37 research outputs found

    A hybrid localization method for Wireless Capsule Endoscopy (WCE)

    Get PDF
    Wireless capsule endoscopy (WCE) is a well-established diagnostic tool for visualizing the Gastrointestinal (GI) tract. WCE provides a unique view of the GI system with minimum discomfort for patients. Doctors can determine the type and severity of abnormality by analyzing the taken images. Early diagnosis helps them act and treat the disease in its earlier stages. However, the location information is missing in the frames. Pictures labeled by their location assist doctors in prescribing suitable medicines. The disease progress can be monitored, and the best treatment can be advised for the patients. Furthermore, at the time of surgery, it indicates the correct position for operation. Several attempts have been performed to localize the WCE accurately. Methods such as Radio frequency (RF), magnetic, image processing, ultrasound, and radiative imaging techniques have been investigated. Each one has its strengths and weaknesses. RF-based and magnetic-based localization methods need an external reference point, such as a belt or box around the patient, which limits their activities and causes discomfort. Computing the location solely based on an external reference could not distinguish between GI motion from capsule motion. Hence, this relative motion causes errors in position estimation. The GI system can move inside the body, while the capsule is stationary inside the intestine. This proposal presents two pose fusion methods, Method 1 and Method 2, that compensate for the relative motion of the GI tract with respect to the body. Method 1 is based on the data fusion from the Inertial measurement unit (IMU) sensor and side wall cameras. The IMU sensor consists of 9 Degree-Of-Freedom (DOF), including a gyroscope, an accelerometer, and a magnetometer to monitor the capsule’s orientation and its heading vector (the heading vector is a three-dimensional vector pointing to the direction of the capsule's head). Four monochromic cameras are placed at the side of the capsule to measure the displacement. The proposed method computes the heading vector using IMU data. Then, the heading vector is fused with displacements to estimate the 3D trajectory. This method has high accuracy in the short term. Meanwhile, due to the accumulation of errors from side wall cameras, the estimated trajectory tends to drift over time. Method 2 was developed to resolve the drifting issue while keeping the same positioning error. The capsule is equipped with four side wall cameras and a magnet. Magnetic localization acquires the capsule’s global position using 9 three-axis Hall effect sensors. However, magnetic localization alone cannot distinguish between the capsule’s and GI tract’s motions. To overcome this issue and increase tracking accuracy, side wall cameras are utilized, which are responsible for measuring the capsule’s movement, not the involuntary motion of the GI system. A complete setup is designed to test the capsule and perform the experiments. The results show that Method 2 has an average position error of only 3.5 mm and can compensate for the GI tract’s relative movements. Furthermore, environmental parameters such as magnetic interference and the nonhomogeneous structure of the GI tract have little influence on our system compared to the available magnetic localization methods. The experiment showed that Method 2 is suitable for localizing the WCE inside the body

    Adaptive Wireless Biomedical Capsule Localization and Tracking

    Get PDF
    Wireless capsule endoscopy systems have been shown as a gold step to develop future wireless biomedical multitask robotic capsules, which will be utilized in micro surgery, drug delivery, biopsy and multitasks of the endoscopy. In such wireless capsule endoscopy systems, one of the most challenging problems is accurate localization and tracking of the capsule inside the human body. In this thesis, we focus on robotic biomedical capsule localization and tracking using range measurements via electromagetic wave and magnetic strength based sensors. First, a literature review of existing localization techniques with their merits and limitations is presented. Then, a novel geometric environmental coefficient estimation technique is introduced for time of flight (TOF) and received signal strength (RSS) based range measurement. Utilizing the proposed environmental coefficient estimation technique, a 3D wireless biomedical capsule localization and tracking scheme is designed based on a discrete adaptive recursive least square algorithm with forgetting factor. The comparison between localization with novel coefficient estimation technique and localization with known coefficient is provided to demonstrate the proposed technique’s efficiency. Later, as an alternative to TOF and RSS based sensors, use of magnetic strength based sensors is considered. We analyze and demonstrate the performance of the proposed techniques and designs in various scenarios simulated in Matlab/Simulink environment

    A Magnetic Localization Technique Designed for use with Magnetic Levitation Systems.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Determining the Position and Orientation of In-body Medical Instruments Using Reactive Magnetic Field Mapping

    Get PDF
    There has been a huge demand for localizing in-body medical instruments (IBMI), such as wireless capsule endoscope (WCE) and nasogastric tube (NGT). Some stud ies have been conducted to solve this issue over the last three decades. In these studies, they either used a permanent magnet (PM), a static current source (SCS), radio frequency (RF) fields or integration of two of these. The PM is a stable and reliable magnetic field source. However, due to the size restriction of the NGT and the WCE, only a small PM can be used. Subsequently, the small size issue causes low power delivery at the larger tracking distance. Also, the PM field is very susceptible to ambient noise, and the PM-based localization is not possible in ap plications requiring robotic actuation. Even though an SCS can be used to replace the permanent magnet, and thus the current level can be varied in relation to the dis tance for optimized power delivery, it requires a relatively high power to generate a higher strength magnetic field. Consequently, a more powerful and larger battery is needed to feed the circuit.Radio frequency field sources require high frequencies to achieve sufficient precision, but these frequencies undergo high attenuation in the body. Therefore, the low-frequency RF field is preferred 1 . In the near-field 2 , plane wave assumption of the far-field fails for localization methods since the waves in this region are spherical. Hence, the wave-front has to be formulated by both the range and the direction of arrival (DOA). The DOA requires the phase difference of neighbouring sensors to be calculated. However, if the operating wavelength is much larger than the distance between the source and the receiver, it is not feasible to compute the phase difference between the neigh bouring sensors. Thus, there are numerous algorithms in the literature to overcome these issues, such as MUSIC or ESPRIT which are either complicated or computa tionally expensive. In RF-based localization, generally the time of arrival (TA), the time differ ence of arrival (TDA), the angle of arrival (AOA) and the received signal strength (RSS) are widely used for localization. However, the TA and TDA require accu rate knowledge of field speed and good time synchronization. It is not possible to accurately know while travelling through the body tissues due to complexity of the tissues. The AOA is also impractical for intra-body applications owing to multiple reflections signal from the tissues, commonly known as the multipath effect. The RSS precision is dependent on good knowledge of power loss in complex body tis sues. Also, the RSS method requires accurate knowledge of the transmitted signal strength. However, the power of transmitted frequencies may vary due to the ca pacitive effect of human tissue on Resonant frequency of source, hence RSS-based techniques prove difficult in practice. Therefore, a novel method of mapping the magnetic field vector in the near field region is proposed. This magnetic field mapping (MFM) uses single-axis coils placed orthogonally with respect to a sensor plane (SP). These single-axis sensors pick up only the orthogonal component of the magnetic field, which varies as a function of the orientation of the source and distance to the source. Thus, using this information, the field strength captured by each sensor is mapped to its correspond ing position on the SP as pixels. Next, these field strengths with known positions are used to detect the location and orientation of the field source relative to the SP. MATLAB and CST Microwave simulation were conducted, and many laboratory experiments were performed, and we show that the novel technique not only over comes the issues faced in the methods mentioned above but also accomplishes an accurate source positioning with a precision of better than ± 0.5 cm in 3-D and orientation with a maximum error of ±5◦

    Design of an Electromagnetic Coil Array for Wireless Endoscope Capsule Localization

    Get PDF
    Wireless capsule endoscopy is a technique that visualizes mucosa of gastrointestinal tract. The first wireless capsule endoscope was developed in 2001, and since then, the tech-nology has been in constant development. With its reduced amount of discomfort, ability to visualize the whole gastrointestinal tract and many interesting future prospects, capsule en-doscopy is challenging the conventional procedure, in which a camera module at the end of a tube is inserted to the gastrointestinal tract. In general, the method can be used to diagnose many diseases, such as cancers, Celiac disease and Crohn’s disease. In order to achieve all the future prospects of the technology, for example, active steering of the capsule, biopsy and drug-delivery with the capsule, challenge of detecting the cap-sule’s position and orientation inside human needs to be overcome. Therefore, the localiza-tion challenge is considered in this thesis. The aim is to select an optimal method for localiza-tion based on current research, and to model and develop a prototype that could be utilized in capsule localization. The designed sensor array is evaluated with the help of finite element method -based modelling, sensitivity analysis and practical experiments. Based on the studied literature, an active magnetic field strength -based localization tech-nique was selected for further analysis. According to the literature, the method provides high accuracy and could also be utilized in other purposes, for example, wireless charging and ac-tive locomotion of the capsule. In addition, the method does not suffer from attenuation of the fields within a human body. Therefore, theoretical basis of the magnetic field strength -based localization was presented, and four electromagnetic coil arrays were designed for sensitivity analysis. Contrary to many developed arrays seen in the literature review, all the designed systems were planar, in order to develop a system that could be fitted, for instance, inside a hospital bed. Based on the sensitivity analysis, an array with relatively large sensitivity and optimal number of measurement channels was selected for practical study. In addition, pos-sible markers that could be fitted inside a regular sized endoscopic capsule were numerically modelled. It was found that a resonated solenoid marker with ferrite core causes the largest voltage compared to other modelled targets, and therefore it was constructed for experi-ments. The whole array was built and equipped with electronics and measurement devices to be able to perform testing. Two channels of the array were selected for example measurements, and the results were analysed and compared with modelled values and sensitivity patterns. The system was tested at multiple different heights and positions, and the effect of changing the marker’s orientation with respect to the array was analysed. It was found that the system gives a reasonable response when the marker is oriented along the excitation magnetic field. With this orientation, it was possible to measure significant voltages caused by the marker even at distance of 25 cm from the array. However, when the marker was oriented so that the excitation field could not properly excite it, the measured voltages got smaller. In addition, at certain orientation, the measured voltages did not seem reliable because voltage caused by the marker could not been discriminated from the noise of the system. The study indicates that the method is suitable for localization of resonated solenoid sample with ferrite core, but further improvements are needed to make the system work at each position and orientation of the marker. In addition, an inversion algorithm that estimates marker’s position and orien-tation based on the measured voltage needs to be integrated to the system
    corecore