10 research outputs found

    A virtual engine laboratory for teaching powertrain engineering

    Get PDF
    A virtual engine laboratory application for use in automotive engineering education is proposed to allow the practical teaching of powertrain calibration. The laboratory software is built as a flexible Matlab tool that can easily be transferred for applications in other disciplines and promotes the link between teaching and research

    Learning methodology based on weld virtual models in the mechanical engineering classroom

    Get PDF
    13 pp.Welding inspection activities within engineering degree programs are usable in practice. The competences acquired through these are usually contextualized in laboratory environments, using for its physical samples of welds, which used to be are scarce and expensive. In this study, a new methodology based on threedimensional macro‐photogrammetric models of welds is designed and actively implemented in the classroom, with students of mechanical engineering to evaluate different aspects about the suitability and learning performance of this novel methodology. To obtain the research conclusions, the activities have been chosen to evaluate four important aspects of it: usability, learning, motivation, and scalability. Results demonstrate that the adequate acceptation of the novel methodology studied, making possible new approaches for the acquisition of the competences related the welding inspection in the engineering education contextS

    Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students

    Full text link
    [EN] This study presents the application of an existing interactive application for teaching spray dynamics in engineering degrees. The model is based on spray momentum conservation and can be used to evaluate both fuel-air mixing characteristics in inert conditions as well as diffusion flame performance once combustion takes place. During a dedicated computer-lab session, the students perform parametric studies regarding the influence of the nozzle outlet diameter, the combustion chamber density and the spray cone opening angle on the mixing process, characterized by the maximum stoichiometric length. Later on, the effect of the combustion reaction on the mixing field is evaluated. The results are analyzed taking as a reference to the theoretical development made by Spalding and Schlichting for diffusion gas jets. The outcomes of several years using this technique are reported.García-Oliver, JM.; García Martínez, A.; De La Morena, J.; Monsalve-Serrano, J. (2019). Application of a one-dimensional spray model to teach diffusion flame fundamentals for engineering students. Computer Applications in Engineering Education. 27(5):1202-1216. https://doi.org/10.1002/cae.22146S12021216275Aleiferis, P. G., Behringer, M. K., & Malcolm, J. S. (2016). Integral Length Scales and Time Scales of Turbulence in an Optical Spark-Ignition Engine. Flow, Turbulence and Combustion, 98(2), 523-577. doi:10.1007/s10494-016-9775-9Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440-498. doi:10.1016/j.pecs.2007.10.002Burke, R. D., De Jonge, N., Avola, C., & Forte, B. (2017). A virtual engine laboratory for teaching powertrain engineering. Computer Applications in Engineering Education, 25(6), 948-960. doi:10.1002/cae.21847Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 161(8), 2137-2150. doi:10.1016/j.combustflame.2014.01.022Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008Dumouchel, C., Cousin, J., & Triballier, K. (2005). On the role of the liquid flow characteristics on low-Weber-number atomization processes. Experiments in Fluids, 38(5), 637-647. doi:10.1007/s00348-005-0944-1Edmonds, E. (1980). Where Next in Computer Aided Learning? British Journal of Educational Technology, 11(2), 97-104. doi:10.1111/j.1467-8535.1980.tb00396.xFansler, T. D., & Parrish, S. E. (2014). Spray measurement technology: a review. Measurement Science and Technology, 26(1), 012002. doi:10.1088/0957-0233/26/1/012002Gutiérrez-Romero, J. E., Zamora-Parra, B., & Esteve-Pérez, J. A. (2016). Acquisition of offshore engineering design skills on naval architecture master courses through potential flow CFD tools. Computer Applications in Engineering Education, 25(1), 48-61. doi:10.1002/cae.21778IPCC. Intergovernmental Panel on Climate Change Working Group I. Climate Change 2013: The Physical Science Basis.Long‐term Climate Change: Projections Commitments and Irreversibility  Cambridge University Press New York NY  2013:1029–136.https://doi.org/10.1017/CBO9781107415324.024W. Kirchstetter, T., Harley, R. A., Kreisberg, N. M., Stolzenburg, M. R., & Hering, S. V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33(18), 2955-2968. doi:10.1016/s1352-2310(99)00089-8K. BenNaceur L.Cozzi andT.Gould.World Energy Outlook 2016.2016.https://doi.org/10.1787/weo‐2016‐enM.Nesbitet al. Comparative Study on the differences between the EU and US legislation on emissions in the automotive sector.2016.PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009Payri, R., Salvador, F. J., Gimeno, J., & Novella, R. (2011). Flow regime effects on non-cavitating injection nozzles over spray behavior. International Journal of Heat and Fluid Flow, 32(1), 273-284. doi:10.1016/j.ijheatfluidflow.2010.10.001Perumal, K., & Ganesan, R. (2015). CFD modeling for the estimation of pressure loss coefficients of pipe fittings: An undergraduate project. Computer Applications in Engineering Education, 24(2), 180-185. doi:10.1002/cae.21695Regueiro, A., Patiño, D., Míguez, C., & Cuevas, M. (2017). A practice for engineering students based on the control and monitoring an experimental biomass combustor using labview. Computer Applications in Engineering Education, 25(3), 392-403. doi:10.1002/cae.21806Sick, V., Drake, M. C., & Fansler, T. D. (2010). High-speed imaging for direct-injection gasoline engine research and development. Experiments in Fluids, 49(4), 937-947. doi:10.1007/s00348-010-0891-3SPALDING, D. B. (1979). The stability of steady exothermic chemical reactions in simple non-adiabatic systems. Combustion and Mass Transfer, 399-406. doi:10.1016/b978-0-08-022106-9.50025-5Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081www.upv.es. Universitat Politècnica de València.Zhao, H., & Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science, 24(3), 221-255. doi:10.1016/s0360-1285(97)00033-

    Utilización de modelos matemáticos para el aprendizaje de aspectos avanzados de Combustión en alumnos de Ingeniería

    Full text link
    [EN] The current work sintetizes the main findings regarding the application of mathematical models for advanced combustion physical and chemical aspects to the teaching-learning process in Combustion subjects for Engineering students. These models have been previously developed for research purposes, and then adapted as teaching tools. The aim of this adaptation is to complement the application cases seen in the classroom, where simplified methods are used, with more realistic studies only achievable through computational methods due to their higher mathematical complexity. The paper describes the main characteristics of the tools used, the methodology used to incorporate them to the teaching environment and, finally, evaluates the main impact of their application both in the learning results from the students and their satisfaction about the process.[ES] En el presente trabajo se sintetizan los resultados de la aplicación de modelos matemáticos para aspectos físico-químicos avanzados aplicados al proceso de enseñanza-aprendizaje de la asignatura de Combustión para alumnos de lngeniería. Estos modelos han sido desarrollados previamente en el ámbito investigador, y posteriormente adaptados como herramientas docentes. El objetivo de las mismas es complementar los casos vistos en el aula, donde se trabaja con métodos de resolución simplificados, con estudios más realistas que únicamente son abordables computacionalmente debido a la mayor complejidad matemática. En el artículo se presentan los fundamentos de las herramientas utilizadas, se describe la metodología usada para su adaptación al ámbito docente y, finalmente, se evalúa el impacto de su implementación tanto en los resultados de aprendizaje de los alumnos como en su grado de satisfacción final.Martín Díaz, J.; García Martínez, A.; Morena Borja, JDL.; Monsalve Serrano, J. (2019). Utilización de modelos matemáticos para el aprendizaje de aspectos avanzados de Combustión en alumnos de Ingeniería. En IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 437-448. https://doi.org/10.4995/INRED2019.2019.10525OCS43744

    Enhancing EJsS with extension plugins

    Get PDF
    Easy JavaScript Simulations (EJsS) is an open-source tool that allows teachers with limited programming experience to straightforwardly bundle an interactive computer science or engineer simulation in an HTML+ JavaScript webpage. Its prominent place in Physics (where it has won several prizes) should not hinder its application in other fields (such as building the front-end of remote laboratories or learning analytics) after having adapted part of the functionality of EJsS to them. To facilitate the future inclusion of new functionalities in EJsS, this paper presents a new version of this tool that allows the enhancement of EJsS, letting it incorporate new tools and change its graphical user interface, by means of extension plugins (special software libraries). To illustrate the benefits of this distributable self-contained non-intrusive strategy, the paper (a) discusses the new methodological possibilities that the Plugins bring to EJsS developers and users, and (b) presents three plugins: one to support the plugin management and the others to easily set up a streamlined remote laboratory. Moreover, the paper also presents the main characteristics of that remote lab to allow readers take advantage of EJsS and the three plugins to set up new online experiments for their students quickly

    A virtual engine laboratory for teaching powertrain engineering

    Get PDF
    A virtual engine laboratory application for use in automotive engineering education is proposed to allow the practical teaching of powertrain calibration. The laboratory software is built as a flexible Matlab tool that can easily be transferred for applications in other disciplines and promotes the link between teaching and research

    24th Multimedia in Education Conference Proceedings : A XXIV. Multimédia az Oktatásban Konferencia kiadványa

    Get PDF

    In-Red 2019. V Congreso nacional de innovación educativa y docencia en red

    Full text link
    La Universitat Politècnica de València convoca el Congreso de Innovación Educativa y Docencia en Red IN-RED 2019 que tendrá lugar en la ciudad de VALENCIA los días 11 y 12 de julio de 2019,organizado conjuntamente por el Vicerrectorado de Recursos Digitales y Documentación y el Vicerrectorado de Estudios, Calidad y Acreditación de la Universitat Politècnica de València. La experiencia vivida en ediciones anteriores del congreso nos ha llevado a plantear una nueva edición del mismo, con el fin de ofrecer de nuevo la oportunidad de mostrar distintas experiencias docentes basadas en la innovación, desarrollo de metodologías, implantación de mejoras en el aula, etc., todas ellas relacionadas directa o indirectamente con la calidad de los procesos de enseñanza aprendizaje desarrollados en el ámbito de la educación superior.Vega Carrero, V.; Vendrell Vidal, E. (2019). In-Red 2019. V Congreso nacional de innovación educativa y docencia en red. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/127501EDITORIA
    corecore