. inspection of

underwater pipelines for the oil and gas industry. Most of the vignettes described

in the UUV Masterplan require onboard intelligence on the AUVs for identifying

objects with acoustic sensors such as sonar. This has applications in underwater

obstacle avoidance, mine detection and ship hull inspection for use in sea port security.

This sort of intelligence also has other applications in the underwater community,

i.e. obstacle avoidance would be useful for any underwater activity be it military or

45

otherwise. Object detection can also be used by the oil and gas industry for finding

pipelines (see AUTOTRACKER in section 7.6 for pipeline tracking and section 7.7

for obstacle avoidance) as well as being used by the military for detecting mines and

enemy targets. The UUV Masterplan is mainly concerned with:

• Mine Counter Measures (MCM) - look for underwater mines and deploy a

counter measure.

• Seaport security - concerned with guarding a port against a terrorist threat.

For example, scanning the shipping lanes for explosive devices like mines, or,

for scanning ships entering and leaving a harbour for foreign bodies which have

been attached to their hull.

• Obstacle detection - apart from detecting mines, this is useful for detecting

fishing nets and perhaps other enemy craft such as submarines.

These are just some of the popular areas of interest for AUVs, however there are

far more uses particularly in offshore oil and gas and marine science industries. These

include inspections of underwater structures, such as pipelines, and gathering of sea

bed data for analysis. A number of topics have been researched in the Ocean Systems

Laboratory (OSL) and have been the driving factor behind the research of this thesis.

These include:

• Multiple vehicle coordination and cooperation which evolved into the DELPHÍS

[30] system (see section 7.4).

• Increasing operator awareness - when an AUV is beyond communications dis-

tance, how do you keep the operator informed as of to what should be happening,

and how do you explain when the vehicle has done something different.

• Creation of mission plans in an intuitive way.

• Hardware-in-the-loop testing approaches such as CORESIM [21] and now ARF

[31].

• Integrating SLAM with inertial navigation to correct for drift over long periods

of time.

46

• Purely visual based SLAM

• Mission plan adaptation when something goes wrong.

• Obstacle avoidance systems (See BAUUV section 7.7)

• Autonomous pipeline and cable tracking (see section 7.6

• Wall tracking

• Object detection, classification and inspection using Nessie III.

No matter what the application, the problems associated with keeping the opera-

tor/developer well informed about the AUV’s operations in the remote environment

are persistent. Improving situational awareness via tele-presence is one of the main

issues. However, no matter what the application, a mission plan needs creating and

often the systems need testing in simulation first. Similar facilities, but not the same,

are used in each case. However, it should be possible to use the same environment

to design the mission plans and then execute a simulation of that mission, i.e. same

tools, different uses. Therefore a framework is required which provides varying levels

of complexity allowing the creation of task specific tools, i.e. from simulation testing

right through to observing real world data from real missions.

These are just some of the topics being research at the OSL, but most of them

have one thing in common - they will at some point require testing in simulation, then

hardware-in-the-loop and finally real world tests with real-time feedback. Hence the

need for a robust, flexible and extendible testing and observation environment.

2.4.2 Testing and Visualisation of Cooperating Multi-Agent

AUVs

In order to carry out certain tasks at sea, and indeed any environment, the use of

multiple vehicles can reduce the overall time required to finish a task because some

parts of a task maybe able to be subdivided into smaller tasks and carried out in

parallel. It may also be the case there exists a pool of specialised vehicles which are

in short supply. Tasks can then be delegated to these vehicles in the most effective way

47

so that energy is conserved and they are sent where they are most required. Therefore

some way of coordinating the vehicles is required. As a result a method of monitoring

and testing the cooperation of the different vehicles is essential. Multiple hardware-

in-the-loop (MHIL) [32] testing may also need to be carried out and a facility for

doing this will have to be created.

Testing of multiple agents in simulation is very useful because it allows developers

of new coordination techniques to view how their system would perform in reality. One

such way of coordinating agents is through the use of Blackboards [33] which works

by every agent putting its data on a blackboard for all other agents to use. This task

on the sea surface, on land or air is relatively straight forward, since the vehicles can

always know where they are by using GPS and they can communicate easily with

one another. However, in the underwater domain communication is slow, unreliable

and relatively short range. Equipment for underwater acoustic communication is

expensive so it is unlikely that each agent will have an acoustic communication device

(acoustic modem), and therefore will have to surface to communicate. GPS is not

available underwater either and more expensive navigation equipment is required, such

as Inertial Navigation System (INS), Doppler Velocity Log (DVL) and fibre optic gyro.

Unfortunately, even with this equipment the navigation is still subject to errors and

drift over time. Therefore any system which coordinates multiple agents underwater

has to take into account that it may not always have communication with each agent

and the agents may not be able to communicate. In order to test this, taking into

account the problem that communication underwater is basically unavailable, the

designer of the algorithm for sharing AUV data would need to decided at what time

this will occur so that all AUVs surface at the same time. Therefore, doing this

task in simulation will show the programmer what the vehicles are doing and thus

enable the designer to see that they are doing the correct thing. Lesser [34] describes

multi-agents in general and is a good starting point for anyone who is interested in

multi-agent coordination. Testing this kind of system in a real environment would

be quite hard and expensive in practice. Therefore computer simulations are usually

used to check the algorithms work correctly and visualisations are used to display

what each agent is doing at any one time to the operator/developer.

48

Another approach to using multiple vehicles is that described in Borges de Sousa’s

[35] paper, where they generalise and say that all the vehicles involved in one task

can be referred to as one Generalised Vehicle (GV). In essence the group of vehicles is

assumed to be one vehicle with lots of spread out movable sensors. When collecting

data from the vehicles for use in simulation, and also when doing HIL and HS, it maybe

simpler to have one vehicle representation and instead have lots of different sensors.

This may also lighten the computational load on the system. However, it does raise the

issue of scaling up HIL and HS to work with multiple vehicles at anyone time, such as

Multiple HIL (MHIL) testing and Multiple Hybrid Simulation as well as just multiple

simulation. Papers [32, 22, 4] discuss their implementations of this concept. However a

fuller solution is a modular environment which is capable of simulating lots of vehicles,

and the simplest way of doing this is by running multiple simulations over many

computers, each acting as one agent and communicating with a coordination module

as well as other agents. As a result ARF’s architecture must allow multiple vehicles,

and the user interface has to be dynamic enough to allow switching between each

vehicle, the best way being point-n-click Command and Conquer style (see section

2.4.4). Thus any architecture for testing must allow multiple entities and the simplest

way to achieve this would be via a copy/paste mechanism which everyone who uses

computers is familiar with.

The requirement for ARF highlighted by these papers is that the framework should

be capable of simulating multiple agents in parallel, and under the same system, so

that testing can be carried out on one computer. Each agent would effectively be a

vehicle in the virtual environment and each one could have different sensing equip-

ment, different dimensions and different manoeuvring capabilities in the same way as

a single vehicle simulator might be configurable. This means that ARF needs to be

very modular in design and have the ability to be distributed over many computers as

simulation of multiple vehicles may require more processing power than one computer

has at its disposal. This is mainly due to each vehicle requiring many different simu-

lated sensors, and in the sub-sea environment these consist mainly of acoustic imaging

devices, such as sonars, which require large amounts of computational power. It is

imperative that there is an efficient underlying architecture that on which all sensors

49

are created and can be easily added to virtual vehicles for testing purposes. Research

into this application using ARF is discussed later in combination with another system

called DELPHÍS [30] (See section 7.4 for more information).

2.4.3 Mission Planning

Mission planning is important for AUVs, and can be part of the user interface and

deliberative layers of the autonomous vehicle architecture shown in figure 2.3. Usually

a graphical user interface is used to create mission plans, and as such is part of the

user interface layer, however the mission plan being created then belongs deliberative

layer.

Mission planning [36] is a very important process for all UUVs. Even with ROVs

there might be control software on the surface, an autopilot, which drives the vehicle

at some points in the mission (see SPINAV in chapter 7). Therefore some way of

expressing the mission to the vehicle’s control software, contained in the executive

layer, is required, i.e. what the UUV is supposed to be doing and where. In order

to create a mission for a vehicle the mission has to be written in a language that the

vehicle understands and also expressed in a way the operator easily understands, i.e. is

intuitive. The operator would benefit from an intuitive natural mission specification

user interface where by they can see what they are telling the robot to do. For

extra clarity the operator may want to simulate a mission, or playback a logged

mission, so that they can see what the UUV will do, or has done. Mission planning

is covered here because it has strong links with, and is often mixed with, simulation

of the robotic platform for testing a mission. Therefore mission planning makes use

of similar components and technology as HIL and AR techniques.

2.4.4 Computer Games and Mission Planning

The most intuitive form of expressing what the vehicle is supposed to be doing is by

visualising the vehicle’s environment and then displaying the mission executing in the

virtual environment. Providing instant feedback gives the operator a visual check that

the vehicle is executing the mission correctly. An intuitive mission planner or operator

50

control interface may take the same form as a “Command and Conquer” [37] game

where by the user points-and-clicks a position on a map and the unit moves to that

position, then the user can select a task to perform at this point. If the user’s actions

are logged, the log could then be converted to a mission script for a vehicle’s control

software. This mission could then be executed by any capable vehicle at any time.

The user could select tasks for each vehicle to do in a similar way to the way a player

would specify tasks to each army unit in Command and Conquer, e.g. surveillance

(patrol an area). Obviously the tasks would not be the same as in a Command and

Conquer style game, but would instead be tasks which the vehicle could carry out.

For AUVs these may include, a surveillance pattern (sea port security), inspecting a

pipeline or simply mapping the local terrain/bathymetry.

The current generation of people are generally very used to playing all sorts of

computer games and thus used to certain user interface designs which have become

standard. This exposure should be exploited so that mission planning is very similar

to playing a computer game. For example, a computer game is set in a 3D environment

which is similar to the real world, but for simplicity the view point is usually from

a bird’s eye view as this is more intuitive for observing and controlling movements.

However, if the user has to do a more complex task (e.g. actually drive a vehicle)

then the user assumes a non-bird’s eye view such as a first-person view. Figure

2.7 is an example of different views which have different uses. When using a 3D

environment it can be made to look 2D by using a plan or birds-eye view. This

highlights the requirement that mission planning could actually be carried out in the

same 3D environment as the vehicle will be operating so that the operator can see

exactly what their vehicle will do.

The implication of this is that if mission plans are best created in a 3D virtual

representation of the real world, then it can be done in the same 3D simulation envi-

ronment as mission observation, hardware-in-the-loop testing and sensor simulation.

This would be ideal because not only could missions be specified in the same environ-

ment to which they are tested, but also the user can see how the real mission differs

from the simulated mission afterward. Once the real mission is completed the user

can visualise the new data in the 3D virtual environment in conjunction with the

51

Figure 2.7: Observation and Plan View examples

previous mission plans. In some cases this allows the next mission plans to be made

more efficient.

2.4.5 3D Mission Planning

3D mission planning is nothing new as this has been already carried out by the

Naval Postgraduate School (NPS) in Zyda’s [20] paper. They have a mission planner

which has been created to use the same modules as their robot which means they can

plan missions with it and also monitor missions as well. However, this is specifically

designed software for use with their own AUV and has no other use apart from

creating their mission plans. The different synthetic environment modules that make

up the 3D environment feed into the planner, but these are again separate and not

easily extendable. For example no sensor simulation or robot-in-the-loop [24] testing

facility is built into this software, although the environment could, if redesigned in

a different way, be used for all these purposes. Instead each part, the movement

simulation, the sensor simulation etc, all run separately and therefore do not all run

from the same virtual environment. A new framework could be only for testing and

simulation, but it could also be used for the creation of mission plans, viewing current

live missions and replaying existing missions. New missions could be created more

efficiently by superimposing current mission data in the virtual world for the user to

see. Mission planning would not be the primary focus of the framework, but there is no

reason why a generic framework shouldn’t be able to support a plugin which allows

52

the operator to create missions using a birds-eye view, in a similar way to the 2D

mission planning facilities of SeeTrack [38] which only provides 2D mission planning.

Again this highlights how the components which are used for mission planning could

be a subset of some of the components required for testing facilities.

The framework must be very flexible to accommodate this requirement, and to

go one step further and allow the user to be able to invoke their own modules, be

it mission planning or something else, at the click of a button. All modules should

interact and be configured within the same environment to save time and allow clearer

more well defined virtual scenarios to be created.

An ideal mission planner would allow an operator to create a mission by adding

virtual objects with rough positions, and then manually fly the mission in virtual

reality first e.g. if the operator wants the robot to take a particular route, the op-

erator can fly it them selves and the software could record the way points. This is

much more intuitive than entering in waypoints in a LLA/LLD (Latitude, Longitude,

Altitude/Depth) because the operator could simply point-and-click or manually drive

like a computer game. Many mission planners still don’t provide adequate facilities

for simulating and testing missions.

2.4.5.1 AUV Workbench

One such planner which does provide facilities for simulating and testing missions

is the AUV Workbench [36]. AUV Workbench is built to interact with the Exten-

sible Modelling and Simulation Framework [39] (XMSF) and Distributed Interactive

Simulation (DIS) [40] protocols. XMSF is a set of open standards which allow dif-

ferent platforms to communicate in the same language, such as XML [41] and other

associated world wide web technologies. The DIS protocol uses UDP/packet based

broadcast communication to enable communication outside the AUV Workbench to

other modules. AUV Workbench provides the user with the ability to do Mission

Planning and simulation and some HIL testing (through the use of DIS).

For mission plans, it uses an XML mission description language which is gener-

ated by the user interface. This XML mission specification is then interpreted and

can be converted to the individual AUV’s own scripting language used by its subsys-

53

tems. This is very similar to a mission description language called BIIMAPS [30, 42]

(described in section 7.4) developed at OSL. XSLT [43] processors can be used to

interpret XML missions produced by AUV Workbench and convert them to other

XML document types for use in other systems, such as BIIMAPS.

The AUV Workbench uses independent modules running separately to provide

the different functionalities, in a similar way that the OSL used to before ARF, e.g.

the simulated sensors run in one location, the hydrodynamic model in another and

the mission execution, perhaps, on the real robot. This kind of setup works well, but

when wishing to change configurations and different levels of mixed reality and virtual

reality, its more useful if the user can configure it all from the same user interface.

Otherwise it becomes tedious and the user has to learn how to configure and run each

individual system, and this cripples creativity and the ability to rapidly prototype

different scenarios.

The framework should encourage users to provide their own components, and

provide the mechanism to configure and save those component states. One method

of doing this is by using introspection techniques (see JavaBeans in section 4.1.3) to

ascertain the properties and property types of each component. The best solution

would allow the user to customize each component using configuration sheets within

the framework. Therefore they don’t have to learn how to configure and start each

component individually. Configuration files should be automatically generated to

abstract the user away from unintuitive scripting. However, if configurations do need

to be edited manually they should be in some easily understandable human readable

format such as XML. Thus all configurations for components should be done in one

virtual environment under the control of the user, but the user should be abstracted

away from writing configuration scripts manually. The main requirement being a

single point of creation within a single virtual environment, which allows for systems

to be easily integrated together.

Another key requirement that the AUV Workbench highlights is the need for

external communication to many different protocols and resources. Integration with

both DIS and XMSF technologies would be incredibly useful. However, facilities to

communicate with other protocols, such as OceanSHELL (discussed in section 4.1.5),

54

would also be useful. Therefore the framework needs to have some generic internal

communication mechanism which can easily be bridged to other external mechanisms.

In essence, the framework needs to be able to support the addition of user components

which provide communication to other external facilities.

The more uses one can think of doing with a virtual environment, the more require-

ments there are for an architecture capable of supporting all conceivable applications.

A solution is required which is capable of providing all the modules needed for a fully

simulated virtual environment, which allows extension using user modules, capable

of interacting with the virtual environment, for specific tasks. Half the problem with

existing software is that it is a black box and only the inputs and outputs can be used

which it allows. If a new output is required, it might be very easy to program, but

the programmer may not have access to the source code for that particular module,

meaning that a whole new environment may have to be created just because the 3rd

party software is unalterable. Hence the need for an extendible framework where all

components can be configured and inputs and outputs from the virtual world are eas-

ily harnessed. In theory an application such as the AUV Workbench would use some

of the same components as a full HIL testing platform. Therefore, a mechanism for

creating and configuring these generic components for the different uses is required.

The main requirement identified here is that any new architecture needs to support

standalone modules capable of doing anything. However, there needs to be a way of

connecting the inputs and outputs of these modules easily. Visual programming could

provide the mechanism for this. Section 2.7 on Visual Programming explains how.

The review now looks into how virtual environments are used for monitoring systems

and discusses the similarities to other applications.

2.4.6 Remote Awareness

Monitoring of remote environments is used in many different applications e.g. mon-

itoring the status of a wind turbine on an offshore field. Sometimes the way this

information is displayed to the user is not always the most intuitive. Consequently

some important piece of information can be missed due to it not being obvious or

due to some misunderstanding of a warning code. For example, when monitoring

55

platforms in remote environments an operator would be interested in seeing where a

warning originates from, i.e. what piece of equipment is producing it. The operator

then takes the appropriate action immediately. The contrast is a monitoring system

which just indicates an error in equipment number (x), the operator then has to look

up what (x) is and by which time something could have gone more wrong. The prob-

lem with many safety visualisation systems is that they are usually hard coded and

therefore difficult to extend when more pieces of equipment are added to the system,

and as a consequence an upgrade of all the software is usually in order.

A virtual environment could be used with 3D shapes representing the pieces of

equipment being monitored. This is therefore another potential usage for the frame-

work. Real world data is fed into a virtual world to display useful information in much

the same way as monitoring autonomous vehicles. In a modular framework, special

components could be used which change their status in response to some external

stimuli.

The framework could be used as the visual front end to some remote monitoring

systems, e.g. A remote health monitoring system such as a RECOVERY [44] which

diagnoses faults and tries to recover from them. RECOVERY is the first example of

diagnostic software that runs on systems in remote environments, this fits into the

executive layer of the autonomous vehicle architecture shown in figure 2.3. To display

feedback in a virtual environment, a simple plugin could have status lights such as

red/amber/green to display if anything is wrong with a piece of equipment. Then

depending on what sort of equipment it is, the operator could then select it with the

mouse and invoke some action on it.

As a result ARF needs to provide a user interface for interacting with objects

within the scene, and the user interfaces of these objects could be linked to real remote

objects. For example, information about weather buoys out in the sea, which measure

tides, could be displayed in ARF by changing the sea height in places governed by the

buoy’s GPS positions. Another use could be valves or other mechanical equipment

on an oil pipeline, these could be monitored and information about each section

highlighted in the virtual world, e.g. each oil/gas valves current flow rate. There is

nothing specifically different about how these situations use a virtual environment

56

from any of the other uses discussed. There merely needs a specialised user module

which takes input from some external system which in turn controls the appearance

of certain virtual objects in the virtual environment. This highlights the requirement

that modules for the framework must be able to easily interact with and control

certain aspects of the 3D environment. Therefore a fairly simple 3D environment

needs to be used so that creating modules that interact with it is straight forward.

The feature to be extracted from this is that objects can be placed in the virtual

environment to represent the real objects and which interact with their diagnostic

systems to display status information to the user. Therefore plugins could be devel-

oped to display information in the framework for any fault detection architecture as

long as the framework is easily extendable and highly modular.

The review now looks at existing frameworks that have been created to address

similar problems.

2.5 Existing Simulation Testing Frameworks

Aside from normal HIL testing environments which are tailored to one platform,

frameworks exist which allow virtual environments to be created. These generally

rely on some distributed communication protocol where by the different modules of

the framework can communicate with each other. This allows modules to be swapped

easily and also allows them to distributed over many machines. There have been at-

tempts to provide configurable and flexible simulation frameworks which allow many

vehicle/environment combinations to be realised and tested. One of the more recent

developments comes from the Nasa Research Centre in Fluckiger’s [45] paper which

discusses the Mission Simulation Facility (MSF) test bed. This paper discusses a lot of

the points that have already been raised in this review about the limited flexibility of

most HIL environments, and that new simulators usually need developing for each sep-

arate application. As a result the MSF is intended to provide a configurable/flexible

framework for the simulation of many robot/environment combinations. They pro-

vide an architecture and communications platform which allows the interconnection

and substitution of different modules. However, they don’t provide the ability to

57

build/extend existing modules quickly or provide guidance in connecting components

together, therefore its still not that intuitive to actually use it.

In Gaskell’s [46] paper they are developing a terrain server for generating specific

types of topography such as that of Mars. This server, along with other modules,

could then be plugged into the MSF as part of the synthetic environment with a lot

of work interfacing with the MSF’s architecture. Having merely an architecture is not

really enough since this doesn’t help to create new scenarios quickly. A user interface

is required which allows the user to select quickly and easily the components they

need and save the configuration at the touch of a button. This is one of the main

requirements for ARF (see Visual Programming in section 2.7).

In essence a framework is required for creating the actual simulation environ-

ment for the needs of the application. The framework would also need to provide

the flexibility of MSF, and would therefore require a similar communications net-

work. However, in ARF the communication protocol needs to be flexible, and easily

swapped, as many systems use different protocols so making ARF constrained to one

protocol (say OceanSHELL) would make others less likely to adopt the framework for

producing their own environments. Therefore a good communications protocol needs

to be provided and also a generic interface which allows for 3rd party communica-

tions protocols to be easily integrated. The MSF identifies that certain modules may

need to be “Hot-Swapped” for more accurate high fidelity modules in certain circum-

stances. However, high fidelity modules are more computationally expensive and for

this reason distributing the computation of the environment over many computers

makes it more feasible and reduces the need for any special hardware. In some cases

modules may already have been created in another language for another purpose and

the designer may not want to have to port the module to run in a new framework

such as ARF. Instead, in ARF the user should be able to create dummy modules

which communicate, via some communication protocol, with the stand alone module

running on a different system. Therefore ARF needs to be very flexible and allow the

user to create modules for practically any usage. For this reason ARF needs to be

quite generic and not impose many requirements/restrictions on 3rd party modules.

The MSF uses Unified Modeling Language (UML) [47] to define communica-

58

tion messages which are passed between the different components of the framework

down the communication backbone. Another method is using XML to define Ocean-

Shell/JavaSHELL (See section 4.1.5 for more information) messages, which can then

be used for communication between external modules. However, there is no reason

that a UML based protocol could not be implemented for use in ARF instead of

OceanSHELL, since both would be special components available for the user to use.

Additionally, the MSF is being constructed incrementally, therefore only simple

versions of modules are being implemented first and then higher fidelity modules

introduced later once the base system is working well. This is the same technique

that will be adopted when developing ARF and for developers using ARF. Since

providing the core functionality, class structure/hierarchy and interfaces for ARF is

vital so that more complicated specialised subclasses of the base modules can then be

easily added at a later date. ARF is not only going to be for simulation and HIL, but

also for remote awareness, mission planning and live mission observation. Thus ARF’s

base layer and base components have to be more generic than the MSF in order to

provide this flexibility. However many of the components used for one purpose should

be able to be used for another, hence why ARF is being developed as it will help

re-use of modules for different applications.

2.6 Existing Augmented Reality Frameworks

The idea of component based frameworks for AR applications are not new. However,

the definition of AR and the idea of what a framework is have not yet been stan-

dardised leading to many different interpretations of what a framework is. Therefore

research into other areas has been necessary to underline the point that a general

purpose framework for creating mixed reality scenarios for potentially any usage does

not really exist.

The idea of a flexible, extensible, generic framework for AR has already been

written about [48, 49] and discussed. The main problem with both of these approaches

is that the research has not been into AR applications as a whole, but rather the

more specific field of wearable AR devices for human applications, or Augmented

59

Reality displays of real environments. The point of a real generic framework has been

missed by these researchers because AR can be used for robot testing, or mission

observation as identified previously, not just for creating Augmented Reality views of

a construction site which is merely one tiny application. Another fall back of these

systems is that they don’t provide a good high end user interface for creating the

actual virtual scenario which will be augmented with real data, or used to augment

a real environment view with virtual data. They still rely on configuration scripts

which have to be created manually. Clearly this doesn’t lead to fast creation or rapid

prototyping.

For example, previous research [48] describes a framework for creating AR envi-

ronments. What this research actually describes is a set of protocols and hardware

interfaces which allow for different arrangements of equipment in a room/area to be

configured as an augmented reality environment. Components are designed so that

they communicate over a distributed communication protocol thus allowing them to

be placed anywhere, i.e. provides location transparency making it easy to put sensors

anywhere in an environment. The framework discussed has many good points such

as XML configurable components, distributed communications protocol, standard in-

terfaces defined for Navigation sensors etc. The main problem with this framework is

that all the components can only be used to create an AR setup for a human viewing

the environment either through a wearable setup or through cameras. The compo-

nents themselves could easily be used for doing tests with AUVs, robots and such like

since a lot of the navigation systems and visual sensors are the same. However, the

problem being that this framework assumes that you want to create an AR environ-

ment and doesn’t provide the scope for doing the many other similar tasks discussed

earlier. The configurable nature is something which ARF would adopt, i.e. using

XML to describe how components interconnect and how they are configured. How-

ever, the user won’t actually author these files themselves, but instead they would be

automatically generated by the user interface which helps to guide the user when con-

necting the available components. This is something which has been totally missed in

this research and is one of the main reasons mixed reality environments are expensive

to create because it takes the user a long time to learn how to use the architectures

60

available.

This leads the review onto the next section of visual programming since it is now

apparent that ARF will need to provide mechanisms for helping the user connect

components in meaningful ways.

2.7 Visual Programming

A subject which has been briefly mentioned is that of guided programming or guided

construction, such as the LEGO R© analogy given in section 1.4.1. One of the main

problems for software programmers and designers which inhibits performance is whether

or not they know how to use all of the existing software modules. More often than

not computer software modules are poorly documented and do not provide example

implementations on how to use them. This is particularly the case when projects are

on a tight schedule with little capital backing them, meaning that there simply isn’t

the time or the money to spend on creating nicely commented code, documentation

and tutorials. This problem is thus self perpetuating since each time a badly docu-

mented module is used, the programmer spends so much time figuring out how to use

the module that they then have less time to document their own code.

Poor documentation is merely one aspect concerning software development which

decreases productivity. Another problem for the programmer is that of simply know-

ing which modules are available and their functionality. Documentation can be con-

sulted, however, as discussed earlier the documentation maybe poor or non-existent.

Even if it exists it can still be hard for the programmer to find out exactly what they

have to do to use the module, especially if no sensible examples are given. When a

programmer knows exactly the functionality of a module they can create a program

to use it with great speed. This needs to be harnessed, therefore better mechanisms

need to be in place to help the programmer better understand which modules interact

and how to configure them.

The combination of problems discussed means that programmers spend a lot of

time re-inventing the wheel because existing modules are hard to locate, poorly docu-

mented or impossible to use. This problem is rife when it comes to producing virtual

61

Figure 2.8: Michel Sanner’s ViPEr - Visual dataflow system for structural biology

environments and simulated modules for testing robots, especially AUVs. This is

usually due to environments being quickly “hacked up” to fulfil one purpose without

considering the many other potential usages. Monolithic programming approaches

then make reconfiguration and extension impossible limiting it to really only one pur-

pose. More time spent making more generic modules with basic inputs and basic

outputs in a configurable environment would make making changes later quicker and

easier. However, when completely new functionality is required, even a configurable

environment still has to be reprogrammed to incorporate new modules which can be

difficult unless the environment is specifically designed to allow this.

Visual programming [50] provides some solutions to rapid module development

and some ideas which can be harnessed to provide the basic idea behind a generic

62

architecture for creating virtual environments for AUVs. In general, visual program-

ming is the activity of making programs through spatial manipulations of visual el-

ements. It is not new and has been around since the very early 1970s when logic

circuits were starting to be designed using Computer Aided Design (CAD) packages.

Visual programming is more intuitive than standard computer programming because

visual programming provides more direct communication between human and com-

puter which given the correct visual cues makes it easier for the user to understand

the relationships between entities and thus makes connecting them easier. Take the

example of taking the ice cube trays out of the freezer and placing one in a drink.

The human way of doing this is simply to look to locate the ice cubes, use the hands

to manipulate the ice cube out of the tray and then drop it into the drink. Thus any

interface which allows the user work in their natural way of doing things is going to

make the job quicker. The other option, which is more like computer programming,

is to have the human write down every single action required to do this, or use a

keyboard to move the ice cube from the freezer. These methods are far more clunky

and take much longer to do as its not obvious where to start. Therefore visual pro-

gramming should exploit our natural instincts of how to move things around and join

objects together, rather than writing code to do this. One such example of visual pro-

gramming is ViPEr [51], shown in figure 2.8, which allows the user to visually connect

components via data flows which then generate some visualisation. However, visual

programming is not very useful unless components can be created very easily for use

with the visual programming environment, and still remain standard programming

objects which can be used in normal programming. Java is one such language which

provides this unrestricting facility whilst still enabling visual programming. It is clear

that if ARF is going to be very generic and be easy to use, it will require the use

of visual programming methods to reduce reliance of documentation and speed up

creation times.

This concludes the main part of the literature review. This chapter now continues

but looks at technologies developed in Ocean Systems Laboratory and how they have

influenced the research and design of ARF.

63

2.8 Ocean Systems Laboratory Technologies

This section covers the technologies that have been developed in the Ocean Systems

Lab (OSL) as well as the other assets available. A brief history explains how the

OSL has evolved and the implications this has had on the research towards ARF. The

later sections discuss the main architecture behind all AUV technology in the OSL

and how the new framework would fit into it.

The development of the platforms, discussed shortly, has meant that testing, sim-

ulation and observation facilities have been required in the OSL. The development of

these platforms lead to the identification of a niche which this thesis addresses and

many of the different requirements discussed in this literature review being identified.

2.8.1 Underwater Vehicles

The Ocean Systems Lab (OSL) has been developing underwater technologies in projects

such as ALIVE, AUTOTRACKER which used the REMUS [52], Gavia [53] and Geo-

sub [54] AUVs respectively. The OSL has also been developing its own autonomous

platforms for its own research purposes namely RAUVER, NESSIE II, NESSIE III

and RAUBoat. However, the OSL has other vehicles such as Hydroid’s REMUS and

HI-BALL which are also used for development purposes.

2.8.1.1 Nessie and RAUVER

RAUVER [55] is an AUV and has been developed for over 5 years. It has been

through 3 major revisions. Its purpose is a test platform for all the technologies being

developed in the OSL, and other institutions, when they become mature enough for

real world trials. Figure 2.9 shows the RAUVER Mk2 and Nessie III. RAUVER was

later stripped down and rebuilt so that the entire bottom layer disappeared. This

was to maintain portability and keep the AUV below 200kg. However, for most small

tests RAUVER was still too large. Therefore the idea came after the 1st Student

Autonomous Underwater Vehicle Competition Europe [56] (SAUC-E) to build a very

light weight hover capable inspection class AUV called Nessie [57] (see sections 7.2

and 7.3 for more information on Nessie’s evolution and its usages with ARF).

64

Figure 2.9: Nessie III and RAUVER Mk2

After Nessie I came Nessie II and Nessie III. Nessie III the newest addition to the

operative AUVs of the OSL. The OSL also has a survey class AUV built by Hydroid

called REMUS [52] (See figure 2.10). With both survey class and inspection class

AUVs the use of multiple robots collaborating together is possible (see section 7.4)

since all the AUVs have different capabilities meaning that cooperation between them

is essential. The OSL has one autonomous boat called RAUBoat. The name lends

itself to its inner workings as most of the technology came from RAUVER and is

in essence an amalgamation of technology from RAUVER and NESSIE. The idea of

RAUBoat is to provide surface surveillance and tracking of the AUVs. The second

purpose is that RAUBoat act as a communications gateway from radio to acoustic

and vice versa. Thus providing much shorter range acoustic communication and far

more reliable data transmission from AUVs to the surface. RAUBoat will also be

able to carry payload sensors such as sidescan and bathymetric sonar and underwater

video cameras (see section 7.5 for more information on how this is used with ARF).

Figure 2.10: REMUS AUV

65

2.8.2 Implications for ARF

The OSL has evolved and now has many different software and hardware projects

spread across the many researchers. There are only limited resources to do real world

testing of the AUVs. The OSL has the benefit of two test tanks at its disposal; one

tank which is a 3x4x2(LxWxH) metres and another wave simulation tank which is

roughly 8x8x5 metres. The access to these resources is not always available, and this

is only the first stage in real world testing. Consequently there is not enough real

world testing time for hours and hours of debug. The fiscal cost of running tests in

tanks rather than at sea can also be huge and consequently budgets won’t stretch to

large amounts of real world trials. For these reasons it is imperative that software

be integrated together and all known bugs eradicated before any real world trials

commence. Even known software problems can cause large amounts of wasted time

because the AUV still has to be recovered to find out what the problem was. Then

there is the setup time to do the same mission again, thus wasting large amounts

of time. Even known software problems should be protected against and tested to

make sure they cannot cause a mission fail. This is one of the reasons Nessie was

developed as it provides a low cost test platform which can be easily used for real

world trials. However, even then the costs are still high enough to mean that time

cannot be wasted due to inadequate pre-real-world testing.

A flexible testing environment which uses the same architecture as the AUV is

required. Often testing environments have been created for specific purposes, however,

they are generally monolithic in design and not easily extendible to new tasks. Thus

when the task changes slightly, it takes hours to factor in new parts to the testing

program. More time is often wasted creating new test environments when the time

would have been better spent designing an extendable architecture for doing multiple

types of testing. The idea for ARF came from this very notion. A virtual environment

was required which could accommodate far more than mere simulated testing i.e.

could accommodate all mixed reality concepts which could be used to do potentially

anything provided the architecture was both flexible and extendable. ARF needed to

be able to accommodate new ideas, new communication protocols and new robots.

OSL is moving towards autonomy in all domains and is thus not so fixated with

66

underwater vehicles but more collaboration between all types of land/sea/air au-

tonomous vehicles. Consequently, to test these systems it becomes more impractical

and expensive to debug in the real world as resources simply are not available at the

huge scale required for the complex scenarios. Real world tests are always required,

but the architecture should be solid before a project’s system makes its way on to the

real platform. So that when a new problem occurs it is not masked by many other

problems, as the problem with autonomous vehicles is finding out what caused the

problem. Since real-time communications is often unavailable this makes debugging

intermittent errors an absolute nightmare. Every single alteration made to some code

could potentially take another real world trial just to see if it is fixed. Therefore

testing all the systems running together in the way they would on the vehicle (HIL)

is imperative to making sure that the robot is safe to do an autonomous mission for

real.

2.9 Summary and Conclusion

This has review has covered the main areas of AR and HIL testing techniques. Other

related uses such as the combination of mission planning and simulation have also been

discussed to highlight the common elements between this and other associated tech-

nologies. Currently, there exists no frameworks which provide the different granular

layers and abstraction required to provide all these capabilities. Existing frameworks

provide no intuitive help for the user and do not provide straightforward extension

making re-design quite often necessary.

When taking account of all the points and requirements discussed in this section it

is clear that a gap exists for the creation of a framework of components that from which

all identified uses from this chapter can be realised without having to design a new

architecture for each one. The framework will have to be structured in such a way that

provides the flexibility so that it can be used for all of the afore mentioned purposes

and possibly many more. A general architecture is required which provides the basic

building blocks for all types of environment. Then, providing the base architecture

is structured and well defined, it should be possible to add extra functionality by

67

extending the current framework without having to alter the existing structure of

the framework. The framework will have to be incredibly modular and highly object

orientated so that many different combinations of its constituent elements, and user

made components, can be combined to produce a useful virtual environment.

As mentioned earlier, all of the existing simulators, virtual environments, mission

planners and testing facilities all have one thing in common and that is that they

all use some sort of virtual environment. Therefore ARF will have to be generic

enough to cater for all these environments individually, or all together, to provide a

full virtual environment testing, planning and remote awareness facility. A summary

of the functional requirements identified by this literature review is given in section

3.1.

68

Chapter 3

Functional Design

This chapter describes how ARF will meet all of the requirements identified in the

literature review. The requirements are collated and explained. Then the design of

ARF is explained.

3.1 Functional Requirements

The requirements identified in the literature review can be categorised as features of

the architecture and the goals needing achieving. For example, speeding up scenario

creation times is a goal, whereas providing guidance to the user as to how scenarios

can be constructed is a feature of the architecture. The features of the architecture

hopefully help achieve the goals. Most of these features can be summarised as to the

general implications for the design of ARF. Therefore, the requirements are listed,

then the goals and then the features of the architecture are extracted and explained.

3.1.1 Collated Requirements from Literature Review

• 3D virtual environment for displaying data and creating a simulation of the real

environment.

• Provide AR, AV and VR i.e. all stages of the reality continuum.

• Domain independent (land, sea, air, space).

• Support all defined working modes (OFFLINE, ONLINE, HIL, HS, OM, TR).

69

• Provide AR and AV concurrently (for purposes of HS).

• Support MHIL.

• Copy/paste functionality for creating multiple simulations quickly.

• Support Distributed Virtual Environment with sensors and simulations running

on different computers.

• Provide faster/slower than real-time simulations (OFFLINE).

• Provide external I/O for communicating with external modules.

• Provide location transparent external communications (important for HIL).

• Provide generic event based/message passing internal communication mecha-

nism so that external communications can be easily bridged.

• Support 3rd party external communication protocols (DIS, OceanSHELL).

• Support mechanisms for synchronizing the virtual and real environment.

• Support modules for specific input and output devices such as HMDs.

• Allow modules to render data from external modules into the 3D environment

(RECOVERY, increasing situational awareness).

• Easily add modules to the environment (e.g. for mission planning).

• Potentially unlimited fidelity for simulated sensors.

• Provide intuitive 3D control interface to allow the user to easily find their way

around and use different views.

• 3D environment must be simple for 3rd party modules to control and interact

with.

• Provide ability to load existing 3D mesh data formats as 3D geometry into the

virtual environment (X3D, VRML, 3DS etc).

• Provide help for the user as to how components can be connected and configured.

70

• Provide intuitive user interface for configuring modules.

• Auto generate the module configuration scripts allowing the virtual environment

to be automatically saved and loaded.

3.1.2 Collated Goals

• Intuitive visual user interface.

• 3D environment easy to build and manipulate.

• Increase situational awareness for operators of remote platforms.

• The ability to synchronise simulated systems with real systems.

• Provide a way for specialised modules for telepresence to be able to interpolate

between sporadic communications from the remote environment.

• Modules easy to write and straightforward to integrate with ARF.

• Increase speed of virtual scenario creation time by guiding the user and reducing

the need to consult documentation.

• Intuitive to connect the inputs and outputs of modules together.

• Intuitive to configure the module parameters so the user can’t make mistakes

or have to manually write configuration scripts.

• Support incremental development of the virtual environment alongside the project

for which it is being created. Allow it to evolve at the same rate as the tech-

nologies it is being used to test.

3.1.3 Required Features

The features required of ARF can be defined as follows:

1. Generic - provide a generic low-level non-restrictive modular architecture. The

lowest level of ARF must be generic in that it is not specific to underwater envi-

ronments or robotics but is merely an architecture for building and constructing

71

scenarios which can be used for potentially any purpose i.e. no restrictions on

what a component can or can’t do.

2. Extendable - new components easily created and integrated with ARF i.e. able

to build on the old, thus no re-inventing the wheel.

3. Flexible - although ARF is designed with testing of robotic systems in mind, it

should not be restricted to only this i.e. the low level components could be used

for many other purposes as well.

4. Distributed - able to communicate data to/from the real world systems allowing

for various real and virtual data to be mixed for AR and HIL applications.

5. Guided - provide guided construction mechanisms which help the user choose

how components are connected in order to construct scenarios more quickly

and easily i.e. the analogy of LEGO R©. Thus, alleviating the need for large

documentation.

6. Intuitive/Easily Configurable - ARF should provide intuitive interfaces for con-

figuring components and manipulating and using the 3D virtual environment.

7. Straightforward development - no new languages invented, the burden of devel-

opment for the architecture is then eased; the developer requires no new skills.

8. Portability - varying uses, means varying systems and consequently different

platforms will be running different systems; therefore ARF needs to be able to

run on those systems.

9. Varying granularity of complexity - ARF must provide high level constructs for

the end-user and also low level programming objects for the developer. ARF

should support development at potentially any level, since if a component does

not exist, the programmer can drop down a level to the programming layer and

create it.

10. Polymorphism - allow components to have multiple interfaces so that they can

be connected in many different ways for different uses. These interfaces could

72

be at a programming level or at an internal communication level i.e. accept

many different sorts of internal communication types (event types).

11. Generic communication system - provide a generic internal communication sys-

tem which can be easily bridged to external communication to the remote en-

vironment by 3rd party components which implement other protocols, such as

OceanSHELL.

The generic nature of ARF will provide the flexibility. However, without ex-

tendibility the flexibility is short lived. Many of these concepts go hand in hand. It

is important the design of ARF does not restrict either of these requirements as then

the system could become obsolete due to the lowest level not being generic enough.

It is difficult to never specialise a system for one purpose, however, specialising in

ARF should merely be a case of producing specialised components, and therefore not

restricting the architecture itself. A lower level of granularity needs to available for

the programmer to create different architectures within ARF. Thus ARF will allow

creation from the lowest level to the highest level. How this is actually implemented is

discussed in detail in chapters 4 and 5. However, this chapter provides the functional

design of ARF and how it achieves the requirements. It doesn’t consider the tech-

nologies required, but instead outlines the required functionality of any technologies

needed. The features identified are demonstrated through the use of specific testing

and use test cases which are discussed in chapters 6 and 7 respectively.

3.2 Architecture Overview

The section provides a conceptual functional diagram which illustrates how the re-

quired components will interact within ARF to meet the requirements described ear-

lier.

3.2.1 Component Interactions

Figure 3.1 shows how required components should interact. This diagram shows some

of the components required by ARF to achieve the requirements. This is a general

73

Figure 3.1: Entity Interaction Diagram

diagram which illustrates the types of interactions between the components and the

structure used by ARF. To begin with, it should be noted that all the square boxes

represent individual components. ARF will require that each component specify:

• Editable options - e.g. on/off, or visible/invisible, or colour etc.

• Component connections - what components are required as parameters for this

component.

• Event listener connections - which event message types this component outputs.

This will be used by the user interface to register other components as event

listeners to this component.

The internal communication within ARF will either be via event messages, or via

direct component reference. For example, a component will be able to use another

component as a parameter and thus make use of that component in some way.

74

The diagram illustrates the different types of internal communication using ar-

rows. The key demonstrates which colours of arrows and boxes refer to which type of

component or communication type.

The diagram illustrates that there are 4 different types of component. In fact,

there are only 2 distinct types of component: components which can be added to

SceneGraph of the virtual world, and components which can’t. ARF will use in-

heritance and polymorphism of components to provide the flexibility required. All

SceneGraph components must be a subtype of a SceneGraph component (leaf, group

etc). All non-SceneGraph components can do anything they like. However, ARF will

use type interfaces to allow components to be recognised as more than one type. For

example, some components may have graphical properties and need to be displayed

on the screen, therefore these must inherit from an interface which specifies that they

are graphical. Some components may implement event listener interface types; these

allow the component to be identified as an event listener for a specific type of event.

This information is used by the user interface to provide guided construction.

The diagram shows that any component can require a reference to any other type

of component. Some components will require a reference to other components in order

to control them and pass them data. For example, the camera SceneGraph component

has a reference to the 3D renderer so that it can send the information from the 3D

environment to be displayed. The camera controller also needs a reference to the

camera so that it can move the camera around the 3D environment in relation to

movements made by the computer’s mouse.

Sensors which simulate some real life sensor usually need to interact with the

virtual environment. Therefore most sensors will be components which add to the

SceneGraph so that they can sense the surrounding environment. This is why on the

diagram the sensor has a reference to the scenery group. The sensor is thus slightly

optimised because it will only sense the virtual environment which is connected to the

scenery group sub-tree of the SceneGraph. This will allow the user to select which

datasets each sensor will use.

The contents of the SceneGraph can also be made to be dynamic, i.e. driven by

some external stimuli. For example, external communication can be implemented

75

by specific components. These components may listen to internal event traffic and

convert this to messages which can travel on some external medium. Therefore compo-

nents may also be used to merely provide a gateway to some external communication

medium. This then requires other components which communicate directly with the

gateway component. This is illustrated in the diagram by the external comms module.

The external comms module would maintain a list of registered receiver components.

Every time data is received it is passed to the registered components for processing.

The user interface will allow the user to register components of correct interface type

as receivers. For example, the diagram shows 2 registered receivers with the exter-

nal comms module. These 2 components convert the incoming data to specific event

types which are then sent to the registered event listener components. In this case

the 2 registered event listeners to the two different converter components are robot2

and geometry generator. As events are received by the geometry generator they are

converted into virtual data which is rendered in real-time to the scenery group. At

the same time the robot2 moves around the virtual environment upon receipt of a

movement event. Thus the event listener interfaces used by both these components

might be a GeometryDataEvent and a NavigationDataEvent respectively.

Data is output to external communication mediums in a similar way. A special

event receiving component converts that event type to data which is then sent to an

external comms module.

This is merely an example of functionality which could be implemented with this

style of architecture. ARF will provide the mechanisms for connecting the component

references, registering event listeners and configuring component options. It will also

manage which components are available and allow the user to import new components

to the repository. The way it will do this is described in the next section which

describes the user interface design.

3.2.2 Interaction with the User Interface

ARF will provide the functionality required by providing the means for connecting

and configuring any sort of component. ARF will have to know information about

the types of each component and what its options and connection requirements are.

76

This information will be inferred by examining the code of each component using

introspection techniques, since no more requirements should be placed on the way

components are programmed than necessary. Exactly how ARF does this is described

in detail in the “Implementation Design” chapter 4, since it is quite specific to the

technologies chosen to base ARF upon.

Figure 3.2 shows an overview of the user interface and how the various constituent

parts will interact. The reader should notice that the components displayed on the

components board UI and 3D SceneGraph structure UI are the same components as

discussed in the previous section. This diagram shows the different user interfaces

required. There exists user interfaces for the SceneGraph and component board.

There are also 2 other user interfaces: graphical component display pane and selected

component configuration.

The graphical component display pane will allow for components of graphical type

to be made visible by adding them to this pane and rearranging them. The 3D ren-

derer component and camera controller are graphical components. The 3D renderer

is required to be displayed in order to see the through the camera component into the

3D virtual environment. The 3D virtual environment is added to, and controlled using

the 3D SceneGraph structure UI. This will allow the user to add specific SceneGraph

components to the virtual environment, such as 3D geometry, robot simulations, an-

imations etc. The components board UI maintains a list of all components currently

being used within the project. The user can select components either here or on the

3D SceneGraph structure UI to gain focus of their properties, component connections

and event listeners; these are shown in the selected component configuration pane on

the right of the diagram.

The selected component configuration is where ARF will provide intuitive guided

construction. ARF will look inside the components and extract properties which

the user can configure. This pane will show which connections are required to other

components, various properties for the component and also allow the user to add event

listeners of correct type. This is where the true force of ARF will lie. It will be able

to show the user options as to which components can be connected, and which ones

can be created if none are currently being used; the same for event listeners. The low

77

Figure 3.2: User Interface Interaction Diagram

78

level architecture ARF provides will allow many different uses through the evolution

of new components. However, the implementation specific problem is how ARF will

provide Guided Construction, and how it will automatically configure components;

therefore abstracting the user away from ever having to manually edit configuration

files. Everything will be contained within one framework allowing completely different

scenarios to be loaded and saved quickly. The low level techniques used to provide

guided construction are discussed in chapter 4.

3.3 Summary

It should become clear that ARF itself does not really need to have any particular

focus on remote environments, communication protocols, virtual reality or HIL, since

the architecture itself will be so flexible and generic that it can be used to configure

and connect components for any particular usage. The design of the components and

their interface types is what governs what they can be used for. ARF merely acts as

the guiding hand when building the scenarios. However, ARF will be providing com-

ponents such as the 3D virtual environment, sensor simulations and various external

communications protocols to act as a starting point for the development of many dif-

ferent applications. The available components will evolve alongside the projects that

they are being developed for. Due to the nature of this work ARF will provide many

components for testing of robotic platforms and other associated augmented reality

applications.

This chapter illustrated the functional design of ARF but did not elaborate how it

was going to perform some of the complicated tasks, such as introspection, required to

provide the generic and flexible nature required. This is because these techniques are

largely dependent on the choice of the technologies which ARF will be based upon.

The technologies used are discussed in the next chapter on implementation design.

79

Chapter 4

Implementation Design

The design of ARF is based on the requirements of many technologies in the under-

water robotics domain, and more specifically the testing of these underwater robotics

systems. It is important to keep in mind the reasons which are driving for the research

and development of ARF, since these are the primary requirements. The literature

review covers many diverse areas which all have links to underwater robotics and all

have their own problems which need solving. However, most of these requirements

are secondary and will in part be inherently provided by the modular design of ARF

discussed in chapter 3. Therefore the key problem that ARF will address is pro-

viding hardware-in-the-loop and mixed reality testing scenarios for various different

platforms. The main purpose of ARF is to reduce real world testing time, and conse-

quently costs, by providing the ability to test modules, systems and platforms more

easily and quickly than producing individual testing platforms for each system.

Providing an architecture for creating the scenarios is only part of the problem.

The problem of reducing real world testing time of underwater problems relies on

having ARF available to use, but also requires that the time spent creating the testing

scenarios, and components needed for them, is also relatively small in comparison.

Otherwise so much time is spent creating the virtual testing scenario that it could

cost just as much as doing the real world tests. Therefore, mechanisms are required

which guide the user as to how components can be connected, so that using ARF is

much faster than manually programming the components together using an Integrated

Development Environment (IDE). Various techniques using introspection are used to

80

provide information and guidance to the user in the form of “options” (See section

5.1.5 for more information on how this is actually implemented). Introspection is

where actual programmer’s source code is inspected to see which fields and methods

can be identified as editable properties of that class and also what connections a class

may require to other classes. However, in order to understand how this is achieved

some background is given on the technologies which ARF will use.

This chapter covers the design of the architecture based on the technologies chosen.

Chapter 5 describes the actual workings of ARF from a user interface level and from

a programming level. Therefore this chapter discusses the design of ARF using the

technologies which are available, without getting into low level detail of the code

required for the mechanisms involved.

To begin with some background is given on the chosen technologies required for

ARF.

4.1 Review of Required Technologies

This section looks at the technologies which would be useful in providing a generic

base layer for ARF’s architecture; firstly, the 3D virtual environment, then a more in

depth discussion of JavaBeans is given since this is the technology which ARF will

harness to provide the extendibility and flexibility demanded by the many different

applications. A distributed communications protocol called OceanSHELL is then

discussed since this will provide the location transparency required by so many mixed

reality applications.

4.1.1 Why Java?

ARF will need to run on many systems; Java [58] offers portability of code which will

enable ARF to run on any system capable of running a Java Virtual Machine (JVM).

ARF also requires that it be able to peek inside the user created components and

extract their properties; this is known as introspection. Java is perfect for this due to

its Bytecode compilation layer. Bytecode is still easily interpreted and maintains all

method names and type names. Therefore information can be easily extracted from

81

a Java class file without the programmer having to provide a special user interface

to configure their component. In order for ARF to be widely used it must remain

easy to program components for and not place lots of restrictions on the programmer.

Ideally the programmer should be able to use existing modules with little modification

to make components for ARF. More on this is discussed later. The other reason

for choosing Java is that due to its flexible polymorphic nature, it allows classes to

appear as different types through the use of interfaces and supports inheritance. Other

languages such as C++ do this as well, but as mentioned earlier there is no way of

introspecting C++ code due to its very low level compilation layer.

4.1.2 Java3D

Java3D [3] is a platform independent 3D language based on Java. Java3D uses a

SceneGraph structure which is rendered using OpenGL or DirectX depending on the

platform. Java3D allows the user to easily create nodes which can be added to the

SceneGraph. These can include geometry, behaviour, sound and transform nodes.

Java3D provides a feature rich set of libraries for the user to use. These allow for

collision testing, picking using ray tracing and bounding shapes; these techniques are

very useful for sensor simulation. Due to Java’s extendable architecture, the user is

able to subclass Java3D nodes and thus create their own custom implementations.

ARF will provide many useful components which can be added to the virtual world

by the user. The main advantage is that the SceneGraph structure is easy for the user

to visualise and is precisely what is required by ARF’s functional design (an example

Java3D SceneGraph is shown in figure 4.1).

In addition to the flexibility of the Java3D architecture there exists many 3rd party

developments which provide even more Java3D nodes and thus increase its usefulness.

These include 3D Mesh loaders for objects and terrain of many different types. One

such 3D mesh loader is X3D [59], or its more commonly known ancestor VRML [60].

X3D is based on XML [41] which makes it very expressive and easily usable. X3D

is already used by the Naval Postgraduate School [20] in their AUV workbench [36]

for displaying the virtual world and consequently there already exists vast amounts

of X3D mesh data for scenery, buildings, AUVs and other real world objects. X3D

82

Figure 4.1: Example Java3D SceneGraph

provides a SceneGraph structure almost identical to Java3D. Thus X3D is easily

represented and loaded onto a Java3D SceneGraph using the Xj3D [61] file loader.

X3D can also be connected to the DIS simulation protocol in order to display external

data, such as changing positions of objects. Thus having the ability to interface to

DIS through the Xj3D loader would be an added bonus of using Java3D. The use of

X3D allows for far more complicated visual scenary and animations to be loaded into

a virtual environment and also allows for the environment’s geometry to be created

using another tool.

Apart from anything else, Java3D is very easy to learn for a Java programmer due

to its SceneGraph and modular nature. This means that it is a very good architecture

for providing virtual world extendibility for ARF.

4.1.3 JavaBeans

In section 2.7 visual programming was discussed as to how it can help increase the

performance of software creation. Visual programming is a good idea, however, due

to its visual nature it places lots of requirements on how a module is written and

usually requires that the actual low level components themselves be programmed in

a specially designed language. This leads to visual programming only being used

83

for more specific uses, such as connecting data flows using CAD packages. However,

visual programming can become far more powerful if it places nearly zero restrictions

on how the low level components are created. This means that in order for visual

programming to be widely accepted it has to somehow be able to make use of all

existing software components even if they are not designed to be used in this way.

One such method of visual programming exists whereby components only have to

implement a few simple “programming conventions” in order to be able to be used

visually.

These special software components are called JavaBeans [2] and are based on Java.

JavaBean visual programming tools work on the basis that a Java class object has

been programmed adhering to certain coding conventions. Using this assumption the

visual programming tool is able to use introspection techniques to infer what the

inputs and outputs are to a Java class and then display these as identified properties

to the user. Thanks to Java’s bytecode compilation layer it is easy for a JavaBean

processor to analyse any given class and produce a set of properties which a user

can edit visually; thus removing all the need of writing code to configure the Java

class object. In theory any software which adheres to software component theory [62]

could be used, however, JavaBeans allows for properties to be identified rather than

explicitly created by the programmer. Thus the programmer has little or no work

to do when programming JavaBeans, as they are in essence just Java, as opposed to

other special component based languages.

An example of a JavaBean visual programming tool is the BeanBox [63] which is

what the JavaBean tutorial [64] recommends in for testing the user’s own JavaBeans.

However the BeanBuilder [65] is a full JavaBean visual programming tool. It allows

the user to create custom applications using visual JavaBeans which are based on

Sun’s Abstract Windowing ToolKit (AWT) and the extended Swing Toolkit. These

are generally GUI widgets and are used for creating more advanced GUIs. Non-

graphical JavaBeans are also supported by the BeanBuilder and are wrapped up

in a graphical widget so that they can have a visual position. All JavaBeans can be

connected to one another’s inputs and outputs using event listeners. The BeanBuilder

allows the user to change the connections of these event listeners. Each JavaBean can

84

Figure 4.2: The Bean Builder visual programming environment

85

also be configured using a list of properties which are inferred from the JavaBean

using introspection techniques. Figure 4.2 shows the BeanBuilder. On this picture

the user should note a graphical design pane on the right and a hierarchical view of

the components on the left. The currently selected component on the design pane has

its JavaBean properties displayed on the properties pane below the hierarchical view.

The property pane displays all the JavaBean properties in the form of a property sheet,

each line refers to a different property. The JavaBean engine provides mechanisms for

the programmer to match graphical property editors with the property types of the

JavaBean properties. Thus for each property a graphical property editor is selected,

and from which a list of editors is created and displayed as a property sheet for that

JavaBean. The user is then able to use the editors to adjust the properties. It should

be known that the property sheet generation is not part of Sun’s JavaBean engine

but is in fact part of the BeanBuilder program. Therefore it is up to the programmer

of the property editor GUI to decide how they display these properties.

On the top of the picture the user should note a palette of buttons which refer to

the graphical JavaBeans available for the user to add to their GUI. This representation

can quickly get cluttered if there are too many JavaBeans and it shows all available

components which doesn’t help the user as some components cannot always be added

to one another. Thus a more trimmed and refined set of options would be more helpful

for the user when they are deciding what to place where.

4.1.4 BeanInfo Objects

In addition to using introspection techniques to gather information about the prop-

erties of a Java class, the programmer can also manually specify which are the key

properties of the JavaBean. These properties are specified in a separate Java class

called a BeanInfo object. The programmer may wish to do this if they want cer-

tain properties of a JavaBean to be kept hidden from the graphical user interface, but

which they want to have methods which are the same as the JavaBean coding conven-

tions (for use by other programmers directly using the class). If a BeanInfo object is

present, the JavaBean introspection module will use the BeanInfo properties instead

of the properties identified by introspection. The reader should read the JavaBeans

86

Trail [64] if they wish to learn more about the specifics of JavaBeans. However, the

relevant parts of JavaBeans will be discussed where they are required throughout this

thesis.

In summary, JavaBeans are incredibly useful because they can be created with

minimal changes, if any, to the Java class. This means that as a visual programming

platform, JavaBean environments are very easy to develop components for. JavaBeans

are generally good for enforcing good programming practices as well since they force

the programmer to think in an object oriented fashion, i.e. each object does a specific

simple task but can be connected to other simple objects to do more complicated

tasks. This helps enforce the generic nature of components which will be required by

ARF.

JavaBean visual programming still has limitations. One such limitation is that

guided programming is still in its infancy, i.e. giving the user options as to which

objects can be used as parameters and which new objects could be instantiated if

none currently exist. Therefore, looking at documentation is still necessity the first

time using a Bean, or even identifying that the Bean is the right one. This is where

this research fills a niche: improving guided programming of JavaBeans by providing

the user with options for what they can do. This is useful when they have little

knowledge of how particular software modules can be used, configured and connected

to other modules (section 5.1.5 discusses the mechanisms ARF uses to provide guided

construction).

4.1.5 OceanSHELL: Distributed Communications Protocol

HIL requires for real modules located anywhere to be swapped for similar simulated

modules without the other systems knowing, having to be informed or programmed

to allow it. The underlying communication protocol which provides the flexibility

needed by the framework is OceanSHELL [6]. OceanSHELL provides distributed

communications allowing modules to run anywhere, i.e. provides module location

transparency. Location transparency makes mixed reality testing straight forward

because modules can run either on the remote platform, or somewhere else such as a

laboratory computer.

87

OceanSHELL is a C/C++ [66] software library implementing a low overhead ar-

chitecture for organising and communicating between distributed processes. Ocean-

SHELL’s low overhead in terms of execution speed, size and complexity make it

eminently suited for embedded applications. An extension to OceanSHELL, called

JavaShell, is a portable version of OceanSHELL since it is built in Java [58]. Both

JavaShell and OceanSHELL fully interact, the only difference being that OceanSHELL

uses C structures to specify message definitions as well as the XML definitions which

JavaShell uses. C structures are used in OceanSHELL to provide incredibly efficient

casting of message types, however, this is less user friendly than the XML equivalent

and requires for duplicate C structures which match the XML messages. Ocean-

SHELL is not only platform independent but also language independent, making it

fully portable.

Figure 4.3: This diagram shows how OceanSHELL provides the backbone for switch-

ing between real and simulated (topside) components for use with HS/HIL.

4.1.5.1 Abstraction Layer Interface (ALI)

OceanSHELL provides the basis for embedded modules to communicate data to one

another and also to higher level modules. Each robot then has its own message

88

definitions for information which needs to be transferred between modules. This in-

formation can be sensor information, status or navigational information etc. Since

each robot has different capabilities, sensors and payloads it can be difficult to cre-

ate software which is capable of working with any type of vehicle. Since there are

many robots developed all over the world, there are many types of communication

protocols. Even if everyone used OceanSHELL there would still be various different

interpretations of what each message should have, e.g. a navigation message may

contain a position and a rotation, however, another type may use GPS position in

Long/Lat/depth where as another may use a local coordinate frame.

ALI stands for “Abstraction Layer Interface” and provides definitions of messages,

and structure types within messages, in order to provide a base layer which every robot

implements. A robot can be designed right from the beginning to work with ALI, or

have a module which translates the vehicles control and capabilities to that of the

ALI.

ALI defines standard interfaces for communicating with the robot. This includes

the way to control the robot and ways to run missions. This means that any mission

planning software only has to know how to use ALI in order to interface with many

vehicles, similar to the DIS protocol used by AUV Workbench. ALI benefits means

that ARF will require only one ALI interface module in order to do testing, simulation

and online monitoring with many different types of underwater vehicle. Most of the

ALI messages are domain independent as well, so can also be used for surface and air

vehicles. ALI is very similar to Autonomous Vehicle Control Language (AVCL) [67].

AVCL provides a single archivable and validatable format for robot tasking and results

that is directly convertible to and from a wide variety of different robot command

languages. Therefore providing an add-on for AVCL would enable far greater scope

for the immediate use of ARF.

4.1.6 Extensible Markup Language (XML)

Extensible Mark-up Language (XML) [41] is a mark-up language similar in form to

HTML (Hypertext Mark-up Language). Unlike HTML, XML does not define any

tag sets. XML only places requirements on the syntax of the document, allowing the

89

author to create their own tags where the names are meaningful to them. XML allows

users to store data in a human readable and machine interpretable form. XML can

be validated against an XML schema to check for errors.

There are many parsers for XML in most programming languages because XML

is so easy to use and thus most programmers will have come across it. For this

reason, XML will be used in ARF to store project information about component

configurations and connections which define the scenarios created by the user. This

allows the user to modify the project settings manually if they prefer, or if there is

some problem. In addition to XML being so flexible, it is one of the ways of serializing

the information stored in a JavaBean, i.e. a JavaBean can be automatically stored in

an XML file. The settings of that JavaBean can then be easily modified by hand if

needs be.

XML is also used for storing data about 3D objects. X3D [59] is an XML version

of the VRML (Virtual Reality Modelling Language). OceanSHELL also uses XML

as a means of describing the contents of messages which are used to communicate

between distributed processes over a network. Therefore XML will be the method of

choice for storing all information regarding scenarios created in ARF.

This chapter now looks at the novel concepts of ARF’s design and also identifies

how these concepts can be tested to show ARF’s superiority over other methods of

creating virtual environments. With this in mind the later sections look at how the

technologies discussed will make up the backbone of the architecture.

4.2 Novel Concepts

A simple solution, but not very extendable would be to provide a set of generic com-

ponents which can be connected in a variety of different ways to provide the testing

scenarios required. This would fulfil some of the requirements enabling scenarios to

be built quickly. However, the user still needs to know how these building blocks

fit together. Further more, if the components are not generic enough then certain

scenarios cannot be realised. This highlights the need for a architecture which pro-

vides multiple layers of generic granularity. This is required so that the architecture

90

Figure 4.4: Example of the options guided construction can provide

is extendible and configurable on different levels of complexity, i.e. if the existing

components do not provide a specific functionality and cannot be arranged in a dif-

ferent combination to perform that function, then there needs to be a simple way

of creating and incorporating new components. Thus a programmer may have to

drop down from the level of component connection to a lower generic layer which

specifies how components interact and how they can be created. This then allows

existing functionality to grow potentially forever. Without different levels of generic

granularity, extendibility is compromised and thus it may be difficult to incorporate

more functionality in turn leading to the development of yet another testing system

which would defeat the point. Therefore, by having multiple levels of granularity in

the architecture and enforcing conventions on the lowest layer, information can be

extracted about the way components interact and this can be used to provide help to

the user, of how to use the components, on the highest level.

Another way of looking at the problem is: How to provide guidance on abstract

building blocks made by individuals which could have potentially any usage. This

means that the architecture needs to know something about the building blocks which

91

the user doesn’t. In order to be generic, and maintain extendibility, the architecture

cannot place too many restrictions on components as this would mean it takes a lot

of work to make components. Certain existing technologies must be harnessed which

are already accepted and which provide the flexibility the architecture requires, i.e.

which allow the architecture to peek inside the component and see how it interacts

with other components, or, see what the component is made of an how it works, e.g.

what properties it has. The architecture must be able to infer how a component

interacts with another component so that this information can be passed on to the

user in a way which they understand. This then becomes a representation problem.

The information should be represented in such a way which allows the user to assemble

the components in the way that they require, without having to have prior knowledge

of the components and how they interact. If the user had a rough idea of a starting

component the architecture could therefore guide them as to what their “options”

are.

Providing “options” is key, since without options the user cannot make any sensible

informed judgement, its just blind guessing. Providing options allows the user to try

different combinations of component connections quickly and easily; enforcing the

human standard of learning by trial and improvement. Figure 4.4 shows the different

options guided construction could provide and how it evolves the further the user

follows it. The same theoretical components are used from figure 3.1 in chapter 3.

If component names describe the purpose, and it has interfaces which describe how

it can be connected, this information can be presented to the user in a meaningful

manner, allowing them to connect components correctly without the need to trawl

through pages of documentation as a programmer would have to. This enforces the

concept of “a little bit of help goes a long way”.

Layers of Granularity:

• Low Level - ARF’s Java Interfaces and JavaBean coding conventions provide

easy component creation.

• Middle - automatic generation of high level human readable XML representation

of component configurations and connections.

92

Figure 4.5: Layers of Granularity: viewed through the architecture

93

• High - introspection and Java Interface recognition to provide guided construc-

tion and thus aid the learning of the user.

• Top level - complex/SuperComponent creation. Allows multiple component

configurations to be saved as a functional group which perform a specific task;

allowing users to create specific names for configurations and groups of compo-

nents.

From the lowest granular layer, a set of generic components can be created which

fulfil many of the requirements for development and testing of underwater platforms.

However, most these components can also be used for applications with nothing to do

with underwater. Therefore any components written should be done so in a generic

fashion which restricts the usage as little as possible. Consequently, each component

is as flexible as possible. As the component repository of the architecture grows, so

does the flexibility of the architecture. Figure 4.5 shows the interaction between the

granular layers.

The most important aspect of the architecture is that it provides guidance on the

highest layer by using introspection techniques to infer properties of a component.

On the lowest level, coding conventions are imposed on any component created by

the programmer. The more conventions they adhere to, and the more generic they

make each component, and the more interfaces are used to communicate between

components, the more flexible the higher level architecture becomes. If component

properties use Java Interfaces as types, instead of actual Object types, it allows for

greater flexibility of what can be used as a parameter and also makes creating new

objects which can interact with others far easier. This is because Java classes can

have many different types as they can inherit from many different interfaces. This

polymorphism makes ARF more flexible and gives more options to the user. ARF can

make inferences about property types and can then help the user by providing more

informed options and provide some sort of on the fly help when constructing scenarios

and connecting components, e.g. show the user which objects can be connected so

that they can be easily pieced together like LEGO R©.

One of the key aspects of Guided Construction using graphical property editors

94

to configure components is that it is very hard for a user to configure a component

incorrectly. This is a definite advantage over standard programming methods. One of

the most novel outcomes of such a generic method of connecting components is that

useful component combinations for use in HIL testing, amongst others, can be quickly

realised and used to carry out more thorough testing of a remote platform and as such

detect and correct otherwise undetected faults before real world testing. This leads

to a more mature and reliable platform. This is a key contribution of ARF, since

without it testing facilities would not be created for such specific tasks. ARF’s easily

extendable generic architecture, with the help of guided construction, allow scenarios

to be rapidly created for potentially any purpose.

4.2.1 Testing the Concepts

In order to measure the improvement of ARF due to its guided development nature,

an informal study will be carried out, where users will be asked to create scenarios

against the clock using existing components. A tutorial of ARF will be provided for

background familiarisation. The time of creation using ARF will be compared to

programming the same components manually using an IDE. The programming API

for each component will be provided for the programmers reference. It is then the

task for the programmer to figure out how it should be connected and to set the

properties accordingly. The task will be timed. The next step will be to make a

slight alteration to the scenario, and time how long that takes. Other tasks such as

changing settings and creating different components with different configurations will

also be undertaken.

The assumption is that the programmer is an expert in Java, so working as fast

as possible, but that they will be a novice in ARF. The only experience of ARF will

be from the tutorial. The tests should highlight how ARF can be used by a novice

and still be faster than manually programming the components, since all the test

subject is doing is creating the glue between the components and configuring them

to some specification set out in the test. The IDE programming task will also just be

creating the glue using the exact same components (Java programming classes). The

test cases for each platform will need careful design to make sure it does not favour

95

one platform over the other. The final test will be for the user to create their own

JavaBean component and integrate it with ARF to demonstrate the time overhead of

using ARF. It should be noted that this is a one off fixed penalty. An outline of the

testing metrics are given below, however, more information is available in chapter 6

on test design and the corresponding results.

Testing Types: To be completed on both platforms.

1. Construction Speed Test

2. Extendibility Speed Test

3. Alteration Speed Test

4. Saving Configuration, or multi-configurations speed test

5. Property Change Test - How long does it take to quickly adjust certain properties

and run the program.

In addition to testing the performance achieved by the low level architecture, test

cases will be demonstrated in chapter 7 to show ARF achieving all the requirements

set out in chapters 2 and 3 such as AR, HIL, HS, OM etc.

4.3 The Architecture

This section describes the technologies which are going to be used to provide the

functions of ARF’s architecture. The actual implementation of components and the

software interfaces used by ARF are discussed in chapter 5. However, ARF should

eventually consist of components which are created by the user.

4.3.1 ARF Components

ARF will be based upon JavaBeans, as it is mature and provides many of the functions

required by ARF. Creating JavaBeans is a straightforward process for a programmer

and consequently porting real working modules into ARF components is easily done.

JavaBeans will provide the low level back end to ARF and provide the introspection

96

techniques which ARF will use to identify user editable properties in the components.

Each property of a JavaBean has a Java type which is identified and cross-referenced

in the property editor database in order to locate suitable GUI property editors that

match the Java type. All this is provided by JavaBeans. However, the property

editors themselves, and creating the property sheets for the user to use is not provided.

Therefore ARF makes use of the BeanBuilder property sheet generation class which

build a list of GUI property editors from the properties output by the JavaBeans

introspection engine. This could have been re-written, and for a future upgrade

a better property sheet could be provided. However, this already exists and only

needing modifying slightly to provide the functionality required.

For each JavaBean property class type, a PropertyEditor subclass is needed

so that the property can be edited by the user. If an editor is not found, ARF

provides a mechanism for selecting another ARF component of the same type as a

parameter for this property. This is where ARF’s guided construction will help as

it will show show the user which components they already have of correct type, and

which components could be instantiated of correct type. How this is done is described

in more detail in section 5.1.5. If a PropertyEditor does not exist, the programmer

can provide one with their JavaBean and register it with Sun’s JavaBean subsystem.

This PropertyEditor can then be used by any other component’s property sheet.

A way of easily importing user’s own JavaBeans into ARF’s database will be

provided. The database is known as the JarRepository. It is called this because

JavaBeans are generally wrapped up in Java Archive Files (JAR). ARF inspects the

JAR files to see if there are any JavaBeans, if there are, the beans will be added to the

JAR Repository database. Figure 4.6 shows how the different parts of ARF’s archi-

tecture interact, i.e. the processes a JavaBean will go through from being imported

into ARF, to being used in a project and then saved to XML storage.

4.3.1.1 ARF 3D Components

ARF will provide a virtual world which to all intents and purposes is the virtual version

of the real environment, from which objects and sensors can be added. ARF will use

Java3D to provide the virtual environment back-end. Java3D is chosen because it is

97

Figure 4.6: ARF Architecture Layers

98

object-oriented and easy to use and program. Java3D represents the virtual world

as a SceneGraph, which is a very simple tree structure which allows nodes of the

tree to represent physical objects (shapes), groups, or transformations in the 3D

world. For example, a root Group node could be named a “universe”, then another

type of child, known as a TransformGroup node, can be added to this to represent

groups which have positions and rotations relative to the parent group node. Thus

a child TransformGroup could be named “Solar System”. The tree could progress

like this to contain other children such as “Venus”, “Earth” and “Mars”. On each

TransformGroup node shapes (representing physical objects) can also be added, e.g.

the “Solar System” node could have a shape which represents the “Sun” attached

to it, and the “Earth” group node could have a shape which represents the “Earth”

attached to it. Figure 4.7 represents the SceneGraph described above.

Figure 4.7: Java3D SceneGraph of the Universe

ARF provides an editable SceneGraph to which the user can add shapes, groups,

transformations and behaviours to. Basically, any Java3D SceneGraph node can be

added provided that there is a JavaBean in the ARF repository to represent it. Thus,

ARF will provide many JavaBean versions of these Java3D SceneGraph nodes. From

this point forth, these are known as “Java3DBeans” or “J3DBeans”. In essence, ARF

99

has extended the Java3D classes to have JavaBean properties. ARF will provide

mechanisms for adding and removing Java3DBeans from the SceneGraph. Therefore

ARF will need to make a distinction between Java3DBeans and JavaBeans, because

Java3DBeans represent 3D virtual components which are added to the SceneGraph

capable of interacting with the virtual environment, and JavaBeans do anything be it

2D Graphical (Java’s Swing) or merely processing/functional based with basic inputs

and outputs. Obviously Java3DBeans can also be functional, but they are specific

in that they don’t actually do anything unless they attached to a SceneGraph which

is currently being rendered in ARF. Therefore, JavaBeans and Java3DBeans will be

treated differently in ARF. More on Java3DBeans is discussed in section 4.4.

4.3.1.2 Component Management

As mentioned in the previous section, Java3DBeans and JavaBeans have a funda-

mental difference. Java3DBeans have to be connected to the Java3D SceneGraph in

order to actually function, yet JavaBeans do not. JavaBeans can be standalone non-

graphical modules with basic inputs and outputs. Java3DBeans are in some senses

a restriction to standard JavaBeans since Java3DBeans have to inherit from one of

Java3D’s SceneGraph node classes. However, being a Java3D SceneGraph node they

are capable of far more than standard JavaBeans. They are capable of interacting

with, and doing processing on, the entire Java3D SceneGraph, i.e. the entire ARF

virtual environment can be sensed and manipulated by a Java3DBean.

ARF organises the JavaBeans into 2 data structures: Java3D SceneGraph and the

BeanBoard. In ARF a JavaBean can only belong on the BeanBoard. However, a

Java3DBean belongs on both the SceneGraph and the Beanboard. ARF’s BeanBoard

therefore keeps track of all user objects, their types, and consequently is used to find

connections between different JavaBeans by inspecting each JavaBean’s properties

and event listeners. The BeanBoard is thus used for very powerful operations in order

to aid the guided construction mechanisms. The BeanBoard can be queried as to

what JavaBeans of a particular type/descendant are available for use as parameters

to a property of another JavaBean. This information can then be presented to the

user as options. The guided construction mechanisms also search the JarRepository

100

Figure 4.8: Class interaction diagram of Project, BeanBoard and SceneGraph

101

so see what other JavaBeans could potentially be created to be used as a parameter.

The BeanBoard and the Java3D SceneGraph are maintained by a Java class called

Project. The Project instance can then be loaded and saved with all data on the

SceneGraph and BeanBoards (see section 5.3.9). Figure 4.8 illustrates how the main

Project class functions. It has two parameters: BeanBoard and the root Scene-

GraphNode. The SceneGraphNode is the root node which is at the top of the Java3D

tree. All references to children nodes are stored inside the SceneGraphNode object.

Therefore, the SceneGraph can be recursively traversed from the root node. All

Java3DBeans and all JavaBeans currently in use are kept track of using a list in the

BeanBoard object. The Project, BeanBoard and SceneGraphNode classes are all

JavaBeans and can therefore be saved to disk easily merely by serialising the Project

JavaBean. Since all the other JavaBeans are referenced either directly, or indirectly,

from Project (more details in section 5.3.9).

4.3.1.3 Component Communications

Communication between components in ARF is via two main methods:

1. Direct method call - components have properties which require linking to other

specific types of components, or interfaces. Only one object can be referenced,

so this is a 1-to-1 connection.

2. Event passing - a component can implement a specific event listener interface

allowing it to listen to certain event objects output by some components. A

component can also maintain a list of event listeners. A component can then

output data to many listeners which implement the specific event listener inter-

face; this is a 1-to-many relationship. A component can therefore be a listener

for many different types of event.

The use of event passing, and direct method call on interface types, allows many

types of communication bridges to be substituted for event listeners. For example, a

component outputs some event object, which is then transformed by some event lis-

tener to some other type of communication object (an OceanSHELL message). Figure

4.9 illustrates the 1-to-many relationship of event sources and listeners (from chapter

102

Figure 4.9: ALI Simulated Components Interconnection Diagram

7). Adding an extra layer such as OceanSHELL then enables the broadcast rela-

tionship where 1-to-many vehicle processes becomes 1-to-many intercommunicating

vehicles.

Incorporating OceanSHELL into ARF is easily done by using special OceanSHELL

message listener and transmission JavaBeans. The transmit JavaBeans will implement

an event listener interface to convert from event objects to OceanSHELL messages.

Another JavaBean is then used to convert from OceanSHELL messages back to the

Java Events and inform all registered event listeners. Examples of this are given in the

Use Cases in Chapter 7. The exact OceanSHELL components provided are discussed

in section 5.3.7.

4.3.2 Architecture Structure

This section presents a series of diagrams to visualise the processes that provide

ARF’s capabilities. Figure 4.10 shows how all the main components discussed earlier

will be represented to the user. These are the front end components, the Graphical

User Interface (GUI) and are in effect the same components discussed in figure 3.2

103

in the previous chapter. The processes of the underlying parts of the architecture

are demonstrated using examples, such as: JavaBean selection by the user; Property

Sheet Generation for that JavaBean; and how the system provides help to the user

with Guided Construction.

Figure 4.10: The User Interface Layout using the Architecture Parts

The main elements of the architecture are the BeanBoard, SceneGraph, Proper-

tySheet and 3D virtual environment. These elements provide the ability to create

the “Component” based scenarios needed by all the testing and visualisation tech-

niques which inspired this project. These elements represent the low level core of

ARF as they provide the functionality that allows the user to build the scenarios

from the components available. These core elements allow the user to import their

own components and provide the mechanisms for anyone to be able to use them in

other scenarios.

4.3.2.1 Selecting a JavaBean and Creating the Property Sheet

The user can select JavaBeans, and hence view their properties, in a variety of different

ways. Since all beans are added to the BeanBoard, the user can simply select a

JavaBean from the list by clicking it with the mouse. The user is also able to select

Java3DBeans on the BeanBoard. However, since Java3DBeans are structured the

user will be able to select the Java3DBeans by clicking them on the SceneGraph view

in the GUI as well. The user will be able to add new JavaBeans to the BeanBoard

and SceneGraph by clicking the right-mouse-button. Clicking the right-mouse-button

will show a list of all available beans in the JarRepository which can be added to the

104

BeanBoard or SceneGraph depending on where the user is clicking. When a bean is

selected by the user a sheet of property editors is displayed on the property sheet GUI

(right hand pane in figure 4.10). Figure 4.11 shows the high level process executed

by ARF when a bean is selected, it shows the steps involved in displaying the bean’s

properties to the user.

Figure 4.11: JavaBean Selection and PropertySheet Generation

A more detailed view of the property sheet generation is shown in Figure 4.12

which corresponds to the following method:

1. Select JavaBean

2. Perform introspection on attributes and methods of JavaBean class file.

3. Produce list of PropertyDescriptor classes which adhere to JavaBean coding

conventions.

4. Filter out PropertyDescriptor classes which are not of visibility specified by the

user in the PropertySheet GUI (visibility types include PREFERRED, STAN-

DARD, EXPERT, EVENTS). If a JavaBean BeanInfo file is located with the

JavaBean class then the visibility information is contained in that file.

5. Match Java types of the remaining PropertyDescriptors (String, Integer, Vec-

tor3d, Color etc) to registered types of a PropertyEditor. This is done by

Java’s JavaBean core classes. All registered PropertyEditor classes must reg-

ister the Java class type which they provide the editor for. A lookup is required

for each PropertyDescriptor of the JavaBean.

105

6. Add an instance of the PropertyEditor to a Graphical table, as a PropertyEditor

is a mini GUI. Make sure the PropertyEditor is linked to the property descrip-

tor and the JavaBean which it is to adjust. Add the name of the PropertyDe-

scriptor to the Table as well so the user knows the property name.

7. Display the Generated PropertyEditor table (the PropertySheet) to the user.

Figure 4.12: PropertySheet Generation using Introspection of a JavaBean

4.3.2.2 Guided Construction for Connecting and Instantiating JavaBeans

One of the main advantages of ARF is the ability to use introspection and gather

information about the JavaBeans, such as their properties, and help the user learn

quickly how the components connect together and as a result create scenarios quickly

and efficiently. Figure 4.13 shows how the different parts of the architecture are used

to provide options to the user when connecting and configuring component properties.

The method demonstrated by figure 4.13 is as follows:

1. User selects bean (see section 4.3.2.1)

2. The user then clicks a button on the PropertyEditor located on the Proper-

tySheet to invoke the guided construction GUI.

3. The GUI will display two boxes, one for JavaBeans and one for potential Jav-

aBeans not created yet. The JavaBeans and Potential JavaBeans have had

106

Figure 4.13: Guided construction using the BeanBoard, PropertyDescriptor and Jar-

Repository

their types checked to make sure they are suitable as a parameter for this prop-

erty. Guided construction is used when there is no specific property editor for

a property’s parameter type.

4. The PropertyEditor holds a reference to the selected JavaBean and the Prop-

ertyDescriptor which represents the property being edited.

5. Extract Java Type from PropertyDescriptor

6. Check for JavaBeans on the BeanBoard which match the type of the Property-

Descriptor.

7. Check for potential JavaBeans in the JarRepository which match the type of

the PropertyDescriptor.

8. Fill the lists of the guided construction GUI with the JavaBeans which match

the PropertyDescriptor type.

9. The user then selects either an existing JavaBean from the BeanBoard list as

a parameter, or the user selects a JavaBean from the JarRepository list and

107

creates a new instance of the selected JavaBean. This new JavaBean can then

be used as a parameter.

It is important that the BeanBoard and the JarRepository provide mechanisms for

retrieving all JavaBeans of a certain type. The mechanisms can then be used for

various different uses in the ARF GUI (See Chapter 5).

4.4 Virtual World Design

The virtual world interface for ARF is one of the main factors governing its usability.

The virtual world has to be integrated into ARF in such a way that everything revolves

around it, i.e. the main point of ARF is for mixed reality testing and observation.

Thus it is important that the virtual world be easily navigable, easy to build and sim-

ple to interact with internal non-3d JavaBeans or external systems. Therefore ARF’s

virtual world requires standard navigation interfaces and many useful components for

building the virtual world itself. The ARF architecture provides communication to

other JavaBean objects via direct reference or Java events. Java3DBeans which make

up the virtual world can thus be configured, connected and created in just the same

way as any other JavaBean, except Java3DBeans have the necessity that they are

connected to the SceneGraph. In essence the only fundamental difference between a

JavaBean and a Java3DBean is that a Java3DBean has to be a subclass of a Java3D

SceneGraph Node class and a JavaBean can be a subclass of anything. Therefore

ARF will instinctively know by type checking, which components are Java3DBeans

and guide the user accordingly as to how to add them to the SceneGraph. Section

5.2 discusses the user interfaces and the implementation of the Java3D virtual world

in ARF.

Some simple components are required for the 3D virtual world to provide the

functionality described above:

• MouseNavigation - Standard user interfaces in 3D virtual environments allow

the user to pan the camera using a mouse. They can also zoom, rotate and click

to view a point of interest.

108

• Camera - a virtual camera is required to be placed somewhere in the Java3D

virtual environment so that the images can be rendered to the screen. However,

the number of cameras is unlimited. The cameras should be easily controllable

by the user, or be able to be dynamically attached to other moving entities

(TransformGroups on the SceneGraph) in ARF’s virtual environment.

• KeyboardControls - mouse navigation is useful, but is not very good for con-

trolling the movement of any other objects in the environment other than the

camera. The MouseNavigation can be used to move one camera around; the

KeyboardControls could be used at the same time to drive some vehicle around

the virtual environment. A second camera could also be placed on that vehicle

to produce 2 different views of the virtual world.

These are just a few very important Java3DBeans which are required for the virtual

world to be controlled and viewed in an intuitive manner. All other components are

either geometry (3D objects), or sensors, listeners or behaviours more specific to the

requirements of each application. For example, if haptics are required then specific

nodes can be programmed by the user and added to ARF which provide the necessary

inputs and outputs to/from the SceneGraph required for haptic feedback. ARF will

provide standard 3D mesh loaders for loading well known 3D data formats such as

X3D, VRML, DXF, 3DS, Lightwave etc, for scenery in the virtual world. Thus the

construction of the graphical part of the 3D environment does not have to be carried

out in ARF but instead can be created in some design tool such as 3D Studio MAX

or similar and then imported into ARF via the mesh loader for Java3DBeans.

ARF will provide the ability to have more than one camera in the virtual world.

This requires the user to be able to arrange the screen GUI components to accom-

modate multiple rendering canvases for the cameras to render their images onto. The

canvas is the display panel used to display the image of a camera viewing the 3D

world. The default view of ARF will be to have one camera controlled by the mouse

and one large canvas that displays the camera’s image. However, the canvas can then

be substituted for a special panel JavaBean which will allow multiple canvas’s to be

added to it and sized accordingly by the user. Each camera object will therefore have

109

a JavaBean property which dictates which of the available canvases it renders images

to.

4.5 Summary

ARF has 8 main constituent parts:

• ARF Graphical User Interface

• The Project

• The BeanBoard

• The SceneGraph (Virtual World)

• The JarRepository

• The JavaBean PropertySheet

• Guided construction

• Internal and external communication interfaces

These parts provide the base architecture of ARF. All other extensions can be built

within the framework which ARF provides, i.e. all further requirements can be ful-

filled by importing new ARF Components (JavaBeans) into ARF’s repository. ARF

therefore provides the mechanism to construct these components. The advantage of

ARF compared with other JavaBean environments is that ARF provides much more

help to the user. In addition ARF provides a virtual environment, which is in essence

an extension to JavaBeans which allows JavaBeans to now act in a 3D space. In-

herently JavaBeans are supposed to be 2D GUI components which can be connected

together to create GUIs for various tasks. However, ARF provides the ability to still

create 2D GUIs with standard GUI JavaBeans, but also provides the ability to not

see a JavaBean at all, i.e. the JavaBean is simply a processing component with no

graphical appearance. Java3DBeans remain the single most important advancement

as they allow the creation of virtual entities and allow them to be represented in a

110

virtual world. This makes constructing a virtual environment much more straightfor-

ward since components can almost be joined together (built) in the same way as the

real world, but by using a virtual interface. The virtual interface tries to capture the

information which helps the user connect the components, e.g. in the way LEGO R©

provides an intuitive way of seeing which building blocks fit together. One further

extension ARF provides is the ability to use “friendly” names for components. Users

can name their components so that they are easily identified. In addition ARF com-

ponents can have a description, which is available for the user to describe the purpose

of the JavaBean’s current configuration (section 5.3.6 gives more detail).

Chapter 5 covers in much more detail the actual implementation of ARF, using

the technologies described, and provides a guide of how the different parts work.

111

Chapter 5

Implementation Guide

Chapters 3 and 4 concentrated on describing the constituent parts which make up the

architecture of ARF. This chapter goes into much more detail on the implementation

of the parts and describes how they are built, how they are linked to one another and

the relationships between each part, and most importantly how user interaction is

communicated through these parts to produce the outcome the user sees. Therefore,

this chapter as much describes the GUI on top as the low level classes providing its

functionality. This chapter starts by giving an overview of ARF’s GUI and explains

the different parts and how they are used. The later sections discuss in more de-

tail how the low level modules provide ARF’s capabilities. As well as the low level

architecture, ARF provides many components which have been developed for use in

the OSL which make up the component library. Most of the components relating to

AUVs are discussed in the Use Cases chapter 7, where the projects which required

the components are discussed. The later stages of this chapter discuss the various

features of JavaBeans, as well as how to create JavaBeans for ARF using the many

extra features and Java Interfaces which ARF provides for the programmer. The last

sections discuss how the ARF Project class performs its tasks. For a full list of the

ARF components and a full list of the Java classes required by ARF itself, see the

Appendices C and C.1 respectively.

112

5.1 A Guide to the ARF User Interface

The Augmented Reality Framework brings together a number of different technologies

which provide the basic entities which make up the framework. These include Java,

Java3D, JavaBeans, XML and OceanSHELL. Java provides a programming platform

capable of dynamic class (or module) loading and also provides portability allowing

ARF to execute on any Java enabled platform. OceanSHELL is a platform inde-

pendent distributed communications protocol which allows ARF components to be

spatially distributed across multiple operating systems and program languages, for

instance, C/C++ and Java all support OceanSHELL. Java3D provides a simple 3D

API for the user. JavaBeans provide the conventions which make ARF components

dynamically loadable and configurable on the fly. Finally, XML is used to save all

data about all ARF components to a human readable configuration file. Thus ARF

components, which are JavaBeans, can be saved in persistent storage in XML. Thus,

this section shows how these different technologies have been harnessed to provide the

intuitive user interface which is key to ARF’s performance.

Figure 5.1: ARF GUI Overview

The main GUI of ARF displays 4 major parts of ARF’s underlying architecture to

113

the user on the screen, as shown in Figure 5.1. The BeanBoard, SceneGraph, Virtual

Environment and PropertySheet are all required by the user to construct a scenario.

These are merely the visual front end to some of the main parts which make up ARF’s

architecture. Therefore, not all parts have a graphical front end as the user is not

supposed to interact with them directly, such as the JarRepository.

5.1.1 The BeanBoard

As discussed in the previous chapter, the BeanBoard is for keeping track of JavaBeans

which are currently in use; it keeps a list of all beans including Java3DBeans. The

BeanBoard is represented in the ARF GUI as a list (see figure 5.2). This list displays

the current state of the actual BeanBoard Java class. Both the BeanBoard and

SceneGraph classes are members of a global manager class called Project (see section

5.3.9). The BeanBoard GUI provides a number of features which can be accessed by

clicking the right mouse button:

• Add New Bean

• Delete - deletes the selected bean from the BeanBoard. Java3DBeans can only

be deleted via the SceneGraph view.

• Set Main Component - Allows the user to change the 3D Virtual World view to a

different sort of graphical component, such as a ConfigurablePanel component

which can have more than one canvas added to it. The GuiCanvas3D is the

component which acts as the window into the 3D universe of Java3D. Any

JavaBeans that subclass the Java AWT or Swing classes are graphical in nature

and thus can be set as the “main component”, meaning that they replace the

GuiCanvas3D as the main view.

The user can add JavaBean objects to the BeanBoard by clicking in the BeanBoard

pane with the right mouse button and selecting “Add New Bean” - a list of all available

beans in the Repository (excluding Java3DBeans) is shown (see figure 5.3).

Once a JavaBean is selected on the BeanBoard its ProperySheet is displayed on

the right hand side of the screen. Sometimes editing the properties of the JavaBean

114

Figure 5.2: BeanBoard represented as a list, SceneGraph as tree

Figure 5.3: Adding to the BeanBoard or SceneGraph

115

via the PropertySheet is not what the creator of the JavaBean wants the user to do,

because some tasks can not be easily changed into JavaBean properties. Therefore

ARF provides a Java interface called Menuable which, if implemented by the JavaBean

class, allows the user to access menus and dialogues created by the programmer for

controlling the JavaBean (see figure 5.4) (section 5.3.6 discusses more Java interfaces

provided by ARF). If a JavaBean has a menu it will appear in the list of options when

the user right-mouse-button clicks the selected bean. Often this menu will provide

extra modes and features or an options screen to control the JavaBean. This applies

to both the BeanBoard and SceneGraph views.

Figure 5.4: JavaBean which has its own options menu using the Menuable interface

5.1.2 The Java3D SceneGraph

ARF’s SceneGraph editor (see figure 5.2) connects straight to the SceneGraph wrapper

class, SceneGraphNode (see section 5.2.1), held by the Project class. The editor

provides features which allow the user to directly manipulate the Java3D SceneGraph

in an intuitive manner by interacting visually with the tree display. The SceneGraph

works in much the same way as the BeanBoard in that the user uses the mouse’s right

button to bring up menus which allow them to manipulate the SceneGraph.

Java3DBeans have more options than normal JavaBeans because as well as pro-

viding some functional process, they also have to inhabit a position in 3D space and

can be physically attached to other 3D objects as well. Therefore Java3DBeans have

multiple properties which refer to how they interact in the 3D virtual environment

such as:

116

• add node ... - add Java3D node to the selected node.

• Cut, Paste - allows user to move nodes/sub-trees around the tree onto different

group nodes.

• Copy - allows entire sub-graphs to be cloned; this is especially useful for doing

multiple vehicle testing.

• Delete - removes the node or sub-tree completely from the current project.

• Make Dead/Make Live - sometimes the user doesn’t want to delete a node but

simply wants to remove it from the virtual environment temporarily.

• Pickable/Collidable - similar to Make Live/Make Dead the user can select whether

a particular sub-tree is pickable and collidable in the virtual environment. This

is useful if the user wants an object to be visible but other objects unable to

detect it. Pick testing and collision testing are similar things but Java3D treats

them differently: collisions are automatically reported and therefore event based,

where as picking is done when the programmer wishes it to be executed. Making

an object not pickable or collidable means it cannot be detected by anything in

the virtual environment.

• Export SuperComponent - the user can export sub-trees and other related Jav-

aBeans from the BeanBoard as a SuperComponent. Generally this is a useful

set of component configurations which the user will want to use again and again

in different projects (see SuperComponents in section 5.1.7).

• Cam Follow - make the camera follow the currently selected SceneGraph node

wherever it may be in the virtual universe.

The SceneGraph options available for Java3DBeans are shown in figure 5.3. The

options menu is invoked by pressing the right-mouse-button on a node on the Scene-

Graph. In order to add a Bean to the J3DBeanTree the user must first select the

node that they wish to add a child to, and then do the same as on the BeanBoard

(see figure 5.3).

117

5.1.2.1 SceneGraph View Modes

The SceneGraph can display in 2 different modes; figure 5.5 illustrates the difference

between these modes. The primary mode is to view ARF’s SceneGraph which is a

wrapper tree encompassing the Java3D SceneGraph. The wrapper SceneGraph makes

constructing the Java3D SceneGraph much easier since it provides some convenience

methods that Java3D doesn’t normally provide (for more detail about the do’s and

don’ts that Java3D enforces see section 5.2.1). The other view is for the user to inspect

the actual Java3D scenegraph, purely for observation purposes. In order to switch

between the two modes a toggle switch is located at the top of the SceneGraph with

two options “ARF SceneGraph” and “Java3D SceneGraph”. Java3DBeans can still

be selected from the “Java3D SceneGraph” view but none of the right mouse click

options are available under this mode. The “Java3D SceneGraph” view shows hidden

nodes which are are sometimes children of Java3DBeans, but which the user is not

supposed to see or alter. Java3DBeans sometimes want to control the SceneGraph

which lies below them, therefore anything below the Java3DBean in the SceneGraph-

which is not added by the user-is unknown by the user since they did not add it from

the JarRepository. ARF can simply ignore sub-graphs which are created and managed

by Java3DBeans since this information is restored by the Java3DBean itself upon load.

Therefore ARF doesn’t have to specifically save/load the hidden sub-graphs when the

ARF Project is loaded and saved.

5.1.2.2 Live and Dead SceneGraphs

Sometimes the user doesn’t want to delete a node but simply needs to temporarily

remove it from the virtual environment. Since Java3DBeans have to belong on the

ARF SceneGraph in order to exist, a Java3DBean has two visibility modes: (Figure

5.6 shows how to make a SceneGraph live or dead).

1. Live - A Java3DBean is itself live when it is first added to the SceneGraph,

however it may not actually be live if its parent is not live.

2. not Live/Dead - When the user wishes to stop rendering an entire portion of

the SceneGraph they can set the node’s status to not live. This means that this

118

Figure 5.5: Java3D SceneGraph and ARF SceneGraph Views

node is actually disconnected from the Java3D SceneGraph but a reference is

kept by the ARF SceneGraph wrapper so that it can be made Live again later

if needs be.

In order to make the node live or dead the user can click the right-mouse-button

on the selected node and select the make live or make dead option depending on the

current state of the node. Each node which is set to dead is shown in red, and all

child nodes which are dead as a consequence are shown in blue. In essence by making

the parent node dead, the entire sub-tree is made dead. Thus, nodes which have their

own status set to be dead are always red even if their parent also has its status set to

dead.

5.1.3 The PropertySheet

When the user selects a Bean, from either the BeanBoard or the SceneGraph, the

Bean’s properties are displayed in the properties pane (PropertySheet) on right side

of the ARF GUI. If a BeanInfo object is found with the JavaBean class in the JAR

file, then only properties described in the BeanInfo object are displayed on the Prop-

119

Figure 5.6: Live and Dead SceneGraphs

ertySheet. Otherwise introspection is used to detect which properties of the bean

adhere to the JavaBean conventions and a property sheet is generated as previously

shown in Figure 4.12, section 4.3.2.1.

The user can then edit the Bean’s properties in the properties pane by using the

individual property editors. Figure 5.7 shows the PropertySheet for an ARFTransfor-

mGroup Java3DBean with all the individual PropertyEditors displayed in a table.

A JavaBean can have many properties of varying types, therefore in order to be able

to edit a property there must be an associated PropertyEditor for the property’s

Java class type, e.g. String, Integer, Color etc. The PropertyEditors for each type

are then placed in a table called a PropertySheet which is then displayed in the prop-

erties pane of ARF’s GUI. The user can easily select which property to modify since

PropertyEditors are GUIs; PropertyEditors understand the Java Class type of the

property and provide an intuitive user interface to edit it.

BeanInfo objects, briefly mentioned earlier, allow the programmer to specify the

level of visibility of the JavaBean properties of their class. This is very useful for

the creator because some properties should maybe be hidden or only altered by an

expert even though they adhere to the JavaBean coding conventions. JavaBean coding

conventions are often used regardless of whether a class was meant to be a JavaBean.

Therefore the creator needs the ability to hide or restrict visibility of some properties

120

Figure 5.7: PropertySheet of an ARFTransformGroup Java3DBean

Figure 5.8: Changing PropertySheet visibility to event listeners only

121

to protect the user from invoking dangerous methods by editing the PropertySheet

incorrectly. There are multiple types of visibility available to the JavaBean creator

such as:

• Preferred - specifically highlighted by the programmer as properties the user

can modify.

• Standard - this ignores BeanInfo and simply displays all properties which adhere

to JavaBean conventions.

• Expert - properties that are potentially dangerous to adjust.

• All - displays all properties of any sort e.g. read only, expert etc.

• Bound - displays only Bound Properties described in BeanInfo object.

• Constrained - displays only Constrained Properties described in BeanInfo ob-

ject.

• Hidden - shows properties specifically hidden by the programmer. Generally

dangerous to try and modify.

• Read Only - properties which don’t have a “Set” (see section 5.3.1) method and

are thus only partially JavaBean properties.

In ARF the user can switch between visibility levels using the drop down box at the

top of the PropertSheet (see figure 5.8). The default visibility level should either be

“Preferred” or “Standard”. In addition to changing visibility levels, this is also where

the user can select to view the event listener properties of the JavaBean (see next

section). Figure 5.8 displays the event listener PropertyEditors for the FOVPickSensor

Java3DBean discussed in chapter 7. Section 5.3 discusses how JavaBeans can be

created and used in ARF in much more detail.

5.1.4 Editing Event Listeners

Following on from the previous section, this section describes how ARF accommodates

event listeners of JavaBeans. Figure 5.8 displays the event listener PropertyEditors

122

for the two types of event listeners of the FOVPickSensor Java3DBean discussed in

chapter 7. The PropertyEditors for all event listener objects are the same.

Figure 5.9: Selecting event listeners with guided construction

The PropertyEditor provides a user interface for adding/removing event listeners

to/from a JavaBean. FOVPickSensor outputs two types of event object. If the user

wants to connect an event listener or remove one they should click “Add” or “Del”

respectively on the PropertyEditor. Both “Add” and “Del” cause a new menu to

appear allowing the user to choose which JavaBean to connect or remove as an event

listener.

When adding an event listener the Guided Construction dialogue appears, to help

the user decide which event listener to connect or which event listener they can create

that is of correct type (figure 5.9 shows the dialogue box). The user can set an event

listener value to null; however, this is not recommended and can cause unforeseen

problems as the JavaBean currently being edited may not check for null pointers;

the best thing to do is select the “cancel” button if the user changes their mind about

editing event listeners. The right hand pane of the dialogue shows all the potential

JavaBeans which could be created which implement the event listener interface re-

quired. The user can select “Create New Bean” if they want to add a new JavaBean

to the BeanBoard to use as an event listener. The event listener JavaBeans which

already exist are displayed on the left pane of the dialogue box.

To remove an event listener simply click “Del” on the PropertyEditor on the

PropertySheet and then select the listener to remove in the dialogue shown in figure

5.10.

123

Figure 5.10: Removing an Event Listener

5.1.5 Guided Construction

The previous section describes how guided construction is used to help the user add

event listeners to JavaBeans. However, this same interface can be used to connect

JavaBean properties which have a type for which there is no registered PropertyEd-

itor. Therefore for all properties which have no specific PropertyEditor the Guided

Construction PropertyEditor is used. The Guided Construction PropertyEditor al-

lows JavaBeans of the correct Java type to be used as reference properties, i.e. like

pass by reference methods in C++ and Java. ARF provides standard property editors

for all the Java base types: String, Integer, Float, Double etc, therefore the Guided

Construction PropertyEditor is only used for reference types, i.e. pointers.

For example, the RauverModel JavaBean, described in section 7, requires a prop-

erty connection to a SimulationClock type. The SimulationClock acts as a real-

time clock for simulation components to work from. Thus, all simulation components

must have a reference to a SimulationClock JavaBean. If all simulation JavaBeans

are linked to the same SimulationClock instance then the time multiplier for all

connected JavaBeans can be adjusted at the same time; speeding up or slowing down

the rate of simulation.

Figure 5.11 shows the PropertySheet for the RauverModel JavaBean. The prop-

erties which have no associated PropertyEditor are highlighted in red. The Proper-

124

Figure 5.11: GuidedConstruction PropertyEditor before and after connection

tyEditor displayed for these properties is the GuidedConstruction PropertyEditor. If

the property is currently blank then there is no JavaBean currently connected to this

property. However, if there is a JavaBean connected it is shown next to the “...” com-

mand button. The user must click the “...” button in order to change the property

reference to a different JavaBean.

Figure 5.12: Instantiation and selection of JavaBean using Guided Construction Prop-

ertyEditor

The Guided Construction pane, shown in figure 5.12, allows the user to either select

a JavaBean from the BeanBoard that has already been instantiated, or instantiate a

new JavaBean of correct type from the JarRepository. The JarRepository and the

BeanBoard both have pruning algorithms which search their database for potential

candidates of the correct type for the property. The only current limitation of this

Guided Construction pane is that it does not allow the user to create new instances of

Java3DBeans since these have to be added to a specific location on the SceneGraph.

125

However, although the Java3DBeans are displayed as options the user is informed

that they have to manually add the Java3DBean to the SceneGraph (see figure 5.13).

Figure 5.13: Java3DBeans can’t be added to BeanBoard using guided construction

5.1.6 Loading and Saving a Project

Since ARF is based on JavaBeans, it makes serialising component’s configurations and

connections quite straight forward. The only thing that is really required in addition

to standard JavaBean serialisation protocols is a method of saving and loading an

entire project. The user interface is discussed here, however section 5.3.9 describes

the Project class and how ARF actually loads and saves the JavaBean information

and the state of the project. ARF provides functionality for loading, saving and

creating new projects from the “File” menu shown in figure 5.14.

Figure 5.14: The File menu

Information about the project is saved as an XML file. Figure 5.15 shows the

save dialogue which is in the same format as all file dialogues under Windows/Linux.

Opening a project is done in the same way from the “File” menu.

126

Figure 5.15: Saving a project

5.1.7 Importing and Exporting SuperComponents

ARF provides the ability for the user to create groups of components which together

perform some useful task, or provide some specific functionality which the user may

want to use multiple times in different projects; these are called SuperComponents.

ARF provides a tool which allows the user to export certain groups of components,

be them JavaBeans or Java3DBean SceneGraphs, as SuperComponents; the user can

select multiple sub-graphs from the SceneGraph for export as well as any other Jav-

aBeans from the BeanBoard which are needed for the SuperComponent’s function-

ality. ARF provides automatic reference checking for the user so that all JavaBeans

connected to a JavaBean selected for export are also added to the BeanBoard ex-

port list. Therefore the GUI which ARF provides for creating SuperComponents has

two export lists, one for Java3D sub-graphs and one for JavaBeans from the Bean-

Board. On import the user must decide where on their current Java3D SceneGraph

the sub-graphs should be added.

In order to export a SuperComponent the user can select “Export SuperCompo-

nent” from the “File” menu (see figure 5.14). However, the user can also select to

export a sub-graph of the SceneGraph by clicking the right-mouse-button on the cur-

rent selected node on the SceneGraph pane (see Figure 5.16). This automatically adds

the current Java3D subgraph (including all child nodes of the selected node) to the

sub-graph export list of the export SuperComponent dialogue shown in figure 5.17.

127

Figure 5.16: Exporting a SuperComponent from the SceneGraph view

The left side of the SuperComponent export dialogue shows the current Scene-

Graph and BeanBoard of the project. The user must select nodes from the Scene-

Graph and click the arrow button in order to add that sub-graph to the export list.

Any dependencies on other JavaBeans/sub-graphs are also detected and added auto-

matically to the export lists. JavaBeans from the BeanBoard are added to the Bean-

Board export list in the same way. Once the user is satisfied that all the Java3DBeans

and JavaBeans required for the SuperComponent are added to the lists then the user

must click the “Export” button where they will enter a standard save-file dialogue.

The user can import as many SuperComponent objects into their project as they

like. Importing is much the reverse of exporting. The user must first select “Import

SuperComponent” from the “File” menu to access the import dialogue shown in

figure 5.18. The user must then click the “Import...” button which brings up a

file selection box allowing the user to choose which file to import components from.

SuperComponent files end with “.scp” extension. The components which make up

this SuperComponent are then displayed on the right hand side of the import dialogue.

The user must individually choose where to add the Java3D sub-graphs to the existing

SceneGraph. To attach one of the new Java3D sub-graphs to the SceneGraph the user

128

Figure 5.17: Exporting a SuperComponent

129

must select a node on the left SceneGraph pane, as this will be the destination parent.

The user must also select on the right hand pane the sub-graph to add. To add the

sub-graph click the “<-” button between the left and right panes. Standard JavaBeans

are added to the BeanBoard in the same way, except the user doesn’t have to choose

their location. All sub-graphs must be attached to the SceneGraph before the user

can exit the import dialogue.

Figure 5.18: Importing SuperComponents

The addition of SuperComponents to ARF allows high end user modules to be cre-

ated which perform a specific task required many times throughout different projects.

The ability to do this could never be achieved using a monolithic virtual environment

as it requires a very flexible and modular underlying architecture to be implemented.

130

5.1.8 Virtual world control and navigation

ARF provides an intuitive mouse navigation system for the virtual environment. The

user is able to use the right-mouse-button and wheel to pan and zoom around the

selected target. The left mouse button is used for pointing the camera at a specific

object. The camera can also be made to follow an object from the SceneGraph by

clicking the right-mouse-button on the node on the SceneGraph and pressing “Cam

Follow”. The camera angle and zoom can also be adjusted using the camera toolbar

displayed in Figure 5.19.

Figure 5.19: ARF virtual world navigation using camera controls

The camera toolbar enables the user to choose which camera to control as there

may be multiple cameras on the SceneGraph which render to different canvases. The

camera toolbar also associates a MouseControlBehavior with the current camera

selected. This feature is so that custom camera control behaviours can be created for

use with ARF and added to the SceneGraph.

5.2 Java3D Virtual World

Java3D provides the virtual environment for ARF. ARF provides an intuitive Java3D

SceneGraph rendering system which makes it easy for the user to add Java3D objects

to the virtual environment. The other advantage is that Java3D is Java and as a

consequence can be made to be JavaBean compatible. ARF required a new type of

JavaBean in order to provide Java3D functionality using JavaBeans; these are referred

to in ARF as Java3DBeans/J3DBeans.

Unfortunately Java3D doesn’t inherently provide JavaBean coding convention sup-

port, as many other Java packages do. Although some work has been carried out on

some of the related Java3D packages, such as the javax.vecmath package, Java3D

SceneGraph nodes still require additional methods and functionality to satisfy the

configuration and persistence storage mechanisms of JavaBeans. Some of the core

components of Java3D needed extending to provide the necessary functionality, i.e.

131

extending to adhere to JavaBean coding conventions and get round some restrictions

imposed by Java3D.

To begin with this section will look at the Java3D SceneGraph structure and

describe the classes required by the ARF backend to support the use of Java3D. Then

the simplifications and modifications to Java3D are described in detail.

5.2.1 ARF Java3D Universe Structure

The Java3D SceneGraph is a simple tree structure. Some nodes are group nodes

and some nodes can only be leaf nodes. Each group node has a list of child nodes

and also a reference to its parent node. Unfortunately the accessor methods for the

children list and the parent node do not conform to JavaBean coding conventions

and consequently cannot be serialised to a file using Java’s JavaBean introspection

techniques. Rather than extending every type of Java3D SceneGraph node there is to

provide JavaBean functionality, for which there are many, a simpler approach is to use

a wrapper SceneGraph for the Java3D SceneGraph. The wrapper SceneGraph holds

the extra information necessary to store the structure of the Java3D SceneGraph. In

order to do this a wrapper SceneGraph object called SceneGraphNode is used. For

every Java3DBean added by the user to the SceneGraph, ARF creates a wrapper

node which holds a reference to the real Java3D node. As the user adds children

and changes the parents of nodes, ARF captures this information and stores it in

the wrapper SceneGraphNode object as well. This means that no alterations have

to be applied to existing Java3D node classes in order to make them into JavaBeans

since ARF stores all additional information on SceneGraph structure in wrapper node

classes.

When a user adds a Java3DBean child to an existing SceneGraph node, ARF

stores the parent/child relationships in the ARF wrapper SceneGraphNode class.

This class is a JavaBean and can therefore be serialised to disk without any problems.

On reloading of the SceneGraph from file, this class uses its saved parent/child node

relationships to reconstruct the underlying Java3D SceneGraph to the state it was

before it was saved. Figure 5.20 shows how the wrapper SceneGraphNode object

interacts with the real Java3D SceneGraph made up of Java3DBeans.

132

Figure 5.20: ARF’s SceneGraph wrapper structure

The wrapper SceneGraph node can be traversed recursively just like the Java3D

SceneGraph. In order that the SceneGraph Structure is saved, the Project class

holds a JavaBean property of the root SceneGraphNode; the Project class can then

be serialised. More details on the Project class can be found in section 5.3.9.

5.2.2 Java3D SceneGraph Modifications

In addition to using a SceneGraph wrapper to provide persistence for the Java3D

SceneGraph structure, ARF has needs to circumnavigate some restrictions placed on

SceneGraph alterations by Java3D. For example, Java3D limits which types of nodes

can be added/removed to/from a live SceneGraph. A live SceneGraph is one which

is currently attached to the renderer. Also, some properties of certain Java3D Nodes

have to have special capability bits set to allow reconfiguration of their parameters

whilst live. The capability bits have to be changed before a node is made live. There-

fore, ARF either has to restrict the user in the types of SceneGraph node they can

add/remove/modify, or, ARF has to find a way of implementing the required func-

133

tionality by getting around Java3D’s restrictions. The Java3D restrictions are there

so that, by restricting certain operations, Java3D can perform optimisation routines

on the SceneGraph to make it render faster. However, there is not much to be gained

by most of these optimisations on modern computer systems and therefore ARF can

disable most of them and work around the others.

Figure 5.21: Working around Java3D SceneGraph Restrictions

The first major problem is that only BranchGroup nodes can be attached/detached

to/from a live SceneGraph. However, the entire SceneGraph connected to the top level

BranchGroup node can be modified if the user’s top level BranchGroup is made not

live. Therefore, ARF provides a work around which consists of providing a single

BranchGroup node at the top of the SceneGraph which is visible to the user. When

the user tries to add or remove a Java3D node, ARF momentarily disconnects the

BranchGroup at the root of the user’s SceneGraph from the higher level SceneGraph,

thus making the lower level SceneGraph momentarily not live, then the lower level

SceneGraph can be modified. This happens transparently and occurs when the user

invokes a function such as: add new Bean, cut/copy/paste, delete, make live/make

134

dead. If the user deliberately makes a sub-graph dead, then the Java3D SceneGraph

is severed, i.e. if they want to make certain parts invisible. However, the wrapper

SceneGraph keeps its structure but changes a flag to indicate whether the Java3D node

it represents should be connected to the SceneGraph or not. So the ARF wrapper

SceneGraph makes a note as to whether a node is supposed to be Live or Dead but

otherwise still keeps track of which nodes are children of which. Consequently, ARF

is able to restore the correct state of the Java3D SceneGraph when a project is loaded

from file by preserving the live or dead states of each node. Figure 5.21 shows ARF’s

internal top level Java3D SceneGraph which allows the SceneGraph below the user’s

“root node” to be modified without the restrictions of the Java3D subsystem.

5.2.2.1 Java3D Capability Restrictions

Java3D also places restrictions on each node type using capability bits which have

to be enabled if those parameters need to be changed when the SceneGraph is Live.

Only the programmer needs worry about these since it is they who will have to set the

correct capabilities on their Java3DBean if they need to adjust some of its Java3D

settings. ARF provides help by providing a convenient method for setting all the

capabilities of common Java3D classes which the programmer can use if they wish.

This class is called J3DCapability and is in package framework.j3d in the ARF4Auv

core project (more detail on the class hierarchy of ARF is given in appendix C.1).

5.2.3 ARF Java3D Components

The 3D virtual world components of ARF would hopefully provide the same informa-

tion for the programmer as real world inputs allowing straightforward substitution.

By using JavaBeans combined with Java3D, a JavaBean can in essence be given a vir-

tual physical appearance. Therefore, Java3DBeans can be thought of as real physical

entities as well as processing components. Java3D Behaviour nodes provide anima-

tion, timing and event systems which can be used to animate and allow Java3DBeans

to interact with their virtual surroundings. Java3DBeans can thus have a physical

appearance, an interactive property and a processing capability as well as being used

to create interesting visual animations. Consequently, Java3DBeans are very useful

135

for providing building blocks such as sensors, behaviours and visual aids which can

be used to build interesting virtual environments for use in HIL testing scenarios.

Many task specific Java3DBeans have been created for the example use cases detailed

in chapter 7, and a full list of the core Java3DBeans needed by ARF is given in

appendix C.

5.2.3.1 Sensor Interaction with Virtual World

The SceneGraph provides methods for doing collision detection and ray tracing (via

Java3D picking). Most of the simulated sensors within the “Use Cases” chapter rely on

collision/pick testing of the SceneGraph. For example, an altimeter sensor would do

a collision test directly downwards to see if the pick ray (theoretical line in 3D space)

intersects with any geometry. The distance of the nearest intersection is then reported

as the altitude value. A simulated sonar would rely on ray tracing hundreds of pick

rays in the virtual world to gather enough data to build up a realistic sonar image. A

similar example is terrain following which was shown earlier in figure 2.5. It is up to

the programmer to provide their own Java3DBeans which provide the functionality

of the required simulated sensors, although many sensors for underwater applications

are already provided and discussed in chapter 7.

5.3 JavaBeans Backbone

ARF’s constituent parts that provide the JavaBeans functionality have been largely

discussed in earlier sections. However, creation of JavaBeans and using them with

ARF has not. The JarRepository hasn’t been discussed, and it is this that loads Java

JAR (Java Archive File) files and catalogues the available JavaBeans. The JarRepos-

itory is is a special JAR file loader which scans through a Java manifest file looking

for entries for classes marked as JavaBeans. The manifest file is contained within the

JAR file and is manually edited by the programmer to have entries indicating which

classes are JavaBeans. In order to load programmer’s JAR files, ARF provides a user

interface for importing JAR files and adding their contents to the JarRepository.

This section provides some background on JavaBean creation and how JavaBeans

136

are imported into ARF. It then discusses ARF’s extra features and Java interfaces

which help the programmer create more advanced JavaBeans. Following on from this,

section 5.3.7 focuses how to use Java Events with JavaBeans and how the programmer

can utilise OceanSHELL for external communication of events. A section on the ARF

Project class describes how ARF saves and loads the project’s status and serialises

the JavaBeans. This section also outlines how some of the Java interfaces from section

5.3.6 are used when loading and saving.

5.3.1 Creating JavaBeans

JavaBeans are Java classes which adhere to coding conventions that allow the class

to be inspected using introspection techniques, using Java reflection, to see which

fields and methods can be adjusted by the user. This is very useful because it allows

Java object configurations to be changed using a graphical property editor. For each

JavaBean a list of changeable features and their associated graphical property edi-

tors are displayed on the PropertySheet. JavaBeans also provide the functionality of

dynamic loading. Dynamic loading allows the user to import Java JAR files (which

contain many different Java classes some of which are JavaBeans) on the fly. These

JavaBeans are then added to a repository allowing them to then be instantiated and

inserted into an ARF project.

In order for a standard Java class to be used as a JavaBean it must conform to

some programming conventions.

Figure 5.22: Example JavaBean code

137

The standard programming conventions for a JavaBean are as follows:

• Class must have a zero argument constructor (unless a special way of instan-

tiating the bean is specified in the bean’s associated PersistenceDelegate - see

JavaBean tutorial [64]).

• All bean attributes should have “get” and “set” methods and be of the form

shown in figure 5.22.

• The class must implement the Java Serializable interface so that the Bean

can be saved to persistent storage if needs be. Note: the XMLEncoder which

saves the JavaBeans uses the BeanInfo and PersistenceDelegate objects associ-

ated with each JavaBean in order to save the data correctly and does not use the

programmer’s own custom serialisation methods since only JavaBean properties

are actually saved (see section 5.3.3 for more information about PersistenceDel-

egates).

5.3.2 BeanInfo Objects

JavaBeans can optionally provide an extra class which allows the programmer to

control which properties of the JavaBean are available for modification by the user.

These files are called BeanInfo classes and they have a similar name to the real Java

class except with BeanInfo appended to the end of the name. These can be used in

conjunction with JavaBean coding conventions to provide a pruned subset of JavaBean

properties for the user.

For instance, “MyClass.java” has BeanInfo object “MyClassBeanInfo.java” in

the same package to describe what properties are available for alteration. BeanInfo

classes also allow the user to specify different levels of visibility for bean attributes

and methods.

BeanInfo classes are not easy to write by hand, however most IDEs, such as Net-

beans, have a BeanInfo editor which allows the programmer to select which properties

to include in the BeanInfo class and what their visibility should be, e.g. Preferred,

Expert, Hidden etc.

138

The BeanInfo file is not necessary since JavaBean properties can also be inferred

using the coding conventions. However, BeanInfo objects are useful because the user

can also choose which fields not to display since some fields may be inherited from

a super-class of which the programmer does not want some properties to be visible.

For a more detailed explanation of JavaBeans refer to Sun’s JavaBean tutorial [64].

5.3.2.1 Creating a Manifest

In addition to using the JavaBean coding conventions, the programmer must highlight

which Java classes contained in a JAR file are JavaBeans. In all JAR files, there is a file

called “manifest.mf” which the programmer must alter to include paths to the classes

which are JavaBeans. This manifest should be included with the class files when

building the JAR file. When using IDEs such as Netbeans, the manifest is generated

automatically when the user instructs Netbeans to build a project. However, there is

usually a separate manifest in the Netbeans project directory which the programmer

can add their own entries to. This is then appended to the manifest created by the

ANT build script and included in the JAR file. The manifest is usually located in the

Netbeans project directory created by the user. Figure 5.23 shows what a manifest

with JavaBean entries should look like. The Name corresponds to the relative path

of the JavaBean in the Jar file. To indicate that this is a JavaBean a 2nd line under

the first is required which says “JavaBean: True”. When ARF loads JAR files it

interprets this manifest to find out which classes are JavaBeans.

5.3.3 Custom Instantiation of JavaBeans

JavaBeans can be saved to persistent storage. This can be done by serialising the

JavaBean properties since everything which defines a JavaBean should be represented

as a JavaBean attribute. Therefore, in order to save a class all that has to be done is

to save the individual JavaBean attributes of each class. These can be identified by

using introspection or the BeanInfo objects discussed previously. JavaBeans do not

use Java’s standard serialisation routine for saving and loading the state of a class,

since the classes are saved as XML. Thus the programmer must use a different method

of custom instantiation than that of the standard serializable/externalizable

139

Figure 5.23: Example JavaBean manifest

interfaces, since the private void read/writeObject() methods which the user

can override using these interfaces are not called when using the JavaBean system.

The JavaBean system circumnavigates the standard serialisation routines and uses its

own method using introspection via the Java Reflection API.

XML is used to save the contents of a JavaBean to persistent storage. This is

done using Java’s XMLEncoder to save classes to file, and Java’s XMLDecoder to load

classes from file. A simple XML document for a JavaBean with one String field

called “name” might look like:

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.6.0" class="java.beans.XMLDecoder">

<object class="framework.j3d.ARFCanvas3D">

<void property="name">

<string>GuiCanvas3D</string>

</void>

</object>

</java>

When JavaBeans are saved/loaded to/from persistent storage the attributes of

140

each class are accessed directly, hence not using the associated get and set methods.

Consequently any work which may be done by the class when these set/get methods

are called is bypassed since the data is written directly to the class attributes. This

can be a problem when more work needs to be done to ensure that a class’s fields

are initialised correctly, e.g. if a class representing a person has attributes height and

weight, some extra work may be done to populate non-JavaBean fields such as density.

If this class is loaded using XMLDecoder the density field will not be calculated since

neither the setHeight() or setWeight() methods were called as the class attributes

were modified directly. Therefore the programmer needs a special way of doing extra

work when a class is loaded in order to initialise the class variables properly. If

serialisation was used the programmer would create methods shown in figure 5.24

and perform some extra work there. However, when using JavaBeans there is another

way, using PersistenceDelegates but ARF also provides an extra convenience method

discussed in section 5.3.4.

Figure 5.24: Methods for custom serialisation and instantiation of Java classes

For more information on using PersistenceDelegates see the how-to [68], which

provides detail on how to provide custom initialisation of JavaBean attributes. This

provides a similar function to the writeObject() and readObject() methods which

the user can use for serialisation and externalisation - see the Bean Persistence sec-

tion in Sun’s JavaBean tutorial [64] for information on this. Please note that these

serialisation and externalisation methods are not called by the XMLEncoder when

ARF loads or saves the Bean objects so the user must use PersistenceDelegates for

custom instantiation of JavaBeans.

5.3.4 Initializable Interface

ARF provides another convenience method for doing this instead of using the more

complicated PersistenceDelegates. ARF provides a special interface which should be

141

implemented by any class needing custom instantiation. It should be noted that

JavaBeans used by ARF can use this interface, however it will not be supported by

other JavaBean development environments. It is therefore a convenience method for

ARF only.

The interface which provides this extra capability is the Initializable interface.

The void initiate() method of this interface is called just after a Bean has been

loaded (more information on this is in section 5.3.6).

More information on JavaBeans and further tutorials can be found on Sun Mi-

crosystems’ website [69].

5.3.5 Importing JavaBeans using the JarRepository

In order to import JavaBeans into ARF the JavaBeans must be located in a JAR file

with appropriate entries for the JavaBeans declared in the “manifest.mf” file within

the JAR file. In order to import this JAR file into ARF, the user must select “Manage

Repository” from the “File” menu of ARF. This displays a GUI, shown in figure 5.25,

for adding and removing JAR files from the repository.

Figure 5.25: The JarRepository Manager

142

5.3.6 ARF Interface Extensions

In earlier sections it has been mentioned that ARF provides capabilities to program-

mers that go beyond the standard functions of JavaBeans. Many of these enhance-

ments are to provide further flexibility over the standard JavaBeans PropertySheet

functionality. JavaBeans classes can basically do anything, just like a normal Java

class can. However, sometimes this can lead to problems such as when creating

and destroying threaded JavaBeans continuously in ARF; this is perfectly likely be-

haviour of a user creating and changing a scenario in ARF. The difference between

ARF and some other JavaBeans programming environments is that ARF uses “live”

editing, meaning that whilst connecting the components together the components are

in fact running like any normal instantiated Java class. Due to the nature of Java

this can cause problems when JavaBeans use thread capabilities. This chapter gives

an overview of some of the extra capabilities ARF provides, including how to use

threaded JavaBeans appropriately. All the Java interfaces discussed are located in

the ARF’s Java package “framework.interfaces”.

5.3.6.1 Threads

A thread in Java allows a class to execute a program loop continuously and con-

currently with other classes. This is very useful for having components which do

something periodically, e.g. an animation. However, Java uses garbage collection

to manage and clean up its memory. Garbage collection is done by freeing memory

which belongs to objects not in use anymore. Objects are determined to not be in use

anymore when they no longer referenced by any other object. Therefore the garbage

collector deletes that object instance from memory. The problem with threads is that

they do not get freed by the garbage collector when they are no longer referenced

by any other object, because they can still perform functions without needing to be

called by another object, e.g. because the main loop of the thread is continually exe-

cuting. Thus, if a user deletes a threaded JavaBean from the BeanBoard this will not

automatically mean that it gets garbage collected, and as a consequence the thread

will keep running in the background and could potentially interfere with resources

needed by other JavaBeans running in ARF.

143

In order to avoid this problem ARF can do two things upon deletion of the threaded

JavaBean from the BeanBoard:

• Kill the thread using potentially dangerous Java methods; this is not favourable

since a thread could be killed whilst locking local computer resources and then

cause other JavaBeans not to work properly if they access those same resources.

• Try and tell the JavaBean to stop running as a thread using a “soft” stop

within the JavaBean itself. This is ideal since it leaves the original programmer

to decide when and how to exit the thread cleanly, i.e. terminating from its

“run()” method.

There is still a problem with both these methods; dangerous killing of the thread

is only an option if the threaded object actually extends the Java Thread class and

therefore allows ARF to call the Thread.stop() method. However, a class can instead

implement an interface called Runnable which can then be executed by creating a

Thread object to start it, ARF then has no access to the Thread object itself and

therefore cannot call the “Thread.stop()” method for it; this creates a problem since

threads are still able to run after they have effectively been deleted by the user from

the BeanBoard. The only way this can be protected against is to provide a special

Java interface for the programmer to implement when using threads which inherit

from the Runnable interface instead of the Thread class itself. The interface ARF

provides is called StartStopable and has one method:

void setEnabled(boolean)

The programmer must make sure that when setEnabled(false) is called that their

thread code exits from its run() method and thus terminates. Calling setEnabled(true)

should cause the thread to start again.

5.3.6.2 Initializable Interface

The Initializable Interface is located in package “framework.interfaces” and

provides two methods:

• void initiate()

144

• void aboutToSave()

The ability to do work after loading and before saving is made easy for the programmer

by implementing the Initializable interface. If the Initializable interface is

implemented by the JavaBean class then the “void initiate()” method is called

just before the Bean is added to the BeanBoard (just after it has been loaded) and

the “void aboutToSave()” method is called just before the Bean is saved. These

methods allow a Bean to do more work just after the data is loaded and just before

the data is saved. However, the user should try and use the PersistenceDelegates

method if they wish for their JavaBeans to be fully functional in any other JavaBeans

environment as these interfaces are ARF-specific.

These methods are also called by the Project class when a project is loaded or

saved. Therefore the programmer can use the Initilizable interface to make sure

that their JavaBean loads and saves the correct information, i.e. the programmer can

use these methods to populate certain data structures which need to be saved and

then process these data structures again upon loading.

5.3.6.3 ARFBean

The “framework.interfaces” package also provides a standard interface called ARF-

Bean which provides many extra functions used by ARF. These include a name, de-

scription and type of a JavaBean which can be altered by the user when using ARF.

These make Beans more user friendly since they can be given more meaningful names

than the standard Java class name. ARFBean also inherits from the Initializable

interface and the ARFInfo interface which describes the name, description and type

methods. The ARFBean interface is located in package “framework.interfaces” and

provides the following methods:

• void initiate() - Initializable interface

• void aboutToSave() - Initializable interface

• boolean isReady() - this is used to show the user that the Bean has all its

requirements met and is therefore ready to run. This must be implemented

145

by the programmer. This should return true if the JavaBean has all of its

dependencies met.

• void setDescription(String description) - allow the user of ARF to give

each individual JavaBean a description of its function or what it is used for.

• String getDescription()

• String getName()

• void setName(String name) - allows the user of ARF to give each JavaBean

a friendly name so that they can easily identify it on the BeanBoard and when

selecting it as a parameter during guided construction.

• void setType(String type) - this is a user definable type field. This allows

the user to give each of their JavaBeans an associated friendly type which can

be used by pruning algorithms to identify objects on the BeanBoard or the

SceneGraph of a user type. This is used in section 7.2 for giving 3D virtual

components a user type, so that a 3D object sensor can then report what type

of object it has detected.

• String getType()

The programmer can either implement the ARFBean interface themselves or they

can inherit from a convenience class which already implements the interface, such

as “SimpleARFBean”. SimpleARFBean is a fully functioning JavaBean which only

provides a name, description and type property. The “isReady()” method always

returns false so the programmer must override this method if they extend the

SimpleARFBean class.

5.3.6.4 Menu Interface

The PropertySheet allows for JavaBean properties to be edited if there is a suitable

propery editor. However, sometimes the programmer may wish to provide their own

configuration GUI to provide extra help in configuring and controlling the JavaBean.

The Menuable interface provides a mechanism for the programmer to provide extra

146

functions to the user through the use of the right-mouse-click menu on the BeanBoard.

If a JavaBean implements the Menuable interface then the programmer’s specific menu

is added to menu of the BeanBoard for that Bean, as shown in figure 5.4. From the

programmers own menu buttons they can invoke any functionality or even bring up

their own seperate GUI for configuring the JavaBean. The methods of the Menuable

interface are:

• javax.swing.JMenu getMenu() - The programmer must return their own in-

stance of a JMenu class which has added to it javax.swing.JMenuItem type

children. The user can then click these menu items to invoke special functions.

The returned JMenu is appended to the right-mouse-click menu of the Bean-

Board for this particular JavaBean.

5.3.7 Java Event Communications

JavaBeans can communicate by direct method call, i.e. having other JavaBeans as

reference parameters which are connected using guided construction; or the other

way is to produce event objects which are sent to registered event listeners. Jav-

aBeans provide mechanisms for easily adding event listener functionality. In essence

an event listener merely has to implement the interface methods for the type of

event, e.g. a method similar to void handleEvent(OurEventObject theEvent),

the event producer then cycles through all registered event listeners and calls the

void handleEvent(OurEventObject theEvent) method of that listener and passes

the event object as a parameter to this method. The JavaBean tutorial [64] describes

the JavaBean coding conventions that the programmer must follow in order for the

event listener properties to be recognised by the JavaBean introspection techniques.

If the JavaBeans producing the events adhere to the programming conventions then

the event properties will be available for the user to register event listeners with as

described in section 5.1.4. The user is then able to register event listeners of the

appropriate type with the JavaBean which produces the events.

The most useful aspect of event listeners over direct method call is that there

is no limit to the number of possible registered event listeners, and they can be

chained together to provide an information flow which converts one type of event to

147

another. This chaining of event listeners is often used in ARF to convert an event to

an OceanSHELL message which is then output onto Ethernet for other distributed

processes to listen to, and vice versa, thus event producers can also be event listeners

as well. The other advantage of event listeners is that there is no limit to the amount

of event interfaces which a JavaBean can implement, so the same JavaBean can listen

for multiple types of event.

5.3.8 OceanSHELL Communications

ARF provides JavaBeans and Java interfaces making interaction with OceanSHELL

straightforward. As discussed in the literature review section 4.1.5, OceanSHELL

provides packet based distributed communications over Ethernet. JavaSHELL is a

Java version of OceanSHELL that uses XML message definitions to describe what is

in the message packets. JavaBeans can use JavaSHELL to communicate by creating

and populating messages or by listening to messages. ARF provides an extra layer to

JavaSHELL which allows the user to choose which OceanSHELL message queues they

connect their JavaBeans to. Since an OceanSHELL queue functions on a port between

1000 and 65535 there can be many potential queues which a JavaBean could connect

to, so ARF provides some conventions which the programmer should use if they wish

to use OceanSHELL. The programmer could use the standard JavaSHELL classes

internally in their JavaBeans, but since the user would be unable to manually join

receivers and senders to different message queues using ARF, this leads to JavaBeans

being more complex and less flexible

To simplify the use of OceanSHELL, ARF provides a set of wrapper classes which

extend the JavaSHELL classes. These classes are part of the OceanLIB.arf.oceanshell

package. The user should consult documentation on JavaSHELL [70] since ARF’s

OShQ JavaBean is merely a subclass of JavaSHELL’s OShMessageTarget class which

has been altered to provide JavaBean functionality, i.e. it allows the user to join

JavaBeans to OceanSHELL queues using the PropertySheet in ARF (in fact guided

construction is used for this task).

OceanSHELL interfaces and message listeners:

• Two MessageQueue classes:

148

– OShQ - this provides the hardware interface to OceanSHELL. Each queue

can transmit and listen for messages on a single port between 1000 and

65535 (ports less than 1000 are generally reserved for operating system

use). This class implements the OShReceiverStub and OShSenderStub

interfaces.

– OShBridge - this provides a communications software bridge within ARF,

i.e. it works in place of an OShQ but does not transmit or receive external

to ARF. This is useful if JavaBeans use OceanSHELL but the user wants to

keep the ARF environment isolated and only allow internal OceanSHELL

communications. This class also implements the OShReceiverStub and

OShSenderStub interfaces.

• Four interfaces:

– OShReceiver - an interface which must be implemented by JavaBeans

wishing to receive OceanSHELL messages. This allows the JavaBean to be

connected to an OShReceiverStub (OShQ/OShBridge) and receive Ocean-

SHELL messages from it.

– OShSender - this should be implemented by JavaBeans wishing to send

OceanSHELL messages as this allows the JavaBean to be connected to an

OShSenderStub (OShQ/OShBridge).

– OShReceiverStub - this interface should be implemented by any JavaBean

which provides OceanSHELL receiving capabilities similar to OShQ or OS-

hBridge

– OShSenderStub - this interface should be implemented by any JavaBean

which provides OceanSHELL sending capabilities similar to OShQ or OS-

hBridge

• Two example classes:

– SimpleOShReceiver - this implements the OShReceiver interface as a Jav-

aBean and provides the basic methods. The user should extend this class

and override the void handleMsg(OShMsg msg) method.

149

– SimpleOShSender - this implements the OShSender interface as a Jav-

aBean and provides the basic methods for connecting an OshSenderStub.

The user should extend this class and send out the appropriate Ocean-

SHELL message type by overriding the sendMsg(OShMsg msg) method.

OShQ provides a real OceanSHELL message queue for communication over Eth-

ernet, where as OShBridge provides internal communication only. The *****Stub

interfaces provide the functionality that any OceanSHELL implementation must im-

plement. These interfaces provide a level of abstraction that allow for OceanSHELL

messages to be transmitted over any medium and doesn’t restrict it to just Ether-

net like the OShQ JavaBean does. Only senders and receivers registered with the

OShBridge will receive messages as they are not sent outside of ARF.

The OShReceiver and OShSender interfaces should be implemented by any class

wishing to either receive data from an OShQ or to send data to an OShQ respectively.

SimpleOShReceiver and SimpleOShSender provide example implementations of the

JavaBean methods defined in the interfaces for use in the user’s own JavaBean classes.

The user’s JavaBeans can then be connected to the OShQs using ARF. The exam-

ple implementations also subclass ARF’s SimpleARFBean JavaBean to provide simple

naming and description conventions implemented by most JavaBeans in ARF (see

ARF Interfaces section 5.3.6). Figure 5.26 shows the source code for SimpleOShRe-

ceiver abstract class.

5.3.9 The Project class

Figure 4.8 shows the how the “Project” class holds the data of the all the Scene-

Graph nodes and JavaBeans in ARF. The framework.beans package is where the

Project and associated classes are located. The Project maintains all the references

to the JavaBeans currently in use and some extra configuration data for the ARF GUI.

However, for Java3DBeans simply keeping a reference is not enough. Java3DBeans

are not full JavaBeans since they are incapable of recovering all their previous state

information, because some of it is lost when the Java3DBean is saved. This is because

the Java3D classes do not adhere to all the JavaBean coding conventions for prop-

150

Figure 5.26: Extending SimpleOshReceiver to provide specific OceanSHELL function-

ality

151

erties which need to be saved. The main problem is that the Java3DBeans do not

restore the parent/child relationship between the nodes in the SceneGraph. For this

reason, ARF has a wrapper SceneGraph that keeps track of the real Java3D Scene-

Graph structure. The wrapper SceneGraph is then able to be saved and restored

to its previous state. For every Java3DBean, there is a separate “SceneGraphNode”

wrapper class which keeps track of which children and parents each Java3DBean has.

This wrapper SceneGraph is then saved to disk and all the parent-child relationships

restored upon loading using the Initializable interface describe in section 5.3.6.

5.3.9.1 Loading and Saving the Project

The ProjectUtils class provides the mechanisms for saving the Project class and the

associated BeanBoard and SceneGraph. The Project class is also a JavaBean which

implements the Initializable interface. The main ARF GUI calls the ProjectUtils

class to load the XML project file selected by the user in ARF. Once the Project

instance has been loaded the initiate() method is called on it. The Project’s own

initiate() method then calls the initiate() methods for all the JavaBeans on its

BeanBoard before ARF’s GUI allows the user to start using the project. When the

initiate() method is called on one of the SceneGraphNode wrapper classes, it re-

builds the real underlying Java3D SceneGraph as represented by the structure of the

wrapper SceneGraph. Since the SceneGraph is a tree structure, each SceneGraphNode

calls the initiate() method of its child nodes, thus recursively initialising and build-

ing the real Java3D SceneGraph.

The project class also maintains some other properties associated with the user

interface of ARF which need saving so that they can be restored next time the Project

is loaded from XML. These include:

• GUICanvas3D - The canvas which is currently controlled by the camera selection

toolbar of ARF and the MouseController, i.e. the main canvas if there is more

than one.

• Camera - The camera Java3DBean which is connected to the main canvas which

the MouseController moves around.

152

• MainComponent - This is the Swing component which ARF adds to its main

viewing window. This is usually a Canvas3D object, unless the user has added a

ConfigurablePanel which enables them to add as many Canvas3Ds and other

Swing components to it as they like, i.e. this property maintains which compo-

nent is displayed in ARF’s centre window.

• BeanBoard - A reference to the current BeanBoard and all associated JavaBeans.

• RootNode - The root node of the SceneGraphNode wrapper class which holds

the construction information for the Java3D SceneGraph.

Due to the JavaBean nature of the Project class, by saving it to XML all the as-

sociated JavaBean instances referenced by the Project class are saved also. Then

all the objects referenced by the JavaBeans are also saved. Thus the saving of the

Project’s JavaBeans is recursive with the Project JavaBean being the top level which

references all the rest. Thus the Project class only has to maintain a single reference

to the root SceneGraphNode JavaBean, since this recursively references all the rest

via its children array.

The advantage of saving the Project as a generic JavaBean is that this can be

loaded by any other Java application, meaning that the ARF surroundings, i.e. the

GUI, can easily be replaced by a slightly different user interface. Therefore, if the

programmer wishes, ARF can be used to construct scenarios and then the scenarios

can be used in the programmer’s own front-end application. Hence, ARF can be used

for rapid prototyping of software as well.

5.3.10 BeanBoard and Scenegraph facilities

As described previously, the BeanBoard class is referenced by the Project class and

is part of the same framework.beans package. The BeanBoard maintains an array

of JavaBeans which has a getter/setter method so that all the beans in the array

are stored when the BeanBoard class is serialised. Aside from keeping track of which

JavaBeans are in use, the BeanBoard also provides functions for finding out which

JavaBeans have dependencies on other JavaBeans. This functionality is useful when

creating SuperComponents (see section 5.1.7) as JavaBeans selected for export require

153

that all referenced JavaBeans also be exported, and the BeanBoard provides methods

for returning all JavaBeans referenced by a JavaBean which is to be exported. This

list is then added to the JavaBean export list in the SuperComponent creation GUI.

The method for finding linked beans is:

ArrayList getLinkedBeans(Object bean)

It works by building a stack of all JavaBeans which are referenced by the first Jav-

aBean. JavaBeans are popped off the top of the stack and then recursively searched

to find all JavaBeans referenced by each one on the stack. All JavaBeans found are

added to a complete list. Duplicates are ignored if they already appear in the com-

plete list and are therefore not added to the stack as they will get processed anyway,

or have already been; this stops loops occurring.

5.3.10.1 SuperComponent Helper Algorithms

The BeanBoard also provides the methods which facilitate guided construction in

ARF. Guided construction relies on being able to find JavaBeans which match the Java

type of a property on the PropertySheet and then displaying a list of current possible

JavaBeans and potential JavaBeans to the user. The method in the BeanBoard

is the same as the one in the JarRepository: ArrayList getInstancesOf(Class

type). The Class class associated with every Java class instance is acquired by

calling instance.getClass() which is a method of all instantiated Java objects.

This Class instance is then used by the BeanBoard and JarRepository to check for

subclasses in each of them which match the type of this Property. These simple

methods provide much help since the user doesn’t have to lookup which JavaBeans

are of the correct type in a manual, thus saving a lot of time. It also allows the user

to quickly create JavaBeans to try as parameters; if it’s the wrong functionality the

user can simply delete the JavaBean from the BeanBoard. This is so quick that it

allows users to quickly try different ideas without having to worry about wasting any

time.

154

5.3.11 Swing Component Addition

Adding extra Swing components was discussed in the Project section 5.3.9, but not

fully demonstrated. Generally, ARF doesn’t need to use visual 2D JavaBeans, i.e.

those which extend the javax.swing.Component class, since ARF provides visual

elements through the use of the 3D virtual environment using Java3DBeans. However,

the user may still wish to create and arrange their own visual JavaBeans in the

same way they would using a standard JavaBeans development platform, such as

BeanBuilder[65]. ARF provides the ability to change the central 3D virtual world

view for a ConfigurablePanel instead. Multiple visual JavaBeans can be added and

arranged on this panel. This allows for displaying multiple canvas3Ds connected to

different cameras in the virtual environment as well. It is therefore possible for the

user to add their own JavaBeans which extend either the AWT or Swing GUI classes.

These components can then either be displayed solely, instead of the canvas3D object,

or a custom layout JavaBean, such as ConfigurablePanel, used to display multiple

components in different locations. Graphical JavaBeans are added to the BeanBoard

in the exact same way as any other Bean (see section 5.1.1).

5.3.11.1 Setting the Main Component

ARF has a concept of a “main component” JavaBean. This is the component which

is at the highest level of the displayed AWT/Swing Component hierarchy, and is

displayed in the main view area of ARF (like the canvas3D is by default). The user

can choose any JavaBean, extending the Component class, to set as “main component”,

thereby filling the screen. By default the canvas3D object is set as the main component

and thus fills the full middle section of ARF’s GUI. However, if the user has their

own component they wish to display instead, then the user must set their JavaBean

component to be the “main component”. To do this:

1. Select the JavaBean on the BeanBoard (which must extend java.awt.Component)

2. Click the right-mouse-button to bring up the menu.

3. If the bean the user has selected is a subclass of a AWT/Swing class then the user

155

will see an item in the menu called setMainComponent. This should be clicked

in order to make this the “main” component.

By doing this the old main component will be replaced with the selected component

and displayed, i.e. the canvas3D normally displayed will disappear and be replaced

by the component the user chose to display.

5.3.11.2 Adding and Arranging Multiple Components

Quite often the user will need to be able to display both the canvas3D object and

multiple other AWT/Swing components and arrange them on the screen. Using the

SetMainComponent function of the BeanBoard only one component can be displayed

at once. However, a special component is provided which allows the user to add mul-

tiple components and arrange them. This component is called ConfigurablePanel

and must first be added to the BeanBoard and then set as “main component” in order

to use it.

5.3.11.3 ConfigurablePanel How-To

Once the ConfigurablePanel has been set as the “main” component, the user should

see a blank screen. This is because nothing has yet been added to the panel. In order

to add components to the panel the user must first select the ConfigurablePanel on the

BeanBoard and click the right-mouse-button. There will be a menu called “options”

and under that menu will be a button to set the panel “editable” (see figure 5.27).

Figure 5.27: Setting ConfigurablePanel editable

156

In order to add another visual JavaBean to the panel, the user must right-click the

mouse on the blank panel area on the screen; a menu will appear allowing the user

to either “add a component” or “remove a component”, for any component on the

BeanBoard. The component to be removed will be the one the user has the mouse

cursor hovering over. The user can then drag the new component to their desired

position and resize it by selecting the bottom-right hand corner of the component

and dragging it.

Once all components have been added and positioned the user should switch the

ConfigurablePanel back to “not editable”. This can be done by in the same way as

making it “editable” described before.

Figure 5.28: Setting ConfigurablePanel not editable

Figure 5.28 shows the ConfigurablePanel in edit mode, and shows the position

of two canvas3D objects. The canvas3D objects need connecting to separate camera

objects in order to render anything. This is done by selecting the camera objects and

editing their “GuiCanvas” property on the PropertySheet to render to the desired

canvas3D JavaBean. Figure 5.29 shows the ConfigurablePanel once editing is finished.

157

Figure 5.29: Two canvas3Ds

5.4 Summary

This chapter described how the various underlying parts of ARF’s architecture are

harnessed by the user interface and how they interact with each other beyond the

detail given in the functional design and implementation design chapter. Some ex-

amples of how some of the JavaBeans and Java3DBeans work were touched upon;

however more explanatory real examples of scenario types and the components re-

quired are given in the use cases in Chapter 7. These examples show how ARF’s user

interface and JavaBeans architecture really help improve testing and development of

underwater platforms.

The main aspects of ARF’s implementation were described here, however, there

are far too many JavaBeans already implemented to be covered in this section and

some of them are very application specific. A complete listing of JavaBeans already

created for use with ARF is given in appendix C.1.

This section covers many of the programming classes and PropertyEditors used

by ARF. At this point it should be clear how the constituent parts of ARF provide

the features which give ARF its flexibility, extendibility and added performance over

other platforms. It should also be evident that the underlying technologies have been

158

harnessed in such a way which provides an abstract layer for producing virtual en-

vironments for many different applications. The underlying JavaBeans architecture

means that ARF is able to be used to create many conceivable types of virtual en-

vironment. The JavaBeans already created for ARF provide a base set of functions

which provide many uses in the field of underwater vehicles as well as other domains

as a by-product. The specific uses of the current JavaBeans created for ARF are

discussed in chapter 7 which should be the reader’s next port of call after reading the

performance testing in chapter 6.

159

Chapter 6

Testing

There are various different categories of tests required which will demonstrate the

different features of the architecture. For the most part testing will be carried out in

a comparison fashion. i.e. test subjects will be required to undertake exercises using

ARF and another competing method for a particular test. The tests will be designed

having the ARF architecture in mind so as to exploit the features of the architecture

without focusing too much on the possible individual uses of the architecture. The

individual uses of the architecture will be demonstrated in section 7 which use these

tests as a foundation for why high performence was acheived. However, it should be

noted that this is an informal study to provide backing evidence of the performance

increases achievable when using ARF. The performance increases indicated here are

reflected in the use case scenario construction times in chapter 7.

6.1 Test Design

In order to test the fundamental principles of ARF, specific test exercises need to be

undertaken by subjects in order to quantitatively highlight the advantages of using

ARF over the standard method of creating a test scenario. As well as showing the

benefits of ARF, the tests also need to highlight any overheads required to use ARF,

and hopefully show them to be small in contrast to the overall gain. In order to

provide such quantitative information, comparative tests against the standard way of

programming a test scenario are required. These exercises will be undertaken by a

160

spectrum of people with different experiences and knowledge to provide a represen-

tative cut of the population of people who are likely to use ARF in their day to day

operations. This will probably give varying results, though hopefully when ARF is

contrasted to the standard programming approach on an individual basis, there will

be a clear increase in performance.

Time will be used as the main testing metric as this will provide an overall guide

to the complexity of the exercise. The user will be required to note start and end

times for each exercise so that data can be analysed later. In addition to time, the

user will be asked to rate the exercise on a number of other quantifiable qualitative

factors such as complexity, ease of use of the interface, reliance on documentation, how

good the documentation was etc. These will of course be specific to the test exercise

itself. Furthermore the user will be asked for their comments about the exercises

they performed in order to shed some light on the answers they gave to the statistical

metrics, i.e. what they found difficult etc.

6.1.1 Performance Metric

In order to provide useful test results, there needs to be a metric which is used to

measure the performance of ARF. Due to the nature of ARF, quantitative results

are hard to obtain because it is difficult to measure how much “better” ARF is over

something else. ARF is supposed to provide an intuitive interface to a low level

architecture provided by JavaBeans and Java3D by abstracting the user from the

code and displaying information in human readable form. In order to measure the

performance gain of using ARF, a real user has to carry out simple tasks in both ARF

and the standard approach to writing test programs, i.e. in an IDE (Netbeans). Thus

performance is defined as how many times faster ARF is over using the Netbeans

IDE.

Performance = 100× TimeTakenUsingIDE

TimeTakenUsingARF

The prediction is that ARF should be faster than Netbeans and consequently the

performance metric for ARF should be greater than 100%. Over multiple test subjects

and multiple exercises, an approximation for the average performance of ARF should

be reached. Since there are multiple features in ARF which lead to the performance

161

increase, different tests will have to be carried out in both environments on specific

areas in order to highlight how much effect each of ARF’s features have over the

traditional methods. It is important to keep in mind that ARF is a platform which

is supposed to increase the flexibility and extendibility for the creation of virtual

environments for mixed reality testing, so that mixed reality environments can be

created, changed and extended efficiently, i.e. not having to start from scratch every

time.

6.1.1.1 Quantitative Metrics

These are the quantifiable factors which will be measured by the performance tests:

1. Construction Speed Test - How long does it take to create a scenario.

2. Extendibility Speed Test - How long does it take to change the scenario.

3. Scenario Change test - How long does it take to change from one scenario to

another.

4. Property Change Test - How long does it take to quickly adjust certain properties

and run the program again.

6.1.1.2 Qualitative Metrics

Although time spent is a good overall indication of the performance of the architecture,

it doesn’t highlight usefulness of specific features of ARF, e.g. such as usability of the

user interface. Therefore, as well as timing the specific exercises the user undertakes,

the user will also be marked and give feedback on:

• Task completion

• Understanding of the task

• Amount of assistance required and reason for assistance

• Measures of usability of certain features which a specific exercise is testing.

162

These measures are quantified within a range e.g. task completion is measured from

1 to 5 where 5 is fully completed and 1 is nothing done. These measures will help to

identify why a certain task took the time it did. These measures are required because

the test subject may have varying knowledge and understanding of both ARF and

Netbeans (Java) and thus anomalous results will need clarification. In order for these

tests to be representative of the programming community, varying levels of expertise

will be required for the test subjects. Therefore, candidates will be asked to rate their

experience in various fields for correlation later with the results.

In addition to these measures the test subjects will be required to provide more

quantitative feedback about the features of ARF and Netbeans in order to compare

how intuitive, or easy to use, a feature is. This allows for another type of perfor-

mance metric to be realised between Netbeans and ARF which provides a quantita-

tive value for what is in effect a qualitative answer e.g. the usability of event listeners

in ARF/Java. This is a qualitative measure but can again be quantified between

the values 5 (very intuitive and easy to use) and 1 (not intuitive and very hard to

use). This information can later be correlated with the timed performance metrics to

explain why a task took a long/short amount of time.

6.1.2 Test Goal

The goal of these tests is to provide supportive evidence of the performance increases

attainable by using ARF over the standard way of programming a test harness using

an advanced Integrated Development Environment (IDE). The performance increases

shown by these tests can then be used to help explain how ARF helped the various

use cases described in Chapter 7.

In essence, these tests should show that by using ARF users are able to build sce-

narios quicker due to spending less time making mistakes and consulting documenta-

tion; consequently highlighting the effects of ARF’s Guided Construction mechanisms,

SuperComponents, PropertySheets and intuitive user interfaces. These tests should

show that the user does not need as much expertise using ARF as they would if

programming using an IDE to undertake the same task.

163

6.2 Test Design Analysis

In order to make sure that the test design was unambiguous, intuitive and not to

time consuming, the test itself required testing. In order to do this, the test was

tested by a few people to obtain constant feedback about the design of the exercises.

As well as making sure that the test exercises were well written, it also served as a

means to test the features of ARF and make sure that the exercises themselves were

feasible bearing in mind that for most of the test participants this would be their first

exposure to ARF. Thus, the features of ARF needed to be tested and any problems

or bugs rectified before the test participants could undertake the test.

6.2.1 Analysis Findings

The analysis proved to be invaluable as many usability issues with the test were

discovered. Mainly, there were errors performed by the test subject which occurred

due to details of the exercise not always being very obvious. For example, one of the

questions referred to some information given in another exercise, and because this

information was not under the same exercise the reader forgot about the information.

Since the exercises are supposed to be testing the features of ARF compared with

those of an IDE, rather than the participant’s reading ability, the exercises needed to

be written in the most straight forward way making details of the task as obvious as

possible. Therefore, some of the exercises needed re-writing due to these issues.

As well as highlighting problems with the exercises, problems with ARF itself

were discovered. Mostly these were programming bugs, because participants were

trying new things with certain ARF components which it had not occurred to the

programmer to protect against. Other problems were highlighted with the usability

of the user interface, the problems included:

• The Java3D SceneGraph displayed some of the available Java3DBeans in red -

This was originally used to indicate which of the Java3DBeans were subclasses

of the Java3D BranchGroup class as Java3D only allows BranchGroups to be

added and removed to/from a “live” SceneGraph. However, ARF transparently

provides a work around for this, but the red highlighting remained until it

164

became apparent that the user thought that red objects meant bad objects.

Thus the colouring has since been removed.

• The user uses the left mouse button to select components on the Java3D Scene-

Graph and on the BeanBoard. However, when the user uses the right mouse

button to display the options menu for that JavaBean they held the mouse

over, it wouldn’t select a new JavaBean even if the mouse was over a different

JavaBean. This is not the same functionality as other applications employ as

normally the right mouse button would also do the selection if the mouse was

in a new position from where the user previously clicked with the left mouse

button. This led to Java3DBeans getting lost as they were getting added to a

different SceneGraph node than the user expected.

• The Export SuperComponent function was also added to the Java3D Scene-

Graph popup menu so that the user could quickly export sub-graphs easily as

SuperComponents for use later.

• Improvements to the supplied API specification (JavaDocs) were required; bet-

ter description of methods. In general, programmers have to put up with a lot

of badly documented code so this wouldn’t be anything out of the ordinary.

However, in order for fairness the competing IDE should be as supported as

possible. This doesn’t necessarily affect ARF that much, however the JavaDocs

for JavaBeans can still be useful.

6.3 Test Exercices

The actual test exercises themselves are included in Appendix D and a copy of the

results sheet design is included in Appendix E. A breakdown of what each test is

for is given below. Exercise 1 focuses on using ARF, Exercise 2 using Netbeans and

Exercise 3 focuses on the overheads of creating a JavaBean for use with ARF.

1. (a) Build a virtual environment using ARF - demonstrate how quickly a virtual

world can be created for a very simple purpose and how easy it is to do.

165

(b) Add sensor simulation and OceanSHELL message output capabilities -

this test is to compare how quickly JavaBeans can be connected together

with ARF due to its guided construction. This also demonstrates how

easy JavaBeans are to configure using the PropertySheet editors. This is

contrasted against programming by hand with NetBeans.

(c) Scenario save and SuperComponent export test - designed to show how

quickly configurations can be created and saved as different projects, or

be exported as SuperComponents for use later. This is contrasted with

creating duplicate classes for different configurations using NetBeans.

(d) Making an alteration and saving the new configuration (speed test), con-

trasted against the manual approach in Netbeans.

(e) Create a scenario to use two robots instead of just one (as before). The

idea is the user imports the SuperComponent they previously exported to

demonstrate how quickly SuperComponents can be re-used.

(f) A simple test to see how long it takes the user to switch from one scenario

to another using the load project feature.

2. (a) Connect the Java classes and configure them to the same specifications as

in 1b by programming using NetBeans. This can be directly compared to

the performance of 1b.

(b) Make a new scenario with slightly different OceanSHELL configuration.

This is designed to show the performance improvement in ARF for creating

different configurations quickly. When many of these add up, the difference

could be potentially huge.

3. (a) Convert the Java class created in exercise 2 into a JavaBean. This is

designed to show the overhead of creating components for ARF.

(b) Import the newly created JavaBean into ARF. This is also designed to show

how much overhead there is in adding a JavaBean to ARF’s repository.

(c) Connect the JavaBean to the other JavaBeans required by it, using the

PropetySheet. This is designed to show the user how easy it is to make

166

JavaBeans highly modular and assemble them with ARF. This should be

a relatively quick task due to ARF’s guided construction. This also tests

that the JavaBean created in exercise 2 was programmed correctly.

6.3.1 Overheads and Requirements

In addition to the test exercises the test participants will be provided with extra

material to help them throughout the test.

For ARF there was a tutorial provided which covers all the main features of how to

use ARF. However, this only acts as a reference guide as there will not be time for the

participant to work through the tutorial prior to the test. Instead a narrated video

demonstration of how to use ARF is provided as this covers all the main features of

ARF covered in the chapter 5. The ARF tutorial is on hand if the test subject needs

to look up how to use something in ARF during the test.

For the programming part of the test, the user is expected to have used an Inte-

grated Development Environment (IDE) such as NetBeans or similar. A brief intro-

duction to the different parts of NetBeans is given by the examiner before the test

starts. There will also be the JavaDoc API specifications for the classes/JavaBeans

which the programmer is supposed to use during the test. Netbeans provides levels

of help to the programmer such as displaying the JavaDocs on screen and providing

automatic method name and variable name completion to aid them. In addition, if

the test participant is completely stuck they can ask the examiner for help. However,

all provided help is noted down for each exercise of the test to highlight which were

most difficult and reasons are given in each case.

A stop clock will be started once the user has read each exercise and are confident

they are ready to start. All results and feedback are recorded on an answer sheet

displayed in Appendix E.

6.4 Results Discussion

In this section the results are compared, discussed and displayed by an appropriate

visualisation. For a complete listing of individual results for all the test exercises see

167

Appendix F.

Generally, the averaged results are of main interest since it is the average perfor-

mance increase which is the key indicator for ARF’s success. Averages will be used

primarily for the qualitative measures; however anomalous results will be discussed

separately. The following section headings describe what is being tested, and where

relevant refer to the feature being demonstrated from section 3.1.3.

6.4.1 Task Complexity

Task complexity is a qualitative measure which is decided by the test participant.

It would be expected that the measure of task complexity should be proportional to

task understanding and task completion. Figure 6.1 shows the time taken by each

participant to complete the same programming task using ARF and using Netbeans.

Figure 6.2 shows the respective complexity ratings for Exercises 1b vs 2a for ARF

and Netbeans respectively, with complexity a measure from 0 (very straightforward)

to 4 (very complex). This comparison shows that generally the task complexity was

higher for Netbeans than for ARF. This is corroborated by the time extra time taken

to complete the task in Netbeans.

The general trend depicted in figures 6.1 and 6.2 shows that for each participant

the complexity of the task in Netbeans was either equal or greater than it was in

ARF and the times of each participant in each task reflect this trend strongly. This

correlation allows for emphasis to be put on qualitative feedback for which there is

substantially more data. This proof of qualitative feedback allows for more generalised

feedback results to be more useful and carry more strength. This is key since most of

the proof for ARF’s advantages exists in the form of the use cases in chapter 7.

Table 6.1 shows the averaged values for complexity, understanding, completion,

time taken and usability of event listeners and object references for Exercise 1b vs 2a

contrasting ARF and Netbeans respectively. The correlation between task completion,

understanding and complexity shows clearly that the exercise was harder for the user

when using NetBeans. From the feedback usability results it is clear that NetBeans

was less helpful when connecting classes and using event listeners than ARF. This

is due to the guided construction efforts in NetBeans being limited and often the

168

04:11

12:22 11:41

05:25

10:59

14:07

20:30

14:17

16:53

09:04

11:5712:31

24:58

13:30 13:25

28:00

18:31

48:23

22:08

39:18

22:43
24:21

00:00

07:12

14:24

21:36

28:48

36:00

43:12

50:24

57:36

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

ARF Netbeans

Figure 6.1: Construction Time Comparison between ARF and Netbeans

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

C
o
m
p
le
x
it
y
 (
0
 t
o
 4
)

ARF Netbeans

Figure 6.2: Perceived Construction Complexity Comparison between ARF and Net-

beans

169

Task ARF NetBeans Units

Average Complexity 1.6 1.9 0-4

Average Understanding 4.8 4.6 1-5

Average Completion 4.8 4.5 1-5

Event Listeners Usability 4.3 3.6 1-5

Object Reference Usability 4.7 3.2 1-5

Consulted Documentation 0 2.5 No. Occasions

Assistance Required 0.8 0.8 No. Occasions

Average Time 716.88 1460.74 Seconds

Table 6.1: Averaged Results for Exercises 1b and 2a

programmer would have to consult documentation of the classes themselves. The

problems this causes are clearly reflected in the time taken, since ARF on average

took less than half the time Netbeans did. Therefore, a preliminary estimate for the

performance of ARF compared with NetBeans can be calculated:

Performance = 100× 1460.74

716.88
= 204%

The contrast between exercise 1b and 2a is the main key performance indicator

(KPI) for ARF since this exercise uses the exact same classes and documentation in

both cases and the only difference being that ARF is used instead of NetBeans. It is

expected that ARF be a lot quicker than NetBeans due to the help that it gives the

user. Also, ARF is designed for constructing virtual test environments with dynamic

configurations that can be changed quickly and easily without the overhead of re-

design commonly occurring in test-bed creation. The other exercises highlight why

ARF is more useful than the standard approach of re-design and re-program using an

IDE.

6.4.2 Configurability and Extendability tests

In order for ARF to be truly useful it still has to meet the requirements of easily ex-

tendable and re-configurable. It is these concepts which are not provided by standard

monolithic testing platforms which lead to huge development overheads, especially in

170

the case of mixed reality testing. Therefore ARF has to demonstrate that it provides

these features in an easy to use and intuitive manner. JavaBeans provides the basics

for allowing ARF to be easily extendable due to allowing users to create and use their

own components. ARF provides the user interfaces which make these tasks more

straightforward. In addition ARF provides other features such as SuperComponents

which further the modularity and flexibility of virtual environment configurations,

allowing users to create functional units which can be used time and time again.

These features of ARF are now tested by comparing against the simplest equivalent

approach. The equivalent approach normally undertaken is by a programmer, using

an IDE, to make modifications to an existing test environment. This relies on the

programmer knowing which modules provide the functionality they require, how to

use them, and also knowing how to modify the existing monolithic program.

6.4.2.1 Configuration Speed Tests (feature 6 and 5)

Reconfiguration speed can be compared by contrasting exercises 1d and 2b. Figure

6.3 shows the time taken to make a simple adjustment and save as a new scenario,

or a new class in the NetBeans case. Number 12 on the graph shows the averaged

value for ARF and NetBeans. This shows that including the time to actually save the

file ARF is still about twice the speed of NetBeans. The more alterations that need

making at once, the more ARF’s performance would increase further since adjusting

the properties takes seconds, however the time it takes to save as a new file name takes

longer. Figure 6.4 shows the save and load times for a project from exercises 1ci and

1f respectively, with the average save and load times being roughly the same at 17

and 15 seconds. If the average save time is removed from the average time to make

an alteration and save, which is 37 seconds. The average time to adjust a property

can thus be calculated as 20 seconds. The advantage of ARF is that when a property

is changed, it is changed instantly and no recompilation has to occur. In contrast to

programming manually where the software has to be stopped, make alterations, then

recompile and then run the software again.

171

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

ARF NetBeans

Figure 6.3: Reconfiguration Time Comparison

00:36

00:13

00:18

00:11

00:17

00:08

00:19

00:15

00:13

00:20

00:17

00:12

00:10

00:17

00:21

00:12

00:15

00:30

00:11 00:11

00:14

00:15

00:00

00:04

00:09

00:13

00:17

00:22

00:26

00:30

00:35

00:39

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

ARF Save Times ARF Load Times

Figure 6.4: Save and Load times for an ARF Project

172

6.4.2.2 Extendibility Testing (feature 2)

In order for ARF to be truly useful as a testing environment for potentially all types

of mixed reality testing scenarios, it needs to be easily extendable. Extendibility has

been the main challenge for all testing environments. This is because some capability

will evolve which means that a redesign of the software is needed due to a certain

restriction. Due to ARF’s JavaBean backbone it doesn’t have any restrictions for

usage, but is optimised through the use of Java3DBeans and OceanSHELL for the

creation of AR environments which can be then used for sensor simulation and HIL

testing. JavaBeans can be designed for potentially any usage and then communicate

with other JavaBeans through the use of event passing, JavaBean object references or

through an external communication protocol such as OceanSHELL. In order to extend

ARF the user has to create their Java classes so that they adhere to the JavaBean

conventions. This can be done when programming real modules for the vehicles

so that they can then also be used on the simulated vehicles in the ARF virtual

environment. If modules already exist they can either be ported to JavaBeans, or a

JavaBean stub can be created for ARF which communicates to the externally running

module. This communication can be done using OceanSHELL or any other third party

communication mechanism. It is completely up to the programmer whether to use an

existing communication protocol or write another one for use with ARF, since ARF

places no restrictions. Therefore an external module can easily interact with ARF if

needed. In essence this is exactly what HIL testing does.

Exercise 3a tests how long it takes for the user to transform their normal Java

class into a JAR file containing JavaBeans which can be imported into ARF. Figure

6.5 shows the varying times to create a JAR file, with one JavaBean entry, using

NetBeans (Entry 12 on the graph represents the average time). This test is designed

to demonstrate the low overhead of creating a component for ARF. Bearing in mind

this is the first time the test participants have ever undertaken this type of task, an

average time of 198 seconds is fairly good. Once one JavaBean entry has been added

to the manifest then its far quicker to add all subsequent ones since the programmers

knows exactly how to do it. It should be noted that this is a one time overhead, and

from this point onwards the component could be used in ARF many times, making

173

00:42

05:27

01:53

02:36

03:22

04:28

05:24

05:06

02:14

01:46

03:18

00:00

00:43

01:26

02:10

02:53

03:36

04:19

05:02

05:46

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

JAR Creation Time

Figure 6.5: Time taken to create a JAR file containing JavaBeans

the overhead worth it.

In addition to JavaBean creation time, the time it takes to import the JavaBean

into ARFs repository is also important. Importation is a one off task. All JavaBeans

contained in the JAR files registered with the repository are scanned for new JavaBean

entries when ARF starts. Figure 6.6 shows how long it took the participants to

complete exercise 3b which required them to import their new JAR file containing

their JavaBean into ARF’s Repository ready for use in ARF. Entry 12 on the Graph

represents the average time.

Once a JavaBean has been added to ARF’s JAR Repository it can be used again

and again by the user. The amount of time it took for the programmer to create the

component and add to the JAR Repository is the total overhead time for using ARF.

The time for the user to connect and configure their newly imported JavaBean using

the ARF’s PropertySheet, in exercise 3c, is shown in figure 6.7 with Entry 12 on the

graph representing the average time.

The maximum overhead for using ARF can thus be calculated by adding the

174

00:27

01:08

00:50

00:33
00:35

01:11 01:10

01:56

00:58

00:42

00:57

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

JAR Importation Times

Figure 6.6: Time taken to add a JAR file to ARF’s JAR Repository

00:56

01:39
01:34

00:48

01:54

01:14

03:31

02:47

05:16

03:00

02:16

00:00

00:43

01:26

02:10

02:53

03:36

04:19

05:02

05:46

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

JavaBean Connection Time using ARF

Figure 6.7: Time taken to configure the new JavaBean using ARF’s Guided Construc-

tion

175

average times of exercises 3a,3b and 3c:

ARFoverheadtime = 197.77 + 56.92 = 255secs = 4mins15sec

However, since some of these tasks need doing only once this is definately a worst

case estimate. Through repeated use of ARF this overhead becomes increasingly

insignificant due to the time saved using ARF over standard programming methods.

6.4.2.3 SuperComponent Tests (feature 9 and 5)

Scenario construction time is small, and therefore easily repeatable by a user over

and over again in different scenarios. However, ARF provides SuperComponents

which increase the amount of code reuse by allowing the user to create their own

useful component sets which can then be exported and imported many times into

the same or different ARF projects. This allows for straightforward cloning of useful

configurations that can then be instrumental when creating test scenarios for multiple

robots, or other platforms, as the programmer only has to do the work of building

the SuperComponents once. Exercises 1c(ii) and 1e measure the time to create a

SuperComponent and the time taken to import that SuperSomponent back into the

same project to create a duplicate simulated robot. The results are shown in figure

6.8 with Entry 12 on the graph representing the average time.

SuperComponents reduce scenario construction times by providing a build once,

use many times, facility. The export times are somewhat quicker than import times

because on import the user has to decide where to add the Java3D sub-graphs and

also sometimes has to rename certain JavaBeans to avoid having duplicate names.

6.4.3 Virtual Environment Creation using Java3DBeans

ARF provides guided construction mechanisms for JavaBeans in general. However,

ARF also provides the user with many useful Java3DBeans (see Appendix C) for

creating virtual worlds which can be controlled and interacted with. To illustrate that

virtual world construction times are low, exercise 1a required the test participants

to build a simple 3D scenario with a moveable object. To do this by writing Java3D

code by hand can take along time. This is due to the fact that the programmer has to

176

00:41

01:17

00:47

01:00

00:24

00:36

01:03
01:09

00:28 00:27

00:47

01:22

01:55

01:46
01:41

01:37

02:00

03:00

01:02

00:54

01:11

01:39

00:00

00:43

01:26

02:10

02:53

03:36

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

SuperComponent Creation Times SuperComponent Import Times

Figure 6.8: SuperComponent Creation and Import Times

know Java3D and then has to setup the Java3D universe manually, which ARF does

behind the scenes, which is a large overhead. Figure 6.9 shows the resulting virtual

world creation times. The times themselves are quite small and are good considering

the test participants generally had no experience in Java3D or ARF. However, they

were able to learn how to use ARF easily from the video demonstration. Entry 12 is

the average time.

The average creation time is 251 seconds for the virtual environment itself. If

this time is combined with the average time for exercise 1b, which is time taken

to configure the JavaBeans using guided construction, then an average time for a

complete scenario creation using ARF is obtained

AverageCreationT ime = 716.88 + 250.63 = 968secs = 16mins : 8sec

This time is incredibly low for creating a virtual environment. Plus, this configuration

can be reused through the saving of different scenario configurations or through the

use SuperComponents for useful subsets of configured components. Remembering

that these figures are based on participants who are novices in using ARF, a best case

177

02:00
02:07

04:16

02:04

04:21

03:53

07:25

03:27

07:32

04:41

04:11

00:00

01:26

02:53

04:19

05:46

07:12

08:38

1 2 3 4 5 6 7 8 9 10 Average

T
im
e
 (
m
m
:s
s
)

Virtual Environment Creation Times

Figure 6.9: Virtual Environment Creation Times using ARF

could be:

BestCreationT ime = 251 + 120 = 371secs = 6mins : 11sec

This value is far lower than the best time for merely joining the JavaBeans together

using Netbeans which was undertaken by experts in Java and Netbeans and still took

at best 12mins:31secs. For further examples of full scenario creation times using ARF

see the use cases chapter 7, since many of the examples give scenario creation times

for real applications.

6.4.4 Participant Skills

It is easy to see from the test results that the test participants had a fairly even spread

of abilities, with varying times and assistance requirements. The stacked bar chart in

Figure 6.10 shows the skills possessed by the test participants in various programming

languages. From this pie chart it is clear that the experience of the test participants

is strongest in Netbeans and Java, which is mainly because this was a prerequisite of

the test because otherwise it wouldn’t have been a fair comparison to ARF. However,

178

0

5

10

15

20

25

30

Java Experience Java3D Experience IDE Experience JavaBeans Experience ARF Experience C++ / other

%
 T
o
ta
l
K
n
o
w
le
d
g
e

1 2 3 4 5 6 7 8 9 10

Figure 6.10: Test Participant Skills

despite the lack of knowledge of the test participants in ARF and Java3D, ARF still

prevailed as the platform of choice and highest performance.

6.4.5 Assistance Requirements

The amount of assistance required using ARF was much less than amount required

using NetBeans. This is because NetBeans provides minimal help. Sometimes the

test participant did not know which Java methods to use and as such made mistakes.

These would normally have taken them along time to debug and rectify, so instead

they asked for assistance instead. Figure 6.11 shows the average amount of times per

exercise that assistance was required, or documentation was consulted, for exercises

using ARF and Netbeans where relevant. It shows that less assistance was required

for exercises using ARF than for NetBeans, and also that the documentation was

not needed as much with ARF. Assistance is inherently provided by the ARF user

interface guided construction for the same reasons. Therefore it is expected that the

user would find ARF easier to use and require less help. This is also corroborated by

the complexity measures discussed earlier.

179

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

assistance using ARF assistance using Netbeans documentation requirements using

ARF

documentation requirements using

Netbeans

T
im
e
s
 P
e
r
 E
x
e
r
c
is
e

Figure 6.11: Assistance and Documentation Requirements

The reasons given by test participants for requiring assistance with either ARF or

Netbeans are listed in tables 6.2 and 6.3 respectively. In general most problems with

ARF were due to not consulting the tutorial for assistance first, and sometimes due to

a misunderstanding on how to do something in ARF. With NetBeans the assistance

was generally required due to programming errors, not being able to use documenta-

tion, or not consulting the documentation in the first place. The Netbeans exercise

was harder than the ARF equivalent because it relied heavily on the programming

skills of the individual, where as ARF provides a much more intuitive interface to the

same task and thus makes the task easier, and can thus be carried out by less skilled

individuals in programming.

6.5 Summary

The testing carried out by the ARF Performance Tests (APT) was designed to high-

light the features of ARF which are very hard to prove via the use case examples alone

(see use cases in chapter 7). The most important points to draw from the results dis-

cussion is that ARF provides an extendible architecture which is generic enough to

180

ARF Assistance Requirements

Bugs in ARF

Didn’t understand Java3D coordinate system

Didn’t fully understand hierarchical nature of Java3D TransformGroups

Misunderstood how to use the BeanBoard and SceneGraph

Didn’t know how to use event listeners

Didn’t understand which Field of view to alter in the simulated sonar

Didn’t understand the Java3D scenegraph

Didn’t export all required JavaBeans as a SuperComponent

Didn’t understand that when importing SuperComponents that subtrees

had to be added to specific locations on the scenegraph

Didn’t read question properly or consult documentation

Table 6.2: Reasons user’s required assistance when using ARF

NetBeans Assistance Requirements

Didn’t see member variables of class they were editing

Couldn’t find correct methods to configure sonar

Problems with syntax errors

More example classes in documentation would have helped

Forgetting to instantiate Java variables resulting in Null pointers

Found hard to locate correct methods

Didn’t understand how to execute the exercise

Didn’t know how to use certain features in NetBeans

Didn’t consult provided documentation on creating JavaBeans

Table 6.3: Reasons user’s required assistance when using Netbeans

181

provide the capabilities of all the different usages discussed in the literature review.

In essence ARF is a one size fits all architecture which provides different generic gran-

ular levels thus providing flexibility for programmers and high end users. The second

most important feature that the APTs highlighted is the considerable performance

improvement over conventional methods of creating test scenarios. Furthermore, the

trade off of using ARF is minimal due to being built on existing JavaBeans technology,

which means that the programmer has less work to do to build components which

interface with ARF. ARF scenarios can be altered quickly due to the use of project

configurations, SuperComponents and JavaBean PropertyEditors.

The analysis of ARF’s performance discussed in this chapter provides the funda-

mental evidence for why ARF is so powerful for higher level applications, such as

creating HIL testing scenarios. The main increase being due to the many small time

savings which ARF provides, through the use of guided construction, SuperCompo-

nents and PropertySheets, which propagate to massive time savings in more complex

projects. Suddenly, scenarios no longer need to be reprogrammed from scratch, they

can simply be extended, have new components bolted on and merged with function-

ality from completely different projects through the use of SuperComponents. As

ARF’s Java3DBean and JavaBean component base grows, the more quickly scenar-

ios can be created with ever more useful SuperComponents. The run away effect of

having a large ever increasing component base means that before long design of new

components will hardly ever be necessary, making the small overhead of creating the

components in the first place negligible.

In order to see how ARF has been used for many different real applications, see

the use cases in chapter 7.

182

Chapter 7

Use Test Cases

It is very hard to measure the effectiveness of ARF using peformence testing alone,

since these do not reflect how ARF is likely to be used, or how it meets the require-

ments of chapter 3. Many potential example usages of ARF were highlighted in the

literature review; these examples are what ARF would be likely to be used for. Thus,

the best way to test ARF is to see whether ARF accomodates these examples and

therefore test as many different scenarios and usages and see if their goals are achiev-

able. As it happens, ARF was able to accomodate these usages easily which therefore

demonstrates the inherent flexibility and extendibility of ARF’s architecture. The

question therefore remains as to how much time was saved using ARF over conven-

tional methods. This questions is answered in general by the performance testing

carried out in chapter 6, but is corroborated by scenario creation times demonstrated

in the following use cases.

In the following sections many different scenarios have been implemented using

ARF. In most cases new components were required to provide the required capabilities.

This is to be expected since the idea of ARF is that the component set grows and

becomes more feature rich with time. What matters is that component creation time

is kept to a minimum and scenario creation time is kept to a minimum. ARF’s

guided construction mechanisms help to reduce scenario construction time using the

techniques discussed in chapter 4.

In each of the use cases an outline of the task is given, and how ARF is used to

accomplish the task is described. In most cases creation times for components and

183

scenario construction are given to illustrate how quickly creating components for ARF

and using ARF can be. However, for more statistics on component creation times and,

importation times and scenario creation times, see the testing in chapter 6. Most of

these uses were not planned specifically, but rather the requirements arose during the

development of ARF. Therefore these uses were not set out like test cases for ARF,

but rather have become illustrations of how ARF was able to be used on real projects.

However, in each case areas of ARF have been identified as being very useful, and

without ARF’s flexible and extendible architecture none of these applications could

have been easily catered for. Therefore these use cases are a tribute to ARF’s success

since they could not have been realised without it.

The use cases discussed can be categorised as to the features they demonstrate

from the requirements; a table of the working modes/features for the different use

cases is shown in figure 7.1. More thorough description of the working modes is given

in section 2.3.2.

Figure 7.1: Applications of ARF demonstrated by the use cases

184

7.1 RAUVER AUV Simulator

RAUVER [55] was first AUV built in the OSL (See background section 2.8). Most

AUVs built since have conformed to RAUVER’s communication protocol, Ocean-

SHELL (see section 4.1.5), and the message types and definitions used. Therefore,

ARF implemented OceanSHELL I/O for most of the message types to/from cor-

responding simulated components in ARF for RAUVER. This enabled simulation

testing to be executed using a hydrodynamic model of RAUVER through the same

communication interface as RAUVER itself, meaning the RAUVER model could be

substituted for the real RAUVER transparently to other software modules. Therefore

the programmer only has to interface with RAUVER’s OceanSHELL messages.

Since RAUVER a new more generic set of OceanSHELL message definitions have

been adopted called ALI (see section 4.1.5.1 in literature review). Therefore, ARF

implements interfaces for communicating using both the old RAUVER messages and

the new ALI messages. The idea being that the new ALI messages are more flexible

and make it easier to communicate with any ALI enabled robot, as before special

messages were needed where the RAUVER messages weren’t feature rich enough.

ARF implements many components for inputting and outputting OceanSHELL

messages. These components enable many different HIL, HS and PS testing scenarios

to be realised, as well as providing mission observation through visual feedback. The

simulated components in ARF communicate using Java interfaces and events. How-

ever, the OceanSHELL I/O implements these same Java interfaces, so OceanSHELL

can be potentially replaced by some other communication medium or by straight event

passing between components in ARF. The RAUVER components support direct event

passing in software using Java events as well as the ability to input/output Ocean-

SHELL or any 3rd party communication protocol. Generally, information in ARF is

passed between components by the chaining of event listeners from one component

to another (see section 5.3.7). This provides the extendibility and flexibility required

by different testing techniques since multiple data types can be input, output and

converted from one type to another. This allows for connections to be easily made

between different modules ready for testing.

185

7.1.1 RAUVER components

Figure 7.2 shows how some of the main RAUVER Messages are input and output from

ARF, and the relationships between ARF components. The diagram simulates the

navigation systems of RAUVER using the hydrodynamic model and has an autopilot

which receives waypoint requests via OceanSHELL. Navigation data is output using

OceanSHELL for the mission planner which monitors where the AUV is and issues

more waypoints. This is an ideal setup to test an AUV mission planner. This scenario

can be combined with object detectors and many other sensors to mimic a real AUV

and therefore be used for doing much more complicated tasks such as obstacle avoid-

ance (see sections 7.3 and 7.7). The configuration of components in figure 7.2 is fairly

standard of a simple simulated AUV and is the base scenario for a lot of different

uses of virtual environments for AUVs. Figure 7.3 displays the virtual environment

representation of a RAUVER mesh with sea, bathymetry and a simulated sonar. This

scenario can then be easily extended to have other 3D objects and sensors for different

uses.

Figure 7.2: RAUVER Simulated Components Interconnection Diagram

The components required for interacting with and simulating RAUVER’s low level

186

systems are as follows:

• WayPointRqstMsgPlotter (J3DBean) - displays the position of the waypoint in

the virtual environment.

• WayPointRqstMsgListener2AutoPos - this listens for OceanSHELL WaypointRe-

questMsg types and converts them to a waypoint request event for the Autopos

or any other class which implements the WaypointRequestMsgListener interface.

• RvrThrustMsgListener2AUVModel - this listens for OceanSHELL ThrusterRe-

questMsg types and converts them to a thruster event for the RauverModel or

any other class which implements the ThursterListener interface.

• NavListener2J3DTransformGroup - this listens for a NavListener event from

the RauverModel and moves a specified Java3D TransformGroup node around

the virtual environment. Generally this is the node of the AUV.

• AxisForceMsgListener2AUVModel - axis force is another representation for a

thruster command so this component does the same thing as the RvrThrustMs-

gListener2AUVModel component.

• AutoPos2RvrAutoposInPositionMsg - when the AutoPos has reached the de-

sired waypoint it sends out an InPosition event. This event is converted to an

OceanSHELL InPositionMsg by this component.

• AUVModelNAV2RauverModelNAVMsg - this listens for a NavListener event from

the RauverModel and outputs a RauverNavFeedbackV2 message over Ocean-

SHELL.

• RauverModel - this listens for thruster requests and calculates the position of

the AUV based on the hydrodynamic and thruster models internally.

• RauverAutoPos - this listens for waypoints such as position and attitude re-

quests. This outputs thruster commands to the associated thruster listeners.

This listens to navigation data which can be output by the RauverModel or

could be be navigation data over OceanSHELL.

187

• AUVModelDynamics - this contains the maths for the hydrodynamic properties

of the RauverModel. This can be replaced by a different set of hydrodynamics

for a different vehicle if necessary.

• ScreenPicker (J3DBean) - this senses mouse clicks in the virtual world and

translates them to positions in the 3D environment. This can be coupled with

WayPointOutput to provide a point and click interface to output waypoints.

These could then be sent directly to the Autopos to move the robot.

• WayPointOutput - this allows the user to send out waypoint requests. This can

also be linked to the ScreenPicker component to listen for mouse clicks by the

user and convert them to waypoints for the AUV.

• SimulationClock - this is a clock which links to any time dependent modules.

This clock can be speeded up and slowed down to increase and decrease time.

Figure 7.3: RAUVER Virtual Scenario

7.1.2 ALI components

The ALI components only need be used when the real AUV software uses ALI. How-

ever, this is just a different communication protocol over OceanSHELL. The extra

components that need creating are the inputs to, and outputs from, the simulated

modules of ARF. Components such as HydrodynamicModel/Autopilot can remain

188

the same as the RAUVER components. Figure 7.4 shows how the ALI communica-

tion components can be substituted into the RAUVER simulation diagram of figure

7.2. ARF provides the ability to have many listeners to any one event. Therefore a

simulation scenario in ARF could input and output both RAUVER and ALI messages

concurrently, or a mixture of the two.

Figure 7.4: ALI Simulated Components Interconnection Diagram

ALI I/O components for ARF:

• AUVModel2AliNavStsMsg - similar to AUVModelNAV2RauverModelNAVMsg except

this outputs an ALI message called AliNavStsMsg.

• AliAxisForceMsg2AUVModel - ALI axis force is another representation for a

thruster command so this component does the same thing as the RvrThrustMs-

gListener2AUVModel component.

• AliNavGoalCmdMsg2AutoPos - a NavGoalCommand message is basically a way-

point request message. This component converts this to a WaypointPointRe-

quest event and passes it to any registered WaypointRequestMsgListener ob-

jects, e.g. AutoPos.

189

• AutoPos2aliNavGoalStsMsg - When the AutoPos has reached the desired way-

point it sends out an InPosition event. This event is converted to an Ocean-

SHELL aliNavGoalStsMsg message by this component, similarly to the Auto-

Pos2RvrAutoposInPositionMsg.

7.1.3 Summary

These components provide the core modules required to simulate AUVs by providing

basic simulated movement and control. Inputs and outputs from these components

can communicate internally in ARF using events, or can be linked to external commu-

nication using the OceanSHELL I/O classes described. The ability to communicate

with modules running on other platforms provides the most basic HIL/SIL functions.

Real control modules running on the AUV’s systems can be tested using simulated

outputs from the virtual environment. For more complex testing, simulated sensors

are required for detecting objects and mimicking real hardware on the AUV. These

components only provide thruster and autopilot control. However, the OceanSHELL

receiver modules can also be used to receive data from a real UUV and used to up-

date ARF’s virtual environment. For example, navigation and waypoint data from a

real platform can be displayed in ARF, in real time. This has been used for online

monitoring (OM) of the real vehicle running real missions where communications via

wifi or tether are available (see SeeTrack Offshore in section 7.8 as an example of an

intelligent ROV with full communications to the surface). This set of components

enables for pure simulation of a basic AUV and enables higher level autonomous sys-

tems to be tested. The ability to do faster than real-time (OFFLINE) simulation is

provided by the use of the SimulationClock JavaBean.

7.2 Nessie II AUV Developmental Testing

Nessie II (see figure 7.5) was the 2nd generation Nessie AUV designed for the SAUC-E

(Student Autonomous Underwater Vehicle Challenge Europe) competition (see liter-

ature review section 2.8 for more background). Real world testing of Nessie was

primarily focussed on low level systems as there was little real world testing time left.

190

This meant that testing of higher level systems, such as the mission planner, did not

happen. Therefore, a complete simulation of Nessie II was required which provided

the same inputs to the mission planner and which worked in the same way as the

AUV.

Using ARF, a scenario was developed which used the core simulated components

from RAUVER and many new ones, such as simulated sensors. Nessie 2 was largely

based on the same OceanSHELL messages as RAUVER, however some were slightly

different so copies of the RAUVER components were altered slightly.

There was only a matter of weeks before the start of the competition and the

mission planner still hadn’t been tested on anything resembling the real system. Only

tests by the programmer had be done and the programmer was certain that there was

nothing wrong with the module and it would work perfectly. The problem with

designing static tests to test a section of code is that they are just that, “static”.

The problem is that the programmer can only test the module on what they expect

the module will have as inputs and therefore cannot test outside the scope of their

knowledge. Quite often modules are programmed to interact with other modules

based on a specification of an interface; this causes problems when the definition

of that interface is open to interpretation. The problem with Nessie II was that

various interfaces had been designed before construction had commenced, and these

had since evolved. However, due to poor communication during development, the

different modules hadn’t been tested working together and if they had they would not

have worked. Therefore, the changing of interface specifications, and those very same

interface specifications being open to interpretation, led to a mission planner that did

not work at all.

7.2.1 Planner Testing Components

The task then was simple; gather interface information from all programmers modules

and redesign the interfaces so that everyone was using the same ones. Once this

was completed, the design of a virtual reality testing scenario in ARF was able to

start. There were many specialised behaviours that Nessie 2 had which needed to be

mimicked in simulation so that the mission planner was executing realistically. Below

191

Figure 7.5: Nessie II

are the ARF components which were required for Nessie’s virtual environment:

• NessieThrusterCmdMsgListener2RauverModelAdapter - the Nessie 2 autopi-

lot would eventually require testing. However, the thruster commands sent by

the autopilot were different from that sent by the RAUVER AutoPos. This class

converts from Nessie 2 thruster messages to thruster command events which the

RAUVER hydrodynamic model can understand. The RAUVER hydrodynamic

model was used because it had the same thruster configuration as Nessie 2 and

it was already working and there was not enough time to create a new one

specifically for Nessie 2. Also the exact motion of Nessie did not need to be

replicated for the purposes of testing the mission planner. This component is

very similar to the RvrThrustMsgListener2AUVModel component.

• NessieWayPtRqstListener2AutoPos - listens for Nessie 2 waypoint request

messages and converts them to WaypointRequest events which can then be sent

to the AutoPos. Does same thing as the WayPointRqstMsgListener2AutoPos

component.

• FOVPickSensor (J3DBean) - this is an object detector which can be set up

192

to have the same characteristics as a video camera or sonar. The idea is that

instead of simulating video or sonar precisely and then analysing those images

for objects, simply run collision testing within a certain view volume and return

a list of all the intersections with different shapes. Thus doing the sampling and

detection phase all in one go and simplifying the simulation. This simulated

sensor has variable field of view (FOV) and can run as often as the user desires,

e.g. for a forward looking sonar, this could have an update rate of about 1Hz,

for video detectors an update rate of 25Hz could be used. This sensor outputs

a list of intersections and reports the name, pseudo type and Java type of the

object. This event is sent to all registered listeners. ForwardCameraMsgOutput

and DownwardCameraMsgOutput are potential listeners. These listeners then

prune the data and filter out results they are not interested in. This technique

speeds up object detection and can be used when the user is not concerned with

simulating real world data realistically.

• ForwardCameraMsgOutput - this component listens for events from an associated

FOVPickSensor which is configured to the field of views and update rates of the

object detection systems running on Nessie 2. The detected objects are then

queried as to their ARFInfo user type (discussed in the ARF interfaces section

5.3.6) and then the position of the objects are sent out in camera coordinate

frame in an OceanSHELL message called ForwardCameraMsg.

• DownwardCameraMsgOutput - this does the same thing as ForwardCameraMs-

gOutput except that the downward camera was only capable of detecting certain

objects so the results were filtered prior to sending out detections.

• SonarMsgOutput - Nessie 2 used sonar to detect objects which needed further

inspection and classification. These objects would be inspected in turn and

then categorised using the video camera sensors. The sonar also had another

mode which was to send out 2 sonar pings at right angles to one another. One

ping sent forward and one ping sent to the right of the AUV. This was to try

and detect the tank walls. This information was then fed into the navigation

system to try and localise the AUV in tank space. This was combined with

193

an IMU simulator and a compass, which combined with SLAM, done on object

detections, could help correct the navigational drift of the AUV.

• SonarStartMsgListener - this was a special component which listened for mes-

sages from the mission planner which changed the mode the sonar should be in

- full 360 degree search mode, or 2 pings wall detect mode.

• SonarWallFindPickRays (J3DBean) - this class was developed to do the 2nd

mode of the sonar, to detect the walls. A 2nd sonar was used since this was

simpler than reconfiguring the sonar every time the mission planner switched

from search mode to wall ping mode; one of the sonars was simply switched off.

• WorldDataMsgOutput - the mission planner itself did not listen to the camera

messages or the sonar messages. This is because the camera and sonar object

detections were all in vehicle coordinate frame with coordinate axis flipped de-

pending on orientation of the camera/sonar. A world model was used which

was combined with the navigation systems which transformed the relative po-

sitions output by the camera and sonar to absolute coordinates in tank space.

The mission planner listens to the output world model message for these object

identifications. Upon receipt of the object positions the planner might change its

task to something more specific. The world model and navigation systems were

not ready at time of testing. Therefore this component relies on the fact that

the positions output by the simulated sensors are correct, which they always are

in simulation as no noise was added to the results.

This proved enough to test the mission planner in a SIL fashion, and iron out most

problems. However, it also helped to iron out all the problems with the interfaces and

standardise them as most of the interfaces hadn’t been used yet. One of the main

problems with Nessie 2 was that often the intelligence of the software was located in

the wrong software modules making it hard to have one central control. For exam-

ple, the forward camera module was supposed to make detections and output them.

However, the mission planner programmer had assumed that once the camera was

within striking distance of the “orange ball” that the detection module should send

out a message saying it was ready to hit the ball. Really it should have been the job

194

of the mission planner to decide when was a good time to drive forward and hit the

ball. However, this meant that the simulated modules required were not as clean as

they might have been and in a lot of cases duplicated code that was present in the

real detection modules.

Using ARF to test the mission planner forced all the other modules to start being

integrated together. However, problems were surfacing until time ran out. Some of

these could have been averted if more HIL testing had been carried out rather than

just module by module simulated tests, which took longer than necessary due to not

having been integrated properly. Testing all the real modules working together on the

platform in HIL mode is the most important test since this shows whether an AUV is

ready to run autonomously. An AUV should not be able to run an autonomous mission

until all integration problems have been dealt with. AUVs cost a lot to produce and

can be easily lost if one software module fails. Unknown errors can sometimes never

be found because the AUV maybe unrecoverable making debugging impossible. As

with Nessie 2, and many other AUVs, adequate testing facilities were not available to

test the whole vehicle in HIL fashion. In the case of Nessie 2, there was simply not

enough time to carry out lots of HIL testing and produce the extra modules for ARF.

ARF was still in its infancy at this point and meant that alot of, now known to be,

standard ARF components were simply not available for immediate use.

7.2.2 Nav System Testing Components

In addition to testing the mission planner, the navigation and world model module

with integrated SLAM [16] was also ready and required testing. However, this module

needed a few more inputs from different sensors which were currently not available in

simulation. Therefore the following simulated sensors were created for ARF:

• Altimeter (J3DBean) - The altimeter is a key part of any AUV. Very simple

to simulate in Java3D using a pick ray to test for intersections below the AUV.

This component can be placed anywhere on the SceneGraph of any moveable

object in the the 3D universe.

• IMUSimulator - Nessie 2 had an Inertial Measurement Unit (IMU) which pro-

195

vided roll/pitch/yaw rotation rate and attitude in roll/pitch/yaw. It also pro-

vided accelerations in roll/pitch/yaw. This sensor was used to help the naviga-

tion system. Although the accelerometers of the real sensor were inaccurate the

headings given were still useful.

The Nav was able to output position relative to the corner of the tank using an

amalgamation of information from:

• Sonar wall pinging - send 2 sonar pulses at right angles to one another to find

out how far each edge of the tank was away.

• IMU - This was used as a compass to provide heading relative to a ficticious

north which was aligned to the orientation of the tank (tank space).

• SLAM - This was used with detected object positions in both sonar and video

camera to help correct the position of the vehicle when known features were

re-detected.

Using ARF to test the SLAM navigation proved very useful since many bugs were

detected related to timing issues due to old data and processing lag times. However,

when it came to real world testing, the output from the sonar was far to noisy such

that many false detections were made which meant that the SLAM system couldn’t

process the large amounts of false data quickly enough. Consequently, SLAM was

eventually turned off and would need making far more robust with better filtering

of data from the sensors. Use of a low quality sonar and acoustic noise in the test

tank compounded the problem. ARF showed visually that slam worked in simulation

because as the virtual robot passed the same object again and again the user could

see the AUV jump to the new corrected position output by the SLAM. The simulated

AUV’s position was displayed and also was the SLAM’s estimated position. The user

was able to then see when the position estimated by the SLAM drifted and when it

was accurately corrected as new object detections were made by the simulated sensors

in ARF. This simple test shows that the SLAM works, but the abundance of large

amounts of noise means that it takes a lot of computational power to find the correct

features, thus this was unable to be used on Nessie II.

196

Figure 7.6: Nessie 2 Mission Tester

197

Figure 7.6 shows the Nessie 2 test environment for the mission planning and the

SLAM. The green cones attached to the AUV represent the sonar and camera field

of views. The path of the AUV was visualised using a yellow trail. Unclassified

objects detected by the Sonar were represented by the multicoloured cubes, these then

changed to actual object representations once the simulated cameras had classified

them under closer inspection. The purple box around the AUV represents the position

output by the SLAM system. This did not always match the true position of the AUV

as the navigation was subject to drift. However, the purple box would re-align itself

with the AUV when an object redetection caused the SLAM to recalculate the AUVs

position.

7.2.3 Summary

This example, and also the Nessie III example, show how ARF components, if kept

simple, can be used for many different purposes and that if something does not yet

exist, new components can be easily created and integrated with ARF. This example

demonstrated ARF being used for OFFLINE, ONLINE, SIL, VR, OM, and some basic

HIL tasks. By switching components off/on and adding and removing components,

ARF was used to test multiple systems in different ways using a variation of a base

scenario. The use of SuperComponents allowed for a basic AUV configuration to be

saved and then imported into the different scenarios required. The ability to turn on

and off features of the SceneGraph enabled scenarios to be quickly adjusted to test

new combinations of different 3D objects with the simulated sensors.

7.3 Nessie III AUV Developmental Testing

Nessie III [57] (shown in figure 7.7) is the new AUV based on the Nessie II hull design

and software architecture. Nessie III involved a complete electronics redesign and

new special purposed underwater connectors to eradicate the water leak problems

caused by low quality connectors used on Nessie II. Nessie III was designed for salt

water use, therefore water leaks were simply not an option due to the serious damage

this can cause. In addition to hardware upgrades Nessie III required more stable

198

software modules for navigation, control and mission planning, i.e. most of it. Nessie

III has 4 video cameras, an IMU (compass), an 802.11g WIFI antenna, a Doppler

Velocity Logger (DVL) and various data/power tether options for use in ROV mode

and testing.

Figure 7.7: Nessie III

Nessie 2 relied heavily on SLAM systems and being able to detect the shape of the

tank for navigation purposes. This proved error prone, so a different approach was

adopted for Nessie III. The Nessie III platform uses visual tracking of the ground in

order to estimate movement and absolute position. In addition, Nessie III is equipped

with a DVL which, combined with a compass, provides accurate navigation when

visual systems cannot be used. Visual systems rely on the water being clear and well

illuminated, but this is rarely the case in real ocean and inland lake environments.

However, the DVL is banned in the SAUC-E competition, but due to clear water the

visual tracking was all that was required. Figures 7.8 and 7.9 show the hardware

architecture and software architecture respectively.

The lower level navigation systems were the first systems requiring testing and

implementing on the AUV in order to provide a stable platform for testing the higher

level modules, such as control and mission planning. Both mission planning and

control require lots of testing to make sure the software modules are stable and do

what they are supposed to do. The more testing the better so that the operator

has confidence that when the AUV goes on a real autonomous mission it will do

what it is supposed to do without any unforeseen and errors. Thus the control and

199

mission planning modules were tested thoroughly in ARF using HIL and PS testing

techniques.

Figure 7.8: Nessie III Hardware Architecture

7.3.1 ProportionalIntegralDerivative (PID) Controller Tun-

ing

A PID controller allows the robot to move to a specific position or rotation using its

thrusters. In order to reliably do this the controller needs constant feedback of the

AUV’s position and velocity information. This is called a closed loop system. This

allows for the PID controller to monitor whether it is going in the correct direction

from the navigation information. On the Nessie AUV the navigation information is

provided by the navigation module which uses multiple sensors, such as DVL and

IMU, to give accurate position and velocity information.

A new autopilot was required for Nessie III, however Nessie III was still in con-

struction and couldn’t be used to tune and test the PID controller whilst it was

200

being developed. Using a real vehicle to continually develop and iron out bugs in the

PID controller would prove harder than using a simulated vehicle, because accurate

position and velocity information required by the PID controller would not be avail-

able until much later in the AUV’s development. Instead, a virtual reality scenario

in ARF was created which used RAUVER’s hydrodynamic model JavaBean to pro-

duce navigation data and simulate the thrusters of Nessie. The software interfaces for

Nessie would be the same OceanSHELL messages which were used for RAUVER, since

Nessie uses the same thruster layout and configuration. This alleviated many of the

problems of creating new OceanSHELL message definitions which Nessie II suffered.

Consequently, anything developed for the simulated AUV is directly transferable to

the real AUV.

The simulated AUV provided a test-bed and also a development tool. The pro-

grammer was quickly able to learn how the simulated AUV reacted to thruster com-

mands. Once the PID controller was ready its gain variables were tuned to the

dynamics of the simulated RAUVER hydrodynamic model. Once an accurate control

was achieved using the simulated vehicle the PID module was ready for testing on the

real AUV. Having access to a simulated, although hydrodynamically different, AUV

meant that development of the autopilot could continue in parallel with Nessie III’s

construction. The difference in hydrodynamics between RAUVER and Nessie meant

that the PID controller would have to be re-tuned for the Nessie AUV. However, all

the learning of how the AUV moves and operates was done using the virtual vehicle

and thus all obvious bugs removed early. Therefore integration onto the real vehicle

was merely a case of a re-tune.

The task of tuning the PID controller for the Nessie AUV involved having a few

other tasks finished as well:

• Navigation System - uses DVL/VVL and IMU (for compass heading).

• IMU or compass module integration and testing

• DVL module integration and testing (this gives velocities in vehicle X,Y,Z frame)

• Thruster module integration and testing - this converts thruster OceanSHELL

messages to real thruster movement.

201

• Visual Velocity Log (VVL) - this tracks features in the downwards camera im-

ages to calculate distance moved over the ground and thus velocity.

The sensors also required fitting to the vehicle in hardware and checking to see if they

all worked together on the vehicle.

Figure 7.9: Nessie III Software Architecture

Once the PID Controller has been tuned using the navigation systems on board

the AUV, the PID controller can be made to control the AUV with no position feed-

back, i.e. an open-loop system. This can be achieved by tuning a hydrodynamic

model of the real AUV by measuring how the AUV’s motion is affected by the indi-

vidual thruster powers. The speeds of the vehicle and rotation rates were able to be

measured using the output from the DVL and IMU sensors. Thus a mapping is gen-

erated from thruster powers to acceleration of the vehicle. This information can then

be used by the PID controller in absense of the any accurate information from the

AUV’s other navigation sensors. The hydrodynamic model can then be used by ARF

for simulation purposes so that other systems can control the thrusters and receive

accurate navigation from the hydrodynamic model. This is very useful for testing the

autopilot and mission planning systems.

Once the low level systems, such as autopilot, are ready, the vehicle is assumed to

be in a functional but basic state. Thus, it can be used for accurately testing some of

the higher level systems such as the mission planner. ARF allows for the real systems

202

to be fully tested before deployment onto the AUV and thus the testing time on the

real AUV is more fruitful due to small problems being ironed out beforehand. In

a perfect world, the only problems which could arise during integrating to the real

AUV are those due to interfacing with real sensors. Thus problems become easier

to diagnose at real-world test time since the designers have a better idea of where a

problem is likely to be because they know which systems are stable.

7.3.2 Mission Planner Testing using Sensor Simulation

The SAUC-E competition requires that an AUV do the following tasks:

1. Dive a few metres and drive forward through a validation gate (a rectangle

floating mid-water) - see figure 7.12 for virtual representation.

2. Find an orange ball and ram it (shown in figure 7.11).

3. Locate a target on the bottom and drop weights as close to its centre as possible.

4. Find either two traffic cones or two tyres on the bottom and surface the vehicle

directly between them. Whether the AUV should surface above the traffic cones

or tyres is specified just before the AUV enters the water.

The mission planner running on Nessie has to have special behaviours for some

of these tasks, these include: searching for the ground targets (tyres, drop-target,

cones) and searching for the mid-water targets (orange and green balls). Specific

behaviour routines are needed for lining up with the drop target, for dropping the

drop weights, and for lining up with the orange ball ready for colliding with it. This is

easily done if all object positions are detected accurately in world frame coordinates.

However, object positions are subject to inaccuracies due to sensor inaccuracy, false

detections and navigational drift. To compensate for errors, once an object has been

detected, take for example the orange ball, the mission planner will change its priority

to completing the orange ball task. Rather than searching for all objects first and then

going back for closer inspection later since positions may have changed. Positions of

detected objects are stored by a world model so that once one task is complete, the

203

AUV goes to roughly where it thinks that the next object is, and starts a new search

pattern to find it again if it has not already been redetected by the sensors.

All these behaviours need creating, testing and fine tuning so that they work in

the most efficient way. This is time consuming to do on the real platform. Often

real-time communications with the platform are needed for real-time debugging so

that the operator can monitor what state the planner is in. Testing the behaviours in

simulation first means that at least the planner will do the right thing when it receives

the real data onboard the AUV, since the same messages will be used in simulation

as on the AUV. The tuning of the actual object detection systems has to be done

on the real AUV though since this relies on the many factors of the camera systems

used to do it. However, much of this can be done off the AUV using a test rig with

the same cameras as the AUV. The mission planner was able to be tested using the

same ARF components designed for Nessie II. The only difference being that a new

event listener was required to output a slightly different OceanSHELL message from

the simulated cameras, i.e. FOVPickSensor was used again to do object detection.

7.3.3 Autopilot Visual Servoing for Object Collision Testing

In the previous section it discussed the problems with using absolute positions for

detected objects due to sensor inaccuracies and navigational drift. When an object is

detected by the AUV its position is stored in a world model. The navigation system

uses SLAM [16] to help reduce the drift of navigation based on the detections and

redetections of objects. However, these positions are still too inaccurate for close

inspections of objects, so the AUV must rely upon continually detecting the object

in order to move closer for more accurate tasks. In some cases the AUV may loose

all navigation systems which would normally render the AUV useless because the

autopilot has no navigation input, other than perhaps a hydrodynamic model which

can only provide basic control at best. Therefore, if a point of reference is known,

such as the continual detection of an object by a sensor, then this can be used so

that the AUV can home in on it, or move relative to it. This requires the autopilot

to have an open-loop control mode which can be controlled by a higher level system

which takes into account the changing position of the detected object. This technique

204

is called visual servoing.

Figure 7.10: Simulated object detectors and hyrdrodynamic model allowing mission

planning and autopilot to be tested.

Figure 7.11: Nessie III doing real object detection for testing the mission planner and

autopilot.

ARF was used to test that the open-loop control mode of the autopilot worked

correctly. ARF simulated the AUV’s hydrodynamic properties and also its video

camera based object detection system. The outputs from ARF’s object detectors were

then fed into the mission planner, via OceanSHELL. The mission planner monitored

the relative positions of the detected objects and used this to navigate the vehicle to

the desired position using open loop control messages sent to the autopilot. In the

case of SAUC-E this could be used to home in on the orange ball and drop targets

if the navigation system failed. However, this was merely a back up plan and the

205

actual way the mission planner worked was by using the continual redetection of

objects to calculate relative movement commands which were sent to the autopilot.

The closed-loop control method of the autopilot proved to be accurate enough and

therefore the open-loop method was not used (figure 7.10 shows the ARF virtual

scenario which allowed visual servoing and mission planning to be tested). The field

of views of the object detectors are shown in blue on the AUV. Figure 7.11 shows the

real Nessie III doing the same tests in a test tank. A data tether was used to give

continuous feedback of the AUVs systems during testing. ARF was used during these

real tests to plot where Nessie thought the real objects were relative to the AUV. This

proved to be a relatively good system for checking how accurate the 3D stereoscopic

reconstruction was at calculating 3D positions of objects. This is a good example

of Augmented Virtuality and mission observation since the virtual world was kept

in synchronisation with the real world using a specific JavaBean which received data

from the AUV’s world model.

The last step of testing is then to execute completely autonomous missions, which

should work in the exact same way as they did under tethered testing.

7.3.4 SAUC-E Mission Logging and Replay Suite

The SAUC-E competition required that every team who entered an AUV produce a

log file of the AUV’s current mission state, object detections, position updates and

autopilot waypoints (if they used them). This log file would then be played back after

the AUV completed the mission in order to validate that the AUV was doing the

right thing and to show the audience and the judges what the AUV was thinking at

each point in the mission so that they could see that it was indeed autonomous. The

logged positions of detected objects were used to produce a map relative to the start

of the mission. Points were then awarded for the accuracy of the map.

ARF was selected to be used as the mission playback environment since it al-

ready incorporated many of the required components required to show the dynamic

environment of the competition pool. The requirements were to simply playback the

log in real-time, plot and update object detections with visual representations of the

objects in the tank, and finally display the state of the mission controller, i.e. what

206

the current intention of the AUV is. In a state based mission controller this is easy

because mission state names can be given which correspond to the task to be done

in the competition such as: going through validation gate, search for orange ball,

colliding with orange ball, searching for drop target, dropping drop weights on drop

target, finding cones and tyres which designate surface zone, and finally surfacing in

surface zone.

In order for the playback environment to be created some extra components were

required to read and playback the log files. The rest of the components had already

been created for the sensor simulation and HIL testing environment needed for Nessie

III. Therefore the visual representations of the tank, balls, validation gate, drop target,

tyres and cones could be plotted in the detected positions logged in the log files. Figure

7.12 shows the various different states of the virtual environment from the Nessie III

log file of the SAUC-E competition final. The pictures start from the top left and

end at the bottom picture which displays the final view of the tank once the AUV

finished. The last known positions of the detected objects represent the final state of

the map.

The log files are written using XML, so as well as being human readable they are

easily interpreted. An example XML document can be viewed in appendix G.

ARF was used to test the logging system as well. ARF used simulated object

detection, vehicle navigation and the real autopilot and mission planner to test that

the XML log files were correct and that ARF’s interpreter could read and play them

back in the same environment. Thus a SauceLogger component was created for

ARF which allowed for simulated missions to be logged as well. This facility now

enables simulated missions in ARF to be logged and therefore used for many different

applications other than Nessie III and SAUC-E.

7.3.5 ARF Modules required for Nessie III and SAUC-E

In order to provide the necessary facilities for testing Nessie’s systems and imple-

menting the log playback facility, various components were created for ARF to allow

real modules to be switched for simulated ones. Other components were also cre-

ated to show information about current vehicle state which are to be used in mission

207

Figure 7.12: Nessie III log playback in ARF showing the state of the object detections

made and path of the vehicle as time progresses.

208

observation and real world testing (using tether, WIFI or acoustic modem for com-

munications).

Monitoring of vehicle state components:

• Low level Systems Listener module - Nessie’s systems send out various mes-

sages regarding their state. For example, the general purpose I/O Card on

Nessie’s PC reads voltages from the depth, water alarm and on/off switch in-

puts. These are then displayed in ARF using widgets on the HUD. Water alarms

are latching and the robot has special procedures it follows if it senses water,

e.g. surface as quick as possible.

• Alarm Gauge and PosNegBarGauge are used to display alarms and quantities

for systems on the HUD.

For Nessie all that is required is a simple OceanSHELL message listener which

extracts the relative information and displays it in ARF. Once one component of this

type is created it is very quick to create another one because it is usually just the

message name and a few fields which need changing in the JavaBean class.

Simulation Components:

• Hyrdrodynamic Model (created for Nessie II)

• Object Detectors (created for Nessie II) - used to detect the virtual objects and

output an event. Uses the same FOVPickSensor to simulate the sensor and

image processing in one.

• CollidedNodeEvent2DataDetectedEvent - object detected events are converted

to DataDetectedEvents which are listened to by the WorldModel Component

• ForwardCameraPixelMsgOutput - this listens to events from the object detec-

tors and outputs the Nessie III ObjectDetected event which comes from Nessie’s

camera module.

Logging Components:

• SauceLogger - this takes inputs from the existing navigation, waypoint, object

detected events and outputs an XML log.

209

• SaucePlayer - this opens an XML log file and links to listeners for each type of

event, such as navigation, waypoint, object detected etc. These event listeners

then alter the virtual environment accordingly, be it vehicle position, current

waypoint marker, plotting objects in the virtual world or simply displaying the

current intention of the mission on the HUD.

• DataAssociationEventListener - this handles detected object events from

SaucePlayer which are then passed to the WorldModel component for display-

ing in the virtual world.

• IntentionEventListener - this listens for intention events. These events gen-

erally refer to the current intention of the mission planner. These are then read

from the log file and displayed on the HUD.

• PositionEvent2NavListenerEvent - position events output by SaucePlayer

are used to move a specified TransformGroup object in ARF’s 3D environment.

This would normally be the TransformGroup which represents the AUV.

• Waypoint4DEvent2WayPointRequestEvent - waypoint events output by Sauce-

Player are changed to the standard WaypointRequestEvent which can then be

interpreted by modules such as the AutoPos (autopilot) or WayPointRqstMsg-

Plotter which plots the current waypoint in ARFs virtual environment.

• WorldModel - This is used to keep track of detected objects in ARF. It gets input

either from logged data via SaucePlayer or from object detectors running in

ARF. The world model will plot the identified object in ARF. The world model

is also capable of linking to SauceLogger to output detected objects to log file

as well.

7.3.6 Time Analysis

Table 7.1 shows the times taken to create some of the components required. Also it

shows how long the scenarios took to create in ARF for the various different purposes.

Most of the scenarios were simply modifications of one of the other ones, so creation

times were kept to an absolute minimum. The base scenario used to test the PID

210

Task Time (HH,MM,SS)

Low level Systems Listener 1,10,00

Alarm Gauge and PosNegBarGauge 1,20,00

Observation Scenario 0,9,00

PID Testing Scenario 0,5,00

Autopilot Open-loop testing Scenario 0,10,00

Mission Planner Testing Scenario 0,20,00

Logger Testing Scenario 0,3,00

Log Playback scenario 0,6,00

Table 7.1: Nessie III Time Analysis: Time required to create components

system originally developed for Nessie was then altered to do much more complicated

testing using simulated object detectors for testing the mission planner, open-loop

mode of the autopilot, and then the logging and playback system. This demonstrates

the extendibility of ARF and how scenarios can be easily modified in a short amount

of time for different tasks.

7.3.7 Conclusions and Upgrades

In the future Nessie will have an acoustic modem which will help further with testing

and mission observation using ARF. ARF will be able to be used for keeping the

operator informed in between communications from the AUV by using interpolation

of position, current status information and next waypoint data received from the

robot. Nessie will be used for multiple robot cooperation and coordination tasks

controlled by DELPHÍS [30] (see section 7.4). Simulated vehicles will also be provided

by ARF to make up the numbers of vehicles in multiple vehicle testing. ARF will

also provide Hybrid Simulation (virtual sensors) for real robots which do not posses

the appropriate sensors required for testing the DELPHÍS system.

ARF helped tremendously for reducing testing time for the mission planner and

autopilot for Nessie III. ARF provided facilities for software development to com-

mence before the AUV was even built. This meant that software testing could run

concurrently with the low level hardware testing of Nessie III.

211

7.3.8 Summary

Nessie III demonstrated many different features of ARF due to its numerous applica-

tions, these included:

• Operator Training (TR) - the first advantages of ARF were highlighted during in

module development of the PID controller. The programmer was able to learn

from the virtual AUV how it reacted and responded to thruster commands

and then design a new PID controller to control it. This saved potentially many

hours of in water testing time. Also the programmer now knew the basic systems

of an AUV and how they respond. Although this is not operator training as

such, it serves as development training, which in essence amounts to the same

thing since they both serve to save time in water.

• OFFLINE, ONLINE, SIL, HIL - The mission planner was tested in SIL fashion,

enabling new techniques to be tested. The whole AUV high level systems were

then able to be tested in HIL fashion with ARF serving as simulated Nessie

with the required simulated object detector sensors.

• AV was achieved during online monitoring of real missions for debugging pur-

poses. The AUV’s position and object detections were rendered in the virtual

environment so that the system developer could see that, based on what the

AUV thought it could see, it was doing the correct action. This served as real

world testing for the mission planner and object detection systems.

• VR was demonstrated when testing of the mission planner and autopilot during

HIL testing. Simulated object detection data was sent back to the AUV so that

the navigation, mission planner and control systems could be tested in the lab.

7.4 Multi-vehicle Testing of DELPHÍS

DELPHÍS [30] is a system for coordinating multiple autonomous vehicles (agents).

DELPHÍS agents are capable of executing different parts of a mission plan dynami-

cally and concurrently. The mission is specified in such away that certain tasks can

212

be separated into smaller units that different agents can choose to execute. The sys-

tem allows for agents to be placed in the mission at anytime to help execute the

overall mission faster. The mission plan is specified by an operator in a language

called BIIMAPS [42]. This language is a tree structure which is capable of describing

goals, sub-goals, and dependencies between goals. The mission plan can also specify

requirements of agents which are to execute a goal, e.g. a goal such as mapping of the

seabed in a lawn mower fashion requires that only agents with a certain type of sen-

sor can execute this task. The DELPHÍS system allows agents to dynamically choose

tasks from the mission plan and execute them. Each agent periodically broadcasts

its current task and its position. This allows other agents to keep their mission plan

updated with what has already been done, and who is doing what. There are special

algorithms to resolve task conflicts caused when multiple agents pick the same task;

this is based on distance to next task, speed and other factors. The DELPHÍS system

is capable of predicting which tasks will be chosen by which agents because its the

same system on each agent and therefore all agents will pick their tasks in the same

way. For example, an agent can assume that one agent will pick task (x) next because

it is closest to it when they finish their current task, consequently this agent will pick

a different task so there is no conflict between agents. Since each agent predicts in

exactly the same way then there should be very little task conflict. An agent can add

extra tasks to the current plan by broadcasting objects they have discovered which

need further investigation and which may require a sensor which they do not have.

The DELPHÍS system is highly applicable for underwater applications because

of its low bandwidth requirements and its ability to function in the absence of re-

liable communications due to the prediction facilities. Underwater communications

are highly unreliable and have very low bandwidth. Therefore, a robust system is

needed for coordination between vehicles which doesn’t require large quantities of

data to be exchanged and has the ability to run with severely limited communication.

DELPHÍS was developed specifically for applications of this nature. A mission can

be dynamically broken up into separate tasks which can be executed in parallel by

separate vehicles. DELPHÍS has been tested in a variety of different ways using the

ARF virtual environment. ARF is capable of simulating multiple vehicles quickly and

213

easily and was therefore very well suited to testing DELPHÍS.

Figure 7.13: ARF Simulating 4 AUVs using DELPHÍS

7.4.1 Testing DELPHÍS

To begin with DELPHÍS was tested hundreds of times in simulation running many

different missions with varying levels of communication loss. For most of the tasks

the system was tested with increasing numbers of AUVs to see how much time was

saved by the addition of another vehicle. However, there is a maximum number

of vehicles where the efficiency of a mission cannot be increased further due to the

mission not being complex enough, i.e. not enough tasks can be executed in parallel.

The ceiling limit for the number of vehicles was generally around 4 AUVs for the

missions which were tested. Therefore ARF simulated 4 AUVs which was simply

achieved by copy and pasting the same AUV 4 times. Some of the AUVs simulated

had different configurations so that certain agents were better at certain tasks, or

some agents couldn’t do specific tasks. For the cases discussed here, the two types of

AUV which were simulated and used for real were Nessie III and REMUS.

ARF’s primary purpose other than simulating the AUVs for testing the system,

was for the designer of DELPHÍS to observe how the AUVs broke up the mission

plan (figure 7.13 shows 4 simulated AUVs cooperating using the DELPHÍS system to

break apart a lawnmower into many different legs so that the same area is surveyed in

214

less time, similar to a divide and conquer approach). ARF was used to view replays of

missions where there seemed to be anomalies in the data, i.e. to see what the AUVs

actually did since most testing was run faster than real-time.

7.4.1.1 Integrating DELPHÍS on REMUS

The simulated tests proved that DELPHÍS was very efficient in dividing up missions

and allowing multiple AUVs to cooperate together in environments with poor com-

munications. The next step was to prove that it worked using two real AUVs with

acoustic communication capabilities. This required various levels of testing before

the full scenario could be tested since the AUVs had to be upgraded to use acoustic

modems. The REMUS AUV uses a WHOI acoustic modem. The same modem was

purchased for Nessie and installed. Another modem was attached to a surface com-

puter for monitoring REMUS via Hydroid’s VIP software, and also for monitoring

the state of DELPHÍS output by its broadcast mission state messages. In some of the

testing a simulated vehicle was run on the topside computer communicating via the

surface acoustic modem. This meant that one real AUV could be tested at a time,

with one virtual AUV, to make sure it worked and communicated properly. This

proved to be very useful since there were problems with the DELPHÍS system after

being integrated onto the REMUS which would have been very hard to diagnose had

there been another vehicle in the water introducing another possible source of errors.

The first line of testing to be executed was simply to test the REMUS being

controlled by DELPHÍS. DELPHÍS was initially executed on Hydroid’s own Remus

simulator, as this was as close to hardware-in-the-loop that could be done with the

REMUS. However, the simulator is supposed to have all the same interfaces as the

real REMUS. This was before any acoustic communication was available, so it was

simply to check that the DELPHÍS software could take control from REMUS at the

appropriate point in its mission and start executing DELPHÍS’s alternative mission.

Since no other vehicles were running, REMUS completed all the mission goals. Upon

completion of the DELPHÍS mission, control is handed back to REMUS so that it can

return to its mission end point and wait for collection. Once DELPHÍS was tested

and validated on REMUS, the next step was to integrate the Acoustic modem onto

215

Nessie and enable REMUS’s acoustic modem interface so that DELPHÍS could use

it.

7.4.1.2 Multiple Hardware-in-the-loop Testing of DELPHÍS

To begin with, Nessie was tested using DELPHÍS in the dry using a hydrodynamic

model simulated in ARF. DELPHÍS was running on Nessie and acoustic communica-

tions from DELPHÍS were tested by placing the surface acoustic modem near Nessie’s

modem. The system was then tested using Nessie in hardware-in-the-loop fashion with

its thrusters and navigation systems simulated by ARF, and also a simulated REMUS

was provided by Hydroid’s REMUS simulator. A third simulated vehicle was then

introduced in ARF to check that communications could be sent down the surface

acoustic modem to Nessie. Therefore, Nessie’s broadcast communications had been

proved in the dry. It was then merely a case of testing them in the wet.

Figure 7.14: Real AUV Position Vs Acoustic Updated Position

ARF was used to compare the simulated vehicle path to the path created by

updates from the acoustic messages from DELPHÍS. This showed that the update

rate of the acoustic communications was sufficient to keep the operator situated and

wasn’t to far lagged behind. The HUD was used to display which goal ID each vehicle

216

was executing and a readable (x,y,z) value for its position. Trails were plotted for

both acoustic updates and vehicle navigation to correlate the paths of each. This

showed that delays of around 25 seconds between each acoustic transmission was a

sufficient update rate for the operator. Figure 7.14 shows the acoustically updated

vehicle and the real position. The acoustic updates are shown as yellow trails, and

the real position shown in cyan trails. The real vehicle is depicted by a white circle

and the acoustic position represented as a cyan circle with a pink rectangle. The red

cone objects are the detected mines. The mission shows only one AUV executing a

lawn mower and inspecting the detected mines.

7.4.1.3 Real world testing of Nessie III using DELPHÍS

The next stage of testing required that Nessie be tested in a real lake environment.

This would be a test with a single vehicle to check that the acoustic communications

sent out by DELPHÍS were correct. The next step involved running a simulated

vehicle on the surface computer which also did some of the tasks. This tested the

prediction part of the DELPHÍS system as the system accurately predicted which

tasks would be executed by each agent. The test was carried out at a reservoir, just

outside Edinburgh, called Harlaw. This test worked without any problems, thus all

that remained was making sure REMUS’s acoustic communications worked.

7.4.1.4 Real world testing of REMUS using DELPHÍS

REMUS had already been tested using DELPHÍS and this worked. Therefore, all that

was left to do before a multi-vehicle mission could be executed was to test that REMUS

broadcast its state correctly over the acoustic link. There was a small problem with

the way REMUS allowed its acoustic modem to be used that meant that in order

for REMUS to send an acoustic message it first had to receive an acoustic message

asking for one (polled I/O). This meant that the surface computer had to continually

send out a pole message so that REMUS would send an acoustic broadcast message

which could be picked up by other AUVs. Once this problem was fixed, REMUS was

sending out acoustic updates which looked correct.

217

Figure 7.15: REMUS Vip Software and ARF viewing Acoustic Updates from Multiple

AUVs

7.4.2 Multi-vehicle Trial using REMUS and Nessie III

The 1st real world trial of two AUVs actively collaborating and cooperating was visu-

alised using ARF. ARF required 1 new component which listened for an OceanSHELL

message which contained the location of each AUV, their current GOAL and whether

they had detected any objects requiring investigation. The ARF scenario plotted the

vehicle positions and the trails indicating where the vehicles had been. ARF also

plotted the positions of any objects detected by the AUVs. The mission was executed

by starting REMUS first, and then starting Nessie moments after. There were simu-

lated sensors on REMUS to make fake object detections similar to what a CADCAC

(Computer Aided Detection Computer Aided Classification) system would output.

The exercise was similar to that of mine counter measures (MCM) vignette required

by the Ministry of Defence (MOD). The REMUS AUV would select a goal to carry

out a survey mission and map a large area with a lawn mower looking for mine like

targets. The Nessie AUV would be used for inspection of identified targets because

it is too slow to survey large areas quickly. Upon REMUS discovering new mine like

targets, Nessie would receive the update to the plan and select one of the mine inspec-

tions as its goal. Nessie was unable to select the survey goal because it did not have

the survey capability, i.e. not fast enough. REMUS would then detect another mine,

218

which Nessie would investigate also. REMUS would finish before Nessie had finished

because there would be nothing left for REMUS to do, since the remaining task was

being currently executed by Nessie and REMUS predicted that Nessie would get to

the location of the mine before it could. Figure 7.15 shows the command and control

setup. ARF was used to display which goal each AUV was currently executing and

also where the vehicles were and where any detected mines were. Figure 7.16 shows

the plots of the two AUV’s trails and the detected mines in ARF.

Figure 7.16: DELPHÍS Mission Status displayed in ARF

The pink trails represent Nessie. Nessie started off very close to the first mine

detection. Nessie then goes to the next mine detection. The mine detections are

marked with a red dot and highlighted with a green box. The trails do not appear to

go all the way to the mines. This is due to the infrequent acoustic updates (once per

30 seconds or every couple of minutes if acoustic conditions are noisy). The reason

Nessie doesn’t appear to reach the last mine is because an update is not received

whilst Nessie is at the target because the DELPHÍS system finishes and hands back

control to Nessie; therefore no longer sends acoustic updates from DELPHÍS. The

219

Task Time (HH,MM,SS)

DELPHÍS Acoustic Message Plugin 2,20,00

4 AUVs Simulation Scenario 0,10,00

ARF Observation Scenario 0,6,00

ARF Simulation and Observation Scenario 0,5,00

Table 7.2: DELPHÍS Time Analysis: Component and Scenario Creation

yellow trails represent REMUS’s lawn mower.

ARF was used only for observation in this final test. Another simulated vehicle

could have been added, but there wasn’t enough time on this trial because Nessie’s

batteries went flat. However, this had been tested before at Harlaw loch with Nessie

and a simulated REMUS.

7.4.3 Time analysis

Table 7.2 shows the amount of time required to produce the ARF components and the

time taken to create the virtual scenarios. Most components were already available

from previous projects, and as such were used to save time. ARF used the ALI ab-

straction layer, so no extra I/O components needed creating for ARF to simulate the

AUVs. The only component requiring adding was one which listened for DELPHÍS

Mission Status OceanSHELL messages. This required linking to a text label com-

ponent on the HUD of ARF which then displayed data about each vehicle such as

DELPHÍS Goal ID etc. This plugin was connected to the simulated Nessie World-

Model used to plot object identifications, including position of AUVs. Thus made

re-use of components created for the SAUC-E competition.

When the requirements of the tests changed, ARF’s scenario had to be changed.

It was always a simple addition or alteration which needed making and therefore the

whole scenario did not need redesigning. The ability to quickly add another simulated

vehicle, or add feedback for another real vehicle was very useful as configurations

could be tested quickly. In ARF it is rare that a complete scenario needs creating

from scratch since so many uses have a common base which can be used throughout

many scenarios, thus saving large amounts of time overall.

220

7.4.4 Summary

Apart from ARF being used for observation purposes, multiple AUVs have been

simulated which helped tremendously for observing behaviours and testing of the

DELPHÍS architecture (see section 7.10.1 for other applications of DELPHÍS). Basic

object detection sensors provided a simple but effective method of outputting data

from the virtual environment to DELPHÍS. Detections of certain types of objects

meant that new goals were added to the plan. Generally these would be of the

form: identify an object with one vehicle, then classify that object with another

type of vehicle with the appropriate sensor. Thus some of the simulated AUVs were

only capable of detecting the objects, whilst others were capable of inspecting and

classifying those objects.

The use of ARF for real-world observation (OM) was quickly recognised as it

provided a simple architecture that was easily extended for visualising multiple tasks

at once. For DELPHÍS it was paramount that the operator be able to see visually

what both AUVs were doing. No other software could provide the visualisation of

multiple vehicles in a dynamic and changing environment. The plotting of targets

meant that the operator always knew where the vehicle was heading and why. If

more capabilities were required, the scenario can be easily extended to show more

data. Testing and validation of DELPHÍS harnessed ARF’s ability to provide flexible

scenarios which were used for many different mixed reality and testing applications

demonstrating features of: OFFLINE/ONLINE, HIL, MHIL, SIL, AV and VR.

The time taken to produce the scenarios required for DELPHÍS was minimal. The

largest overhead was creating the OceanSHELL message listener which kept ARF

updated. However, the time taken to create this was tiny in contrast to the time

taken to do everything else relating to DELPHÍS. All other components required were

already available from previous projects, thus demonstrating high code reuse. The

time savings were attributable to ARF’s flexible architecture allowing components to

be easily interfaced with and used for many purposes. This highlights the flexibility

and extendibility of ARF and its inherently useful applications in testing of systems

for underwater applications.

221

7.5 RAUBoat I: Autonomous Surface Vehicle Test-

ing

RAUBoat is a a maritime Autonomous Surface Vehicle (ASV). It is actually a boat

rather than a land based surface vehicle. Its name lends itself to its inner workings

as most of the technology came from RAUVER and is in essence an amalgamation

of technology from RAUVER and Nessie. The idea of RAUBoat is to provide surface

surveillance and tracking of AUVs. The second purpose is that RAUBoat act as

a communications gateway from wifi/radio to underwater acoustic and vice versa.

RAUBoat will follow the AUVs to maintain a short distance between itself and them.

Acoustic communication is much faster and more reliable over short range. The

acoustic communications can then be easily routed anywhere in the world via radio

or Iridium Sat phone; thus providing much more reliable data transmission to the

surface.

RAUBoat only requires limited sensors since navigation can be done via GPS

and compass alone. RAUBoat will also have an underwater acoustic modem for

communications with AUVs and a wifi antenna for surface communications back to

operations base. RAUBoat will be able to follow AUVs keeping in communication

with them, and thus helping de-risk operations.

Figure 7.17: RAUBoat Mission Observation and GPS/Compass Testing

RAUBoat is equipped with 2 rear thrusters allowing for survey vehicle class oper-

ations as this ASV is not capable of lateral movement.

ARF was initially used as a testing mechanism for checking the GPS variance

222

Task Time (HH,MM,SS)

GPS ARF Component 0,30,00

ARF Observation Scenario 0,10,00

Table 7.3: RAUBoat Time Analysis: Scenario and Component Creation

and compass data. However, ARF’s purpose grows with the maturity of RAUBoat’s

capabilities. ARF will be used for a command and control platform using information

relayed by RAUBoat about itself and other vehicles working within range of itself.

Monitoring of multi-vehicle operations will become much easier. Figure 7.17 shows the

ARF Scenario which shows the ASV’s position and compares this with the readout

given by the GPS/Compass. The green sphere in the image represents the GPS

position and compass heading. Table 7.3 shows the amount of time needed to create

a scenario in ARF for RAUBoat.

ARF mainly served as an observation platform (OM) for the output of the vehi-

cles systems. However, using ARF enabled the developer to see what needed to be

done to make the ASV better. This scenario showed that a vehicle dynamics model

with filtering of the GPS and compass is all that would be necessary for the ASV’s

navigations systems.

7.5.1 Time analysis

Table 7.3 shows the amount of time required to produce the ARF components for

the GPS feedback and for creating the scenario itself. Many components such as a

compass listener have been used from other projects.

Using ARF meant that instant visual feedback was available whilst testing. This

meant that technologies such as GPS and compass could be evaluated. The conclu-

sions were that a basic autopilot could be tested fairly soon if some filtering was done

on the GPS. Further trials involving the new systems will be tested in due course and

then RAUBoat will be ready to fulfil its purpose as an AUV tracking communications

gateway. The main feature demonstrated of ARF was the ability to easily re-use mod-

ules developed for other systems and new modules can be quickly and easily developed

that provide extra feedback from the remote environment.

223

7.6 Autotracker: Testing of Autonomous Pipeline

Inspection System

Oil companies are expressing interest in AUV technologies for improving large field

oil availability and, therefore, production. It is known that Inspection, Repair and

Maintenance (IRM) comprise up to 90% of the related field activity. This inspection

is clearly dictated by the vessels availability. One analysis of potential cost savings is

using an inspection AUV. The predicted savings of this over traditional methods for

inspecting a pipeline network system are up to 30%.

Planning and control vehicle payloads, such as the AUTOTRACKER payload

[71], can provide such capabilities. However, as mentioned, vessel availability and

off-shore operation costs make these types of payloads a difficult technology to eval-

uate. ARF can provide simulated sidescan sonar data for a synthetically generated

pipeline rendering on the sea bottom. These capabilities provide a transparent in-

terface for the correct and low cost debug of the tracking technologies. Furthermore,

potentially complicated scenarios, such as multiple pipeline tracking and junctions of

pipes, can be easily created to test the pipe detection and decision algorithms of the

AUTOTRACKER system (see figure 7.18). This could not easily be tested in the real

environment as real-time debugging is not available and the potential for incorrect

decision due to confusion about which pipeline to follow is high, therefore higher risk

of loss of an AUV.

7.6.1 Additional Components Required

ARF required the addition of two new types of sensor, a multi-beam bathymetric

profiler sonar and sidescan sonars. The multi-beam had basically been implemented

already because it is the simplest type of sonar to simulate and therefore most of the

work had already been done when creating the forward-look sonar for other projects

such as BAUUV [72] (see section 7.7). The side scan sonar required a bit more work

because it required gathering the angle of reflection as well as the distance of each

intersection. Due to the nature of the ARF SceneGraph as many sensors can be added

to the vehicle as required. For instance, for the sidescan, two identical sonars were

224

added facing in different directions, and then the output of these was amalgamated

to produce one image (shown in figure 7.18).

Figure 7.18: Simulated sidescan, multi-beam and corresponding simulator view

The project required two output OceanSHELL messages to be sent which carried

the sidescan data and the multi-beam data. This meant that ARF could be substi-

tuted seamlessly for the real vehicle as it would output simulated navigation messages,

provide an autopilot and output the necessary sensor messages to the tracking soft-

ware. A plugin was created for ARF which read in the legacy data from file of an

existing pipeline and plotted it over the current sea bottom/terrain of the virtual

environment.

225

7.6.2 Summary

ARF enabled the AUTOTRACKER software to be tested on more complicated pipeline

configurations, such as the one shown in figure 7.18. This scenario shows the AUV

tracking two pipes, which would not have been possible until real sea trials and even

then the particular test scenario may not have existed or be too dangerous. The

main use for this project was for real-time simulation and SIL purposes as AUTO-

TRACKER will be fitted onto an AUV such as GeoSub [54], Remus [52] or Gavia

[53]. The testing of the entire AUTOTRACKER system was done using an exter-

nal GeoSub simulation which was synchronised with ARF, which provided the sonar

sensor simulation. Simulated tests are vital to make sure that the AUTOTRACKER

systems work before the real trials commence. Consequently, ARF helped to de-risk

some of the scenarios before using a real AUV. Then the only remaining task is to

integrate AUTOTRACKER onto the real AUV and perform HIL testing, then real

trials. However, if the GeoSub simulator was an exact clone of the GeoSub systems,

HIL testing is pretty much carried out through using their simulator.

7.7 BAUUV: Obstacle Detection and Avoidance

Testing

One of the most common problems for unmanned vehicles is trajectory planning. This

is the need to navigate in unknown environments, trying to reach a goal or target,

while avoiding obstacles. These environments are expected to be in permanent change.

As a consequence, sensors are installed on the vehicle to continuously provide local

information about these changes. When object detections or modifications are sensed,

the platform is expected to be able to react in real time and continuously adapt it’s

trajectory to the current mission targeted waypoint.

The Battle space Access for Unmanned Underwater Vehicles (BAUUV) [72] project

was a project designed to address this exact problem, i.e. detect obstacles underwater

and re-plan the current mission trajectory to avoid them. Obstacles could be anything

such as nets, buoys, boats etc.

226

The real AUV would use a forward looking sonar to detect obstacles. Obstacles

could in theory be anything, so the detection algorithm had to be quite generic and

report shapes of obstacles rather than identifying what they are. In some senses this

is more complicated than the pipe detection algorithm used in AUTOTRACKER

because an obstacle could be any object in the way, but its important that only

real objects are reported. However, the detection algorithm needed testing with the

re-planning system and then would need testing HIL style on the real vehicle as well.

This was a perfect opportunity for ARF to be used. ARF provided a simulated

forward looking sonar and outputted its image to a file which was continually read by

the obstacle detection system. The obstacle detection system would then send Ocean-

SHELL messages describing any detected obstacles to the re-planning system which

would create a new course around the obstacle. ARF provided simulated navigation

and autopilot using the same OceanSHELL messages as the real AUV. This meant

that the trajectory re-planner merely had to send out OceanSHELL waypoint request

messages to the simulated autopilot to make the simulated vehicle manoeuvre around

an obstacle.

The sonar simulation came in very useful for this project, and also for lots of

other projects. The generic object message output by the obstacle detection system

could also be used for testing of SLAM systems being developed in the OSL. Without

the sensor simulation, testing of BAUUV would have been no where near thorough

enough and bugs would have gone unnoticed. Using ARF meant that anyone working

on the project could quickly run the test scenario, load a mission into the external

mission planner, and run as many tests as they wanted on different obstacles. This

speeded up development and meant that many errors which would have been harder

to detect after integrating onto the real AUV were detected before.

The extra requirement for this project of ARF was that the virtual world had

to be configurable so that layout and type of obstacles could be changed. In order

to make changing of obstacles quick and easy an already established virtual world

modelling format was used to specify what appeared in the virtual world; known as

X3D. X3D uses XML to define types of geometric objects, their positions and the

vertex data to construct the object, as well as providing easy to use primitive shapes

227

Figure 7.19: Simulated Sonar of Obstacles

such as box, sphere, tube and cone. The actual scenery was created in 3rd party 3D

modelling software instead of using ARF’s own primitive Java3D types. This meant

that more complex scenery and obstacles could be created more easily if need be.

Therefore, ARF required a loader component for importing X3D mesh files into ARF.

A component was designed for ARF which used 3rd party Java3D loaders to load

the X3D files as well as many other formats. The obstacle X3D files could then be

loaded into ARF ready for the virtual AUV to detect with it’s sonar. Figure 7.19 and

7.20 shows examples of a basic ARF scenario where obstacles have been loaded and

forward looking sonar has been simulated. The sonar image shows that simulated

sonar can be generated for any 3D object such as the Rauver 3D mesh and barrels

shown.

To make the simulator more useful as a visualisation tool, special camera positions

were created, such as birds eye view, and a free camera which the user could move

with the mouse. Also the field of view of the sonar was displayed on the AUV so that

the operator could instantly see which obstacles should be appearing in the sonar

image. The output of the sonar was also displayed on the screen for a sanity check as

228

Figure 7.20: The BAUUV Pure Simulation Scenario: showing sonar field of view and

simulated sonar image (bottom-left)

well as being sent to the obstacle detection module.

7.7.1 Hybrid Simulation

ARF proved very useful for pure simulation testing. ARF was also to be used as a

visualisation tool for monitoring the real AUV and the obstacles it detected in the

real environment. However, testing these kinds of adaptive algorithms requires driving

the vehicle against man-made structures in order to analyse its response behaviours.

This incurs high collision risks on the platform and clearly compromises the vehicle’s

survivability.

A novel approach to this problem uses ARF to remove the collision risk by using

Hybrid Simulation. The approach uses simulated sonar for rendering synthetic acous-

tic images from virtually placed obstacles. The algorithms are then debugged on the

real AUV whilst performing avoidance manoeuvres over the virtual obstacles in the

real environment. Figure 7.21 shows the required framework components. In essence,

the real sonar onboard the AUV is disabled and instead simulated sonar images are

sent to the detection algorithms from ARF’s virtual environment. ARF is kept in

synchronisation with the vehicles position using OceanSHELL navigation messages

from the AUV. If the vehicle has wifi or is on an Ethernet tether, ARF can be run

229

Figure 7.21: This diagram shows how OceanSHELL provides the backbone for switch-

ing between real and simulated (topside) components for use with Hybrid Simulation.

on a topside computer as shown in figure 7.21, however, ARF can also be run on the

actual vehicle systems if there is enough processing power. The advantage of running

ARF on the topside is that the operator can see the virtual environment, where the

vehicle is and where the virtual obstacles are. This enables the operator to see if

the real vehicle responds in time to the obstacles detected. If the vehicle doesn’t

respond in time it will appear to hit the virtual obstacle in the virtual environment.

In addition to this feedback the virtual environment can also plot the positions of the

obstacle detections from the obstacle detection OceanSHELL messages output by the

real AUV. This helped the operator analyse the behaviour of the AUV. The AUV

appeared to be giving the obstacles a very wide berth when avoiding them and also

on occasion nearly running into them. This seemed to be a problem with lag time

between sonar image being ready and obstacle detections being made such that the

vehicle thought the obstacle was further away than it was. This was because when

the sonar had produced an image it would log the position of the AUV so that any

obstacle detections could be given in absolute world frame coordinates rather than

vehicle frame. The problem was that the sonar took up to 1 second to produce an

230

image. This meant that the image was already 1 second old by the time the AUV

position was logged. The problem being that a mechanical sonar takes time to scan.

So if the AUV is moving forward then the obstacle in the image will appear closer on

one side of the image than the other since the sonar scans from left to right as the

vehicle is moving forward. This caused object detections to look skewed and slurred.

It also meant that detected obstacles were plotted 1 second later, in AUV position

terms, than when the sonar started its scan. This meant that obstacles were plotted

slightly in the wrong position, i.e. detected further away than they actually were.

This error would have been very hard to detect in real testing because the absolute

position of the objects would not be known exactly. Thus when using simulated sonar,

the plotted obstacles detections did not line up with the real obstacles all the time,

unless the AUV was moving quite slowly. Rotation of the AUV also cause obstacles to

be either squashed, rotating with the sonar scan direction, or stretched when rotating

in the opposite direction to the sonar scan. Figure 7.22 shows how the moving AUV

caused the detected obstacles to not exactly line up with the actual (simulated) ob-

stacles during hybrid simulation. In the top picture the AUV is moving faster which

is why the purple bounding box of the detected object appears slightly more behind

the real object than in the bottom image.

Once the alignment problem was compensated for, ARF was used for observation

purposes to see the real AUV avoid real world obstacles.

7.7.2 Summary

Without ARF, development and testing would have taken far longer. Due to ARF’s

flexible nature, the same scenario was able to be used for the various different types

of testing, i.e. Pure Simulation (OFFLINE and ONLINE), Hybrid Simulation (HS)

and online monitoring (OM). Consequently, both AR and AV were also demonstrated

since the real AUV was having its perception of reality augmented by simulated

data from the virtual environment, and at the same time object detection data was

being relayed back from the AUV and the virtual environment augmented with this

data. This shows ARF’s ability to have potentially limitless numbers of modules

which synchronise data to/from the real-world. As applications get more complicated

231

Figure 7.22: Detected obstacles did not always align with simulated obstacles when

AUV was moving, thus facilitating algorithm visualisation and providing implemen-

tation debugging.

232

ARF is able to expand its component set and capabilities at the same rate allowing

for very complex scenarios to be created which demonstrate many different concepts

simultaneously.

For further information on BAUUV, a detailed description of the evaluation and

testing of obstacle avoidance algorithms for AUVs can be found in [73] and [71].

7.8 SeeByte Ltd: SeeTrack Offshore Remote Aware-

ness System Testing

SeeByte has a product for the offshore ROV market called SeeTrack Offshore (STOS).

This product provides a Dynamic Positioning (DP) system which can be retro-fitted

to existing ROVs. The minimum this product requires is an ROV with a standard

joystick control used to control the ROV’s thrusters. In addition a DVL is required

in order to provide the surface STOS system with reliable and accurate bottom-lock

velocity information. The DVL is sometimes an integral part of the ROV but can

also be added to the ROV if it is not provided. The Workhorse DVL also contains a

compass which can be used if the host ROV does not have one. The ROV must also

output what is known as a survey string which contains information about the ROV,

such as depth. Figure 7.23 shows a Seaeye Falcon ROV. This ROV was the first ROV

used to test STOS. It required RDI’s Workhorse DVL fitting to it to provide velocity,

altitude and rotation information to the surface STOS computer.

STOS provides a surface system which takes the output from the DVL, which

provides accurate velocity information, and uses this to work out where the ROV

is. This information is then used by autopilot module of STOS to provide dynamic

positioning by controlling the ROV’s thrusters, i.e. the operator doesn’t have to

control the ROV’s thrusters, only a waypoint is required and the ROV will go to it. A

2D virtual reality representation of the ROV and its environment are provided so that

the pilot can see the actual position of the ROV in relation to other assets around it.

A screenshot of the STOS user interface is shown in figure 7.24. The virtual world

can also be used to control the ROV by providing a point and click control interface.

The ability for the ROV pilot to control the ROV and not have to worry about sea

233

currents means that they can execute tasks much more quickly and efficiently. The

STOS surface system takes care of adjusting the thrusters of the ROV so that the

pilot has nothing to worry about.

Figure 7.23: Seaeye Falcon ROV with RDI Workhorse DVL fitted

7.8.1 Tuning Problems

This system can be retro-fitted to existing ROVs. It requires no modification to

the ROV if the ROV already has a DVL. However, ROVs range in size, weight and

manoeuvrability. Thus, each STOS system has to be tuned to the hydrodynamics

and thruster limits of each particular vehicle. This can take quite a long time to get

a fine tune which provides stable control for the ROV operator. In order to tune the

vehicle an engineer must first be trained how to do the tuning process and this too

can be time consuming.

234

7.8.2 Module Development

As mentioned earlier STOS provides a virtual representation of the ROV and sur-

rounding objects in order to provide better visual queues to the operator to help

them orientate themselves, i.e. providing intuitive visual feedback of the remote en-

vironment when the ROV’s video cameras do not provide anything useful. Therefore,

various visual objects are required to help the operator see where they are. These

could include:

• Bathymetric chart - to give the operator an idea of the real world position of

the ROV.

• Static installation positions - a standard data file containing geometry of known

static installations could be loaded and displayed.

• Non-static object positions - these could be other moveable objects in the area

such as ROVs or boats. It would be useful for the operator to see the positions

of other equipment working in the vicinity of their own.

All of these are independent modules which could be easily developed separately

from the core of STOS itself, meaning that STOS should not be required to test

them. However, testing of the modules must then be done before integration with

STOS, and this can only be done if there is a method of doing this without using

STOS itself. Testing a modules full functionality using STOS itself is tedious due

to the restrictions placed on the final user interfaces of the system, meaning that a

module may not have been tested for all eventualities. Therefore something like ARF

is required so the programmer can put the modules through their paces before being

integrated with the overall STOS system.

7.8.3 System Architecture

STOS is built on the Java [58] platform and makes use of the Java3D [3] API to provide

the virtual world GUI for the operator. STOS also uses OceanSHELL [6] for all of its

inter-module communications. This means that modules made for STOS can be easily

tested and integrated into ARF and vice versa since the base architecture is the same.

235

Figure 7.24: SeeTrack Offshore User Interface

236

Therefore, modules for STOS can be part of the ARF component library providing

more functionality for ARF and vice versa making ARF components available for use

in STOS. ARF could be used to fast prototype new interfaces and functionalities for

STOS.

OceanSHELL is an integral part of both ARF and STOS. Consequently, HIL and

PS testing of STOS using a simulated ROV provided by ARF is easily possible.

7.8.4 Advantages of using ARF to test STOS

It is possible that ARF could be used to dramatically reduce further development

time of SeeTrack Offshore. Further more, ARF could provide a simulated virtual

environment and simulated ROV for use with the STOS system in a software-in-the-

loop fashion. The potential is therefore realised for training (TR) of persons on STOS

without a real ROV. End users of STOS could learn how to use it without having to

learn with an expensive ROV. Installation engineers could be trained on how to tune

STOS to the hydrodynamics of the virtual ROV. Finally, there is the potential for

being able to do a simulated tune for a vehicle if certain vehicle properties are known

a-priori i.e. STOS could be tuned on a simulated ROV with the same hydrodynamic

properties as the real ROV. Thus reducing the time required to do a tune for the real

vehicle in the field.

7.8.5 Cost Savings

To hire all the necessary equipment to use a small ROV off the end of an on shore

pier cost 1575 (GBP) per day. That doesn’t even include the cost for the time of the

people using the ROV. To use an ROV offshore costs nearer 10,000 (GBP) per day,

and that is merely for the privilege of being on the control ship before the ROV is

even used. For these reasons training people to use the systems on a virtual ROV

would save a huge quantity of money which could be better spent on further research.

In comparison to these costs, the cost of the time taken to develop a virtual scenario

in ARF for STOS is negligible.

237

7.8.6 New ARF Components

In order to provide a suitable development and testing platform, extra simulated

components need to be added to ARF to represent the virtual ROV. Some of the

required components currently exist from other projects. The components which

are still required are a benefit to ARF because they are generic to ROV and AUV

applications and therefore will make an excellent addition to the ARF component

library. Once all the components are created, the testing scenarios for many different

STOS purposes can be created quickly and easily. Scenarios in ARF can be created

in a matter of minutes, and therefore the cost overhead need not even be calculated.

The required components are as follows:

• DVL - the DVL will need to simulate the data that a normal DVL produces.

For this application, the DVL is only required for detecting the velocity in the

(X,Y) plane. This relies on the DVL having bottom-lock, i.e. being able to

track the sea bed.

• Magnetic compass - there are 2 kinds of compass which can be simulated for more

realism. The magnetic compass provides a bearing to north which is accurate at

best to a couple of degrees since the magnetic field of the Earth can be affected

by the vehicle itself and also the surrounding environment. Therefore slowly

changing noise should be able to be specified for the magnetic compass. Roll

and pitch sensors are usually part of the same equipment, but they generally

only operate within a +-30Degree range. In order to keep the components

generic, a special adapter module will be able to be attached to the generic

compass to simulate more specifically the correct behaviour of the real one, i.e.

remove erroneous measurements which are out of range for each particular type

of compass axis and introduce appropriate errors.

• GYRO - The GYRO is a device which measures rotation about the X,Y,Z axis.

However, it has no concept of which direction is north and only reports how

much the GYRO’s orientation has changed, the delta orientation. This device

is also prone to drift over a matter of hours due to the rotation of the Earth. This

has to be compensated for. The navigation system would have to take account

238

of this and calibrate the GYRO from the magnetic compass. The GYRO is

not required for the standard DP system of STOS. However, the PAIV Vehicle

discussed later will require a GYRO because of the need for a more accurate

navigation system.

• Depth sensor (survey string from ROV) - ROVs usually have a very basic set

of sensors: a compass and a depth sensor. These sensors can be harnessed by

STOS. The depth sensor is simply a pressure sensor which provides the depth

below sea level. The altitude can be calculated from the DVL measurements.

So the DVL also doubles as an altimeter.

• Hydrodynamic model - the joystick of an ROV outputs an (X,Y,Z) thruster

vector. The vehicle model would take these percentages and turn them into a

movement of the vehicle. This would best be a black box style implementation

allowing the user to input the certain characteristics of the vehicle, such as

acceleration, terminal velocity. Sometimes real thrusters have “dead zones”

which are basically a percentage thrust which makes no difference to the actual

thruster. These will still have to be collected when tuning the real vehicle as

this information would not be easily measured by an ROV pilot. Collecting

information about accelerations etc allows the STOS engineer to do a partial

soft-tune using the simulated vehicle before requiring the real vehicle. This can

save time when deploying the ROV as a basic control will be already available.

• Bathymetric data loader - this is basically a terrain data loader and there are

many of these already in existence, so it would not be necessary to write one

from scratch, but instead convert an existing one into a JavaBean ready for

incorporating in ARF. ARF already provides loaders for DXF, X3D, 3DS mesh

formats, so really does not need creating. The terrain loaded would be used by

the altimeter to measure altitude of vehicle.

• Ocean currents - simulation of ocean currents is vital for testing the DP control

of the vehicle thoroughly. Thus a data loader must be written for loading

existing current data provided by nautical navigation charts; this could be 2D

239

or 3D data. The vehicle model will also have to take this data into account if it

exists.

• Thermoclines and haloclines - both of these will affect the buoyancy of the

vehicle and thus should be taken into account by the vehicle model. These can

be implemented in a similar data map as the ocean currents are.

These components will allow for the fast creation of many scenarios speeding up

development time for new modules. Scenarios can be created to provide training on

how to use STOS, and provide more thorough testing which will in turn save time.

Whilst STOS was being developed it took 7days of ROV testing to iron out most of

the bugs in the software. Most of the bugs were user interface problems and could have

been rectified with simulation testing using ARF and potentially saved thousands of

pounds. However, ARF has been applied in on going testing since and is helping to

test changes and improvements made to STOS. Another application of ARF was used

in the SeeByte’s PAIV project in section 7.9.

7.9 SeeByte Ltd: PAIV AUV Developmental Test-

ing

PAIV is a new vehicle being designed by SeeByte and Subsea7. The purpose of

this vehicle is to carry out the tasks that SeeTrack Offshore is being developed for,

including: inspection, such as pipeline inspections, ship hull inspections etc. The

software and sensors on the AUV are being developed by SeeByte, whilst Subsea7

are building the actual vehicle. The vehicle will be an ROV to begin with. Its

intelligence will reside on the topside computers, similar to SeeTrack Offshore, and as

the software becomes de-risked it shall be moved onto computers embedded on PAIV

itself. Eventually the tether will be disconnected and it will be able to run as an AUV

performing autonomous tasks as well as being used as an ROV. The main drive for

PAIV is to be able to have an inspection AUV of relatively light weight which can go

to 3000m depth and carry out autonomous inspection tasks.

The PAIV high level control systems will benefit from being able to be tested on

240

a simulated vehicle. There are various stages of development with small milestones

which need to be achieved. Each milestone will require more parts of the PAIV vehicle

to be simulated. Thus as the systems on PAIV evolve, then new simulated components

will have to be created for use in ARF. The first milestone for PAIV is to test the

control software and user interface control suite of the vehicle. This includes the end-

user GUI systems and also the low level autopilot PID controller which will control

the vehicles thrusters. In order to test these systems the PAIV simulator requires a

hydrodynamic vehicle model which can use as input the OceanSHELL ALI Thruster

messages and output an ALI navigation message. For this test the navigation system

is being fully simulated by the vehicle hydrodynamic model as only the control of

the vehicle is being tested. In later testing it might be necessary to test the real

navigation systems with input from virtual sensors, such as DVL, GPS and compass.

7.9.1 1st Milestone: FAT (Factory Acceptance Tests)

In order to show that the development of PAIV was progressing SeeByte was required

to demo the capabilities of the control software. This was do demonstrate that the

AUV’s autopilot was capable of basic movement. This was also to demonstrate the

user interface for controlling an ALI enabled vehicle. Since ARF had recently imple-

mented the necessary ALI communications interfaces, the PAIV control software did

not require any extra integration. However, the ALI layer only took 4 hours to create

the necessary ARF components for, which if taken to be part of the PAIV project is

still a very small overhead to use ARF.

7.9.1.1 Requirements

The requirements were to use the existing hydrodynamic model provided by ARF

and simulate the AUV with all the necessary OceanSHELL ALI interfaces in place to

communicate with the PAIV control suite. This will allow the developers to run ARF

and the PAIV scenario on their own computers whilst testing the higher level user

interface systems and check that PAIV does the correct thing. The ARF components

required for PAIV’s scenario are:

241

• Hydrodynamic model with altimeter sensor input - normally, the hydrodynamic

model only outputs depth. However, the autopilot requires an altitude input

therefore a simulated altimeter is used.

• Autopilot (PAIV’s autopilot communicating externally via OceanSHELL with

ARF).

• OceanShell ALI Message I/O:

– Hydrodynamic model to ALI NavigationStatus message output.

– Hydrodynamic model ALI AxisForce Thruster message input - Requires,

XYZ force to rauver thruster converter.

– Autopilot ALI NavigationGoalCommand message input.

– Autopilot to NavigationGoalStatus message output.

• Visual Scenery (VRML and X3D) - pipes, oil field christmas trees, bathymetry,

water level and PAIV 3D mesh.

• Bread crumb trail behind the vehicle to show where it has been.

The ALI message components are described in more detail in section 4.1.5.1. All

the rest of the components already exist from other projects. However, ALI compo-

nent creation times are shown in table 7.4.

This first test is so that SeeByte can demonstrate that their higher level software

works, as the real PAIV vehicle is not yet ready for testing. This test will show

that they are on target for completion of PAIV development. Therefore this test is

merely showing the virtual AUV in its environment and what it is doing. Therefore

this is also being used as a visualisation tool, and thus the scenery will be decorated

accordingly (see figure 7.25).

7.9.1.2 Results

The ARF framework proved most fruitful in the run up to the FAT tests. ARF

allowed the high level PAIV control GUI to be tested with ARF’s simulated vehicle

and the Rauver Autopilot as soon as ARF’s ALI message listeners and outputs had

242

been created. This was very useful because the real Vehicle Systems had not yet been

converted to use the new ALI messages in time for testing the GUI. This meant that

many bugs with the GUI were identified well before the GUI integration with the

real components. ARF allowed the programmer of the GUI to see the output of their

actions, and this highlighted many small bugs which would have been hard to spot

had visual feedback not been available.

Problems identified with PAIV GUI by using ARF:

• OceanSHELL depth mode bit set incorrectly - Firstly this meant that the ve-

hicle would be in “set altitude” mode instead of “set depth” mode. Secondly,

sometimes the depth mode value would get set incorrectly on successive calls by

the GUI. This was identified quickly and the problem fixed.

• After successive waypoint requests the GUI would stop accepting negative “east”

values for the (north, east, down) waypoint. This was a problem due to GUI

fields being reformatted incorrectly, which only materialised after many tests.

ARF proved very useful for visualising simple AUV missions around the scenarios.

It allowed the assessors of PAIV to see exactly what they would be able to do with the

real AUV and allowed them to easily evaluate the PAIV systems for the FAT tests.

However, by using ARF an extra overhead was required for the creation of the ARF

components and the building of the ARF testing scenario. A breakdown of the time

requirements to use ARF are displayed in table 7.4. The additional overhead required

to use ARF has to be weighed up against the amount of time saved by being able

to use ARF. The total time spent integrating ARF was 5 hours 10 mins. However,

this minimal expense will be recovered through every step of testing. In addition to

this is the qualitative results that ARF helped achieve, i.e. if ARF had not been

used it is clear that the PAIV GUI would not have been able to be tested because

the PAIV embedded modules weren’t finished until the last minute. Therefore all

the errors with the GUI, and the ALI messages, would have shown up during the

FAT tests and be severely detrimental to the performance during these tests. ARF

was able to produce real-time software-in-the-loop (SIL) testing whilst demonstrating

far more complicated AUV missions than would be possible without ARF. Also, the

243

Figure 7.25: PAIV Oil Field Scenario 1: for simulating pipeline installation inspection

tasks

244

Figure 7.26: PAIV Big Tank Scenario 2

components created for ALI have far more applications other than that of PAIV and

as such, due to ARF’s guided construction, are used time and time again in different

projects. If the testing of the GUI was delayed until real world tests of the AUV,

even if the real world tests only took the same 5hours 10minutes as ARF, the costs

alone of using the real ROV to do this test would be over 1000 GBP just for one day.

This would also be the only testing available and programmers would have to make

do with their own tests. Therefore ARF is definitely worth the small overhead due to

its phenomenal time savings and cost difference.

The finished scenarios are shown in figures 7.25 and 7.26; these show the oil field

virtual world and the big tank virtual world respectively. The large empty tank was

used to demonstrate simple tests of the higher level control as the oil field scenario

was used to demonstrate a mission which the final PAIV vehicle should be able to

do autonomously. This would include autonomous pipeline, riser and installation

inspection.

245

7.9.1.3 Problems detected during testing

The CCMM (mission script executor) hadn’t been configured to use the new ALI

NavigationCommandStatus message. However, the CCMM module did still accept

the old RauverInPosition message which ARF is also able to output, so ARF output

both message types as the higher level GUI being tested required the ALI message.

This highlights the advantage of using event listeners, since more than one event

listener can listen to the output of the hydrodynamic model and output different

messages. ARF allows for the easy addition of event listeners on the fly, so this was

a quick fix which enabled the GUI to be tested when the low level systems were not

quite finished. This would not have been very straight forwards had ARF not been

so flexible.

A bug in the altimeter component of ARF was highlighted which meant that it

couldn’t detected the ground past 10m. This was a simple problem and has since

been rectified. A bug in the AUV model after many successive rotations meant that

it output a nan (not a number). This needs fixing as it is probably a problem with a

rotation value being un-capped allowing it to increase past 360 degrees. These bugs

highlight the fact that even ARF components need thorough testing.

7.9.2 PAIV Integration Tests

After the initial trials of the software the real vehicle became available for adding

sensors, such as DVL, forward-looking sonar, and fibre GYRO compass. The software

was then due to be tested on PAIV in SubSea7’s test tank in Aberdeen. In order to

test the vehicle they required a virtual mock up of the tank so that they could visually

check that the vehicle was doing the same in the virtual world as they could see it

doing in the real world. This virtual scenario was also used to show what the AUV was

actually doing and where it thought it was. Figure 7.27 shows the mock-up scenario

in ARF. Table 7.4 gives creation times for the components and scenarios required.

For this step, all ARF had to do was listen for navigation data and waypoint

request messages from the real AUV. This was used to simply display what the AUV

was doing. This used the ALI OceanSHELL messages and therefore no additional

246

Figure 7.27: PAIV Test Scenario in Subsea7 Aberdeen

components were needed to be created for ARF.

7.9.2.1 New ARF Components

All of the STOS components are also required by a full PAIV vehicle test-bed (see

section 7.8). This is but one example of how ARF can be used for different applica-

tions using the same components. Consequently, ARF scenario creation time can be

drastically reduced by modifying existing ARF scenarios and using SuperComponents.

• GPS simulator - the GPS simulator must simply output the position of the

vehicle in Longitude, Latitude, Depth/Altitude. However, a real GPS has errors,

so a slowly oscillating error similar to the one produced by a normal GPS should

be added.

• Altimeter - although a DVL can estimate altitude by taking the average of its

4 beams, this is not the real altitude exactly below the vehicle. Therefore a

simple altimeter is required to output how far the vehicle is off the simulated

tank bottom.

247

Task Time (HH,MM,SS)

ALI Message I/O 4,00,00

Oilfield Scenario Design 1,00,00

Open Tank Scenario Design 0,10,00

Subsea7 tank Scenario Design 0,17,00

Table 7.4: PAIV Time Analysis: Scenario and Component Creation

7.9.3 Time Analysis

Table 7.4 shows the time it took to make the various PAIV components and scenarios.

In particular attention should be paid to the amount of time it takes to create a

scenario when all the required components are available. This is comparable to the

time comparisons reported in the ARF performance tests in results section 6. If

ARF did not exist but all the components did, it would have taken much longer

to connect and configure all the components in raw programming language. Any

alteration in ARF takes seconds, compared with finding documentation for required

classes, programming it, compiling it, and then running it, and then hoping that the

right thing has been adjusted and further alterations do not have to be made. The

oil field scenario took longer to create due to the amount of scenery required.

7.9.4 Summary

ARF proved very useful for testing PAIV’s high level systems in a SIL fashion by

providing a simulated version of the real AUV. ARF also proved very useful for online

monitoring of real trials whereby the operators used it to visually confirm that the

robot thought it was doing the same thing that it was actually doing. Since these

original trials further systems have been tested using ARF’s PAIV simulator, such

as: a wall and object tracking system used to make the AUV follow a ship hull or

similar shape. A simple sensor was required by ARF which mimicked the behaviour

of wall detection performed on sonar images. This enabled the higher level tracking

algorithms and vehicle control to be tested. Figure 7.28 shows the PAIV vehicle and

the associated breadcrum trail as the vehicle tracked the wall of a conical tank (made

248

Figure 7.28: PAIV AUV tracking the walls of a conical test tank

of ebony).

7.10 Future Opportunities

This section looks at some opportunities for ARF which have been demonstrated but

not fully implemented.

7.10.1 DELPHÍS: CopeHil Down Scenario

Other applications of the DELPHÍS multi-agent architecture have been demonstrated

using ARF. These include a potential scenario for the MOD Grand Challenge. This

involves both surface and air vehicles working together to find targets, in a village, and

inspect them. DELPHÍS was tested using simulated air vehicles, rather than under-

water vehicles, which executed a search, classify and inspection task. ARF provided

the virtual environment, vehicle simulation and object detection sensors required for

the identification of potential threats in the scenario. Figure 7.29 displays the virtual

environment view of the Grand Challenge scenario. The top of the screen shows a

bird’s eye observation of the area with the bottom left and right views following the

survey class Unmanned Aerial Vehicle (UAV) and inspection class UAV respectively.

The red circles represent targets which the survey class UAV will detect upon coming

249

Figure 7.29: DELPHÍS: Being used to Coordinate UAVs

within range of the UAV’s object sensor. Information regarding specific targets of

interest is shared between agents utilising the DELPHÍS system. Vehicles with the

required capabilities can opt to further investigate the detected objects and reserve

that task from being executed by another agent. The DELPHÍS system executes this

quicker than a single AUV since each AUV agent does a different part of the mission.

A lot of missions in different domains can be categorised as the search classify sce-

nario. The DELPHÍS system can be applied to any type of robot as long as they have

communications. In the case of UAVs their communication mechanism will probably

by radio, however, this is the only difference between DELPHÍS operating on an UAV

rather than an AUV.

This scenario was merely a demonstration of possible applications of technologies

in the OSL, however, it does demonstrate that ARF can be used for any domain and

only requires that special domain specific ARF components be created where they

are needed. Therefore ARF could easily be used for simulating multiple types of

autonomous vehicle (UAV, AUV, ASV) all collaborating by different communication

250

methods using the DELPHÍS system to coordinate them.

7.10.2 SLAM Testing

In order to test Simultaneous Localisation and Mapping (SLAM) systems, ARF can

be used to simulate basic object detection which outputs the relative position of an

object and its bounding sphere size. In addition the simulation can be made more

complex to eventually simulate video cameras, sidescan or forward looking sonar. The

object detection systems themselves can then be trained to interpret this data and

the output from which can then be fed into the SLAM system for helping reduce drift

in the vehicle’s navigation system.

7.10.3 Mine Counter Measures using Sidescan Sonar

One of the problems the Navy have is underwater mines. The Navy need to monitor

and keep an area of sea clear of mines to keep shipping lanes open and to enable

themselves to operate. AUVs are very useful for this task as they can survey an area

looking for mines. The data can then be analysed on return home, or the data can be

analysed on the fly and a counter measure deployed autonomously. However, training

the systems to recognise the mines and check that identifications are correct can be

hard using sidescan sonar since a mine can look different from many angles. Thus

ARF can be used to see what different mine shapes look like in side scan sonar from

different angles and therefore be used to train the system. The data from this system

can also be used for the SLAM system.

251

Chapter 8

General Discussion

This chapter discusses the information obtained from the use cases and testing chap-

ters to highlight the features of ARF, identified in section 3.1.3, which make it more

efficient for the purposes of hardware-in-the-loop testing and other augmented reality

applications. To begin with this chapter will look at the different use cases described

in chapter 7 and correlate the results with data gathered in the chapter 6 to explain the

advantages of ARF. It is important to keep in mind the design requirements for ARF

discussed in chapter 3.1.3, since this discussion will attempt to provide the evidence

for each of the requirements being met and what features of ARF’s implementation

provide them. It is therefore important that the reader be familiar with chapters 3,

4, 5, 6 and 7 before hand as many concepts will not be explained here.

8.1 ARF’s Uses

The use cases, described in chapter 7, demonstrate the flexibility of ARF as a visual

programming tool. They also exploit the augmented reality and distributed nature

ARF by demonstrating various types of mixed reality environments. ARF has been

utilised in many different ways. Most of these focus on AUVs or UUVs, however,

there have been other uses such as the MOD Grand Challenge demo that show that

not only ARF, but many other technologies in the OSL are adaptable to different

domains other than underwater.

The Nessie II and Nessie III platforms required extensive testing scenarios for

252

testing the higher level software onboard the AUV. Both Nessie II and Nessie III had

to complete a series of complex tasks in the SAUC-E competition. The tasks set out

by the SAUC-E competition required the AUV to have autonomous decision making

skills in order to assess the current information known about the environment and

make an informed decision as to what to do next. Nessie II and III required extensive

testing of the mission planner to evaluate search routines, task priorities and specific

functions of the AUV, e.g. dropping the drop weights on the drop target having

already aligned itself accordingly above the target. ARF became incredibly useful in

evaluating and developing the mission planner because it enabled the programmer to

continually create new behaviours and asses their performance and visually see how

the algorithms controlled the AUV. For ARF to provide all the necessary inputs to the

mission planner, various sensors required simulating such as sonar, video, altimeter,

IMU etc. Most of these sensors could be simplified since what the mission planner

was actually requiring was navigation information and object detections from the

detection algorithms run on the sonar and video images. In ARF the object detection

algorithms and sonar and video simulation were replaced by simple object detectors

which output the detected objects in the same coordinate space as the real systems

would. ARF required extending and due to its JavaBeans architecture this was easily

done. New ARF components were created for exchanging OceanSHELL messages with

systems running on the actual AUV and the simulated sensors. The extendibility of

ARF lends itself to the powerful nature of JavaBeans, since JavaBeans were designed

to make building programs far easier. Thus ARF reaps all the benefits.

Most of the use cases discussed in chapter 7 required ARF’s component library

to be extended due to ARF’s relative immaturity and therefore only having a lim-

ited component base for underwater vehicle development at the time. However, later

projects, such as PAIV and DELPHÍS required little or no component writing for

ARF due to the component repository growing so rapidly. Many robot configurations

created for one usage could be used time and time again through the use of SuperCom-

ponents. The OceanSHELL ALI interface has provided a standard for AUV systems

communications, which ARF has been able to harness to its full extent since testing

scenarios which work on one type of AUV can now be used to test another providing

253

it adheres to the ALI interface.

8.2 Flexibility

It is important to remember the evidence which backs up why ARF is so flexible and

useful for different applications. The user interface provided by ARF includes features,

such as Guided Construction and SuperComponent creation, which allow the user to

create scenarios with little or no experience of the components they are using. The

users require a starting point that from which it is merely a matter of connecting the

components using ARF’s guided construction mechanisms. The ability to save many

different configurations quickly and easily without having to manually configure them

by hand saves so much time. As such it is not easy for the user to make mistakes

in configuration since the ARF GUI will not let them. Configuration files are always

written correctly first time, in contrast to programming manually where compilation

errors, null pointer exceptions and the usual problems of programming from scratch

occur.

The APTs highlight the time savings of using ARF to make small alterations and

create different configurations. The APTs show an average increase of double the

performance when using ARF. However, this is due to the fact that creating a clone

of a project in NetBeans with one parameter different can be done by copying and

pasting. However, the more properties that are changed in between saves, the higher

the performance of ARF, because in this test it was the save time overhead which made

ARF only twice as fast as Netbeans. In ARF the PropertySheet increases the speed

of making alterations since they can be changed instantly and, more importantly, on

the fly. A property changed in source code, when programming by hand, means the

code has to be recompiled and then run again, in ARF this overhead does not exist.

Mistakes, such as syntax errors, can be made when programming by hand, this cannot

happen using ARF.

The use cases demonstrate the flexibility of the underlying communication archi-

tecture of ARF since all the different components required to do external communi-

cation and sensor simulation were easily created. ARF is as flexible as JavaBeans for

254

what can be done with it. ARF’s primary goal was to provide a framework that could

be used to create testing scenarios quickly and easily for doing mixed reality testing

of remote platforms such as AUVs. This is just one potential application of what

can be achieved using ARF’s JavaBeans backbone, as JavaBeans can be used for just

about anything. However, the ARF user interface favours virtual reality, since this is

its prime purpose, but there is no need for the user to stick to this. ARF allows for

the removal of the Java3D Canvas from the main view of ARF and be replaced by

any other graphical JavaBean.

8.2.1 Distributed Communication and Location Transparency

JavaBeans are inherently a non-distributed architecture. However, ARF provides

special JavaBeans which implement OceanSHELL functionality which allow com-

munication between different ARF environments running independently on different

platforms and also allows communication with any other system implementing Ocean-

SHELL functionality. This allows ARF to be distributed over many computers if a

computational task is too expensive to run on one machine alone. In addition, the

JavaBean event passing mechanisms can be coupled to ARF’s OceanSHELL message

queues to input/output event data to/from OceanSHELL messages. All the use cases

rely on OceanSHELL to provide the location transparency needed for their various

applications. Nessie II and III used OceanSHELL for visualisation of data from the

AUV, to output simulated sensor data to the AUV’s SLAM and Mission planning sys-

tems, and to input and output data from the AUV’s autopilot to simulated thrusters

and hydrodynamic models running in ARF. This was typically HIL testing.

The PAIV trials relied on ARF to provide visual feedback about AUV position

to keep the operator informed. ARF was also used to test the PAIV user interface.

ARF provided the simulated vehicle systems, such as hydrodynamic model, altimeter

and compass. The PAIV GUIs were tested in a software-in-the-loop manner. The

AUTOTRACKER scenario was used to test the AUTOTRACKER vehicle systems

in the same software-in-the-loop manner since ARF was used to simulate the vehicle

and the control systems whilst simulating side scan sonar data of virtual pipelines,

and outputting this to the AUTOTRACKER pipe detection and control software.

255

The BAUUV scenario went one step further and used the real vehicle in the real

environment in conjunction with some simulated sensor data from ARF’s virtual en-

vironment. This was typically a Hybrid Simulation setup, however, the same scenario

was also used with a simulated AUV before hand to check that this worked before

real world tests commenced, i.e. PS and HS were both used for BAUUV. These

examples demonstrate the mixed reality nature of ARF. ARF’s interface to Ocean-

SHELL provides the straightforward connection to remote platforms required for HIL

and HS testing and for Online Monitoring (OM). ARF allows for instant switching of

OceanSHELL data flows so that real systems can quickly be substituted for virtual

systems. Each scenario can be easily saved, cloned and broken down into component

parts which can then be imported into new more complex scenarios. ARF provides

a ground up approach to designing complex mixed reality scenarios; each part can

be created and tested separately and then turned into SuperComponents which can

then be used to create more complex scenarios performing many tasks at once for a

potentially limitless number of platforms.

These different uses demonstrate just one field of potential applications of ARF.

It is ARF’s ability to save/load projects quickly and easily, and create SuperCompo-

nents, that provide the flexibility and modularity. With JavaBeans supporting this

architecture at the low level, it lends itself to be used for very complex scenarios which

could not have been easily developed before because the individual chunks were not

manageable. ARF can therefore evolve at the same rate as the projects which require

its capabilities.

8.3 Extendibility

The scenarios discussed in the use cases in chapter 7 required for components to be

created as JavaBeans and added to ARF’s repository so that the user could create

the scenario required. Creation of new components will always be needed, since new

applications, systems and sensors will always be emerging. Creating components for

ARF is as simple as it could be since only the JavaBean programming conventions

need to be adhered to. The actual time it takes to produce a component is always

256

going to be the same time it takes to program that component for any environment,

possibly a little bit quicker in ARF because no special language is required, and

there are a lot of other components which can be extended or connected to. The

advantage of ARF is that once the component has been created it can be used many

times in different scenarios for different uses. The programmer also only has to focus

on creating the functionality of their component, and doesn’t need to worry about

modifying the existing source code of ARF or having to resort to creating their own

virtual environment every time. Once the component has been created, ARF provides

help via guided construction of how to use it and configure it, so that it is easily used

by others as well.

One of the ways ARF reduces scenario creation time is by reducing the amount of

time required to glue the components together. In other architectures, components

end up integrated into monolithic programs and become very hard to extract later,

if they need to be used for something else. The extra time the programmer saves by

not having to re-program the environment every time is better used creating more

generic and flexible components, which can be used time and time again. High code

reuse incurs huge time savings.

The advantage of ARF is that existing modules can be easily ported to become

ARF components. If modules are already written in Java then the task is simply

to make sure that the properties of that class, which should be modifiable by the

user, are programmed adhering to the JavaBean coding conventions. If a module

already exists and is programmed in a language other than Java then the programmer

has two choices: if they wish for their module to be configured by ARF and easily

used then it will require porting to Java which is not difficult if the original was

programmed in C/C++, or, if the programmer simply wants their module to interact

with other ARF modules they can simply create a simple stub component for ARF

which uses a communication protocol, such as OceanSHELL, to communicate data

with the remote module. This is the case for hardware-in-the-loop testing, since ARF

has to input/output data to/from external modules. The autopilot testing of Nessie

III is one such example, because data from the simulated hydrodynamic model was

output to the real autopilot running externally, via OceanSHELL messages, whilst

257

thruster messages were input to the hydrodynamic model from the autopilot. Two

ARF components were required to input thruster messages and to output navigation

messages. Navigation messages were generated from the navigation event data output

by the hydrodynamic model in response to the thruster control messages from the

external autopilot.

One such component which is used time and time again, and for this reason is very

useful to have as a JavaBean, is the hydrodynamic model. This is used to simulate

the movement of underwater vehicles in response to thruster control messages. This

component is so useful in day to day testing of AUV software, that having it allows

for new modules, which require basic vehicle systems, to be tested very quickly and

easily. If the component was simply a software module which runs separately (not in

ARF), the programmer would have to program the interface manually every time they

wished to use the component for a different purpose. This is where ARF provides

far superior capabilities as it provides rapid creation of scenarios and encourages

code reuse via SuperComponents and extending of existing scenarios. The APTs

highlight the performance increase of using ARF to connect components over that

of programming manually. In addition ARF accelerates code reuse by providing the

ability to create modules, known as SuperComponents, within ARF. This provides

varying levels of component complexity and allows for useful configurations to be

saved and reused.

8.4 Scenario Creation

The Nessie, PAIV, DELPHÍS and RAUBoat examples provide information on com-

ponent creation and scenario design times. Tables 7.1, 7.2, 7.4 and 7.3 show the

respective times taken for these examples. The component creation times are the

same for ARF as any other standalone module, so this is not an overhead specific to

ARF, but is instead required for any testing software. In theory it should be quicker

to program components for ARF since the programmer doesn’t have to worry about

programming special languages to allow the module to be used in visual programming.

Scenario creation times using ARF tend always to be small because ARF allows the

258

components to be connected and configured very quickly and easily through its Guided

Construction and PropertySheets. These times are corroborated by the APT exer-

cises for 3D virtual world creation and component connection, which compare ARF

against standard programming (see figures 6.9 and 6.1). One point to mention about

the scenario creation times, demonstrated by the use cases, is that they are all very

small. This is because if all the components are available, scenarios can be created so

very quickly due to the GuidedConstruction provided and inherent code re-use. This

is what makes ARF far more useful than just a configurable virtual environment,

parts can be re-used for many purposes which may not have even been thought of

yet, but ARF will provide the help to configure them when the time comes.

8.5 Summary

ARF enables the user to create scenarios quicker and easier than before. ARF provides

help for the user via Guided Construction as to which types of components can be

connected to others. An analogy which provides similar functionality to ARF is

that of LEGO R© (described in section 1.4.1). The importance of this example is

that LEGO R© provides the user with visual queues which enable the user to fit the

LEGO R© pieces together. This is what ARF tries to provide by helping the user know

which components can be connected. LEGO R© speeds up structure development by

providing simple to use building blocks which can be quickly fitted together. This

is inherently quicker than the user having to either mould an entire structure out of

LEGO R©, or create the building blocks from scratch. ARF provides some components

and helps the user fit them together, in contrast to programming a testing platform

from scratch where all the code is in one monolithic program which is very hard

to alter or extend. The contrasting analogy to this is that if LEGO R© bricks were

glued together, it makes it very difficult to change the design to do something else,

or modify the design. Thus ARF helps the user construct scenarios which can be

easily rearranged and reconfigured. The proof here is that by providing an intuitive

interface, LEGO R© makes configurations of components easier to achieve. Therefore,

since ARF provides intuitive user interfaces for connecting components, it should

259

Requirement ID Met how?

Generic 1 Implied in design using JavaBeans

Extendable 2 Use Cases and APTs

Flexible 3 Inherent through Use Cases applications

Distributed 4 Use of OceanSHELL demonstrated in use cases

Guided 5 Demonstrated through APTs

Intuitive 6 Demonstrated through APTs

Straightforward 7 APTs and implied in Use Cases

Portability 8 Inherent in Java and use of OceanSHELL

Varying granularity 9 JavaBeans, Projects and SuperComponents in APTs

Polymorphism 10 Use of Event Listeners in Use Cases

Generic communication 11 Use Cases: Event Listeners using OceanSHELL

Table 8.1: Summary of how requirements from section 3.1.3 are met.

make constructing scenarios out of those components easier to achieve, since it is

using a similar technique to LEGO R© but through a slightly different visual interface.

This is also corroborated by the APTs which highlight how much ARF improves over

the standard methods.

ARF demonstrates the functional requirements set out it chapter 3 through the

use of APTs and use cases. It also demonstrates that it is more than capable of

supporting the range of mixed reality and testing application working modes discussed

in the literature review, i.e. OFFLINE, ONLINE, HIL, MHIL, SIL, HS, TR, AR, AV

and VR. Examples of each case are demonstrated in the use cases chapter 7. A

summary of how each requirement is met and how they are demonstrated is given in

table 8.1. In essence most of the requirements are met by the technologies used by

the design. However, ARF’s applicability to specific usages, such HIL and HS, are

inherently demonstrated through the use of the use cases.

260

Chapter 9

Conclusions and Recommendations

The discussion in chapter 8 describes how ARF meets the requirements set out in

section 3.1.3. The use cases illustrate some of the potential uses of ARF. However, in

order to really show that ARF is a better architecture for developing testing environ-

ments for remote platforms, performance testing of the features of ARF was required.

These tests illustrated that ARF was at least twice as fast as compared to other meth-

ods. This figure is based on amateurs in ARF and experts in the rival. This lends

itself to how intuitive ARF is, the ease of using it, and how flexible it is. The use

cases demonstrated how ARF could be easily extended via its JavaBean architecture

to accommodate many applications.

In a nutshell ARF provides a generic, extendable and flexible architecture which

lends itself to distributed applications for use in augmented reality applications such

as testing of remote platforms. Furthermore the intuitive user interface that ARF

provides through mechanisms such as Guided Construction allows for scenarios to be

developed for many applications quickly and easily in a way not too dissimilar to the

intuitive interface LEGO R© provides.

ARF is straightforward to develop due to its flexible JavaBean based architecture.

Varying levels of granularity are available for development of ARF on the high end

user level and the low programming level. It is the layers of granularity which will

allow ARF to grow to produce ever more and more complex scenarios, one building

on the work of the previous. As applications get more complicated ARF is able to

expand its component set and capabilities at the same rate allowing for very complex

261

scenarios to be created which demonstrate many different concepts simultaneously.

Underwater applications are but just one application of a framework of its nature.

ARF itself doesn’t impose any limitations on what it can be used for, but instead

provides guidance for the user to help them achieve what they are trying to create.

Concepts such as HIL, HS, OM, TR, MHIL, AR and AV are all definitions of related

technologies; ARF allows those technologies to be connected to provide ever more

powerful uses.

One of the main problems ARF set out to solve was improving pre-real-world

testing facilities for remote platforms. ARF provides the ability to evolve its capabil-

ities concurrently with the evolution of the application ARF is required to work with.

Providing simple internal communications means that ARF can be easily extended

to interact with remote systems on varying communication protocols. In essence,

ARF allows for entire scenarios to be created and controlled within one program, and

provides facilities for on the fly reconfiguration of those scenarios enabling rapid pro-

totyping for many different usages. Again, this lends itself to the analogy of LEGO R©.

The main goal ARF set out to achieve was improving pre-real-world testing fa-

cilities such as HIL. ARF does this by enabling different types of testing scenarios,

such as HS, PS, OM, to be created using the same environment through the rear-

rangement and reconfiguration of components. ARF provides an object oriented and

highly modular approach to building testing harnesses for robotic platforms. This

stops the stove pipe development of simulations which have one usage and are con-

sequently hard to alter for similar but slightly different usage. ARF provides extra

help to the user when creating the scenarios which leads to a performance increase

in scenario creation time as shown in the performance tests. ARF provides all the

low level requirements necessary for HIL and other testing types and augmented re-

ality applications (as listed in section 3.1.3). However, although these facilities are

provided the whole problem specific to HIL testing is not solved since ARF provides

all the base technologies such as distributed communications and 3D virtual environ-

ment but does not provide every conceivable component for all types of HIL testing

since most would be application specific. Instead ARF provides a set of HIL testing

components which have evolved through the usage of ARF for many HIL, PS, HS,

262

OM, TR applications demonstrated in chapter 7. These examples show how ARF

is used to provide many different testing and augmented reality scenarios using the

same subset of components. However, if a component does not exist ARF provides

the ability for the user to incorporate their own.

ARF’s component repository has no limits; it can grow and grow forever providing

ARF with limitless functionality. As the repository expands, fewer new components

will need creating for ARF, making creation of scenarios, for whatever purpose, faster

and more efficient.

ARF is particularly suited to HIL testing purposes due to its existing mixed reality

components, but also has immediate applications in simulation, remote awareness and

operator training as demonstrated in the use cases. However, ARF can also be used as

a standard JavaBean development environment for many applications, but with the

added benefit that it provides guided construction no matter what the application.

In conclusion, ARF is very suited to creating testing scenarios for remote plat-

forms and has demonstrated that it can easily provide the flexibility to do all the

working modes and uses identified in the requirements, with the added benefit that

it is capable of doing them all at once. In addition, ARF provides unrivalled scenario

creation times, which are applicable to almost any usage, and more importantly stops

the re-invention of the wheel when creating new virtual environments or modifying

existing ones. ARF allows for more specific scenarios to be tailored quickly to the

demands of the applications. This is attributable to ARF’s unique guided construc-

tion mechanisms and easily extendable JavaBeans backbone. In future ARF will help

produce more mature technologies than could have been achieved otherwise in less

time and consequently costing less. ARF does this by providing more accessible and

user friendly testing facilities which can be reconfigured and extended in minimal time

to produce scenarios for many different testing and AR applications.

9.1 Further Work

There are many avenues one could take for further research of ARF. One of the main

points of interest is further improving the intuitive interface the user uses to connect

263

components together via guided construction. The LEGO R© analogy highlighted some

key ideas which ARF could implement. One of these ideas is to visualise components

as shapes. Properties which require a certain component as a reference can be repre-

sented as keyways which fit onto the shapes, i.e. if two shapes have a similar keyway,

they can be connected together. This is in essence just the same as guided construc-

tion, but instead of showing the user a list of possible components they already have,

or a list of components they could create, it displays on the screen which shapes fit

the connection shape. Then the user simply has to move the shapes into contact,

via spatial manipulation, to connect them. This type of visual user interface would

be most useful when rearranging component connections. All the shapes could be

displayed on the screen with their keyways showing how they are connected. The

user could then simply drag the keyway connections onto different shapes which have

the same keyway. Thus allowing connections between components to be severed and

connected with great speed. ARF could highlight upon a mouse click which shapes

have that same connection keyway, at which point the user would simply have to drag

the shape keyway onto the other shape. This would be more like the building blocks

found in LEGO R©. This would be useful for allowing quick rearrangements of con-

nections. Also the user could arrange the objects spatially into different areas on the

screen to represent groups with different functionality, rather like SuperComponents.

This would in essence be an addition to the BeanBoard and Guided Construction

functionality of ARF.

However, this would be quite a radical change to ARF. There are some smaller

steps which could be taken to improve on ARF’s user interfaces before implementing

the LEGO R© approach. These include:

• Improve BeanBoard view in ARF - improve the ordering of the JavaBeans to

make it easier for the user to locate them. Have the ability to place Beans in

functional groups on the BeanBoard. Show status indicators of Beans, i.e. do

they have null pointers or properties which need setting before they are ready.

• Improve the JarRepository - tt some point the repository will grow so large that

JavaBeans will need to be sorted and categorised better according to usage. This

264

will require a tree structure instead of the current list view of possible JavaBeans.

This can be used for guided construction and also when JavaBeans are added

directly to the BeanBoard.

• Add a SuperComponent Repository which manages SuperComponents by name

and description so that they can be added in a more convenient way to the

project. This would allow SuperComponents to be added in much the same

way as JavaBeans are to the BeanBoard. If this were combined with the im-

provements to the BeanBoard, i.e. group related components, this would make

navigation of the BeanBoard much more intuitive.

• Allow addition of Java3DBeans to SceneGraph in guided construction pane.

This means duplicating some functionality from the Java3D SceneGraph GUI

and adding it to the guided construction pane.

Another quite radical region for further investigation is that of separating the core

parts of ARF, such as the BeanBoard, J3DSceneGraph and PropertyPane, into Jav-

aBeans which can then be constructed using a JavaBean IDE such as BeanBuilder.

This would allow ARF to be incorporated into other programs, and in turn ARF can

incorporate other programs into itself; similar to the chicken and the egg situation.

The advantage being that parts of ARF such as the 3D virtual world could be sub-

stituted with say a 3D environment from NASA WorldWind [74]. Thus creating an

ARF but geared more towards virtual worlds with WorldWind, rather than Java3D.

This would allow programmers to develop different versions of ARF which could be

geared more to one sort of application. Although ARF itself already allows JavaBeans

to be added which could include a different 3D virtual world, it could be useful to

allow the programmer to drop down a level and actually customize their own version

of ARF. Further work could be carried out to incorporate the extra functionality

provided by ARF into something like the BeanBuilder. However, this would mean

adding the SuperComponent, GuidedConstruction and Project functionality of ARF

into the BeanBuilder itself which would be difficult. The advantage of breaking ARF

into separate JavaBeans is that different versions of constituent parts, take for exam-

ple the BeanBoard, could be substituted for different representations which are more

265

appropriate to a specific usage of ARF. ARF itself could be modified so that it allows

the user to choose which parts they want, e.g. the user could choose a different type

of BeanBoard view depending on the purpose of their project. This information can

then be saved as part of ARF’s Project files.

Currently ARF uses the Java3D SceneGraph and as such a work around was

required to make the Java3D SceneGraph nodes into JavaBeans (Java3DBeans). It

would be beneficial if these enhancements were factored back into the actual Java3D

SceneGraph classes so that SceneGraphs can be exported easily as JavaBeans by

others.

9.1.1 Limitations of Work

Currently, ARF has many applications in the testing of robotic platforms due to the

many different use cases which were demonstrated in chapter 7. Thus, many com-

ponents were created that focused particularly on HIL testing. ARF could become

a more feature rich facility specifically for creating HIL testing scenarios, however,

more specialised components would need creating that focus on synchronising the vir-

tual and the real world, since this is one of the main problems of HIL testing. ARF

provides the facilities to support potentially limitless components for doing specific

tasks related to HIL testing, and therefore it would be a very useful extension to

ARF to provide more components for HIL specific tasks so that ARF can be easily

used for many tasks without further component creation. Naturally, the component

base of ARF will grow over time, so rather than further work this more of a future

goal. The idea of Hybrid Simulation (HS) provides another problem: are there certain

ideas which cannot be tested using HIL techniques? For example, if a real robot was

navigating around a real environment but avoiding virtual objects (augmented reality

from the robots perspective), how do you make the real robot collide realistically with

a virtual object? This cannot be easily achieved since a totally realistic implemen-

tation would require the virtual environment to alter the physical properties of the

real environment so that the robot actually collides. Another approach would be to

simulate the collision by altering the outputs of the robot’s motors so that it behaves

as though it has collided. However, this implementation does not very accurately

266

simulate the physical laws governing the vehicle when colliding with a real object.

This is a problem not specific to ARF, but for which ARF could easily be used to

try and solve. ARF allows for components to be easily added to existing scenarios,

a component could be added which provides the ability to control the systems of the

remote robot to simulate how it would react when colliding with a virtual object.

Various different implementations could be easily added as separate components to

ARF and thus easily tested.

9.1.2 Future Applications and Research

ARF has enabled virtual environments to be created quickly and easily for many

different uses, however, now that ARF is available it opens many doors to different

types of research. One of the main areas of interest is that of testing fault detection

systems. ARF can be used to simulate the various systems of an AUV, however

instead of supplying correct data to the real modules in a HIL fashion, it can be used

to generate incorrect, inaccurate or contradictory data. The developer of the fault

detection system will then be able to see if the erroneous data output by ARF causes

any states of deadlock within the system which need to be caught and dealt with.

One of the key contributions of ARF is that it allows for normal faults to be easily

spotted whilst testing modules in simulation and HIL testing. Without ARF scenarios

take much longer to alter and create and as such simple additions to scenarios, which

provide more visual feedback of the states of a system, are not carried out. The

example of BAUUV (section 7.7) is a classic case of observing a fault which would

be very hard to debug without being able to monitor both real and virtual systems

concurrently i.e. the lag which caused objects to be detected in the wrong place

would be hard to spot without the necessary feedback for the operator which shows

the correlation between the virtual object and the detected position of the virtual

object. However, this also highlights the fact that human-in-the-loop testing is vital,

but in order to be effective a virtual environment is required which can be configured

easily to show the necessary feedback and simulate the required sensors. This is where

ARF provides a particularly useful application.

The flexibility of ARF opens enables new applications of HS and HIL testing. For

267

example, place ARF onboard the actual AUV when no external communication is

necessary. This allows for doing HS/AR testing when an AUV is on an autonomous

mission. The virtual environment could be kept in synchronisation with the real

environment by rendering new data in to the virtual world. The virtual AUV is

also kept in synchronisation and as such extra virtual sensors could be placed on

the virtual AUV to provide pseudo realistic data to systems which may require some

sensor which is not yet part of the real AUV. For example, bathymetric data collected

by sonar could be rendered in the virtual world and then a simulated video camera

used to provide images to some video processing system, i.e. for object detection and

tracking systems which only work on video data. Using the same onboard virtual

environment it would be possible to estimate things like water currents by running a

hydrodynamic simulation of the vehicle at the same time as running the real vehicle.

waterMovement = realPosition− virtualPosition

This could also be used to find out the differences between the hydrodynamic sim-

ulation and the real hydrodynamics of the vehicle (if there are no water currents).

This information can then be used in turn to provide a more accurate hydrodynamic

model.

As shown there are many different avenues for the direction in which ARF could

be taken. Wherever it may lead and whatever enhancements maybe carried out

it is important to maintain ARF’s generic nature and not restrict its usage, any

enhancements should increase its flexible and intuitive nature rather than restrict it.

268

Appendix A

Accompanying CD-ROM

Many items have been put on the CD-ROM which accompanies this thesis. The

CD-ROM contains the following:

• ARF Tutorial

• ARF JavaDocs

• ARF Source Code in Netbeans Projects

• Video demo of how to use ARF

• Videos of ARF usages e.g. Nessie 3, Sauce, DTC, Copehil Down etc

• Scenarios for ARF

• ARF itself

All the items on the CD-ROM are in folders which names match those described

above.

269

Appendix B

Extra PropertyEditors

There are many standard property editors in package framework.introspection.prop-

ertyeditors which belong to other Java projects. These are only basic editors for

Java primitive types such as Integer, Double, String etc. The following extra property

editors are provided by ARF to enable intuitive editing of specific Java object types.

• framework.gui.BensBeanSelectorEditor provides the GuidedConstruction ed-

itor for Properties which reference an Object type with no specific associated

PropertyEditor.

• framework.gui.BensFileSelectorEditor provides a property editor for se-

lecting files for load or save, depending on what the JavaBean does.

• framework.introspection.propertyeditors.Vector3dEditor is a simple ed-

itor for javax.vecmath.Vector3d objects.

• framework.introspection.propertyeditors.Vector3fEditor is a simple ed-

itor for javax.vecmath.Vector3f objects.

• framework.introspection.propertyeditors.Java3DColor3fEditor is a sim-

ple editor for javax.vecmath.Color3f objects.

• framework.introspection.propertyeditors.SwingEnumEditor is a simple ed-

itor for Enumeration types in JavaBeans.

270

• framework.introspection.propertyeditors.SwingListEditor is a simple ed-

itor for all Java classes which implement the List interface.

• OceanLIB.propertyeditors.T LLDEditor is an editor for specifying which Lat,

long, depth coordinate types.

271

Appendix C

ARF Components

The current ARF component Library to date:

3D Mesh loaders:

framework.j3d.X3DLoader_CyberX3D

framework.j3d.MeshLoader_DXF_XTools

framework.j3d.MeshLoader_J3D_VRML97

framework.j3d.X3DScene

HUD:

framework.hud.HudText

framework.hud.AlarmGauge

framework.hud.ToggleGauge3D

framework.hud.BarGauge3D

framework.hud.PosNegBarGauge3D

3D Geometry:

framework.geometry.Sphere

framework.geometry.Barrel

framework.geometry.ExclusionZone

framework.geometry.Ball

framework.geometry.TargetMarker

framework.geometry.FOVSegment

272

framework.geometry.Pipe3D

framework.geometry.Trail3D

framework.geometry.Cone

framework.geometry.Cube

framework.geometry.Box

framework.geometry.Grid

framework.geometry.MoveableChangingTexture

framework.utils3d.noise.OptimizedFractalTerrain

framework.utils3d.noise.WaterSurface

framework.behaviours.SpecificObjectPlotter

OceanLIB.arf.geom.pipetools.PipeLoader

OceanLIB.arf.image.DlgBMPWChartLoader

OceanLIB.arf.image.TextureTG

Other Java3D SceneGraph nodes:

framework.j3d.Camera

framework.j3d.ARFBranchGroup

framework.j3d.ARFTransformGroup

OceanLIB.arf.ARFCoordConverterGroup

Java3D Effect Nodes:

framework.j3d.ARFBackground

framework.j3d.ARFFog

Java3D Behavior Nodes:

framework.behaviours.MovementListener

framework.behaviours.MouseInspectBehavior

framework.behaviours.FollowBehavior

framework.behaviours.KeyNavigatorBehavior

framework.behaviours.AccelNavigatorBehavior

framework.behaviours.TransformInterpolator

273

OceanLIB.arf.messageIO.nessie.SonarSpinnerModule

OceanLIB.arf.simulation.rauver.io.WayPointRqstMsgPlotter (OSh Rec.)

OceanLIB.arf.messageIO.NavMsgOutputBehaviour (OceanSHELL Output)

OceanLIB.arf.simulation.rauver.ScreenPicker

Java3D Simulated Sensors:

OceanLIB.arf.sensor.CollisionVolumeSensor

OceanLIB.arf.sensor.FOVPickSensor

OceanLIB.arf.sensor.ObjectFindInSphere

OceanLIB.arf.sensor.ForwardLookingSonarSensor

OceanLIB.arf.sensor.SonarRayTracer

OceanLIB.arf.sensor.ReflectanceRayTracer

OceanLIB.arf.messageIO.nessie.SonarVolumeSensor

OceanLIB.arf.messageIO.nessie.Altimeter

OceanLIB.arf.messageIO.nessie.SonarWallFindPickRays

Simulation Components:

OceanLIB.arf.messageIO.nessie.IMUSimulator (J3dBean)

OceanLIB.arf.simulation.rauver.RauverModel

OceanLIB.arf.simulation.rauver.RauverAutoPos

OceanLIB.arf.simulation.rauver.AUVModelDynamics

Swing 2D JavaBeans:

framework.j3d.ARFCanvas3D

OceanLIB.arf.sensor.RecordCanvas3D

framework.gui.ConfigurablePanel

OceanLIB.arf.sensor.RawSensorViewer

Miscelanious JavaBeans:

OceanLIB.arf.CoordinateSystemsConverter

OceanLIB.arf.simulation.SimulationClock

274

OceanLIB.arf.sensor.ImageFileWriter

OceanSHELL Core JavaBeans:

OceanLIB.arf.oceanshell.OShQ

OceanLIB.arf.oceanshell.OShBridge

OceanSHELL Data I/O:

OceanLIB.arf.messageIO.CADCACMsgListener

OceanLIB.arf.messageIO.PickedNodeMsgOutput

OceanLIB.arf.messageIO.AutotrackerMultiBeamOutput

OceanLIB.arf.messageIO.AxisForceMsgListener

OceanLIB.arf.messageIO.CollidedNodeMsgOutput

OceanLIB.arf.messageIO.NavMsgListener

Simulation RAUVER I/o:

OceanLIB.arf.simulation.rauver.io.RvrThrustMsgListener2AUVModel

OceanLIB.arf.simulation.rauver.io.WayPointRqstMsgListener2AutoPos

OceanLIB.arf.simulation.rauver.io.NavListener_2_J3DTransformGroup

OceanLIB.arf.simulation.rauver.io.AutoPos2RvrAutoposInPositionMsg

OceanLIB.arf.simulation.rauver.io.AUVModelNAV2RauverModelNAVMsg

OceanLIB.arf.simulation.rauver.io.WayPointOutput

Simulation ALI I/O:

OceanLIB.arf.ali.io.Ali_AxisForceMsg2AUVModel

OceanLIB.arf.ali.io.Ali_NavGoalCmdMsg2AutoPos

OceanLIB.arf.ali.io.AUVModel2Ali_NavStsMsg

OceanLIB.arf.ali.io.AutoPos2ali_NavGoalStsMsg

Nessie OceanSHELL I/O:

OceanLIB.arf.messageIO.nessie.SonarStartMsgListener

OceanLIB.arf.messageIO.nessie.WorldDataMsgOutput

275

OceanLIB.arf.messageIO.nessie.NessieIMUDataMsgListener

OceanLIB.arf.messageIO.nessie.ForwardCameraMsgOutput

OceanLIB.arf.messageIO.nessie.NessieWorldDataMsgListener

OceanLIB.arf.messageIO.nessie.SonarMsgOutput

OceanLIB.arf.messageIO.rauboat.GPS_Compass_MsgListener

OceanLIB.arf.messageIO.nessie.DownwardCameraMsgOutput

OceanLIB.arf.messageIO.nessie.NessiePICFeedbackMsgListener

OceanLIB.arf.messageIO.nessie.NessieThrusterCmdMsgListener2Rauver-

ModelAdapter

OceanLIB.arf.messageIO.nessie.NessieWayPtRqstListener2AutoPos

nessie3.detection.ForwardCameraPixelMsgOutput

nessie3.DvlMsgListener

nessie3.DMM16ATMsgListener

DELPHIS Components:

delphis.DelphisCoordinationNavListener

delphis.DelphisCoordinationMsgListener

Sauce Logging and Nessie 3 Components:

sauce.logging.SaucePlayer

sauce.logging.SauceLogger

sauce.logging.eventlisteners.DataAssociationEventListener

sauce.logging.eventlisteners.IntentionEventListener

sauce.logging.eventlisteners.Waypoint4DEvent2WayPointRequestEvent

sauce.logging.eventlisteners.PositionEvent2NavListenerEvent

nessie3.detection.WorldModel

nessie3.detection.CollidedNodeEvent2DataDetectedEvent

276

C.1 ARF Programming

The ARF Class hierarchy is split across many different projects:

• ARFInterfaces - This is the project which contains all the core interfaces which

ARF uses. User’s components should implement these interfaces where neces-

sary to gain use of ARF’s extra features.

• Arf4Auv - This is the main project which contains all the ARF architecture,

the GUI, the PropertEditors and some Java3DBeans for use in ARF.

• OceanLIBARF - This contains JavaBeans and Java3DBeans for use in ARF.

This is mainly concerned with simulated components for underwater applica-

tions. It includes things like the Hydrodynamic model and OceanSHELL com-

munications components.

• Nessie3 - This contains ARF components required for testing Nessie 3 and also

fro creating and playing back log files in the SAUC-E XML format.

• DelphisARF - Contains the required ARF components to receive the DELPHÍS

messages and render the data in ARF.

Most projects related to ARF will have dependencies on the ARF class libraries.

Usually OceanLIBARF for OceanSHELL and ARF for other functionalities. Many of

the features of these packages are discussed in Chapter 5 and also in the ARF Tutorial

in Appendix A.

The JavaDocs display the class hierarchies of all these projects and provide de-

scriptions of each classes functionality. These are descussed in Appendix A

277

Appendix D

ARF Performance Tests

278

ARF Performance Test (APT)

Introduction:

This test is designed to quantitatively asses the performance of ARF. Performance is defined as being the time it

takes a programmer to perform a certain task in ARF compared to standard methods. The performance is

measured for various different tasks to highlight where ARF is better/worse. The comparison of ARF will be

carried out against a standard programming IDE (normally used to write quick test programs for modules

written by programmers) which also has guided programming capabilities (NetBeans). Netbeans provides

automatic JavaBean method creation, Automatic JavaDoc display for all methods and descriptions when using

an object.

These tests are designed to measure the performance of: Creation, Changability / Flexability and Extendability.

From these tests, ARF’s guided programming mechanisms, combined with the features of its low level

JavaBeans arhcitecture, will hopefully show an increase in performance over conventional programming

methods.

Performance Metrics:

Performance is measured from 0 to 4, 4 being the worst and 0 being the best. Thus overall the higher the score

the worse the participant performed. However, this may reflective of specific problems with the test itself and

thus will be highlighted.

Brief:

You are an embedded systems developer requiring a virtual reality testing suite to test a CADCAC (computer

aided detection, computer aided classification) system for an autonomous underwater vehicle (AUV).

Navigation information is output by a system running elsewhere. Note: this system could be real or simulated,

but this makes no difference to the communication interface. The NAV system outputs Rauver Nav

OceanSHELL Messages. The AUV will swim a lawn mower style recognisance of a 20mx20m square (0,0,1)

to (20,20,1) (North,East,Depth) looking for obstacles which could be mines. Thus the virtual world should have

features which are detectable in this region. Your task is to build a virtual reality scenario which listens for

NAV messages and moves a 3D model, of an AUV, synchronously with the NAV system. The 3D model

should also have attached a simulated Sonar module. The sonar should connect an OceanSHELL Object

Detected message output. This is to test the “real” CADCAC software running elsewhere. The features would

normally be detected by a forward looking sonar with a vertical (x) FOV (Field of View) of 30 Degrees (at a

resolution of 0.5 degrees per beam i.e. 60 beams total), Horizontal(y) FOV of 90 Degrees (at a resolution of 0.5

degrees per beam i.e. 180 beams total), 20metres range, and scans every 1000milliseconds. Vertical and

Horizontal FOV are specified as a rotation about the x axis and y axis respectively. A high fidelity sonar

simulation is not required, instead a simple Field of View (FOV) Pick sensor can be used to simulate the

detection of 3d objects within a specified FOV. In Java3D a pick Ray, which is basically a line in 3D space, can

be used to check which objects collide with it. Thus an FOV pick sensor sends out a fan of multiple pick rays,

like a sonar would. The user needs to set up the FOVPickSensor to the same specifications as the required

sonar.

Before completing this test it is advisable that you have familiarised yourself with the ARF tutorial. Extra API

information on JavaBean classes will be provided at the time of the test, but not before as this test is designed to

test how long it takes to use these references if they are required.

279

1) Exercise 1: Building a Scenario in ARF

Java3DBeans: FOVPickSensor, FOVSegment, Grid, Cone, Box, ARFTransformGroup

JavaBeans: CollidedNodeMsgOutput, OshQ, NavMsgListener

In order to test the guided programming facility, you should aim to connect the supplied components (above in

BLUE) together as quickly since possible as this part of the exercise will be timed.

a) Use a ARFTransformGroup with a Cone as a child and point the cone down the –Z axis to represent the

vehicle (-Z is forward(North) in Java3D). Another ARFTransformGroup as a parent of the other will be

necessary to move the Cone around. Thus the tree should contain: ARFTransformGroup (to move AUV)

� ARFTransformGroup (To orient cone) � Cone

Fill out Answers:

b) The next task is to add the FOVPickSensor to the AUV TransformGroup. The FOVPickSensor can also

be connected to an FOVSegment Shape which will display the field of view of the pick sensor in the 3D

world. The FOVSegment should also be added to the AUVTransformGroup

• The FOVPickSensor added to the vehicle TransformGroup and its properties configured to the

sonar specifications described in the brief.

• Tip: The FOVSegment will automatically configure to same characteristics as FOVPickSensor

when the FOVPickSensor’s property called “FOVSegment” is connected to the FOVSegment.

The FOVSegment should first be added to the vehicle’s TransformGroup on the SceneGraph.

You should add the CollidedNodeMsgOutput JavaBean as an event listener to the FOVPickSensor. The

CollidedNodeMsgOutput outputs an OceanSHELL message containing which nodes have been detected

by the FOVPickSensor. The FOVPickSensor should have its “collidablesGroup” property set to a group

which will eventually contain 3D objects which can be detected by the sensor (such as

“collidablesGroup”). An OShQ will need to be created with input port 49002 and output port 49003. The

CollidedNodeMsgOutput should have its OShSenderStub property connected to the OShQ. The NAV

messages will be output by a simulator running separately from ARF, these should be listened to by the

NavMsgListener. The NavMsgListener should have its OshReceiverStub property set to the OShQ and

the targetTransformGroup property set to the vehicles TransformGroup.

Fill out Answers:

c) This set of components can now be saved for use later. This can be done in 2 ways.

i) The entire project can be saved.

Fill out Answers:

ii) The required set of components to represent this AUV and its related JavaBeans can be saved as a

super component. This allows this particular set of components to be imported into any other project

and used countless times again. Meaning that the user doesn’t have to re-create the same parts each

time. Thus in order to export the super component, the user must export any required Java3D

scenegraphs, and any other required JavaBeans from the BeanBoard. ARF helps by identifying

dependencies between JavaBeans and adds any referenced JavaBeans from the BeanBoard to the

export so that references don’t get broken.

Fill out Answers:

d) Change the OceanSHELL input port to 48002, and output port to 48003. Then save this project under a

different name from the previous.

Fill out Answers:

e) Consider a new scenario where two robots are being simulated doing the same task. What is the quickest

way to add another robot to this scenario? The new robot should receive NAV OceanShell messages on

port 49002 and send detected mine information on 49003. Add another AUV and associated JavaBean

objects to this world to represent the new robot.

Fill out Answers:

f) Now you need to switch back to the first scenario with only one AUV. Load the old scenario. This is to

test the original setup.

280

2) Exercise 2: Building Scenario in NetBeans

Java3DBeans: FOVPickSensor, FOVSegment

JavaBeans: CollidedNodeMsgOutput, OShQ, NavMsgListener

The task here is slightly different from before because you won’t be creating the 3D world using java code, as

this would only test your knowledge of Java3D and wouldn’t provide any useful information as the task would

take too long to do – Java3D is merely harnessed by ARF and therefore the user shouldn’t need to know how to

program in Java3D in order to program for, and use, ARF.

Instead, most of the required Java3D objects will already be passed to the class which you will help program.

All java object references required are already defined in the class and have “protected” access. It will be up to

the user to instantiate them if they haven’t been already. The user must then set them up and connect them to

each other accordingly. Obviously, the user will already have some knowledge of the objects from using ARF

and will thus recognise some methods and know how to use them. ARF does some things that the user might

not know about, so the user will have to take special care to configure each object carefully.

Hint: The objects can be initialised like JavaBeans by using the zero argument constructor for each class.

a) Using the Netbeans “Scenario.java” file. You must join the Objects just like in Exercise 1b. You must

enter your code inside the “setupScenario(TransformGroup auvTransformGroup, BranchGroup

collidables)” method. This method has the TransformGroup of the AUV, and the BranchGroup which

has collidable geometry attached, passed to it. You should instantiate the remaining JavaBeans and

Java3DBeans, listed above, and configure them as per the original specification in the brief. The

scenegraph is constructed in a separate method “setEnable(Boolean)” and consequently you should not

be concerned with how to construct the java3d scenegraph. You only need to connect the components

together via their methods (JavaBean parameters). The Java3D scenegraph construction is done

automatically elsewhere. Comments in the Java code describe in more detail what needs to be done. The

required Java objects are already defined as member variables declared in the class body. These objects

need to be instantiated and then connected to each other as follows.

• The FOVPickSensor should be connected to the FOVSegment Shape which will display the field of

view of the pick sensor in the 3D world.

• The FOVPickSensor should be configured to the sonar specifications described in the brief.

• Tip: The FOVSegment will automatically configure to same characteristics as FOVPickSensor if

it is connected to FOVPickSensor before FOVPickSensor is configured.

• The FOVPickSensor should have a CollidedNodeMsgOutput event listener added to it to output an

OceanSHELL message containing which nodes have been detected by the sensor.

• The FOVPickSensor should have its “collidablesGroup” property set to the supplied BranchGroup

as this contains 3D objects which can be detected by the sensor.

• An OShQ will need to be configured. The CollidedNodeMsgOutput should have its oshSenderStub

property connecting to the OshQ. The NAV messages will be output by a simulator running

separately from ARF on port 49002, these should be listened to by the NavMsgListener which in

turn moves the AUV TransformGroup. OceanSHELL messages from CollidedNodeMsgOutput

should be sent on port 49003. The NavMsgListener should have its oshReceiverStub property

connecting to the OshQ.

Fill out Answers:

b) Make a new Scenario2 class with same configuration as before except change the OceanSHELL input

port to 48002, and output port to 48003.

Fill out Answers:

281

3) Exercise 3: Creation of ARF Component and ARF integration

The class you programmed in exercise 2 needs to now be tested. This class has had special methods added to it

to allow it to be a JavaBean and tested within ARF. The JavaBean properties of “Scenario.java” file allow for

the “collidables” Group node and the AUV TransformGroup node to be specified by the user of ARF. There is

an enable property which must be set to true, once the other properties are setup, in order to test the code written

in exercise 2. If all the Objects have been instantiated, correctly configured and connected to one another, then

when the user sets the “enabled” flag of this JavaBean to true then it should start receiving NAV messages,

moving the robot around, and also sending out messages of discovered targets.

a) You must make your “Scenario.java” file into a JavaBean. The compiled“Scenario.class” file should be

wrapped up in a Jar File. The built Jar file will also contain a file called “manifest.mf”. Before building

the Jar you should modify the “manifest.mf” file to include an entry indicating the full Java package and

class name (e.g. “arfperformancetest/Scenario”) of the “Scenario” JavaBean. The manifest file is located

at “E:\java\ARFPerformenceTest\manifest.mf”. Your manifest should look something like:

To build the JAR file select the project root, in the left hand navigation pane, and click right-mouse button

and select “build”. The Jar file is output to “E:\java\ARFPerformenceTest\dist\ARFPerformenceTest.jar”.

The manifest will be wrapped in the Jar file during the build process. The entries in the manifest are used to

identify which classes in the JAR file are JavaBeans (See tutorial on “JavaBean Creation”)

Fill out Answers:

b) The next task is to import the Jar file into ARF. This can be done by going to File � Manage Repository

� Enter the path of the Jar file and Click “add” � Click Done. JAR is located at

“E:\java\ARFPerformenceTest\dist\ARFPerformenceTest.jar”.

Fill out Answers:

c) Open the ARF project located at “My Documents/ModuleTester.xml”.

• Add the new “arfperformencetest.Scenario” bean to the BeanBoard.

• Make sure the auvTransformGroup, collidables properties are pointing to the similar named

Java3DBeans already created in this project. The “auvTransformGroup” property should connect to

a TransformGroup which is used to move the vehicle. The “collidablesGroup” property should be

connected to the BranchGroup node on which the “Box” object is connected to (this is the collidable

objects group).

• Then set “enable” on the propertySheet to “true”. The dos box should show a NavMsg debug

output, and a detected object position. An FOVSegment shape should have also appeared in the

3Dworld attached to the AUV. If this hasn’t happened then there will be an exception and a stack

trace printed to the output which you should be able to find the error in and consult the moderator if

assistance is required.

Fill out Answers:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.5
Created-By: 1.5.0_06-b05 (Sun Microsystems Inc.)
X-COMMENT: Main-Class will be added automatically by build

Name: arfperformancetest/Scenario
Java-Bean: True

282

Appendix E

APT Results Sheet Design

283

APT Results Sheet:

Name:

Date:

Experience
Experience of Java 5 (Expert), 4 (a lot of experience) ,3 (some experience), 2 (familiar with concepts), 1 (none)

Experience of Java3D 5 (Expert), 4 (a lot of experience) ,3 (some experience), 2 (familiar with concepts), 1 (none)

Experience of IDE 5 (Expert), 4 (a lot of experience) ,3 (some experience), 2 (familiar with concepts), 1 (none)

Experience of JavaBeans 5 (Expert), 4 (a lot of experience) ,3 (some experience), 2 (familiar with concepts), 1 (none)

Usage of ARF 5 (Expert), 4 (a lot of experience) ,3 (some experience), 2 (familiar with concepts), 1 (none)

1a.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Consulted API no. times?

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t consult turorial
when should have

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

1b.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Consulted API no. times?

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Event Listeners usability:
0 (easy) to 4 (hard)

0(Obvious/intuitive), 1, 2(Neither obvious or unobvious), 3, 4(Completely counter intuitive)

JavaBean Reference
Property Interconnection:
0 (easy) to 4 (hard)

0(Obvious/ intuitive), 1, 2(Neither obvious or unobvious), 3, 4(Completely counter intuitive)

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

1ci.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

284

1cii.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

1d.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

1e.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

1f.
Time Taken (hh:mm:ss)

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

2a.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Consulted API no. times?

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Didn’t know how to use
netbeans

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Event Listeners usability:
0 (easy) to 4 (hard)

0(Obvious/easy), 1, 2(Neither obvious or unobvious), 3, 4(Completely unobvious)

Object Property
Interconnection:
0 (easy) to 4 (hard)

0(Obvious/easy), 1, 2(Neither obvious or unobvious), 3, 4(Completely unobvious)

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

285

2b.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Didn’t know how to use
netbeans

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

3a.
Time Taken (hh:mm:ss)

Consulted Tut no. times?

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
Netbeans

Didn’t Consult
documentation

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

3b.
Time Taken (hh:mm:ss)

Consulted Tut no. times?

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

3c.
Time Taken (hh:mm:ss)

Overall Task Complexity 0) Very Straightforward, 1) StraightForward, 2) Neither Complex or straightforward, 3) Complex, 4) Very Complex

Required Assistance 0, 1, 2, 3, 4 or more

If required assistance not
zero, why?

Documentation
inadequate

Unable to understand part of
ARF

Didn’t understand
Task.

Other

If other please state:

Any Comments/feedback
regarding the task

How hard was it to
instantiate and configure
the new JavaBean?

0 (easy), 1, 2, 3, 4 (hard)

Understanding of Task 5) Completely, 4) Most of it, 3) about half of it, 2) understood some parts, 1) understood none of it.

Task Completion 0 to 4: 5) Completely, 4) Most of it, 3) about half of it, 2) some parts, 1) none of it.

286

Appendix F

RAW Results Data

287

Exercise: 1 2 3 4 5 6 7 8 9 10 Average

1a

Time (seconds) 120 127.2 256.1 124 261 233 445 207 452 281 250.63

Complexity 0 0 1 0 1 0 1 1 1 0 0.5

Consult API 0 0 0 0 0 0 1 0 0 0 0.1

Assistance no. 0 1 0 0 1 1 0 1 0 0 0.4

UnderStanding 5 5 4 5 5 5 4 5 5 5 4.8

Completion 5 5 5 5 5 5 5 5 5 5 5

1b 0

Time 251 742.2 700.6 325 659 847 1230 857 1013 544 716.88

Complexity 0 1 2 1 3 2 2 1 2 2 1.6

Consult API 0 0 0 0 0 0 0 0 0 0 0

Assistance no. 0 1 1 1 1 0 2 1 1 0 0.8

Event Listeners 5 4 3 4 5 5 5 4 3 5 4.3

JavaBean references 5 5 5 5 5 5 4 5 3 5 4.7

UnderStanding 5 5 5 5 4 5 4 5 5 5 4.8

Completion 5 4 4 5 5 5 5 5 5 5 4.8

1ci 0

Time 35.7 12.9 18 11 17 8 19 15 13 20 16.96

Complexity 0 0 0 0 0 0 0 0 0 0 0

Assistance no. 0 0 0 0 0 0 0 0 0 0 0

 Reason? 0

UnderStanding 5 5 5 5 5 5 5 5 5 5 5

Completion 5 5 5 5 5 5 5 5 5 5 5

1cii 0

Time 41.3 77.1 47 60 24 36 63 69 28 27 47.24

Complexity 0 0 0 1 0 0 0 0 0 0 0.1

Assistance no. 0 1 0 0 0 0 0 0 0 0 0.1

Comments 0

UnderStanding 5 5 5 5 5 5 5 5 5 5 5

Completion 5 4 5 5 5 5 5 5 5 5 4.9

1d 0

Time 30.2 49.3 29 26 33 32 34 71 31 35 37.05

Complexity 0 0 0 0 0 0 0 0 0 0 0

Assistance no. 0 0 0 0 0 0 0 0 0 0 0

Comments 0

UnderStanding 5 5 5 5 5 5 5 5 5 5 5

Completion 5 5 5 5 5 5 5 5 5 5 5

1e 0

Time 82.1 115.1 106 101 97 120 180 62 54 71 98.82

Complexity 0 0 0 0 0 0 0 0 1 1 0.2

Assistance no. 0 0 0 1 0 0 1 0 0 0 0.2

UnderStanding 5 5 5 5 5 5 5 5 5 5 5

Completion 5 5 5 5 5 5 5 5 5 5 5

1f 0

Time 12 9.5 17 21 12 15 30 11 11 14 15.25

Completion 5 5 5 5 5 5 5 5 5 5 5

2a 0

Time 750.9 1498.4 810.1 805 1680 1111 2903 1328 2358 1363 1460.74

Complexity 1 0 1 2 3 0 3 2 4 3 1.9

Consult API 2 3 1 0 0 4 1 4 5 5 2.5

Assistance no. 0 0 2 0 2 1 1 1 1 0 0.8

Event Listeners 4 5 5 3 4 4 4 3 1 3 3.6

Object references 4 5 5 2 2 4 2.5 2 2.5 3 3.2

UnderStanding 5 5 4 5 4 5 4 5 4 5 4.6

Completion 5 5 4 5 5 5 4 5 2 5 4.5

288

2b 0

Time 42.9 125.5 38 57 54 109 40 123 100 87 77.64

Complexity 0 0 0 1 1 0 0 1 1 1 0.5

Assistance no. 0 1 0 0 1 0 0 0 1 1 0.4

Comments 0

UnderStanding 5 5 5 5 4 5 5 5 5 5 4.9

Completion 5 5 5 5 5 5 5 5 5 5 5

3a 0

Time 41.8 326.8 113.1 156 202 268 324 306 134 106 197.77

Consulted Tut no. Times 1 2 1 1 1 1 1 1 0 1 1

Complexity 0 0 1 2 2 2 1 1 1 0 1

Assistance no. 0 3 1 0 1 1 1 1 0 0 0.8

UnderStanding 5 2 4 5 3 5 4 4 5 5 4.2

Completion 5 5 5 5 5 5 5 5 5 5 5

3b 0

Time 26.6 67.6 50 33 35 71 70 116 58 42 56.92

Consulted Tut no. Times 0 0 0 0 0 0 0 0 0 0 0

Complexity 0 0 0 0 0 0 0 1 0 0 0.1

Assistance no. 0 0 0 0 0 0 0 0 0 0 0

UnderStanding 5 5 5 5 5 5 5 5 5 5 5

Completion 5 5 5 5 5 5 5 5 5 5 5

3c 0

Time 55.7 98.6 94 48 114 74 211 167 316 180 135.83

Complexity 0 0 0 0 1 0 1 1 3 1 0.7

Assistance no. 0 0 0 0 0 0 1 1 1 0.3

Instantian & Configuring Javabean 5 5 5 5 5 5 5 5 5 5 5

UnderStanding 5 5 5 5 5 5 4 5 4 5 4.8

Completion 5 5 5 5 5 5 3 5 5 5 4.8

289

Appendix G

Nessie III log file example

Figure G.1: Example of an SAUC-E XML log file

290

Bibliography

[1] A. Healey, A. Pascoal, and F. Pereira, “Autonomous underwater vehicles: An

application of intelligent control technology,” in Proceedings of the American

Control Conference, Seattle, Washinton June 21-23, 1995, pp. 2943-2949. on

IEEE, 1995.

[2] JavaBeans, Sun Microsystems, http://java.sun.com/products/javabeans.

[3] Java3D, Sun Microsystems, http://java.sun.com/products/java-media/3D.

[4] P. Ridao, E. Batlle, D. Ribas, and M. Carreras, “Neptune: A hil simulator for

multiple uuvs,” in OCEANS ’04. MTS/IEEE TECHNO-OCEAN ’04 Volume 1,

9-12 Nov. 2004 Page(s):524 - 531 Vol.1, 2004.

[5] S. Choi and J. Yuh, “A virtual collaborative world simulator for underwater

robots using multidimensional, synthetic environment,” in Robotics and Automa-

tion, 2001. Proceedings 2001 ICRA. IEEE International Conference on Volume

1, 2001 Page(s):926 - 931 vol.1, 2001.

[6] Ocean Systems Laboratory, “Oceanshell: An embedded library for distributed

applications and communications,” Heriot-Watt, Tech. Rep., 2008.

[7] LEGO, LEGO, http://www.lego.com.

[8] R. T. Azuma., “A survey of augmented reality,” in Teleoperators and Virtual

Environments 6, 4 Pages 355-385, August 1997.

[9] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre,

“Recent advances in augmented reality,” Computer Graphics and Applications,

IEEE, vol. Volume 2, Issue 6, pp. 34 – 47, Nov.-Dec. 2001.

291

[10] K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical seethrough display for mutual

occlusion of real and virtual environments,” in Intl Symp. Augmented Reality

2000 (ISAR 00), IEEE CS Press, Los Alamitos, California, 2000, pp. pp. 60–67.

[11] D. Brutzman, “A virtual world for an autonomous underwater vehicle,” Ph.D.

dissertation, Monterey (USA), December 1994.

[12] P. Milgram, H. Takemura, and et al., “Augmented reality: A class of displays

on the reality-virutality continuum.” SPIE Proceedings: Telemanipulator and

Telepresence Technologies . H. Das, SPIE. 2351 : 282-292, 1994.

[13] B. MacIntyre and E. Coelho, “Adapting to dynamic registration errors using

level of error (loe) filtering,” in Proceedings of Intl Symp. Augmented Reality

2000 (ISAR 00), IEEE CS Press, Los Alamitos, California., 2000, pp. pp. 85–

88.

[14] R. Behringer, “Registration for outdoor augmented reality applications using

computer vision techniques and hybrid sensors,” in IEEE Virtual Reality, IEEE

CS Press, Los Alamitos, California, 1999, pp. pp. 244–251.

[15] R. Holloway, “Registration error analysis for augmented reality,” in Presence:

Teleoperators and Virtual Environments. vol. 6, no. 4, Aug. 1997, 1997, pp. pp.

413–432.

[16] Z. Qiang, I. Tena Ruiz, and D. Lane, “Inertial 3d simultaneous localization and

mapping,” in DTC Conference Proceedings, 2008.

[17] C. Hughes, C. Stapleton, D. Hughes, and E. Smith, “Mixed reality in education,

entertainment, and training,” IEEE Computer Graphics and Applications, vol.

Volume 25, Issue 6, pp. 24 – 30, Nov.-Dec. 2005.

[18] R. Damus, J. Morash, and C. Chryssostomidis, “A wearable vehicle interface for

augmented reality in operating auvs,” in OCEANS 2003. Proceedings Volume 2,

22-26 Sept. 2003 Page(s):1154 - 1160 Vol.2, 2003.

[19] A. Fusiello and V. Murino, “Augmented scene modeling and visualization by op-

tical and acoustic sensor integration,” in Visualization and Computer Graphics,

292

IEEE Transactions on Volume 10, Issue 6, Nov.-Dec. 2004 Page(s):625 - 636,

2004.

[20] M. Zyda, R. McGhee, S. Kwak, D. Nordman, R. Rogers, and D. Marco, “Three-

dimensional visualization of mission planning and control for the nps autonomous

underwater vehicle,” Oceanic Engineering, IEEE Journal, vol. Volume 15, Issue

3, p. 217 221, July 1990.

[21] D. M. L. et al., “Mixing simulations and real subsystems for subsea robotic

development specification and development of the core simulation engine,” in

IEEE Int. Conference OCEANS’98, Nice France, 29 Sept-2 Oct 1998. Sendai,

Japan: Springer-verlag, 1998, lNAI 1316.

[22] S. F. et al., “Modeling and simulation of autonomous underwater vehicles: design

and implementation.” IEEE Journal of Oceanic Engineering, Vol. 28, Issue: 2,

pp.283-296, April 2003.

[23] D. Lane, G. Falconer, G. Randall, and I. Edwards, “Interoperability and syn-

chronisation of distributed hardware-in-the-loop simulation for underwater robot

development: Issues and experiments.” Amsterdam, Holland: Robotics and

Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on

Volume 1, 2001 Page(s):909 - 914 vol.1, 2001.

[24] X. Hu., “Applying robot-in-the-loop-simulation to mobile robot systems,” in Ad-

vanced Robotics, 2005. ICAR ’05. Proceedings., 12th International Conference

on July 18-20, 2005 Page(s):506 - 513, 2005.

[25] Z. Papp, M. Dorrepaal, and D. Verburg, “Distributed hardware-in-the-loop sim-

ulator for autonomous continuous dynamical systems with spatially constrained

interactions,” in Parallel and Distributed Processing Symposium, 2003. Proceed-

ings. International 22-26 April 2003 Page(s):8 pp., 2003.

[26] P. Ridao, M. Carreras, D. Ribas, and A. El-Fakdi, “Graphical simulators for auv

development,” in Control, Communications and Signal Processing, 2004. First

International Symposium on 2004 Page(s):553 556, 2004.

293

[27] Y. Kuroda, K. Aramaki, and T. Ura, “Auv test using real/virtual synthetic

world,” in Autonomous Underwater Vehicle Technology, 1996. AUV ’96., Pro-

ceedings of the 1996 Symposium on 2-6 June 1996 Page(s):365 372, 1996.

[28] S. Choi, S. Menor, and J. Yuh, “Distributed virtual environment collaborative

simulator for underwater robots,” in Intelligent Robots and Systems, 2000. (IROS

2000). Proceedings. 2000 IEEE/RSJ International Conference on Volume 2, 31

Oct.-5 Nov. 2000 Page(s):861 - 866 vol.2, 2000.

[29] “The navy unmanned undersea vehicle (uuv) masterplan,” U.S. Navy,

http://www.navy.mil/navydata/technology/uuvmp.pdf, Tech. Rep., 2004.

[30] C. Sotzing, J. Evans, and D. Lane, “A multi-agent architecture to increase co-

ordination efficiency in multi-auv operations,” in OCEANS 2007 - Europe 18-21

June 2007 Page(s):1 - 6, 2007.

[31] B. Davis, P. Patron, and D. Lane, “An augmented reality architecture for the

creation of hardware-in-the-loop & hybrid simulation test scenarios for unmanned

underwater vehicles,” in Oceans 2007, 2007.

[32] Z. Papp, K. Labibes, H. Thean, and M. van Elk, “Multi-agent based hil simula-

tor with high fidelity virtual sensors,” in Intelligent Vehicles Symposium, 2003.

Proceedings. IEEE, Page(s):213 - 218, 9-11 June 2003.

[33] D. D. Corkill, “Blackboard systems,” in AI Expert 6(9):40-47, September, 1991.

[34] V. R. Lesser, “Cooperative multiagent systems: a personal view of state of the

art.”

[35] J. Borges de Sousa and A. Gollu, “A simulation environment for the coordinated

operation of multiple autonomous underwater vehicles,” in Simulation Confer-

ence Proceedings, 1997. Winter 7-10 December 1997 Page(s):1169 - 1175, 1997.

[36] J. Weekley, D. Brutzman, A. Healey, D. Davis, and D. Lee, “Auv workbench:

Integrated 3d for interoperable mission rehearsal, reality and replay,” in Minwara

Canberra Australia 2003, 2003.

294

[37] Command and Conquer, Westwood Studios, http://www.westwood.com.

[38] SeeByte, SeeTrack, http://www.seebyte.com.

[39] D. Brutzman and M. Zyda, “Extensible modeling and simula-

tion framework (xmsf) findings and recommendations report 2002,”

Modeling, Virtual Environments and Simulation (MOVES) In-

stitute, Naval Postgraduate School (NPS), Monterey California,

http://www.movesinstitute.org/xmsf/XmsfWorkshopSymposiumReportOctobe-

r2002.pdf, Tech. Rep., 2002.

[40] Distributed Interactive Simulation (DIS) IEEE Standard 1278.

[41] XML - Extensible Markup Language ISO/IEC 8825-4:2002,

http://www.w3.org/XML.

[42] C. C. Sotzing, N. Johnson, and D. M. Lane, “Improving multi-auv coordina-

tion with hierarchical blackboard-based plan representation,” in Proceedings of

the 27th Workshop of the UK Planning and Scheduling Special Interest Group

(PlanSIG), 2008, pp. 110–117.

[43] W3C XSL Transformations (XSLT), http://www.w3.org/TR/1999/REC-xslt-

19991116.

[44] K. Hamilton, “Recovery,” Ph.D. dissertation, Ocean Systems Laboratory Heriot-

Watt University.

[45] L. Fluckiger and C. Neukom, “A new simulation framework for autonomy in

robotic missions,” in Intelligent Robots and System, 2002. IEEE/RSJ Interna-

tional Conference on Volume 3, 30 Sept.-5 Oct. 2002 Page(s):3030 - 3035 vol.3,

2002.

[46] R. Gaskell, J. Collier, L. Husman, and R. Chen, “Synthetic environments for

simulated missions,” in Aerospace Conference, 2001, IEEE Proceedings. Volume

7, 10-17 March 2001 Page(s):7 - 3556 vol.7, 2001.

295

[47] G. Booch, I. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language

Specification, version 1.3 first edition ed., http://www.omg.org/docs/, March

2000.

[48] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riss, C. San-

dor, and M. Wagner, “Design of a component-based augmented reality frame-

work,” in Augmented Reality, 2001. Proceedings. IEEE and ACM International

Symposium on 29-30 Oct. 2001 Page(s):45 - 54, 2001.

[49] A. Behzadan, H. Khoury, and V. Kamat, “Structure of an extensible augmented

reality framework for visualization of simulated construction processes,” in Win-

ter Simulation Conference, 2006. WSC 06. Proceedings of the 3-6 Dec. 2006

Page(s):2055 - 2062, 2006.

[50] M. Hirakawa and T. Ichikawa, “Advances in visual programming,” in Systems

Integration, 1992. ICSI ’92., Proceedings of the Second International Conference

on 15-18 June 1992 Page(s):538 - 543, 1992.

[51] S. Coon, M. Sanner, and A. Olson, “Re-usable components for structural bioin-

formatics,” in 9th International Python Conference, March 2001.

[52] Hyrdoid, REMUS, http://www.hydroid.com.

[53] Hafmynd, Gavia, http://www.gavia.is.

[54] Subsea7, GEOSUB, http://www.subsea7.com/rov geosub.php.

[55] RAUVER, Ocean Systems Laboratory, http://www.ocean-systems-lab.com.

[56] DSTL, Student Autonomous Underwater Vehicle Competition Europe (SAUC-E),

http://www.dstl.gov.uk/news events/competitions/sauce/index.php.

[57] J. Cartwright, N. Johnson, B. Davis, Z. Qaing, T. Bravo, A. Enoch, G. Lemaitre,

H. Roth, and Y. Petillot, “Nessie iii,” in The 10th Unmanned Underwater Vehicle

Showcase, 2008.

[58] Java, Sun Microsystems, http://www.sun.com/java/.

296

[59] X3D (ISO/IEC 19775-1), Web3D Consortium, http://www.web3d.org.

[60] VRML97 (ISO/IEC 14772-1:1997).

[61] Xj3D project of the Web3D Consortium, Web3D Consortium,

http://www.web3d.org/x3d/xj3d.

[62] Wikipedia, Software Component Theory. [Online]. Available:

http://en.wikipedia.org/wiki/Component-based-software-engineering

[63] G. Voss, “Testing beans in the bdk beanbox,”

http://java.sun.com/developer/onlineTraining/Beans/Beans3/, Tech. Rep.,

1997.

[64] The Official JavaBean Tutorial, Sun Microsystems,

http://java.sun.com/docs/books/tutorial/javabeans.

[65] The BeanBuilder, https://bean-builder.dev.java.net/.

[66] Programming Language C++ ISO/IEC 14882:2003.

[67] D. T. Davis, “Design, implementation and testing of a common data model sup-

porting autonomous vehicle compatibility and interoperability,” Ph.D. Disserta-

tion, Naval Postgraduate School, Monterey California, September 2006. [Online].

Available: https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html

[68] Persistence Delegates Tutorial, Sun Microsystems,

http://java.sun.com/products/jfc/tsc/articles/persistence4.

[69] The Official Tutorials Website, Sun Microsystems,

http://java.sun.com/javase/technologies/desktop/articles.jsp.

[70] JAVASHELL, Ocean Systems Laboratory, 2008.

[71] P. Patrn, J. Evans, J. Brydon, and J. Jamieson, “Autotracker: Autonomous

pipeline inspection: Sea trials 2005,” in World Maritime Technology Conference

- Advances in Technology for Underwater Vehicles, March 2006, 2006.

297

[72] P. Patrn, B. Smith, Y. Pailhas, C. Capus, and J. Evans, “Strategies and sensors

technologies for uuv collision, obstacle avoidance and escape,” in 7th Unmanned

Underwater Vehicle Showcase 2005, 2005.

[73] C. Ptrs, Y. Pailhas, P. Patrn, Y. Petillot, J. Evans, and D. Lane, “Path planning

for autonomous underwater vehicles,” in proceedings of IEEE Transactions on

Robotics, April 2007, 2007.

[74] NASA, WorldWind, http://worldwind.arc.nasa.gov.

298

