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Abstract

Wireless capsule endoscopy systems have been shown as a gold step to develop future

wireless biomedical multitask robotic capsules, which will be utilized in micro surgery,

drug delivery, biopsy and multitasks of the endoscopy. In such wireless capsule endoscopy

systems, one of the most challenging problems is accurate localization and tracking of the

capsule inside the human body. In this thesis, we focus on robotic biomedical capsule

localization and tracking using range measurements via electromagetic wave and magnetic

strength based sensors. First, a literature review of existing localization techniques with

their merits and limitations is presented. Then, a novel geometric environmental coefficient

estimation technique is introduced for time of flight (TOF) and received signal strength

(RSS) based range measurement. Utilizing the proposed environmental coefficient esti-

mation technique, a 3D wireless biomedical capsule localization and tracking scheme is

designed based on a discrete adaptive recursive least square algorithm with forgetting fac-

tor. The comparison between localization with novel coefficient estimation technique and

localization with known coefficient is provided to demonstrate the proposed techniques ef-

ficiency. Later, as an alternative to TOF and RSS based sensors, use of magnetic strength

based sensors is considered. We analyze and demonstrate the performance of the proposed

techniques and designs in various scenarios simulated in Matlab/Simulink environment.
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ization with a given environmental coefficient. . . . . . . . . . . . . . . . . 35

4.1 Block diagram of tracking control of WBC . . . . . . . . . . . . . . . . . . 38

4.2 Tracking Path of the Target. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Lateral coordinate estimates (x̂T [k], ŷT [k]) for drifting target case . . . . . 42
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Chapter 1

Introduction

Each year in the U.S., 147,000 new cases of colorectal cancer are diagnosed and more than

57,000 people die from the disease and 233,000 Canadians, 1 in every 150 Canadians (over

11,900 dolar per person with IBD) every year, suffer from inflammantory bowel disease

(IBD). Today, diagnosis and treatment of gastrointestinal disorders such as obscure bleed-

ing, irritable bowel syndrome, Crohns disease, chronic diarrhea, and cancer are extremely

challenging problems for the physicians [1, 9].

Also, conventional methods such as colonoscopy are often painful and uncomfortable for

patients, who undergo these procedures, due to difficulty of accessing such a complicated

environment, such as small intestine. For instance, the colonoscope,the equipment for

colonoscopy, is approximately a long, flexible, relatively large tube housing a camera and

a source of light at its tip. The tip of the colonoscope is inserted into the anus and then

is advanced slowly, under visual control, into the rectum and through the colon usually as

far as the cecum [33]
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Over the last decade, wireless capsule endoscopy (WCE) has established itself as a valu-

able tool for diagnosis of gastrointestinal bleeding, Chrohn disease, small intestine tumors,

Celiac disease and other disorders which happen in the gastrointestinal (GI) tract. WCE

does not only help to diagnose and treat these diseases, but also provides a safe and rela-

tively easy procedure that can provide valuable data in the diagnosis of GI tract conditions.

WCE involves swallowing a small capsule that will pass naturally through your digestive

system while taking pictures. The images are transmitted to monitoring system, that are

placed outside the body.

It is indicated that over 1,250,000 patients have taken advantage of WCE test all

over the world [28]. This statistics demonstrates that WCE technologies are extremely

important and bring about a revolution in diagnosis of GI diseases [28].

Figure 1.1: GI track of the human body

Developing technologies and miniaturization of the large electronic components have

enabled to produce sufficiently small medical devices such as radio telemetry capsules that

are small enough to swallow and hence more patient friendly, decreasing the discomfort.

GI physiological parameters such as temperature, pressure or pH can be measured by the
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capsules. Fig. 1.1 illustrates a typical wireless biomedical capsule (WBC), which consists

of an image sensor, an illumination module, a radio-frequency transmitter, and a battery.

A typical WCE system comprises of a 3D cartesian robot with a sensor unit attached to

its end effector as illustrated in Fig.1.2 or a bell-shaped sensor unit attached to the body

with a real time viewer as shown in Fig.1.3.

Figure 1.2: Structure of an endoscopic capsule robot [28]

Today, three companies in the world produce small-bowel WCE systems (see some of

the commercial capsules and their properties in Table 1.1). However, these technologies

still do not provide exact location of the capsule associated with the problems such as tumor

diagnosis precisely [9,33]. WCE offers a feasible noninvasive way to monitor the entire GI

tract and particularly middle part of the small intestine, where traditional endoscopy is

not able to reach. GI track is a long particularly curled path in the human body (Fig. 1.4.

Therefore, the movement of the capsule inside the GI track is very complicated. Capsule

endoscopy (CE) starts with the patient swallowing the capsule. The natural peristalsis force

helps capsule movement through GI track without any harm or pain. In general, main idea

of the CE is to allow the physician to visualize the whole GI track and if possible to release

the medicine without scope trauma [33].

WCE is a novel breakthrough in the biomedical industry. However, exact location of the
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Figure 1.3: Different WCE examples and their some of the properties [33].

Figure 1.4: 3D endoscopic capsule robotic platform [28]

capsule, image resolution, wireless power transmission, and limited working time are still

bottlenecks for the researchers and physicians. Finding location of the capsule is one of the

most essential problems since capsule position does also provide information on location

of the tumors, bleeding or other problematic issues in the GI tract. In addition, without

position information, finding solutions for other problems on the capsule endoscopy is

nearly impossible, such as tracking of the capsule or arranging working time of the capsule

inside the body. Therefore, there is a need for further research in localization technologies
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Figure 1.5: Wireless Capsule Endoscopy Reciver Set [33]

and algorithms of the capsule endoscopy.

Our purpose is to provide an overview on the capsule endoscopy technologies to localize

and track a capsule inside the human body with a novel cost effective and non complex envi-

ronmental coefficient estimation method. Nowadays, most of the research have focused on

two step positioning systems in electromagnetic based capsule localization problems; first

step is to estimate of the environmental coefficients, such as relative permittivity for TOF

or path loss coefficient for RSS based techniques, with a prori data on the environmental

coefficient of the each organ or medium, and then, second step is to develop a localization

and tracking algorithm based on the parameters that are found in the first step [12,58]. In

this dissertation, however, we propose a novel geometric method for finding environmental

coefficients without any priori information on it. Later, we apply an adaptive recursive

least square algorithm to find the exact location of the capsule and a tracking control law

for electromagnetic and magnetic capsule localization problems.
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1.1 Outline of the Thesis

This dissertation mainly focuses on the localization and tracking problem of the capsule

endoscopy depending on an environmental coefficient estimate of TOF, RSS, and magnetic

strength sensing based methods. In Chapter 2, we first introduce summary of the existing

localization techniques and algorithms as well as with challenges in capsule endoscopy(CE)

in the literature. In Chapter 3, we present a novel geometric environmental coefficient

estimation technique for TOF and RSS based WCE localization with a particular 3D

scenario inside the human body. In Chapter 4, tracking problem of the WBC with a specific

TOF localization scenarios is presented. In Chapter 5, we introduce a novel adaptive

magnetic sensing based WBC localization technique to compare proposed electromagnetic

and magnetic based methods effectiveness. Results of simulations and and discussion

are given based on proposed CE localization and tracking technique depending on the

environmental coefficient estimate at the end of Chapter 3,4 and 5. Finally, we conclude

the dissertation in Chapter 6 and give some idea about future work.
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Chapter 2

Background and Problem Definition

There exist various measurement methods and estimation algorithms for WBC localiza-

tion. Measurement methods are classified in two sections in the literature; magnetic-

field strength based methods and electromagnetic- wave based methods [28,53]. Magnetic

strength based methods have some drawbacks, for instance, significant weight and size,

conflicts between actuation and localization systems, some health risk for the patients as-

sociated with increased magnetic field and magnetic field interference with other magnetic

applications such as magnetic resonance imaging (MRI) systems. On the other hand, rather

than aforementioned measurement methods, computed tomography (CT) or x-ray can be

used for localizing a WBC inside the GI track by inserting radiation opaque material into

the WBC. However, using CT and x-ray is very expensive and there exist some health risks

for the patient. Therefore, since electromagnetic wave based location estimation provides

easier, natural, less sensitive toward outside influences and cheaper solutions, it has been

selected for localization with Smartpill, M2A and Microcam [18, 33].
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2.1 Electromagnetic Waves Based Localization Meth-

ods

The essential merit of electromagnetic-wave based methods is that they are not affected by

the magnetic field generated for the actuation purpose. Fig. 2.1 demonstrates the distinc-

tive areas of the electromagnetic spectrum. However, only radio waves, visible waves, x-ray

and gamma ray have been used for capsule tracking because microwaves, infrared waves

and ultraviolet waves have very low transmissivity through human tissue [20]. Transmitted

signal of the capsule is recieved by the sensors on the patients abdomen. The capsule lo-

cation is estimated using data of these sensors at any given time. The sensor in the closest

proximity to capsule recieves the strongest signal. Using strength of the signal or arrival

time of the signal and location of the sensors, an approximate location of the capsule can

be calculated [33].

Figure 2.1: Different electromagnetic wave for WCE localization
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2.1.1 RF Based Techniques

Radio frequency (RF) based localization techniques include: received signal strength in-

dicator (RSSI), angle of arrival (AOA), time of arrival (TOA), time difference of arrival

(TDOA), and radio frequency identification (RFID) [28]. There are unique problems ex-

ist for in-body localization due to the complicated structure of the human body, such as

multipath caused by the boundaries of the organs, shadowing effect, and variable signal

propagation velocity and path loss parameters in the whole human body. In addition,

the use of high-band or high power signals for capsule localization is restricted by defined

standards (i.e., MICS) [14]. Furthermore, models of RSS and TOF are fairly complex since

the recieved signals from the body mounted sensors is damaged with multipath reception

caused by the refraction at the boundary of organs and tissues in the human body [33].

Some preliminary two dimensional (2D) RSS and TOA localization techniques for inside

the human body have been reported in [10, 62].

RSS Based Techniques

RSS - received signal strength or RSSI - RSS indicator [37, 41] is a distance measurement

technique based on the signal power (or strength) measured by a receiver located at the

sensor. In a generic RSS setting, the target signal source, which is required to be localized,

emits a signal with original power PT . The power PS received by S follows an exponential

decay model, which is a function of PT , the distance dT between S and T , and a coefficient

η modeling the signal propagation behaviour in the corresponding environment, called the

path loss coefficient (exponent). The widely used corresponding mathematical model is

PS = KlPTd
−η
T , (2.1)
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where Kl represents other factors that include effects of antenna height and antenna gain.

Kl is often considered to be log-normal, and is often ignored in algorithm design leading

to the simplified model

PS = PTd
−η
T . (2.2)

RSS technique often provides cost saving over deploying localization-specific hardware

and all current standard radio technologies such as Wi-Fi and ZigBee provide RSS mea-

surements. However, RSS can have multi-path effects that include shadowing, reflection,

diffraction, refraction due to unpredictable environmental conditions, particularly for in-

door applications [37]. In modeling, these affects are also lumped and included in the

coefficient Kl of (2.1).RSS is a power measuring data received by a radio receiver from a

radio transmitter for localization and supplies the data as to the imminence of the transmit-

ter depending on some factors such as distance from the transmitter and attenuation. The

use of the transmitter and receiver provides to transmit a signal from the object to some

receivers placed on the abdomen, and to own those receivers return the signal strength in

order to determine the correct location of the object [20].

The authors in [38] introduce an algorithm based on a lookup table which includes

previous 2D position via corresponding signal strength for position estimation. During the

experiment, fresh data is compared with the data stored in the lookup table to determine

the closest match and thus to chose the most appropriate position.

In addition, the studies [39, 40] consider both the distance dependence of the signal

strength and the influence of the antenna orientation factor and tissue absorption to build

a compensated attenuation model.
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The researchers in [42] take into account the effect of different organs and sensor-arrays

topology on the position error in localization systems based on the RSSI technique.

TOF Based Techniques

In the time of flight (TOF) based techniques, sensor node is composed of a transmitter

unit, a receiver unit, and a precision timer; the transmitter emits a signal, which is re-

flected by target and received by the receiver; and the time of flight is used to deduce the

distance. The environmental characteristics is summarized in the electromagnetic (e.g.,

radio-frequency- RF) signal propagation velocity

v =
c√
ε
. (2.3)

Range is calculated by multiplying this propagation velocity and the measured TOF value.

The corresponding mathematical model [25] can be formulated as

tF =
2dT
vave

= dT
√
ε̄ (2.4)

where

ε̄ =
4ε

c2
=

4

v2ave
.

There exist three widely known techniques for TOF based localization systems. Firstly,

DLOS, direct line of sight, can provide higher accuracy for outdoor applications. However,

a huge measurement error can be seen due to the severe multipath environment for indoor

applications. It is a direct impression of the distance between transmitter and receiver.

Second, DSSS, direct sequence spread sequence,demonstrates better performance for com-

pressing systems. For these systems, a known pseudo-noise,PN, signal is multiplied by the

carrier signal. This method is chosen always to achieve better ranging accuracy due to
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inability of the available bandwith in real application. Lastly, UWB, ultra wide band, is

capable latest accurate and promissing method [33]. In this method;

d =
c

BW
(2.5)

where d is the absolute resolution and BW is the bandwidth of the signal.

Large bandwidth of UWB system is capable to resolve multiple paths and combat

multipath fading and interference. But, this systems have a limited range and building

penetration due to high attenuation. One of the main problems for UWB systems is

interference between UWB devices and other services such as GPS systems, operating at

1.5 GHz.

In addition, the authors in [12] use a mobile sensor unit for TOF based measurements

and take into account the effect of electrical properties for different organs and tissues. For

this purpose, they divide the human body four subareas and calculate the avarage relative

permitivity values for each region. However, this method does not provide precise data on

relative permittivity of the human body.

The study in [33] compares the number of capsules and sensors influences on localiza-

tions accuracy and it is demonstrated that the number of receiver sensors on body surface

has more affect on the accuracy of localization than the number of capsules in cooperation

inside the GI tract based on both TOF and RSS methods.

A widely known benet of TOA based techniques is their high accuracy compared to

RSS based techniques [28]. The TOA based technique relies on measurements of travel

time of signals between the known reference nodes and unknown terminal nodes. Ranging

information is calculated by multiplying the propagation velocity of RF signal and the

measured TOA value. The TOA value can be measured not only measuring the phase
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of received narrowband carrier signal, but also directly measuring the arrival time of a

wideband narrow pulse [33].

The study in [46] shows that time-based methods need strict time synchronization and

high bandwidth for desired precision, which is hard to achieve in the MedRadio band (401-

406 MHz). It could be used for ultra-wideband (UWB) based localization [2]. Hence,field

strength methods based on the received signal strength indicator (RSSI) have been used

for M2A and Smartpill technologies.

2.2 Wireless Capsule Antennas

Another essential issue in WCE systems is antenna design since an efficient communication

link between the in-body capsule and the ex-body receiver unit is extremely important.

Acording to the study in [47], the antenna has vital importance in transmitting and re-

cieving signals in WCE systems. Image quality is related with transmission efficiency of

the antenna in real time. Therefore, the ideal WCE antenna should have insensitivity to

human tissues, enough bandwidth to transmit high resolution images and large amount

of data, lower power consumption and high data rate transmission. Also, the researchers

mentioned that recently, there are two type of antenna structures that are studied mostly:

embedded and conformal antennas.

The antenna design must fulfill several requirements to be an effective capsule antenna

such as miniaturization to save precious space in the capsule cavity, omnidirectional, mul-

tidirectional, radiation pattern in order to maintain data transmission regardless of the

orientation and location of the capsule or receiver, as well as tuning adjustment to com-

pensate for in-body effects [47].
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The dispersive properties of the human body suggest that signals are less vulnerable

when they are transmitted at lower frequencies. Therefore, a modified design is proposed

to provide ultra-wide bandwidth (UWB) at a lower frequency range [48].

In addition, the authors in [49] state that RSSI based localization algorithm accuracy

heavily depends on antenna radiation pattern analyzing radio propagation in distinctive

human tissues by calculating path loss values ,that are compensated related both distance

and azimuth angle, in different frequencies.

Moreover, the study in [48] focuses on improving power consumption and performance

of a wideband antenna,insulating glycerin based gel form, using IR-UWB comunication

system, RX5500. Here, IR-UWB signals in the frequency range of 3.5 to 4.5 GHz are used

to sent images from inside the body to a reciver placed outside of the body and in order

to prevent complexities due to IR-UWB reciver, a norrowband reciver is utilized inside

the capsule. Use of a narrowband receiver in the capsule provides less power consumption

in high data rate and resolution since synchronization of narrow IR-UWB pulses requires

extensive signal processing leading to additional power over heads. Also, here,a microcon-

troller, PIC18F14K22, communicates with a camera module to set image resolution and

signaling format and also control LED(light emitting diod) that turns on only when the

camera requires images to preserve power.

2.3 Magnetic-Field Strength Based Localization Meth-

ods

Magnetic tracking method has gained increasing attention in the last decade since static

and low frequency magnetic signals can pass through human body without any reduction

14



of the signal amplitude. The composition of capsule endoscopy is shown in Figure 2.1. In

this method, the capsule does not need to be in line of sight with magnetic sensor in order

to be detected. Here, a localization system is not only used to localize the diseases, also it is

used to provide feedback for an actuation system. Therefore, the localization and actuation

system must be considered together. However, a conflict between these two system due to

interference of two magnetic field can be very challenging problem [54], so some research

groups ignore the effect of the actuation system on the localization problem [44].

2.3.1 Magnetic Localization for Passive Capsule Endoscopy

In a magnetic tracking system, a magnetic source and sensor module are the most signif-

icant elements. According to magnetic source situation, whether the capsule behaves as

a field generator or a sensing module, the localization systems in this group are usage of

a permanent magnet inside a capsule, usage of a secondary coil embedded in a capsule

and usage of a 3-axis magnetoresistive sensor mounted inside a capsule as three distinctive

study areas [28].

Most of the researchers focus on usage of a permanent magnet inside a WBCR in the

literature since this technique provides generation of magnetic field and depending on mag-

net location and orientation, magnetic sensors that are outside of the patients body can

measure magnetic flux intensities signals [28,31]. Since the magnets magnetic field can be

defined by a mathematical model, magnets position and orientation can be computed by

using the sensor data and an appropriate algorithm. Here, in order to compute 5D localiza-

tion and orientation parameters, five or more sensors must be used. Levenbergh-Marquard

(L-M) method provides satisfactory tolerance for initial guess parameters almost zero com-

putation error. In the following example, application of LM methods is demonstrated [53].
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Bl =
µTµ0MT

4π
[
3(H0Pl)Pl

R5
l

− H0

R3
i

] (2.6)

Bl = BT (
3(H0Pl)Pl

R5
l

− H0

R3
i

)l = 1, 2, 3, ..., N (2.7)

where, the magnets position is represented by

(a, b, c)T (2.8)

and the magnets orientation is represented by

H0 = (m,n, p)T (2.9)

. [xl, yl, zl]
T is position of magnetic flux. The flux intensity is invariant to the rotation of

the circular magnet along its central axis. Hence the magnets orientationH0 is in two

dimensions, in other words, the length of vector (m,n, p)T can be any fixed value.

Therefore we add following constraint for (m,n, p)T :

m2 + n2 + p2 = 1 (2.10)

Here, µT is relative permeability of the medium. µ0 and MT are air magnetic permeability

and magnetic intensity of the magnet respectively. µ0=4πx10−7 T.m/A

MT = πσ2LM0 (2.11)

σ, L and M0 represent radious of the magnet, length of the magnet and magnetization

strength in return. For Nd-Fe-B magnet; M0=1, 032x106 A/m . H0=[m,n, p]T is the

direction of the magnet.

Last, Pl([xl − a, yl − b, zl − c]) is the spatial point of lth sensor [53].
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2.3.2 Magnetic Localization for Active Capsule Endoscopy

These systems are designed to work effectively with their own magnetic actuation mech-

anisms. Accordingly, many research groups are studying to develop active locomotion

devices and platforms [28, 31, 32, 55]. A recent address: Maglev Microrobotics Lab, De-

partment of Mechanical Engineering, University of Waterloo.

Localization based on high frequency alternating magnetic field

This technique uses a spiral structure on the surface of a capsule in which a permanent

magnet is integrated with 3 pairs of coils were placed in three perpendicular axial directions

to generate an external rotating magnetic field around the patients body. The spiral

structure rotates the capsule by applying this magnetic field on the magnet can propel it

forward and backward. The frequency of rotating magnetic field should not be higher than

10Hz [28].

Localization Based on Inertial Sensing

Magnetic Steering, utilizes a 6 degree of freedom robotic arm to carry a permanent

magnet on end efector. 4 Cylindirical magnets are mounted uniformly on the body of a

capsule in order to create a magnetic link between body and the external permanent mag-

net. By this design, the capsule can be dragged and sterred effectively with the assistance

of the magnetic interaction. For localization purpose, a 3- axis accelerometer is inserted

into the capsule [28].

Localization Based on Measuring a Rotational Magnetic Field by Rotating

an External Permanent Magnet.

This method includes an endoscopic capsule with a helical architecture, created an ex-

ternal rotational magnetic field to rotate 2 permanent magnets embedded in the endoscopic
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device. Instead of utilizing 6 bulky coils around the patients body, the authors rotates a

big parallel piped permanent magnet made by 7 smaller rectangular magnets to generate

a rotational magnetic field. Here, an electrical motor mounted on a manipulator helps to

generate the magnetic field , so that it could spin and its position can be changed during

the control process of capsule [28].

In addition to the WCE localization methods, WCE localization algorithms are also

categorized under some subgroups in the literature: linear and nonlinear localization al-

gorithms and those are also can be divided under magnetic and electromagnetic sensing

based localization algorithm.

The study in [51] indicates that the non linear algorithm has its drawbacks(e.g., low

speed, high complexity and dependence on the initial guess of the parameters) for magnetic

sensing based methods. However, linear algorithm can provide better solution in terms of

rapidity and real time tracking system.

There exist several minimization algorithm such that Powells Algorithm [57], Down-

hill Simplex Algorithm [57], DIRECT [59], Multilevel Coordinate Search (MCS) [64] and

Levenberg-Marquardt method [21] to solve high order nonlinear localization equations.

The Levenberg-Marquardt method is a general nonlinear downhill minimization algorithm.

It dynamically mixes Gauss- Newton algorithms and the gradient iterations. The authors

in [53] indicate that perfect localization and orientation accuracy is found by this algorithm.

Trilateration method is very popular among electromagnetic wave based localization algo-

rithms and applied to calculate the capsule position the distances from the transmitter to

the receivers. Proximity data from the last section is converted into position information

generally by applying triangulation that takes the features of triangles into account to

calculate distances. The distance from one reference point to an object with knowledge

of the angles between both references and the object and also the distance between the
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access points can be calculated by giving any two reference/access points (AP1, AP2) (Fig.

2.7) [7].

In this approach, the system degree will be reduced using a linearizing technique.

d =
√

(xi − xj)2 + (yi − yj)2(zi − zj)2 (2.12)

is the distance between sensors i and j. ( i = 1,2,...j 1, j + 1,...,n).

The linear system of equations can easily be written in matrix form as:

A~x = ~b (2.13)

where b is related the distance between sensors i and j. From above equations, unknown

parameters can be manipulated(3 equations and 3 unknown) and theoretically only three

sensors are necessary to determine the unique position of the object in 2D.

There are many localization algorithms and methods in the literature for localizing a

sensor inside the human body. Among these technologies, RF signal based localization

systems have the merits of application and relatively low cost for implementation. Hence,

the systems have been selected for use with the Smartpill, Microcam and the M2A [33].

A widely known benefit of TOA based techniques is their high accuracy compared to

RSS and AOA based techniques. However, the strong absorption of human tissue causes

large errors in TOA estimation and the limited bandwidth (402-405MHz) of the Medical

Implant Communication Services (MICS) band prevent us from high resolution TOA esti-

mation. In addition, due to variable relative permittivity of the human body, large errors

are shown.The peristalsis movement resulting in unpredictable ranging error is made the

problem even worse [33].
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2.4 Specify Problem Definition and Approach

Although TOF and RSS based techniques have more popularity on WBC localization

problems, due to variable environmental coefficients, permittivity of the human body (ε) for

TOF or path loss coefficient (η) for RSS based techniques, these methods are not precisely

reliable to obtain position of the capsule inside the body. Not only for WBC localization,

also for general localization problems, in both RSS and TOF based tecniques, η for RSS and

ε for TOF have vital effect on the accuracy of the localization. In many practical settings

these parameters are unknown, and even variable in some due to influences of variances

on the weather conditions, human behavior, actuator effect at the anchor nodes [43]. It is

shown that using a wrong data on path loss coefficient, η, has huge effect on accuracy of

the position estimate [63].

Finding accurate estimation of these parameters is studied in the literature [12, 24, 50,

58, 63]. Most of the relevant works follow recursive algorithms involving training by data

off-line or two step on-line coefficient estimation and localization based on the estimate

coefficients [12,58]. In the off-line identification approaches, large amount of training data

is needed for obtaining accurate estimates of the coefficients. The two-step on-line iterative

approaches, on the other hand, may not lead to a successful level of accuracy during the

joint coefficient estimation and localization process. In the next section we propose a

technique that would overcome these issues via static or instantaneous calculation based

on certain geometric relations. The required additional cost is use of triplets of sensors at

the nodes of the WSN or the sensory mobile agent of interest in place of single sensors.

The novelty of this thesis is a more direct and static calculation technique for estimating

the environmental coefficients ε and η using a mobile sensor triplet unit during adaptive

WBC localization of a signal source by a 3D cartesian robot equipped with this sensor
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triplet unit. The triplet is designed to have a fixed rigid geometry where the z-coordinates

of the sensors are equidistant.

In addition, a non-complex magnetic strength based linear localization algorithm, is

established in 2D. Since the main purpose of WCE visualize the GI tract and send the

images to physicians using RF signals, we can apply same signal to obtain position of the

capsule. Also, usage of omni-directional antenna for video transmission provides orientation

data of the capsule inside the body. Using this data, a magnetic strength based localization

algorithm can be developed easily. Moreover, a comparison between magnetic strength

and electromagnetic wave based localization provides use of more reliable data on tracking

algorithm.
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Chapter 3

Electromagnetic Wave Based Capsule

Localization

Much research on the development of the WCE has been performed for diagnosis of the GI

tract disorders. However, exact location of the capsule is still bottleneck for the researchers

and physicians. Although, most of the popular localization methods, that include TOF,

RSS, time difference of arrival (TDOA) for capsule localization, have enabled to find exact

location of the capsule, these techniques have some limitations in real applications since,

variation of propagation velocity and path loss coefficient of human organs, due to compli-

cated structures and electrical properties of the GI tract, are dominant source of error for

RF based capsule localization techniques inside the human body. Accordingly, these com-

mon capsule localization methods are used based on estimating some position-dependent

signal parameters like signal propagation velocity (v) for TOF or path loss coefficient (η)

for RSS based methods. In many WCE applications, the localization algorithms are vul-

nerable since the signal propagation speed due to relative permittivity of the medium or
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path-loss coefficient, which are often unknown in practical scenarios, and cause unreli-

able location estimation. Recently, localization using estimation of these parameters has

received much attention since it provides reliable results in location estimate of WCEs ap-

plications. However, these studies in general has recursive nature, some initial assumptions

and require significant computational complexity for training and estimation algorithms.

In this chapter, we focus on the distance estimation based capsule localization problem

depending on a novel estimation technique of the environmental coefficients v and η using

a mobile sensor triplet unit(MSTU), assuming a spatial motion for this triplet and fixing

the interval differences of the z coordinates between sensor contents. Here, a parametric

model can be established by a geometric relationship between the MSTU and the capsule

for estimation of environmental coefficient [15, 56].

3.1 Problem Definition and Proposed Design

Consider a WBC-robot C at an unknown position pT (t) at time t = tk, where tk = t0+kT ,

k = 1, 2, ..., T . Also, consider a triple of mobile sensors S1, S2, S3, that move only parallel

to the x − y plane of a pre-defined fixed coordinate frame, having a fixed separation in z

direction. That is, denoting the positions of S1, S2 and S3 at time step k by,

pi[k] = [x[k], y[k], zi[k]]
T (3.1)

where z1[k] = z[k] + z̄, z2[k] = z[k] and z3[k] = z[k] − z̄ for some constant z. Note that,

the spacing z̄ is known since it is a design constant. We are interested in estimating the

value of pT [k] = [xT [k], yT [k], zT [k]]
T := pT (tk), where pT (t) will be initially assumed to be

constant. We further consider a device setting where z2 and hence z1 and z3 are known
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and constant. The task is to generate estimate p̂T [k] of the unknown WBC position, pT ,

aiming to satisfy;

Figure 3.1: A demonstration of the wireless WBC localization task setting and the proposed

sensor array geometry.

lim
k→∞

‖p̂T [k]− pT‖ = 0 (3.2)

using only the geometric relationships between the sensor and WBC locations and the

measurements of the distances Fig. 3.1.

di[k] = ‖pi[k]− pT [k]‖ (3.3)

i = 1, 2, 3. At each step k, note that

d21 − d22 = (z + z̄ − zT )
2 − (z − zT )

2 = z̄2 + 2z̄(z − zT ) (3.4)

24



d23 − d22 = (z − z̄ − zT )
2 − (z − zT )

2 = z̄2 − 2z̄(z − zT ) (3.5)

Adding (3.4) and (3.5), we obtain

d21[k]− 2d22[k] + d23[k] = 2z̄2 (3.6)

[15]. We propose use of (3.6) for estimation of environmental coefficient, η[k] for RSS or

ε̄[k] for TOF. Time dependence of these coefficients comes mainly from time variations in

the position of S̄ (and pT if the target is not stationary) and hence the time variation in

the environment between T and S̄.

More specifically, in the case of TOF, using (2.4), (3.6) can be rewritten as

ε̄[k] =
t2F1[k]− 2t2F2[k] + t2F3[k]

2z̄2
(3.7)

[15]. Similarly, in the case of RSS, using (2.2), for each sensor Si we have

PT

PSi

= dηi , (3.8)

where PSi denotes the signal power received by Si. Hence, (3.6) can be rewritten as

ζ η̄1 − 2ζ η̄2 + ζ η̄3 = 2z̄2, (3.9)

[15], where ζi =
PT

Psi

and η̄ = 2
η
.

In the RSS case, although we cannot obtain a closed form solution for the coefficient

η (or η̄) similar to (3.7), there exists pre-calculated look-up tables for (3.9) can be used

(if preferred, together with some iterative accuracy fine-tuning methods) to solve (3.9) for

η̄. Here, the WCE system consists of a IR-UWB transmitter inside of the human body, a

receiver outside and a multi-directional antenna on the WBC.

In WCE localization problems, another important issue is severe multipath effects due

to two different mediums, air and body or an organ and another organ. According to

25



Snell’s law, radio waves refract when they go from one medium with refractive index, n1,

to another with refractive index,n2. However, in our proposed design, it is not a problematic

issue for localizing a WBC inside the GI track (Fig.3.2 and Fig.3.3). In our calculation

part, ε̄ is used and
√
ε̄1 ∼=

√
ε̄2 =

tf
dT

(3.10)

For first agent S1;
√
ε̄1 =

2

c

a1
√
ε1 + b1

√
ε2

a1 + b1
(3.11)

Similarly, for second agent S2;

√
ε̄2 =

2

c

a2
√
ε1 + b2

√
ε2

a2 + b2
(3.12)

Let prove it with a visible example; Let a1 = 10, a2 = 8, b1 = 5 and b2 = 4 also εair = 1

and εbody = 40. In this case, it is clear to see that ε̄1 ∼= ε̄2 ∼= 10.

Therefore, we can get average relative permittivity of the medium from the proposed

design and ignore the refraction between body and air or similarly between organs since

ε̄1 ∼= ε̄2 and the part of the signal waves outside of the body is much smaller than the

part inside the human body (Fig.3.2 and Fig.3.3). Here, the WCE system consists of a

IR-UWB transmitter outside of the human body, a narrowband receiver in the capsule and

a multi-directional antenna on the capsule.

3.2 Adaptive Source Localization Algorithm

In this study, a recursive least square algorithm (RLS) with forgetting factor is considered

to estimate p̂T . Similarly to [25], first the unknown position vector, p̂T , is assumed to be
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Figure 3.2: Representation of Snell Law for proposed design.

Figure 3.3: Representation of Snell Law for proposed design.

constant and then a drifting target case is considered based on the RLS algorithm. The

localization algorithm is based on a linear parametric model derived in the sequel. From
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(3.6) and (4.2), we have

d22[k] = (p2[k]− pT )
T (p2[k]− pT )

= ‖p2[k]‖2 + ‖pT‖2 − 2pTTp2[k]. (3.13)

Then, evaluating (3.13) at steps k and k − 1 and taking the difference, we obtain

d22[k]− d22[k − 1] = ‖p2[k]‖2 − ‖p2[k − 1]‖2 − 2pTT (p2[k]− p2[k − 1]), (3.14)

which can be written in the SPM form as

z[k] = pTTφ[k], (3.15)

φ[k] = p2[k]− p2[k − 1],

z[k] =
1

2

(

‖p2[k]‖2 − ‖p2[k − 1]‖2 − (d22[k]− d22[k − 1])
)

.

Based on the SPM (3.15), various estimators can be designed to produce the estimate p̂T

of pT . Next, we design an RLS based on-line estimator based on the parametric model

(3.15). Following the design procedure in [26], we obtain the following RLS adaptive law:

p̂T [k] = Pr(p̂T [k − ] + Γ [k]φ[k]ǫ[k]), (3.16)

ǫ[k] = z[k]− p̂TT [k − 1]φ[k],

Γ[k] =
1

β

(

Γ[k − 1]− Γ[k − 1]φ[k]φ[k]TΓ[k − 1]

β + φ[k]TΓ[k − 1]φ[k]

)

,

where Γ(0) = Γ0 (and hence Γ(k), ∀k > 0) is an 3× 3 positive definite matrix, 0 < β < 1

is the forgetting factor coefficient, and Pr(.) is the parameter projection operator keeping

−20 ≤ p̂T3 ≤ 20 based on a priori information.

Stability and Convergence of the Algorithm

The adaptive localization algorithm (3.16) is a discrete-time RLS algorithm with for-

getting factor and parameter projection. Such algorithm is studied in detail in [26]. It is
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also established there and the references therein that if φ[k] is persistent excitation (PE),

i.e., if it satisfies

lim
K→∞

λmin

K
∑

j=0

φ(j)φ(j)T = ∞

or
K+L−1
∑

j=K

φ(j)φ(j)T ≤ α0LI

for some α0 ≥, L ≥ 1 and for all K ≥ 1 , then θ(k) → θ∗ as K → ∞.

Also, in order to avoid covariance wind-up problem, we modify the RLS algorithm using

a covariance setting modification. The following modified RLS algorithm with forgetting

factor is used;

p̂T [k] = (p̂T [k − 1] + Γ[k]φ[k]ǫ[k]) (3.17)

Γ[k] =











1
β

(

Γ[k − 1]− Γ[k−1]φ[k]φ[k]TΓ[k−1]
β+φ[k]TΓ[k−1]φ[k]

)

if‖Γ‖ ≤ R0

0, otherwise

(3.18)

3.3 A Simulation Case Study

In this section, we analyze the proposed adaptive localization scheme with combination

of the RLS algorithm (3.17)and the coefficient estimation technique (3.1). We consider a

MSTU localization scenario, where the MSTU is equipped with a TOF based range sensor

triplet. The task of the MSTU is to estimate the position of the pT of (and track) a certain

target T . For, this task, the MSTU uses the localization algorithm(3.17) and, in order

to guarantee estimation convergence and eliminate the wind-up convergence problem at

the end of the (3.2), it follows a PE path , a path satisfying φ to be PE and modified LS

algorithm. Such a PE path follows the path, whose x and y coordinates, as shown in Fig.
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4.2:

x(t) = 30 sin(0.1t+ π/2) + 50cm,

y(t) = 20 cos(0.2t)cm,

z(t) = 5 sin(0.01t) + 22cm.

We consider the following design parameters for the algorithm (3.17):
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−20

−15
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y

Figure 3.4: Lateral trajectory (x(t), y(t)) of the sensor S.

β = 0.9

Γ[0] = I

p̂T (0) = [5, 5, 5]T cm

Stationary and drifting WBC cases are considered in the following subsections.
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3.3.1 Stationary Capsule Case

First, the performance of the proposed technique is demonstrated for stationary WBC case

in MATLAB/Simulink environment. A stationary WBC located at

pT = [50, 30, 10]cm (3.19)

The position estimation results for this case are shown in Fig. 3.5 and Fig. 3.6. The
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Figure 3.5: Location estimate p̂T [k] and estimation error e[k] = ‖p̂T [k]−pT ‖ for stationary

WBC case localization with proposed environmental coefficient estimation. technique.

figures shows that all the coordinates of the position estimate p̂T [k] rapidly converge to

their actual values, leading the estimation error e[k] = ‖p̂T [k]− pT‖ to converge zero.
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T

[xT , yT ]
T

Figure 3.6: Lateral coordinate estimates (x̂T [k], ŷT [k]) for stationary WBC case.

Fig. 3.5 shows the resulting average localization error (cm) around 5.5x10−8 without

any random noises, where the distance between the WBC to the sensor plane is around

30cm and time step tk = k = 0.001. One can further enhance the performance of the

localization by fine-tunning the design parameters given above.
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3.3.2 Drifting Capsule Case

In this scenario, we assume all design parameters same as given before and consider the

WBC point is moving with a constant speed, Vt. In this case;

xT (t) = 0.1t+ (2 sin(0.05t) + 100)cm

yT (t) = 0.05t+ (2 sin(0.05t) + 75)cm

zT (t) = (0.5 sin(0.01t) + 8)cm

VT = [(0.1 + 0.1 cos(0.05t)), (0.05 + 0.1 cos(0.05t)),

(0.005 cos(0.01t))]T cm/s

tk = k = 0.1

The simulation results for drifting WBC case are shown following: The average
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Figure 3.7: Location estimate p̂T [k] and estimation error e[k] = ‖p̂T [k] − pT‖ for drifting

WBC case.
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Figure 3.8: Lateral coordinate estimates (x̂T [k], ŷT [k]) for drifting WBC case.

localization error (cm) in Fig. (3.7) is around 0.05 without any random noises, where the

distance between the WBC to the sensor plane is around 30cm. It is clear to see from the

above figures, perfect convergence is not possible due to the motion of the WBC except

the case, vT is known as a priori data.

Also, Fig. 3.9 and Fig. 3.10 illustrate location estimate, estimation error and lateral

coordinate estimate for stationary WBC localization with a given relative permittivity.

Here, it is clear to see from Fig. 3.9 and Fig. 3.5 that localization with the proposed

coefficient estimation technique is as effective as the localization scenario with a given

relative permittivity of the medium. In addition, the simulation case studies in this paper

are adaptable to medical communication bands such as MICS bandwitdh at 402−405 MHz

as well as with Ultra Wideband (UWB) frequencies from 3.1 to 10.6 GHz since the time

step (0.001) for the proposed scenarios is fast enough to handle TOF or RSS data.

34



0 20 40
0

20

40

60

x
T
(c
m
)

 

 
xT
x̂T

0 20 40
0

20

40

y
T
(c
m
)

 

 
yT
ŷT
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Figure 3.9: Location estimate p̂T [k] and estimation error e[k] = ‖p̂T [k]−pT ‖ for stationary

WBC case localization with a given environmental coefficient.
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ŷ
T
(c
m
)

[x̂T [k], ŷT [k]]
T

[x̂T [0], ŷT [0]]
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Figure 3.10: Lateral coordinate estimates (x̂T [k], ŷT [k]) for stationary WBC case localiza-

tion with a given environmental coefficient.
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3.4 Chapter Summary

This study has addressed the problem of WBC localization with unknown path loss coeffi-

cient and permittivity by considering a discrete time framework for stationary and drifting

WBC cases. First, based on geometric relationship and measurements, an estimation tech-

nique for path loss coefficient and permittivity of the medium has been presented. An

adaptive discrete RLS algorithm for estimation of the position has been derived. Simu-

lation results demonstrated fast convergence and superior localization accuracy for both

stationary and drifting WBC cases. The proposed localization scheme not only provides

fast and non-complex solution, but also is cost effective, not requiring any additional dy-

namic algorithm or priori information for determining environmental coefficients. Future

work will cover some experimental studies for the proposed technique.
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Chapter 4

Adaptive Tracking Control of the

Capsule

In the literature, there are many WBC localization and tracking algorithms and meth-

ods [22]. Most of the researchers consider magnetic sensing based methods to enable

pursuit and control the movement of the WBC using a permanent magnet inside the cap-

sule. However, there is nothing available in the literature to control the movement of the

WBC only depending on electromagnetic wave based measurements. Hence, this chapter

deals with adaptive tracking control of WBC depending on TOF based measurements and

location estimate by considering a similar approach with the study in [52].

4.1 Problem Definition

Consider the same scenario in Section (3.1) and similar cartesian robot environment in

Fig.3.1. Here, C is a WBC robot in an unknown position pT (t) at time t = tk, where
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tk = t0 + kT, k = 1, 2, ..., T . Also, pi[k] is sensor position in (3.1) with the same design

constants. The objective is to apply a tracking control law based on estimate p̂T [k] of the

unknown WBC position to achieve

lim
k→∞

‖p̂T [k]− pT‖ = 0 (4.1)

using only the geometric relationships between the sensor and WBC locations and the

measurements of the distances Fig. 3.1.

di[k] = ‖pi[k]− pT [k]‖ (4.2)

i = 1, 2, 3. The representation of the proposed motion law is demonstrated in Fig.4.1. In

our adaptive tracking motion law design, we assume that there is no any measurement

noise in our system.

Figure 4.1: Block diagram of tracking control of WBC

According to Fig.4.1, the transmitter placed in the WBC emits a signal and the signal

received by the receiver placed in the MSTU frame, as seen in Fig. 3.1. Here, from TOF or

RSS based sensors, we can easily measure signal traveling time or received and transmitted

signal strength. Based on these measurements and the proposed environmental coefficient
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estimate, the distance di is obtained, introduced in Chapter 3. Later, we apply a parameter

estimator to find estimate location of the capsule as shown in Section 3.2. Then, utilizing

the location estimate, a motion control law represented in (4.3) is introduced in discrete

time case. The motion control law, that helps to move the MSTU, p towards estimate

position p̂T , and the location estimate generated by the localization algorithm in Section

3.2. The proposed motion control law is introduced in Section 4.2. Also, performance of

the proposed tracking control law is demonstrated in Section 4.3. Chapter summary and

future works are given in Section 4.4.

4.2 Proposed Motion Control Law

In previous chapter, capsule localization problem is presented as a parameter identification

problem. In this section, a motion control law is applied using an adaptive controller based

on the location estimate of the capsule. Here, the MSTU has an ability to track movement

of the capsule outside of the human body based on localization information with a similar

approach in [52]. In order to see capsule movement in x-y plane, we apply a discrete motion

control law to be in the form

u[k] = p[k]− p[k − 1] = (p̂T [k]− p̂T [k − 1])−∆tβ(p[k]− p̂T [k]) (4.3)

+(σ[k]− σ[k − 1])f(D)

Here, β > 0 is a design constant and

σ[k] = Ad[k]σ[k − 1] (4.4)

Ad[k] = (I −∆tA[k])−1

f(D) = 1− e−D

D =
√

p2T − p2
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In this approach, (4.4), p̂T [k]− p̂T [k−1]) and ∆tβ(p[k]− p̂T [k]) have the role of driving p to

pT achieving the control objective. Also, third term in the law, (σ[k]−σ[k−1])f(D), ensures

that p[k] is a signal with a degree of excitation that declines with D. When the sensor is

far away from the capsule, p[k] has large degree of excitation. Otherwise, the degree of

excitation decreases correspondingly. Also, it is considered in [52] that f : R+ −→ R+ (R+

standing for [0,∞)) and A(.) : R+ −→ Rn×n and design constant β are to be selected such

that they obey some assumptions.

4.3 Simulation Case Study

In this scenario, we assume all design parameters same as given before and consider the

target point is moving with a constant speed, Vt. In this case;

xT (t) = 10 sin(0.01t) + 50)

yT (t) = 10 sin(0.01t) + 30)

σ[k − 1] = [0.1sin(0.1t), 0.1cos(0.1t)]T

σ(0) = [0.6, 0.6]T

β = 3

The simulation results for drifting target with adaptive motion law case are shown follow-

ing: In Fig. 4.2, we can easily see that the p[k] values converge to p̂T [k],an so, pT [k]

values in x-y frame. In other word, MSTU is tracking the capsule with zero estimation

error and lateral trajectory of the estimate target is exactly same as with lateral trajectory

of the MSTU. The simulation results demonstrate that the tracking task of the WBC is

achieved.
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Figure 4.2: Tracking Path of the Target.

4.4 Chapter Summary

In this chapter, a motion control law of a MSTU have been introduced so that the MSTU

track and capture the WBC based on location estimate from the previous chapter. Motion

control law forces the sensor unit toward estimated positions. Simulation results demon-

strate that tracking control of WBC by MSTU is achieved.
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Figure 4.3: Lateral coordinate estimates (x̂T [k], ŷT [k]) for drifting target case
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Figure 4.4: Lateral trajectory (x[k], y[k]) of the sensor S.
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Chapter 5

Magnetic-Field Strength Based

Capsule Localization

Although, wireless capsule endoscopy (WCE) has more acceptable reputation among re-

searchers and physicians, the doctors cannot control the capsule motion, or its orientation

and so they can miss some significant spots. To address these problems, some research

consider use of a small permanent magnet inside the passive capsule, which make possible

to external control by an externally applied magnetic field. In addition, magnetic strength

based technique itself for position estimate has its own advantage such as magnetic lev-

itation, robotic magnetic steering, helical propulsion by a rotational magnetic field and

remote magnetic manipulation [27–29].

More so, WCE with active locomotion helps the endoscopist to guide and steer the

capsule. This feature shows same reliability with traditional flexible endoscopy, but with

much less pain for the patient. Accordingly, many researchers focus on developing active

locomotion devices and platforms [30]. In other words, for future wireless biomedical
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capsule robot (WBCR), which combines multitasks of the endoscopy, microsurgery, biopsy

and drug delivery, magnetic based techniques will be essential.

In this chapter, we focus on position estimate of a WBCR depending on mathematical

model of magnets magnetic field which has been presented in [29]. First, a localization

algorithm will be applied in discrete time WBCR position estimate in 2D, that is helpful

for establishing a motion tracking algorithm with minimum error. Here, a discrete time

adaptive recursive least square algorithm is applied to obtain the position of the WBCR in

the GI track. In this approach, we assume using a cartesian robot equipped with a magnetic

sensor frame at the end effector. This robotic platform, schematically represented in Fig.

5.1. This paper is organized as follows: Section 5.1 briefly introduces problem definition and

proposed design. In Section 5.2, an adaptive RSL localization algorithm with forgetting

factor are presented. Section 5.3 demonstrates simulations and results of the proposed

method. Conclusion is shown in Section 5.4 [60].

5.1 Problem Definition and Proposed Design

A is a magnet inside a WBCR at an unknown position pT [k] = [a, b]T := pT (tk) and Bl is

magnetic field of the A. Assume that orientation H0[k] = [m,n, p]T and z coordinate of the

WBCR c are known. Also, Pl[k] = [xl − a, yl − b, zl − c]T is spatial point of each sensor

outside of the human body Fig. 5.2. The objective is to develop an adaptive estimation

and a tracking algorithms to visualize movement of the WBCR in 2D by considering related

measurements and mathematical model of the magnet’s magnetic field from [29]. The law

is;

Bl =
µTµ0MT

4π
[
3(H0.Pl)Pl

R5
l

− H0

R3
i

] (5.1)
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Figure 5.1: 3D endoscopic capsule robotic platform

Here, µT is relative permeability of the medium(µTbody = 40). µ0 and MT are air magnetic

permeability and magnetic intensity of the magnet respectively. µ0=4πx10−7 T.m/A

MT = πσ2LM0 (5.2)

σ, L and M0 represent radious of the magnet, length of the magnet and magnetization

strength in return. For Nd-Fe-B magnet; M0=1, 032x106 A/m, L = 70mm and σ = 30mm.

Also, since flux intensity is invariant to the rotation of the circular magnet along its

central axis, the magnets orientation H0 is in two dimensions, in other words, the length of

the vector [m,n, p]T can be any fixed value. Therefore the following constraint for [m,n, p]T

is added :

m2 + n2 + p2 = 1 (5.3)
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Figure 5.2: Coordinate Frame of a Magnet for WBCR Localization

(Bl × Pl)H0 = 0 (5.4)

rearranged above equation in [29] and tried to write in SPM form;

a(Blyp−Blzn) + b(Blzm− Blxp) = −Blx(cn− nzl + pyl)

+Bly(cm−mzl + pxl) +Blz(myl − nxl) (5.5)

where l=1, 2, 3, Bl(x,y,z), and (xl, yl, zl) are the number of the sensors outside of the patient

body, magnetic field of the magnet and position of the sensors respectively.

5.2 Adaptive Source Localization Algorithm

In this section, a RLS with forgetting factor is applied to estimate p̂T . Also, stationary

and drifting capsule cases are considered based on the RLS algorithm. The localization

algorithm is based on a linear parametric model derived in the sequel. From (5.5) and
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(5.1), we have the following SPM form that is

zl[k] = θTl φi[k], (5.6)

φl[k] = [(Blyp− Blzn), (Blzm−Blxp)]
T ,

zl[k] = −Blx(cn− nzl + pyl) +Bly(cm−mzl + pxl)

+Blz(myl − nxl),

θl[k] = [a, b]T

where l is the number of the sensors. Based on the SPM (5.7), various estimators can be

designed to produce the estimate θ̂T of θT . Next, we design an RLS based on-line estimator

based on the parametric model (5.7). Following the design procedure in [26], we obtain

the following RLS adaptive law:

θ̂[k] = θ̂[k − 1] + P [k]φ[k]ǫ[k],

ǫ[k] = z[k]− θ̂T [k − 1]φ[k],

P [k] =
1

β

(

P [k − 1]− P [k − 1]φ[k]φ[k]TP [k − 1]

β + φ[k]TP [k − 1]φ[k]

)

(5.7)

where P (0) = P0 (and hence P (k), ∀k > 0) is an n× n positive definite matrix, 0 < β < 1

is the forgetting factor coefficient.

5.3 A Simulation Case Study

In this section, we analyze the proposed adaptive localization scheme with combination of

the RLS algorithm (5.7). We consider a mobile sensor unit (MSU) localization scenario,

where the MSU is equipped with magnetic sensors. The task of the MSU is to estimate
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the position of the pT of a certain target T . For, this task, the MSU uses the localization

algorithm (5.7) and it follows a PE path , a path satisfying φ to be PE and modified LS

algorithm. Such a PE path follows the path, whose x and y coordinates, as shown in Fig.

5.3:

x(t) = 15 sin(0.1t)cm,

y(t) = 10 cos(0.1t)cm,

z(t) = 10 sin(0.1t) + 5cm.
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Figure 5.3: Lateral trajectory (x(t), y(t)) of the sensor S.
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We consider the following design parameters for the algorithm (5.7):

β = 0.95

Γ[0] = I

p̂T (0) = [0, 0]T cm

m = sin 30◦

n = cos 30◦ sin 60◦

p = cos 30◦ cos 60◦

Stationary and drifting WBC cases are considered in the following subsections.

5.3.1 Stationary Capsule Case

First, the performance of the proposed technique is demonstrated for stationary WBC case

in MATLAB/Simulink environment. A stationary WBC located at

pT = [10, 15]cm (5.8)

The position estimation results for this case are shown in Fig. 5.4 and Fig. 5.5, (c = 12).

The figures illustrate that the position estimate of the WBC p̂T [k] rapidly converge to

their actual values, leading the estimation error e[k] = ‖p̂T [k]− pT‖ to converge zero.

Fig. 5.4 shows the resulting average localization error (cm) around 5 × 10−4 without

any random noises, where the distance between the WBC to the sensor plane is around 20

cm and time step tk = k = 0.01.
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Figure 5.4: Location estimate p̂T [k] and estimation error e[k] = ‖p̂T [k]−pT ‖ for stationary

WBC case localization

5.3.2 Drifting Capsule Case

In this case, all design parameters are assumed same as given before and the WBC is

moving with a constant speed, Vt. In this case;

xT (t) = 10− 0.5 cos(0.01t)cm

yT (t) = 15− 0.5 cos(0.01t)cm

zT (t) = 12− 0.5 cos(0.01t)cm

VT = [(−0.005 sin(0.01t)), (−0.005 sin(0.01t)),

(−0.005 sin(0.01t))]T cm/s

tk = k = 0.1
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The simulation results for drifting WBC case are shown following:

The average localization error (cm) in Fig. 5.6 is around 0.5 without any random noises,

where the distance between the WBC to the sensor plane is around 20 cm.

5.4 Chapter Summary

This study has introduced a non-complex magnetic sensing based WBCR localization

method using a discrete adaptive RLS with forgetting factor, which will be be very useful

to establish an external control mechanism of an active WBCr. In addition, in the future,

we can apply this magnetic localization system to the medical examinations in an experi-

mental setup and analyze security and reliability issues for the proposed method. For those

purposes, model of movement of the WBCr inside GI track from some medical data base

and have a reliable GI tract path to test such a real system will be essential.
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Figure 5.6: Location estimate p̂T [k] and estimation error e[k] = ‖p̂T [k] − pT‖ for drifting
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52



Chapter 6

Conclusion and Future Work

In this thesis, we introduced localization and tracking control of a wireless biomedical

capsule robot inside the GI track based on a novel cost and time effective geometric en-

vironmental coefficient estimation technique for TOF and RSS based measurements. In

order to see the proposed method efficiency, first, we applied a discrete RLS algorithm for

position estimate of the capsule based on the proposed coefficient estimation technique,

then a discrete motion tracking adaptive law was introduced using position estimate data

found in previous step. The simulation results demonstrated the proposed methods suffi-

ciency and accuracy levels. Finally, we developed a magnetic strength based localization

algorithm and applied a discrete RLS algorithm for capsule position estimate in 2D as a

first step to have a future active WBC robotic environment. Also, for this design, results

of our simulations showed good convergency and almost zero localization error.

For the future work, a 3-dimension adaptive tracking control law can be established as

well as together with an optimal z value between the MSTU and the WBC. We can also

have an experimental set-up to test such an design in real-time and to eliminate noise effect,
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we can apply a adaptive kalman filter. WCE with the capability of moving automatically

in the digestive tract under an external control will be introduced in the near future. Such

an active system requires a sufficiently accurate tracking system. Also, wireless power

transmission based on magnetic resonance can be introduced to enable active localization

system of the capsule robot by transferring electronic energy.
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