6,299 research outputs found

    Deep learning and Internet of Things for tourist attraction recommendations in smart cities

    Get PDF
    The version of record is available online at: http://dx.doi.org/10.1007/s00521-021-06872-0We propose a tourist attraction IoT-enabled deep learning-based recommendation system to enhance tourist experience in a smart city. Travelers will enter details about their travels (traveling alone or with a companion, type of companion such as partner or family with kids, traveling for business or leisure, etc.) as well as user side information (age of the traveler/s, hobbies, etc.) into the smart city app/website. Our proposed deep learning-based recommendation system will process this personal set of input features to recommend the tourist activities/attractions that best fit his/her profile. Furthermore, when the tourists are in the smart city, content-based information (already visited attractions) and context-related information (location, weather, time of day, etc.) are obtained in real time using IoT devices; this information will allow our proposed deep learning-based tourist attraction recommendation system to suggest additional activities and/or attractions in real time. Our proposed multi-label deep learning classifier outperforms other models (decision tree, extra tree, k-nearest neighbor and random forest) and can successfully recommend tourist attractions for the first case [(a) searching for and planning activities before traveling] with the loss, accuracy, precision, recall and F1-score of 0.5%, 99.7%, 99.9%, 99.9% and 99.8%, respectively. It can also successfully recommend tourist attractions for the second case [(b) looking for activities within the smart city] with the loss, accuracy, precision, recall and F1-score of 3.7%, 99.5%, 99.8%, 99.7% and 99.8%, respectively.This work has been supported by the Agencia Estatal de Investigación of Spain under project PID2019-108713RB-C51/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Who am I talking with? A face memory for social robots

    Get PDF
    In order to provide personalized services and to develop human-like interaction capabilities robots need to rec- ognize their human partner. Face recognition has been studied in the past decade exhaustively in the context of security systems and with significant progress on huge datasets. However, these capabilities are not in focus when it comes to social interaction situations. Humans are able to remember people seen for a short moment in time and apply this knowledge directly in their engagement in conversation. In order to equip a robot with capabilities to recall human interlocutors and to provide user- aware services, we adopt human-human interaction schemes to propose a face memory on the basis of active appearance models integrated with the active memory architecture. This paper presents the concept of the interactive face memory, the applied recognition algorithms, and their embedding into the robot’s system architecture. Performance measures are discussed for general face databases as well as scenario-specific datasets

    Three-Dimensional GPU-Accelerated Active Contours for Automated Localization of Cells in Large Images

    Full text link
    Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. This becomes particularly challenging for extremely large images, since manual intervention and processing time can make segmentation intractable. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional (3D) contour evolution that extends previous work on fast two-dimensional active contours. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell segmentation tasks when compared to existing methods on large 3D brain images

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Online Data Cleaning

    Get PDF
    Data-centric applications have never been more ubiquitous in our lives, e.g., search engines, route navigation and social media. This has brought along a new age where digital data is at the core of many decisions we make as individuals, e.g., looking for the most scenic route to plan a road trip, or as professionals, e.g., analysing customers’ transactions to predict the best time to restock different products. However, the surge in data generation has also led to creating massive amounts of dirty data, i.e., inaccurate or redundant data. Using dirty data to inform business decisions comes with dire consequences, for instance, an IBM report estimates that dirty data costs the U.S. $3.1 trillion a year. Dirty data is the product of many factors which include data entry errors and integration of several data sources. Data integration of multiple sources is especially prone to producing dirty data. For instance, while individual sources may not have redundant data, they often carry redundant data across each other. Furthermore, different data sources may obey different business rules (sometimes not even known) which makes it challenging to reconcile the integrated data. Even if the data is clean at the time of the integration, data updates would compromise its quality over time. There is a wide spectrum of errors that can be found in the data, e,g, duplicate records, missing values, obsolete data, etc. To address these problems, several data cleaning efforts have been proposed, e.g., record linkage to identify duplicate records, data fusion to fuse duplicate data items into a single representation and enforcing integrity constraints on the data. However, most existing efforts make two key assumptions: (1) Data cleaning is done in one shot; and (2) The data is available in its entirety. Those two assumptions do not hold in our age where data is highly volatile and integrated from several sources. This calls for a paradigm shift in approaching data cleaning: it has to be made iterative where data comes in chunks and not all at once. Consequently, cleaning the data should not be repeated from scratch whenever the data changes, but instead, should be done only for data items affected by the updates. Moreover, the repair should be computed effciently to support applications where cleaning is performed online (e.g. query time data cleaning). In this dissertation, we present several proposals to realize this paradigm for two major types of data errors: duplicates and integrity constraint violations. We frst present a framework that supports online record linkage and fusion over Web databases. Our system processes queries posted to Web databases. Query results are deduplicated, fused and then stored in a cache for future reference. The cache is updated iteratively with new query results. This effort makes it possible to perform record linkage and fusion effciently, but also effectively, i.e., the cache contains data items seen in previous queries which are jointly cleaned with incoming query results. To address integrity constraints violations, we propose a novel way to approach Functional Dependency repairs, develop a new class of repairs and then demonstrate it is superior to existing efforts, in runtime and accuracy. We then show how our framework can be easily tuned to work iteratively to support online applications. We implement a proof-ofconcept query answering system to demonstrate the iterative capability of our system

    Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingenieria Informática. Fecha de lectura: 08-07-2021Since the emergence of the Internet and the spread of digital communications throughout the world, the amount of data stored on the Web has been growing exponentially. In this new digital era, a large number of companies have emerged with the purpose of ltering the information available on the web and provide users with interesting items. The algorithms and models used to recommend these items are called Recommender Systems. These systems are applied to a large number of domains, from music, books, or movies to dating or Point-of-Interest (POI), which is an increasingly popular domain where users receive recommendations of di erent places when they arrive to a city. In this thesis, we focus on exploiting the use of contextual information, especially temporal and sequential data, and apply it in novel ways in both traditional and Point-of-Interest recommendation. We believe that this type of information can be used not only for creating new recommendation models but also for developing new metrics for analyzing the quality of these recommendations. In one of our rst contributions we propose di erent metrics, some of them derived from previously existing frameworks, using this contextual information. Besides, we also propose an intuitive algorithm that is able to provide recommendations to a target user by exploiting the last common interactions with other similar users of the system. At the same time, we conduct a comprehensive review of the algorithms that have been proposed in the area of POI recommendation between 2011 and 2019, identifying the common characteristics and methodologies used. Once this classi cation of the algorithms proposed to date is completed, we design a mechanism to recommend complete routes (not only independent POIs) to users, making use of reranking techniques. In addition, due to the great di culty of making recommendations in the POI domain, we propose the use of data aggregation techniques to use information from di erent cities to generate POI recommendations in a given target city. In the experimental work we present our approaches on di erent datasets belonging to both classical and POI recommendation. The results obtained in these experiments con rm the usefulness of our recommendation proposals, in terms of ranking accuracy and other dimensions like novelty, diversity, and coverage, and the appropriateness of our metrics for analyzing temporal information and biases in the recommendations producedDesde la aparici on de Internet y la difusi on de las redes de comunicaciones en todo el mundo, la cantidad de datos almacenados en la red ha crecido exponencialmente. En esta nueva era digital, han surgido un gran n umero de empresas con el objetivo de ltrar la informaci on disponible en la red y ofrecer a los usuarios art culos interesantes. Los algoritmos y modelos utilizados para recomendar estos art culos reciben el nombre de Sistemas de Recomendaci on. Estos sistemas se aplican a un gran n umero de dominios, desde m usica, libros o pel culas hasta las citas o los Puntos de Inter es (POIs, en ingl es), un dominio cada vez m as popular en el que los usuarios reciben recomendaciones de diferentes lugares cuando llegan a una ciudad. En esta tesis, nos centramos en explotar el uso de la informaci on contextual, especialmente los datos temporales y secuenciales, y aplicarla de forma novedosa tanto en la recomendaci on cl asica como en la recomendaci on de POIs. Creemos que este tipo de informaci on puede utilizarse no s olo para crear nuevos modelos de recomendaci on, sino tambi en para desarrollar nuevas m etricas para analizar la calidad de estas recomendaciones. En una de nuestras primeras contribuciones proponemos diferentes m etricas, algunas derivadas de formulaciones previamente existentes, utilizando esta informaci on contextual. Adem as, proponemos un algoritmo intuitivo que es capaz de proporcionar recomendaciones a un usuario objetivo explotando las ultimas interacciones comunes con otros usuarios similares del sistema. Al mismo tiempo, realizamos una revisi on exhaustiva de los algoritmos que se han propuesto en el a mbito de la recomendaci o n de POIs entre 2011 y 2019, identi cando las caracter sticas comunes y las metodolog as utilizadas. Una vez realizada esta clasi caci on de los algoritmos propuestos hasta la fecha, dise~namos un mecanismo para recomendar rutas completas (no s olo POIs independientes) a los usuarios, haciendo uso de t ecnicas de reranking. Adem as, debido a la gran di cultad de realizar recomendaciones en el ambito de los POIs, proponemos el uso de t ecnicas de agregaci on de datos para utilizar la informaci on de diferentes ciudades y generar recomendaciones de POIs en una determinada ciudad objetivo. En el trabajo experimental presentamos nuestros m etodos en diferentes conjuntos de datos tanto de recomendaci on cl asica como de POIs. Los resultados obtenidos en estos experimentos con rman la utilidad de nuestras propuestas de recomendaci on en t erminos de precisi on de ranking y de otras dimensiones como la novedad, la diversidad y la cobertura, y c omo de apropiadas son nuestras m etricas para analizar la informaci on temporal y los sesgos en las recomendaciones producida

    F-formation Detection: Individuating Free-standing Conversational Groups in Images

    Full text link
    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy, we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On
    corecore