
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Open Access Dissertations Theses and Dissertations 

8-2018 

Online Data Cleaning Online Data Cleaning 

Elkindi Rezig 
Purdue University 

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations 

Recommended Citation Recommended Citation 
Rezig, Elkindi, "Online Data Cleaning" (2018). Open Access Dissertations. 2059. 
https://docs.lib.purdue.edu/open_access_dissertations/2059 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2059?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2059&utm_medium=PDF&utm_campaign=PDFCoverPages


ONLINE DATA CLEANING 

A Dissertation 

Submitted to the Faculty 

of 

Purdue University 

by 

Elkindi Rezig 

In Partial Fulfllment of the 

Requirements for the Degree 

of 

Doctor of Philosophy 

August 2018 

Purdue University 

West Lafayette, Indiana 



ii 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF DISSERTATION APPROVAL 

Walid G. Aref 

Department of Computer Science 

Sunil Prabhakar 

Department of Computer Science 

Christopher W. Clifton 

Department of Computer Science 

Sonia Fahmy 

Department of Computer Science 

Mourad Ouzzani 

Qatar Computing Research Institute 

Ahmed K. Elmagarmid 

Qatar Computing Research Institute 

Approved by: 

Voicu Popescu / William J. Gorman 

Head of the Computer Science Graduate Program 



iii 

To my parents and my deceased grandfather Salah 



iv 

ACKNOWLEDGMENTS 

First and foremost, all thanks go to Allah for giving me the strength and patience to 

complete my Ph.D. 

Throughout my Ph.D. years, I had the chance to work closely with Prof. Mourad Ouz-

zani and Prof. Walid Aref who jointly served as my Ph.D. advisors. Both of them took the 

time and care to guide every step I took in my research endeavours. Through their continu-

ous guidance and support, I learned and grew up to be the person I am today. Even though 

Prof. Ouzzani works thousands of miles away from Purdue, he was always available to talk 

to me over Skype anytime I needed to reach out to him. His astute attention to detail was 

crucial to take my ideas across the fnish line. I feel immense gratitude for his tireless guid-

ance and mentorship from my frst day at Purdue until my graduation. My other advisor, 

Prof. Aref, has an uncanny ability to express complex, technically-deep material using an 

incredibly clear language. His clarity of thought has always inspired me. Every meeting I 

had with him was invigorating to me at the professional and personal levels. No words will 

do justice to the gratitude I feel towards Prof. Mourad Ouzzani and Prof. Walid Aref for 

all the assistance they offered me throughout the years. 

I would like to thank Prof. Ahmed Elmagarmid for always fnding time in his busy 

schedule to give me feedback on my work. His comments expanded my thinking and 

stimulated me to produce ideas that are useful inside and outside the confnes of academia. 

I feel deeply honoured to have worked with a scholar of his caliber. 

I was very fortunate to closely collaborate with Prof. Eduard Dragut in my early Ph.D. 

years. Back then, Eduard was a postdoc at Purdue. I have learned a lot from him and he 

was always available to answer any questions I had. My collaboration with him was key in 

my Ph.D. and I will be forever grateful to him. 

I am very grateful to Prof. Gustavo Rodriguez-Rivera who trained me to become an 

effective teacher of several computer science classes. Gustavo is an excellent instructor in 



v 

the department of Computer Science at Purdue. He was able to spread his teaching passion 

to me and I will always be grateful for all the time he spent mentoring me throughout my 

teaching career. 

I thank my family in Algeria for always supporting me. My mother Turkia Rouag, 

my father Abdelkader, my sister Asma and my brother El Razi. My family members have 

always been my cheerleaders throughout my life. Through good and bad times, they never 

ceased to look after me. Their support has always fuelled any effort I undertook. 

My graduate life would have been much more stressful, had it not been for the sup-

portive social circles I had the chance to be a part of. Particularly, I would like to thank 

the Islamic Society of Greater Lafayette (ISGL) for creating a social hub to the Muslim 

community in Purdue. Within the confnes of the ISGL building, I was able to forge re-

lationships that blossomed into true, lasting friendships. I thank Salah, Haroon, Malick, 

Harsh and Abdelrahman for making my life at Purdue much more joyful. 

Last but not least, I would like to offer my sincere gratitude to my Ph.D. examining 

committee members for their diligent comments and commitment to assess my work. Their 

continuous commitment to help students succeed is what makes Purdue a higher educa-

tion leader. 



vi 

TABLE OF CONTENTS 

Page 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Data Cleaning at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Online Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Challenges in Online Data Cleaning . . . . . . . . . . . . . . . . . . . . . 5 

1.3.1 Accuracy Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.3.2 Effciency Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2 ONLINE RECORD LINKAGE AND FUSION ON WEB DATABASES . . . . . 8 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.2 The ORLF System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
2.3 Caching Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.3.1 Static Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
2.3.2 Dynamic Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
2.3.3 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
2.3.4 Record Provenance . . . . . . . . . . . . . . . . . . . . . . . . . 17 

2.4 Query-Time Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
2.4.1 Record Look Up and Record Linkage . . . . . . . . . . . . . . . . 19 
2.4.2 Fusion Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
2.4.3 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . 24 

2.5 A Walkthrough Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
2.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

2.6.1 Bed-tree Index Experiments . . . . . . . . . . . . . . . . . . . . . 27 
2.6.2 ORLF Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 30 
2.6.3 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
2.6.4 Comparison with Solaris . . . . . . . . . . . . . . . . . . . . . . 38 

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

3 PATTERN-DRIVEN DATA CLEANING . . . . . . . . . . . . . . . . . . . . . 43 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 



vii 

Page 
3.3 Modeling Patterns using FDs . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.3.1 Functional Dependency Patterns . . . . . . . . . . . . . . . . . . . 51 
3.3.2 Problem Defnition . . . . . . . . . . . . . . . . . . . . . . . . . 53 

3.4 FD Pattern Composition and Pattern Expressions . . . . . . . . . . . . . . 55 
3.4.1 Encoding FD Patterns . . . . . . . . . . . . . . . . . . . . . . . . 55 
3.4.2 Interactions among FD Patterns . . . . . . . . . . . . . . . . . . . 56 
3.4.3 Composition of FD Patterns . . . . . . . . . . . . . . . . . . . . . 57 
3.4.4 Pattern Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 58 

3.5 Pattern Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
3.6 Traversing the Instance Graph for Data Repairing . . . . . . . . . . . . . . 62 

3.6.1 Determining Bounded and Free Attributes . . . . . . . . . . . . . . 63 
3.6.2 Instance Graph Traversal using Attribute Boundedness . . . . . . . 64 
3.6.3 Repair Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
3.6.4 Optimal Pattern-Preserving Data Repairing . . . . . . . . . . . . . 68 
3.6.5 Traversing the Instance Graph . . . . . . . . . . . . . . . . . . . . 68 
3.6.6 Pattern-Preserving Repair Algorithms . . . . . . . . . . . . . . . . 70 

3.7 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
3.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
3.7.2 Effectiveness Results . . . . . . . . . . . . . . . . . . . . . . . . 76 
3.7.3 Runtime Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
3.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4 QUERY-TIME FUNCTIONAL DEPENDENCY REPAIRING . . . . . . . . . . 81 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 
4.3 Terminology and Problem Statement . . . . . . . . . . . . . . . . . . . . 84 
4.4 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

4.4.1 Iterative Caching of Functional Dependency Patterns . . . . . . . . 86 
4.5 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

4.5.1 Propagating the Quality Scores in the Instance Graph . . . . . . . . 88 
4.6 Query-Time FD Repairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
4.7 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

4.7.1 Dataset and Queries . . . . . . . . . . . . . . . . . . . . . . . . . 94 
4.7.2 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 
4.7.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 
4.7.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
4.7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

5 NEXT DIRECTIONS: HUMAN-DRIVEN DATA CLEANING . . . . . . . . . . 99 
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
5.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 



viii 

Page 
5.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
5.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

5.3 Humans in the Cleaning Process . . . . . . . . . . . . . . . . . . . . . . 108 
5.3.1 Characterizing Human Expertise . . . . . . . . . . . . . . . . . 108 

5.4 Task Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
5.4.1 Interaction Between Humans . . . . . . . . . . . . . . . . . . . 111 
5.4.2 Task Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5.5 Cross-Agent Cost Optimization . . . . . . . . . . . . . . . . . . . . . . 112 
5.5.1 Quantitative Cost Optimization . . . . . . . . . . . . . . . . . . 113 
5.5.2 Qualitative Cost Optimization . . . . . . . . . . . . . . . . . . . 113 

5.6 Identifcation of Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . 114 
5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 
5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 



ix 

LIST OF TABLES 

Table Page 

2.1 An example of inconsistent data on the Web. . . . . . . . . . . . . . . . . . . 9 

2.2 Number of queries for which the overlap w/ Zagat is empty. . . . . . . . . . . . 10 

2.3 An example cache table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2.4 Answer set of a sample query . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2.5 Top-2 records and their matching status for a sample query . . . . . . . . . . . 25 

2.6 Inverted Index (IMI) example . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2.7 Updated cache after processing a sample query . . . . . . . . . . . . . . . . . 25 

2.8 Dirtiness statistics of the crawled data . . . . . . . . . . . . . . . . . . . . . . 30 

3.1 Extended instance Tour rank . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

4.1 Sample query results on multiple Web sources . . . . . . . . . . . . . . . . . . 83 



x 

LIST OF FIGURES 

Figure Page 

1.1 Example of data errors and possible repairs for them . . . . . . . . . . . . . . 2 

1.2 Classifcation of data cleaning settings . . . . . . . . . . . . . . . . . . . . . . 3 

2.1 ORLF versus typical RL algorithms. . . . . . . . . . . . . . . . . . . . . . . . 12 

2.2 Query answering using RL&F with iterative caching. . . . . . . . . . . . . . . 14 

2.3 Matching ratios using different values of k and L (strings concatenation) . . . . 28 

2.4 Matching ratios using different values of k and L (z-order concatenation) . . . . 28 

2.5 Average Top-k query time using z-order concatenation to index records . . . . . 29 

2.6 ORLF quality experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2.7 ORLF average response time . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.1 Sample instance and the graph representing data dependencies with respect to 
fd1 and fd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

3.2 FD Patterns interaction cases . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.3 Instance graph of instance Tour rank with quality scores . . . . . . . . . . . . 62 

3.4 Example of the steps taken to repair a tuple . . . . . . . . . . . . . . . . . . . 65 

3.5 Example Instance Graph for FDs A → B and B → C . . . . . . . . . . . . . . 67 

3.6 Precision and Recall vs. #tuples . . . . . . . . . . . . . . . . . . . . . . . . . 74 

3.7 Precision and Recall vs. %Errors . . . . . . . . . . . . . . . . . . . . . . . . 75 

3.8 Runtime results on Tax and Hospital . . . . . . . . . . . . . . . . . . . . . . . 77 

3.9 Repair time on Tax Extended . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

4.1 Architecture for query-time FD repairing . . . . . . . . . . . . . . . . . . . . 86 

4.2 Example query instance graphs being appended to the cache over time . . . . . 87 

4.3 Score propagation at times t1 and t2: Q2 resulted in propagating the scores in 
the cache, dashed lines represent patterns whose scores were updated, boldface 
scores represent scores that were affected by the propagation . . . . . . . . . . 89 

4.4 Online FD repairing effectiveness results . . . . . . . . . . . . . . . . . . . . 96 



xi 

Figure Page 

4.5 Online FD repairing effciency results . . . . . . . . . . . . . . . . . . . . . . 98 

5.1 Example data cleaning scenario involving various cleaning tasks and agents . 101 

5.2 Architecture (vision) and an example human interaction model . . . . . . . . 105 



xii 

ABSTRACT 

Rezig, Elkindi PhD, Purdue University, August 2018. Online Data Cleaning . Major 
Professors: Walid Aref and Mourad Ouzzani. 

Data-centric applications have never been more ubiquitous in our lives, e.g., search 

engines, route navigation and social media. This has brought along a new age where digital 

data is at the core of many decisions we make as individuals, e.g., looking for the most 

scenic route to plan a road trip, or as professionals, e.g., analysing customers’ transactions 

to predict the best time to restock different products. However, the surge in data generation 

has also led to creating massive amounts of dirty data, i.e., inaccurate or redundant data. 

Using dirty data to inform business decisions comes with dire consequences, for instance, 

an IBM report estimates that dirty data costs the U.S. $3.1 trillion a year. 

Dirty data is the product of many factors which include data entry errors and integra-

tion of several data sources. Data integration of multiple sources is especially prone to 

producing dirty data. For instance, while individual sources may not have redundant data, 

they often carry redundant data across each other. Furthermore, different data sources may 

obey different business rules (sometimes not even known) which makes it challenging to 

reconcile the integrated data. Even if the data is clean at the time of the integration, data 

updates would compromise its quality over time. 

There is a wide spectrum of errors that can be found in the data, e,g, duplicate records, 

missing values, obsolete data, etc. To address these problems, several data cleaning efforts 

have been proposed, e.g., record linkage to identify duplicate records, data fusion to fuse 

duplicate data items into a single representation and enforcing integrity constraints on the 

data. However, most existing efforts make two key assumptions: (1) Data cleaning is done 

in one shot; and (2) The data is available in its entirety. Those two assumptions do not hold 

in our age where data is highly volatile and integrated from several sources. This calls for a 
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paradigm shift in approaching data cleaning: it has to be made iterative where data comes 

in chunks and not all at once. Consequently, cleaning the data should not be repeated from 

scratch whenever the data changes, but instead, should be done only for data items affected 

by the updates. Moreover, the repair should be computed effciently to support applications 

where cleaning is performed online (e.g. query time data cleaning). In this dissertation, 

we present several proposals to realize this paradigm for two major types of data errors: 

duplicates and integrity constraint violations. 

We frst present a framework that supports online record linkage and fusion over Web 

databases. Our system processes queries posted to Web databases. Query results are dedu-

plicated, fused and then stored in a cache for future reference. The cache is updated itera-

tively with new query results. This effort makes it possible to perform record linkage and 

fusion effciently, but also effectively, i.e., the cache contains data items seen in previous 

queries which are jointly cleaned with incoming query results. 

To address integrity constraints violations, we propose a novel way to approach Func-

tional Dependency repairs, develop a new class of repairs and then demonstrate it is supe-

rior to existing efforts, in runtime and accuracy. We then show how our framework can be 

easily tuned to work iteratively to support online applications. We implement a proof-of-

concept query answering system to demonstrate the iterative capability of our system. 
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1 INTRODUCTION 

Businesses are motivated more than ever to turn their data into insights. For instance, a 

company devising an advertising strategy for a product should frst identify the customer 

demographics it should target, i.e. customers who are likely to purchase the product. Re-

cent advances in data science have incentivized the race to collect massive amounts of data 

for analysis. However, data analysis is largely compromised by dirty data. As a result, 

businesses have to choose between two harsh choices: (1) analyze inaccurate data and end 

up with potentially faulty decisions; and (2) invest massive amounts of resources to tackle 

the problem of data quality. An Expedian report [1] published in 2015, estimated that 32% 

of U.S. companies feel their data is inaccurate. As a result, dirty data comes with a hefty 

fnancial loss for businesses, for instance, an IBM report estimates that U.S. companies lose 

$3.1 trillion a year [2]. 

Accurate data is condusive to successful business decisions. However, data curation 

is often seen as a by-product of another task, e.g., data analytics. In many cases, humans 

whose primary task is not to clean the data often fnd themselves cleaning the data as a 

preliminary step to perform their job. For instance, it has been reported that data scientists 

in Merk, a large pharmaceutical company, spend 98% of their time preparing and curating 

the data [3]. This only leaves them with 2% of their time to perform analytical tasks. 

Software engineers are also often burdened with the task of cleaning the data before writing 

programs that process it [4,5]. Therefore, it is crucial to have tools that identify data errors, 

and possibly correct them. 

Data errors come in different types and are often hard to even detect. Figure 1.1 illus-

trates an example table T1 containing several types of errors that include outliers (the salary 

in t3[Salary] differs largely from the other salaries), duplicates (t4 and t5 are deemed dupli-

cates), integrity constraint violations (t1 and t2 have cells that violate integrity constraints) 

and formatting errors (t4[City] should follow the same format as t5[City]). Detecting the 
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LName FName Zip City State Salary

Ian Sanders 47901 Lafayette IN 87000

Caleb White 47901 West Lafayette IL 65000

Sarah Schrader 40202 Louisville KY 300000

Samuel SF CA 89000

Sam Halpert    94108 San Francisco CA 89000

t1
t2

t4
t5

t3

Duplicates Missing values Inconsistent formatting Outlier

Cells violating the integrity constraints: 
Zip → City and Zip → State

LName FName Zip City State Salary

Ian Sanders 47901 Lafayette IN 87000

Caleb White 47901 Lafayette IN 65000

Sarah Schrader 40202 Louisville KY 75000

Samuel Halpert 94108 San Francisco CA 89000

t1
t2

t4
t3

T1

T1*

Figure 1.1.: Example of data errors and possible repairs for them 

many types of data errors is by itself a notoriously diffcult problem that has attracted a lot 

of attention [6–10]. 

1.1 Data Cleaning at a Glance 

Data cleaning is the process of detecting data errors, and then repairing them. This 

process is conducted by tools, humans or both. Because errors can come in a variety of 

favours, data cleaning is a multi-faceted process often characterized by: (1) the type of 

data errors we are trying to detect, e.g., duplicates; (2) how errors are fxed, e.g., how to 

fuse two duplicate records into one record; and (3) whether humans are involved in the data 

cleaning loop, e.g., errors in salary data can be fxed by humans only. 

Error detection is the frst step of the cleaning process. There are different ways to 

detect errors depending on their type. For example, to detect rule violations, one could use 

integrity constraints (e.g., functional dependencies) to express business rules the data has 

to obey (e.g., two records that share the same zip code must share the same city name). To 
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Offline 
Data Cleaning

Iterative 
Data Cleaning

Online 
Data Cleaning

● All data is available
● Data is static

● Portion of the data is available
● Data is dynamic, i.e., new data 

items can be inserted, or 
existing ones can be updated

● Data is cleaned in real-time, e.g, 
query-time, streaming, etc.

Figure 1.2.: Classifcation of data cleaning settings 

detect duplicate records, similarity measures (e.g., string similarity) are typically used to 

decide if two records are potentially duplicates [11]. 

Given the detected errors, the data repairing step aims at fxing those errors. This phase 

is typically conducted by “helper” data cleaning tools whose output is then checked by a 

human. There is a plethora of efforts that aim at providing data repairs that are accurate 

and require minimal human intervention [7, 12]. 

In Figure 1.1, a possible repair for instance T1 (top table) is illustrated in table T1 
∗ 

(bottom table). The cells that were involved in the repair are highlighted. The repair could 

be computed by a variety of actors, including humans and tools. Repairing different types 

of errors often involves several tools and human actors [7, 8]. However, since the human 

resource is expensive, most data cleaning techniques strive to judiciously involve humans 

to detect and repair errors [9]. It is clear that scaling data cleaning to larger datasets [13] 

requires tools that are able to do the bulk of the cleaning effort, e.g., it is infeasible to ask 

humans to clean millions of records. 
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1.2 Online Data Cleaning 

There are several classifcations of data cleaning techniques in the literature [14, 15], 

e.g., classifcation according to who cleans the data, the type of errors, etc. We present a 

novel classifcation of data cleaning techniques according to three key parameters: 

1. Data availability: Many data cleaning techniques assume that the data is available 

at its entirely. These techniques fall short when only a portion of the data is available 

to the algorithm. 

2. Data volatility: In many scenarios, data is not static, i.e., it can include new chunks, 

or existing items are updated over time. Few efforts deal with this setting. 

3. Cleaning time requirements: Some emerging applications, e.g., search engines that 

integrate results from several sources, require not only data cleaning at query-time, 

but they also require it to be conducted in real-time (or online). As a result, this 

setting does not tolerate long cleaning times. 

Figure 1.2 illustrates a classifcation of data cleaning approaches according to the pa-

rameters outlined above. We distinguish the following classes of data cleaning techniques: 

1. Offine data cleaning: Techniques that fall in this class assume the data is available 

in its entirety and does not change. Most existing data cleaning techniques fall into 

this class [16–18]. 

2. Iterative data cleaning: In this setting, the data cleaning algorithm has to be able 

to effciently support adding new data or updating the existing data. This class of 

techniques does not assume all the data is available and supports dynamic data [19– 

22]. 

3. Online data cleaning: In this setting, the techniques not only have to be able to clean 

the data offine and iteratively, but should do so effciently. In this context, portions 

of the data are requested on-demand, e.g., at query time [19, 20], streaming [23]. 
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1.3 Challenges in Online Data Cleaning 

Moving data cleaning to the online setting presents several challenges that pertain to the 

quality of the produced repaired data (accuracy challenge) and the time it takes to fx the 

errors (effciency challenge). Even in the offine setting, both of these challenges remain 

largely unsolved. Therefore, the online setting signifcantly exacerbates the diffculty of 

data cleaning. 

1.3.1 Accuracy Challenge 

It is clear that cleaning partial data inherently leads to erroneous cleaning decisions. For 

instance, if we adopt a majority-voting strategy to resolve a violation (e.g., choosing the 

the most frequent city name to resolve a violation to the FD Zip → City), then, a majority 

value in one instance of the data may no longer hold after the data is updated. Therefore, 

cleaning the data at time t provides little help to clean it again at tine t +1 (after it has been 

updated). 

1.3.2 Effciency Challenge 

In many data-intensive applications, it is important to have part of the data cleaned on-

demand. For instance, data scientists using the company data warehouse would need to 

post queries that pertain to small fractions of the data in their analytical task. Therefore, in 

the online setting, the data is not cleaned in its entirety, only the parts that are returned to 

the user are. 

1.4 Contributions and Outline 

In this dissertation, we present contributions that address challenges in all the data 

cleaning classes illustrated in Figure 1.2 and for several data errors. Specifcally, our con-

tributions are outlined as follows: 
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• Query-time deduplication and fusion. [19,20] This work addresses challenges that 

pertain to Iterative and Online Data Cleaning. We propose an end-to-end framework 

that supports query-time record linkage and fusion. As an example application that 

needs Online Data Cleaning, we implemented a virtual integration system (VIS) that 

queries multiple Web databases using their respective Web forms. In this application, 

the VIS can only access the data through queries (no access to entirety of databases), 

data comes in chunks (query results) and the query has to be answered fast. The data 

is deduplicated using off-the-shelf offine deduplication and fusion techniques. 

• Pattern-driven functional dependency repairing. [24] This work addresses chal-

lenges in Offine Data Cleaning. We proposed a new way to approach the problem 

of FD repairing. The current FD repairing algorithms tightly couple detection and 

repairing. That is, the set of violating cells are identifed and then repaired. However, 

when not all the data is available, this coupling falls short, i.e., the repaired cells in 

one data instance may violate new cells in another data instance. Therefore, saving 

the repaired instances does not offer any advantage in quality, i.e., if a wrongly re-

paired instance at time t is jointly repaired with new incoming data at time t+1, then, 

the new data items will also be wrongly repaired. Consequently, we could not simply 

use off-the-shelf FD repairing algorithms and adapt them to work in the iterative and 

online settings. We had to rethink the whole process of repairing FD violations from 

scratch with the iterative and the online settings in mind. Our proposal decouples 

data representation from its repairs. That is, we do not store repaired instances of the 

data and iteratively repair them with new data items, instead, we propose a novel way 

to identify and model values combinations, referred to as patterns, by leveraging in-

teractions between FD rules, and propose methods to measure the quality of different 

data patterns. 

• Query-time Functional Dependency repairs. In this work, we implement a proof-

of-concept VIS that adapts our pattern-driven functional dependency repairing algo-

rithm to work in the iterative and online settings. We show that our framework can 
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easily be tuned to support iterative and online data cleaning. We propose strategies 

to incrementally update data patterns and their quality scores as we process more 

query results. Our experimental results show a signifcant improvement in quality 

over a state-of-the-art rule-based data cleaning technique [16] applied at query time. 

The experiments also show that our algorithm is faster (by an order of magnitude) 

than [16] when run at query time. 

Related work is discussed as we present our proposals. The rest of the dissertation is 

organized as follows. In Chapter 2, we present our online record linkage and fusion frame-

work applied in the context of Web databases. In Chapter 3, we describe the fundamentals 

and algorithms to repair functional dependency violations. In Chapter 4, we present an 

adaptation of our techniques in Chapter 3 to work in the iterative and online settings. We 

present next directions in data cleaning in Chapter 5. Finally, we conclude in Chapter 6 
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2 ONLINE RECORD LINKAGE AND FUSION ON WEB DATABASES 

In this chapter, we study the problem of record linkage and fusion at query time. Most 

existing duplicate detection and fusion techniques work in the offine setting and do not 

meet the online constraint. There are at least two aspects that differentiate online duplicate 

detection and fusion from its offine counterpart. (i) The latter assumes that the entire data is 

available, while the former cannot make such an assumption. (ii) Several query submissions 

may be required to compute the “ideal” representation of an entity in the online setting. In 

this chapter, we present a general framework for the online setting based on an iterative 

record-based caching technique. 

The chapter is organized as follows. Section 2.2 describes the architecture of our sys-

tem. Section 2.3 discusses caching. Section 2.4 describes the query-time answering ca-

pability of our system. Section 2.5 describes our system in action with a comprehensive 

example. Section 2.6 describes the experiments. Related word is in Section 2.7. Section 2.8 

concludes the chapter. 

2.1 Introduction 

A key task in integrating data from multiple Web sources is to recognize records refer-

ring to the same real world entity—the record linkage problem [11]. This task is known 

to be diffcult since the attribute values of an entity may be represented in different ways 

or even confict with each other, e.g., different addresses for the same business. Confict-

ing data may also occur because of multiple correct values for the same real world entity, 

incomplete data, out-of-date data or erroneous data. Thus, another important task is to 

identify the correct attribute values of an entity—the data fusion problem [25]. 

In a virtual integration system (VIS), such as a vertical search engine, all of the above 

tasks must be performed at query time. Given that the data integration step is just one part 
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of the process of getting data to users (which includes network communication, ranking, 

etc.), it needs to be performed very fast. Fusing all data upfront is obviously not an option 

in a VIS. The goal of this work is to provide effcient solutions to the record linkage and 

fusion (RL&F) problems at query-time. 

Table 2.1.: An example of inconsistent data on the Web. 

Engine Name Address Phone 
Query Q1 

Metromix 
Menuism Pizzeria Uno 49 E. Ontario St. 312-280-5115 

DexKnows Pizza Uno 312-280-5111 
Yelp Pizzeria Uno 29 E. Ohio St. 

Query Q2 
Metromix Pizzeria Uno 49 E. Ontario St. 312-280-5115 
Menuism Pizzaria Uno 49 E. Ontario St. 312-280-5115 

DexKnows Pizza Uno 49 E. Ontario Street312-280-5115 
Yelp 

An example will help illustrate the challenges tackled in this proposal. Consider a VIS 

that integrates data from the following Web databases: Metromix.com, DexKnows.com, 

Yelp.com and Menuism.com. The following query is submitted to the VIS: Q1 = (Name = 

“Pizz%”; Cuisine = “Pizza”; Price = “Affordable”; Neighborhood = “Downtown, 

Chicago”). (% is used as a wildcard character). Among all the returned records, we look at 

those associated with the restaurant “Pizzeria Uno” (Table 2.1). Metromix does not return 

any record, while the records returned by the other Web databases do not agree on the 

address and phone number. At this time, the best we can do is to fip a coin to decide 

on the address of the restaurant and to take a majority voting to decide on the correct 

phone number. Suppose now that at a later time a new query is posted: Q2 = (Name = 

“Pizz%”; Cuisine = “Pizza”; Price = “%”; Neighborhood = “%”). Table 2.1 shows 

the set of records for Q2. The list of results of the two queries gives us the opportunity to 

see, although at different time intervals, multiple records about the entity “Pizzeria Uno”. 

Thus, if we stored the answer to query Q1, then, using the answer to Q2 together with 

that to Q1, we could make a more informed decision about the correct address and phone 

https://Menuism.com
https://Yelp.com
https://DexKnows.com
https://Metromix.com
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number of “Pizzeria Uno” (“49 E. Ontario St.” and “312-280-5115”, respectively) for any 

ulterior queries where “Pizzeria Uno” is a relevant answer. 

The example shows that regardless of the effectiveness of the RL&F algorithms, a qual-

itative answer to a query Q cannot be given considering the records in response to Q alone. 

Table 2.2.: Number of queries for which the overlap w/ Zagat is empty. 

Web Database # occurrences 
ChicagoReader 511 

YellowPages 587 
Metromix 649 

MenuPages 667 
Yelp 673 

Yahoo 676 
CitySearch 702 
Menuism 714 

DexKnows 721 

To support the above claim we conducted an empirical study where we constructed a toy 

VIS that connects 10 Web databases of local business listings. For effciency purposes, the 

VIS collects the top-k (k = 10, 20 are commonly used) results from each Web database [26]. 

We submitted 1,000 randomly generated queries to each of these databases and then ana-

lyzed the overlap between the returned result lists (k = 10 was used). For example, the lists 

of results of Zagat and DexKnows did not share any record for 721 queries. As shown in 

Table 2.2, this was not a rare occurrence. The table shows the number of queries for which 

Zagat and each of the Web databases have zero records in common. We observe that, on 

average, in the merged list of results of a query, about 70% of the records appear in one or 

two sources (out of 10) and only about 15% of them appear in more than 5 sources. These 

observations clearly suggest that effective record linkage cannot in general be undertaken 

query by query in isolation, because there is not suffcient “cleaning evidence” from the 

records returned by a single query. 

We can alleviate the lack of “cleaning evidence” by collecting “evidence” from queries 

as we process them. We approach the online RL&F problems from an iterative caching 
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perspective (see Figure 2.1). Specifcally, the set of records corresponding to frequently 

posted queries is deduplicated offine and cached for future references. Newly arriving 

records in response to a user query are deduplicated jointly with the records in the cache, 

presented to users and appended to the cache. The framework of the problem addressed in 

this proposal is as follows: 

The Setting: Let D be a set of Web databases. Let E be a set of real-world entities 

in the same application domain (e.g., real estate, book). Each entity has a set of attributes 

(e.g., name, address, phone for a business entity) and an attribute may have zero or several 

values. Different sources may supply different values for an attribute of an entity and the 

same value may be represented differently. A subset of the entities in E are frequently 

requested and a fraction of the volume of queries occurs frequently. Thus, RL&F in this 

environment faces unique challenges (e.g., time) and opportunities (e.g., temporal locality 

in queries) compared to a traditional setting. 

The Problem: Let Q be a query. From the lists of records returned by the D Web 

databases in response to Q, we need to identify the set of records R referring to the same 

real-world entity in E and fuse the records in R into a single and “clean” representation. 

That is, solve the RL&F problems for Q. 

The Proposed Solution: A solution for the above problem must achieve a trade-off 

between effciency and effectiveness. Nevertheless, it needs to do so without signifcantly 

deteriorating effectiveness. We seek to improve effciency by (1) avoiding repetitions of 

data cleaning steps such as unnecessary fusion, and (2) identifying the duplicates of a 

record in a constant time that is independent of the number of database records by using 

an index. Concretely, we propose an online record linkage and fusion framework (ORLF, 

for short) based on iterative caching. ORLF stores fused records as plain records together 

with information about how they were created, i.e., provenance. A non-trivial problem in 

the proposed RL&F framework is that of quickly fnding the candidate matching records in 

the cache of a record in the query answer. We cannot afford to go through all the records 

in the cache to match them against the query records. In Section 2.4.1, we describe a 
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novel indexing data structure for fast similarity record lookup based on the Bed-tree data 

structure [27]. 

Figure 2.1.: ORLF versus typical RL algorithms. 

Figure 2.1 is a simple sketch to illustrate our goal in ORLF. The Y-axis is the RL accu-

racy, usually reported with the classical F1-measure. The X-axis is the number of queries 

whose answer sets were processed. With a typical RL algorithm (aka offine in this disser-

tation) [28–31], the accuracy is about the same (linear) across processed queries, oscillating 

about their average accuracies (the dotted line). The solid line is the behavior of RL in the 

proposed ORLF framework. There is an initial warmup phase, where the accuracy is about 

the same as that of a typical RL algorithm. As the system processes more queries, the ac-

curacy steadily improves. The key beneft of ORLF however is that the RL&F steps take 

milliseconds rather than seconds as with a typical RL&F algorithms. Completely build-

ing ORLF requires the implementation of the following components: (1) cache attribute 
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selection, (2) cache data structures, (3) effcient data lookup, (4) online RL&F algorithms, 

(5) caching policies, (6) cache warm up and (7) cache refreshing. 

The contributions presented in this chapter are as follows: 

• We propose, ORLF, an end-to-end framework to support effcient RL&F at query-

time. 

• We present an indexing scheme for records based on the Bed-tree index [27]. Bed-tree 

supports relatively fast record linkage and dynamic updates (for dynamic caching). 

To our knowledge, no other record linkage indexing technique satisfes both proper-

ties. 

• We leverage query locality to perform query-time RL&F effciently and show that 

smart caching avoids unnecessary fusion operations. 

• We conduct extensive experiments on real and synthetic data showing the accuracy 

and scalability of ORLF. 

2.2 The ORLF System 

We describe in this section the workfow of the proposed iterative caching approach for 

online RL&F. In a nutshell, newly arriving records in response to a user query are cleaned 

jointly with the records in the cache, presented to users and appended to the cache. The 

workfow is drawn in Figure 2.2. 

There are two processing paths: the hit and the miss paths. Both start by looking up the 

records returned by each source in response to a query in the cache. The lookup process is 

a two-step process. First, for each incoming record r we use an indexing data structure to 

retrieve the matching record of r in the cache. We employ a string-based similarity search 

(see Section 2.4). We collect the top-k most similar records to r in the cache. A custom 

record matching function is then used to fnd the matching record r in the top-k records. 

If a matching record, denoted rc, exists, called a hit, then we take the hit path. If r has no 
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Figure 2.2.: Query answering using RL&F with iterative caching. 

match in the cache, called a miss, we take the miss path. In the former, we append rc and 

r to a temporary indexing data structure IMI (inverted match index). Each index entry in 

IMI is of the form hrc, LMi, where rc is a cache record and LM is the list of incoming 

records matching rc. At the end of the lookup step, IMI will contain all the record matches 

between the cache records and the incoming records. 
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Note that we do not move to the next processing block on the hit path, i.e., Fusion of 

Records in Cache, until we process all incoming records in response to the user query. In 

the Fusion of Records in Cache processing step, IMI is traversed and each rc is fused with 

the incoming records in its corresponding list of matches. On the miss path, we collect 

all incoming records without a match in the cache and perform record matching and then 

fusion among them. Finally, we union the lists of records of the two paths and pass the 

result to the user. In practice, the union is input to a ranking algorithm (not treated in our 

system), which orders the records according to some user criteria (e.g., price or user rating). 

The cache content is updated based on the adopted cache policy (Section 2.3). We 

will show that there are substantial differences between traditional caching and caching 

for online RL&F. Iterative caching allows a “fast” response to the current query and an 

“improved” data quality for subsequent queries. 

2.3 Caching Mechanisms 

The decision of what to cache can be taken either offine (static) or online (dynamic) in 

general. A static cache is based on historical information. A dynamic cache has a limited 

number of entries and stores items according to the sequence of requests. Upon a new 

request, the cache system decides whether to evict some entries in the case of a cache miss. 

Online decisions are based on the cache policy. Two common policies are: evicting the 

least recently used (LRU) or the least frequently used (LFU) items from the cache [32]. 

We analyze the suitability of these strategies to online RL&F. We also introduce locking of 

cached items and record provenance to improve effciency when interacting with the cache. 

2.3.1 Static Cache 

With a static cache we need to identify the most frequently accessed entities and load 

their corresponding records in the cache. These entities are derived from the records cor-

responding to the most frequent queries gathered from the Web databases. Results of the 

frequent queries are processed offine using offine RL&F algorithms. We used FRIL [28] 
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for RL and majority voting for fusion in our prototype. More sophisticated fusion tech-

niques can be used [33]. 

We introduce a variation of static caching where records in the cache are allowed to be 

updated, called static cache with in-place updates (SCU). The reason is that even though 

the cache content is determined offine, there can be cached records for which the number 

of pieces of evidence is not enough to decide whether they are correct (see example in 

Section 2.1). Hence, it is of practical importance to allow online updates on these records. 

A cache record is updated by fusing it with incoming matching records from sources which 

have not yet contributed to the cache record. We keep track of the provenance of each cache 

record for that purpose. 

2.3.2 Dynamic Cache 

The semantics of a miss is different in our caching from the traditional one. In the latter, 

upon receiving a request for an item v, the cache is probed for v. If v is not found, v is 

brought into the cache from the disk. If the cache is full, then a cached item is evicted to 

make space for v. In our caching setting there is no disk: all the known records are those 

in the cache and the ones in response to a query. Thus, on a miss, i.e., the match of an 

incoming record r is not in the cache, r itself is brought into the cache after RL&F. Each 

cache record has a cache tag that stores the information needed for accomplishing dynamic 

caching, e.g., the number of times (or the last time) the fused record was output to users. 

2.3.3 Locking 

Avoiding unnecessary cleaning operations is key to improving online effciency. We use 

a locking mechanism to avoid unnecessary invocations of the fusion step. Specifcally, a 

cache record is locked if our confdence in its quality is “high”. Determining when “high” 

is reached for an unlocked record is orthogonal to our system. It can, for example, be 

probabilistic [33]. In our prototype, we implemented a voting strategy for this purpose: a 

record is locked if the value of each of its attributes is obtained by fusing the records from 
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|D| p of the sources. We empirically set p = 
2 − 1. Note also that locking provides a means 

for implementing online cache refreshing: certain locked records are unlocked at certain 

time intervals and are refreshed via fusion. A thorough treatment of refreshing is left for 

future work. 

2.3.4 Record Provenance 

If a cached record was previously constructed using a record from a source S and, for 

a new query, S returns a record r that matches the fused record, then we may decide to 

discard r as it is very likely that r has been previously seen from source S or is a duplicate 

record. If the record was updated in the source, then the next refresh of the cache will 

refect this change. We encode provenance using a bit string of length |D|, such that the ith 

bit is turned on if a record from the ith source was involved in the construction of the fused 

record. 

2.4 Query-Time Answering 

In ORLF, the cache contains fused records. Specifcally, if fri is a record in the cache 

at time ti then at time ti+1 the new version of fri is either fri itself or a new record fri+1 

that is constructed out of fri and a set of incoming records not in the cache, which were 

linked to fri. 

Algorithm 1 describes the query answering algorithm. A key novelty in our approach 

is that the merging is not only performed between the incoming lists of records, but the 

relevant records in the cache are also involved. As explained earlier, there are two pro-

cessing paths: the hit and the miss paths. Each list of responses is processed by Procedure 

RecordLookupBySource (Algorithm 2) which updates the IMI (inverted match index) data 

structure, which will contain the set of cache records matching records in Ri and outputs Y , 

the set of records in Ri without a match in the cache. Y is appended to the set of unmatched 

records MR (Line 7, Algorithm 1). The matching records from all the incoming lists Ri 

and cache are fused (Line 9). The unmatched records are linked among themselves and 
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Algorithm 1: QueryProcessing in the ORLF system 
Input : Query Q and Cache 
Output: The set of fused records FR in response to Q and an updated cache. 

1 Let {R1, ..., Rm} be the lists of records from m Web databases in response to Q; 
2 Initialize IMI ; // the inverted match index 
3 MR ← ∅ ; // matched records in the cache 
4 MR ← ∅ ; // unmatched incoming records 
5 for i = 1 to m do 
6 Y ←RecordLookupBySource(Ri, Si, IMI); 
7 MR ← MR ∪ Y ; 

8 MR ← Transitive closure of IMI; 
9 FR1 ←fuse(IMI); 

10 FR2 ←HierarchicalRLF(MR); 
11 addToCache(FR2) ; // only in dynamic caching 
12 updateCache(FR1) ; // in dynamic caching and SCU 
13 return FR1 ∪ FR2; 

then fused (procedure HierarchicalRLF, Line 10). The resulting fused records that do not 

already exist in the cache are appended to the cache (Line 11). This step is only executed 

for dynamic caching. Those that already exist in the cache are updated (Line 12). This step 

is executed when either SCU or dynamic cache are used. The union of the fused records, 

from both the matched and unmatched records, are then returned to the user (Line 13). 

HierarchicalRLF performs pairwise RL. For example, if R1, R2, R3 and R4 are the four 

lists of records, then it performs RL on R1 and R2, and on R3 and R4. RL is performed 

again on their outputs to obtain the fnal list of linked records. This scheme is captured 

as a full binary tree, where a leaf node is the list of unmatched records from a source and 

an internal node represents the RL outcome on its children. While HierarchicalRLF is not 

as effective as a RL procedure that exhaustively compares the records of the m sources 

across each other, it is more amenable to a parallel implementation. Nevertheless, it is 

signifcantly more effcient and very effective within our overall framework (Section 2.6). 
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2.4.1 Record Look Up and Record Linkage 

Let r be an incoming record and fr the record in the cache most similar to r. The 

problem is how to fnd fr in an online caching setting — fr may be substantially different 

from r, because fr has been subject to several fusion iterations. Hence, fr can only be 

found using similarity search. And operationally, how to check if fr indeed exists in the 

cache? An exhaustive search of the cache to look for fr is clearly prohibitive. We propose 

a two-step process: (1) fast approximate nearest-neighbor search and (2) exhaustive record 

matching, where we compare r with the (smaller) set of nearest neighbors (records). In 

light of (1), our proposed cache is an instance of similarity caching [34]. 

Nearest Neighbor Search 

Given an incoming record r, we need to obtain the cached record fr such that 

sim(r, fr) is maximized, where the similarity function is defned on the space of the “keys” 

of the records. A subset of the attributes of entities in E is a “key” if it can serve as en-

tity identifer, i.e., the attributes uniquely identify an entity. For example, when matching 

business listings the subsets {Name, Address} and {Name, Phone} are such attributes. 

That is, if two business records have very similar names and addresses or very similar 

names and the same phone number, then the records are very likely to refer to the same 

business entity. Many indexing strategies can be used with static caching: e.g., locality 

sensitive hashing (LSH) [35]. For dynamic caching however, we need an indexing struc-

ture that supports effcient live updates. Since in many practical cases the entity identifer 

attributes are strings, we choose the Bed-tree index [27], a string similarity index. Bed-tree 

is a B+-tree based index structure, which has a number of properties that suit our environ-

ment very well. Bed-tree: (i) effciently answers selection queries, (ii) can handle arbitrary 

edit distance thresholds, (iii) supports normalized edit distance for all query types, in par-

ticular, top-k queries, (iv) has good performance for long strings and large datasets, and 

(v) supports incremental updates effciently. 



20 

Modifying the Bed-tree index for use in similarity record search 

Bed-tree index was developed for string similarity search and hence cannot directly be 

used in our setting. For us, it all boils down to fnding a suitable record representation such 

that records can be indexed with this data structure and carrying the good performance of 

the index on strings to records. We index a set of records using their “key” (matching) 

attributes Keyr = {A1, A2, ..., An}. 

Bed-tree index overview. Bed-tree [27] is an index for string similarity search based on 

(normalized) edit distance built on top of a B+-tree. To index the strings with a B+-tree 

index, it is necessary to construct a mapping from the string domain to an ordered domain 

(e.g., the integer space). Since we are interested in top-k searches, the mapping must give 

an ordering that satisfes two properties when used with the edit distance: comparability 

and lower bounding. The former property requires linear time to verify if a string is ahead 

of another in the given string order, whereas the latter requires that it is effcient to fnd 

the minimal edit distance between a string q and any string in an interval [s, s‘]. The latter 

property is needed to effciently prune out the intervals with no strings within the given edit 

distance from the query string during search. Three orderings are given in [27]: (1) dic-

tionary, (2) gram counting, and (3) gram location. Gram counting is superior to the other 

two for top-k queries for relatively large strings [27]. We use it in our implementation. 

It is defned as follows: A string s is decomposed into a set of q-grams. A q-gram is a 

contiguous sequence of q characters from s. A hash function maps each q-gram to a set 

of L buckets. We count the number of q-grams in each bucket. At this point, s is mapped 

into an L-dimensional vector v of non-negative integers. The fnal representation of s is 

obtained by applying a z-order on the bit representation of the components of v. z-order in-

terleaves the bits from all vector components in a round robin fashion. Consider the string 

s = “Red Lion”, n = 2 and L = 4; Assuming v = h3, 2, 1, 3i, the corresponding z-order is 

11011011. 

Adapting Bed-tree to Record Linkage. We now describe our solution using Bed-tree 

with the gram counting order for top-k record similarity search. A naive approach to rep-
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resent Keyr is to simply concatenate the key attribute values of a record to form a string. 

The index key is then generated by taking the z-order representation for the obtained string. 

One issue with this scheme is that we may end up comparing q-grams of different attributes; 

e.g., if we compare two business records whose names are not of the same length, then, we 

will compare the q-grams of the longer name to the q-grams of the address attribute of the 

other record. 

To avoid this problem we need to treat the attribute values as frst-class citizens. We 

analyzed two z-order representations of record keys: z-order concatenation and z-order 

interleaving. In both representation schemes, we frst obtain the z-order representation 

of each attribute. Then, in the z-order concatenation scheme the index key is obtained 

by concatenating the resulting bit-strings of each attribute, whereas in the latter z-order 

interleaving scheme, we interleave the bits from all attributes in a round robin fashion. 

These representation schemes are bounded by the size of L. First, L cannot be arbi-

trarily large. For example, effciency-wise L = 4 gives the best results in [27]. This is too 

small to adequately represent an index key with multiple attributes. As shown in Figure 2.5 

(Section 2.6), increasing L increases the time it takes to retrieve the top-k matches. Second, 

for each of the n attributes we need to allocate a contiguous number of buckets. However, 

each attribute may require a different number of buckets. For instance, the attribute name 

may require more buckets than the attribute phone. Third, we experimentally noticed that 

the z-order concatenation scheme is infuenced by the order of the attributes, while the z-

order interleaving scheme is not. So, in general we need to fnd a solution to the following 

linear equation. If we denote by Li the number of buckets required by attribute Ai, then we 

have 

L1 + · · · + Ln = L, where Li ∈ [bi, Bi], bi, Bi ∈ N∗ . (2.1) 

bi and Bi denote the minimum and respectively maximum (ideal) number of buckets re-

quired by the ith attribute. This equation may not have solutions, i.e., b1 + · · · + bn > L. 

Thus, there may be application domains where Bed-tree index is not suitable. Alternatively, 

it may have multiple solutions (this is a linear Diophantine equation). Ideally, all solutions 
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need to be tested out and the one that fts the application at hand the best is chosen. Enu-

merating all possible solutions in search for the ideal one is an overkill for some application 

domains because for each solution to Equation 2.1 we need to construct the corresponding 

Bed-tree and carry out the empirical evaluation. We give here a heuristic procedure to locate 

a suitable solution. 

We frst order in descending order the attributes based on their selectivity property (se-

lectivity of an attribute A is the ratio between the number of distinct values in A and the total 

number of records). This can be given by a domain expert or estimated by sampling. Intu-

itively, the more selective an attribute is the more useful it is to distinguish between records 

about different entities and thus more buckets should be allocated to it. Let Ai1 , . . . Ain be 

the desired ordering. We make Lij = bij , 1 ≤ j ≤ n. Then we apply a greedy strategy 
nX 

as follows. Let L0 = L − bj . As long as L0 > 0 we proceed as follows. For each 
j=1 

1 ≤ j ≤ n, if Bij − bij ≤ L0 then Lij = Bij , else Lij = bij + L0 and stop. For instance, 

suppose the attributes are name, address and phone. Suppose that this is the desired order-

ing and that for each of them b = 4 and B = 6. Let L = 15. Applying the greedy strategy, 

we allocate 6 buckets to name, 5 to address, and 4 to phone. 

Bed-tree Setup. We empirically determine that beyond L = 12 the performance of 

Bed-tree deteriorates considerably. We set bi = 4 and Bi = 6. For the matching of business 

listings with the attributes name, address and phone, the best confguration is to allocate 

each attribute 4 buckets. Also, z-order concatenation gives better retrieval times on average 

than z-order interleaving scheme. The order of the attributes in the z-order concatenation 

is name, address, phone. We further evaluate the z-order concatenation scheme in Sec-

tion 2.6.1 under different parameters of the Bed-tree. 

Record Matching 

The custom record matching function must predict with high confdence if the records 

r and fr refer to the same entity. Otherwise, duplicates may be inserted in both the cache 

and query answer. The actual function is application-dependent and, thus, orthogonal to 
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Algorithm 2: RecordLookupBySource 
Input : (R, S, IMI): the list of incoming records R from a source S and IMI - the 

inverted match index 
Output: M - the records in R without a match in the cache. 

updated IMI. 
1 foreach r ∈ R do 
2 hasMatch ← false; 
3 TK ←getTopK(r); 
4 foreach fr ∈ TK do 
5 if RecordMatch(r, fr) then 
6 if S 6∈ fr.Provenance then 
7 update(IMI, fr, r); 

8 hasMatch ← true; 
9 break; 

10 if hasMatch = false then 
11 add(r, M ); 

the current work. For our proof of concept, we developed such a function as follows. 

We obtained a training sample by posting a number of random queries to the component 

search engines, then we manually labeled the pairs of matching records and learnt a binary 

classifer: match or not match. We constructed a decision tree from the labeled data. Once 

we had the decision tree we transformed it into a procedure with IF-THEN rules [36] that 

was plugged into our system. 

Look up Algorithm 

Algorithm 2 describes the procedure to look up an incoming record in the cache. We 

frst post a top-k query to the Bed-tree to get the k most similar records to r in the cache. We 

then perform pairwise comparisons between r and the top-k records to determine fr. In 

our implementation, we empirically set k = 5 (Section 2.6). Each new record is compared 

against its top-k matches from the index (Lines 3-9). Our reasoning assumes: (1) cache 

records are distinct and (2) a cache record can match at most one record in a given source. 

(1) can be seen as a cache invariant and its consequence is that a new record can match at 
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most one record in the cache. (2) may seem restrictive, but note that our goal is not to clean 

the individual sources, but rather to return relevant and clean records. Thus, if r matches 

a cache record fr, then r is retained to be later fused with fr only if a record from S has 

not previously contributed to the construction of fr (Lines 6-7). If r has no match in the 

cache, it is appended to the list of unmatched records (Lines 10-11). 

2.4.2 Fusion Procedure 

For each set of records representing the same entity, we need to fuse them. For each 

cache attribute, the value representations that have a similarity of at least some threshold 

(current implementation 0.9) are considered to be “identical”. Among a set of represen-

tations for a value, we choose the one provided by the largest number of sources. When 

a cache record fr is fused with a list of new records, the value representation of an at-

tribute from fr receives dm 
2 e votes, where m is the number of sources from which fr 

was previously derived. Other fusion schemes (e.g., [33, 37]) can easily be plugged into 

our framework. 

2.4.3 Algorithm Complexity 

(m−2)(m−1)The non-parallel worst-case time complexity of Algorithm 1 is O( 
2 δ(cR)2), 

where m is the number of databases, each returning R records; c is the cache miss rate; 

δ ' 1 − or, where or is the overlap rate of the m sources. This occurs when most of the 

records have no match in the cache, i.e., c is close to 1. In this case ORLF is simply as 

good as traditional RL. The best case occurs when c is close to 0. On average however, the 

algorithm is near linear in mR. 
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Table 2.3.: An example cache table 

ID Provenance Name Address Phone 
cr1 

cr2 

cr3 

cr4 

(1, 2, 3, 5) 
(1, 3) 
(1, 3) 
(7) 

Pizzeria Uno 
Pizzeria 

Pizza Uno 
Pizzeria Uno 

49 E. Ontario St. 
40 E. Ontario St. 
39 N. Ontario St. 

E. Ontario St. 

312-280-5115 
312-280-3344 
312-280-2355 
312-280-5115 

Table 2.4.: Answer set of a sample query 

Ri ID Name Address Phone 
R1 

R2 

R3 

R4 

r1 

r2 

r3 

r4 

Pizzeria Uno 
Pizza Uno 
Pizza King 

Giordano’s pizza 

49 E. Ontario St. 
E. Ontario St. 

11 W. Ontario St. 
33 N. Ontario St. 

312-280-5115 
312-280-5115 
312-443-7844 
312-544-9033 

Table 2.5.: Top-2 records and their matching status for a sample query 

ri cri Match? edit(ri, cri) 

MR 

r1 

r1 

r2 

r2 

cr1 

cr2 

cr4 

cr1 

Yes 
No 
Yes 
Yes 

0 
5 
0 
3 

MR 

r3 

r3 

r4 

r4 

cr3 

cr2 

cr3 

cr2 

No 
No 
No 
No 

13 
13 
20 
20 

Table 2.6.: Inverted Index (IMI) example 

cri Matching incoming records Matching incoming records 
(after transitive closure) 

cr1 {r1, r2} {r1, r2}
cr4 {r2} {r1, r2} 

Table 2.7.: Updated cache after processing a sample query 

ID Provenance Name Address Phone 
cr1 (1, 2, 3, 5, 7) Pizzeria Uno 49 E. Ontario St. 312-280-5115 
cr2 

cr3 

(1, 3) 
(1, 3) 

Pizzeria 
Pizza Uno 

40 E. Ontario St. 
39 N. Ontario St. 

312-280-3344 
312-280-2355 

cr4 (3) Pizza King 11 W. Ontario St. 312-443-7844 
cr5 (4) Giordano’s pizza 33 N. Ontario St. 312-544-9033 
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2.5 A Walkthrough Example 

We give a step-by-step illustration of Algorithms 1 and 2 through an example in this 

section. Consider the following query: Q1 = {Address = “%Ontario%”, Cuisine = 

“Pizza”}. Table 2.3 shows the cache content. We assume four sources. Q1 is posted to 

all the sources. The list of records returned from a source i is stored in a list Ri. The lists 

are shown in Table 2.4. For simplicity, we assume that each source returns one record 

in response to Q1. For each record r in list Ri, the system fnds its top-k similar records 

according to the string edit distance in the cache. We assume k = 2 in this example. Note 

that there is no guarantee that the returned records are indeed real matches. Hence, we next 

fnd which ones among the k records are valid matches of r. Table 2.5 shows the incoming 

records after the “fltering” process is applied to the top-k set. The “edit” column in the 

table shows the sum of the string edit distance between ri and cri on attributes {name, 

address, phone}. 

r1 and r2 match cr1 and cr4, respectively, in the cache. r3 and r4 have no match in the 

cache. The records r1 and r2 along with their matches cr1 and cr2 are processed in the “Hit 

path” (as shown in Figure 2.2), whereas r3 and cr3 are processed in the “Miss path”. 

Table 2.6 illustrates the usage of IMI: cr1 matches {r1, r2} and cr4 matches {r2}. We 

are assuming that the matching relation is transitive, so, by transitivity, cr4 also matches 

{r1, r2} after computing the transitive closure on IMI . Then, the system fuses the records 

cr1, cr4, r1 and r2 into cr1. The records r3 and r4 do not have matches in the cache and are 

appended to the cache. Table 2.7 shows the new version of the cache after Q1 is processed. 

The records that were either added or updated are highlighted. Finally, the system returns 

to the user the records: cr1, cr4 and cr5. 

The example shows that cache records may also be fused, such as cr1 and cr4. The 

iterative (and incremental) process gives us the opportunity to clean the cache itself of 

duplicates, should there be any, as more and more new queries are processed. Duplicates 

may sneak into the cache because there is no perfect record linkage procedure and true 

positives may be missed in early iterations, but discovered in later iterations. 
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2.6 Experimental Study 

The goal of our experiments is to show that ORLF is feasible in practice; its effec-

tiveness and effciency signifcantly exceeds those of offine solutions, such as Febrl [29], 

when applied to the online setting. We also evaluate the main components of ORLF to 

demonstrate its robustness. All of the experiments are conducted on a machine that runs 

Linux, has eight Intel Xeon E5450 3.0 GHz cores and 32 GB of physical memory. We 

implemented the framework in C++ and used MySQL to manage the data in the sources 

and the cache. 

2.6.1 Bed-tree Index Experiments 

We assess the effectiveness of the modifed Bed-tree index in the record linkage task. 

The effectiveness of Bed-tree is not analyzed in [27]. 

We defne the sensitivity of the modifed Bed-tree index as its ability to return a record 

r in response to the top-k query r given that r is present in the index. If the index has a low 

sensitivity, then ORLF does not beneft from caching because it cannot locate the matching 

records of the incoming records even when they are in the cache. We assess the sensitivity 

of the Bed-tree index with the two strategies of representing the matching key, naive and 

z-order concatenation. 

The sensitivity experiment requires a set T of N distinct records w.r.t the record match-

ing function discussed in Section 2.4. We randomly generated over 1M records for the 

attributes (name, address, phone) with an approximate error rate of 20%, i.e., around 20% 

of the records have duplicates in the set. This does not bias the experiments as we are in-

terested in measuring the sensitivity of the Bed-tree when most of the records are distinct– 

Recall that the cache is assumed to be duplicate-free in general. We have also conducted 

an experiment where we indexed a set TD of 1K records that are guaranteed to be 100% 

distinct from each other. 

The experiment runs as follows: (1) records in the set T are indexed using the modifed 

Bed-tree index ; (2) a sample set of records, ST , of size 100 is taken from T ; (3) a top-k 
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Figure 2.4.: Matching ratios using different values of k and L (z-order concatenation) 

query to the Bed-tree with every record r in ST is posted; and (4) if r ∈ Tr, where Tr is the 

set of returned records for r, then it is a match; otherwise, it is a miss. 

When the indexing key of a record is obtained by mere concatenation of its attribute 

values, Bed-tree exhibits a poor quality as illustrated in Figure 2.3. The main reason is 

that attribute values have different lengths, thus different parts of these attribute values are 

compared when computing the lower-bound of the edit distance. 
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Figure 2.4 shows the matching ratios when the indexing key is the z-order concatenation 

of the attribute values of a record. The matching ratios are reported for different values of k 

and L (the bucket size). The matching ratios are reasonable and comparable to those for the 

original Bed-tree index. This z-order concatenation strategy is used in our implementation 

and all the subsequent experiments. In another set of experiments, we indexed TD and then 

queried the index with all of the records in TD. We obtained the average matching ratios 

0.97, 0.98, 0.99, 0.99 for k = 5, 10, 15 and 20, respectively. This shows that the z-order 

concatenation scheme is very effective and suitable for indexing records with the Bed-tree 

index. 

While increasing L and k has a clear positive impact on the match ratio as shown in 

Figure 2.4, Figure 2.5 shows a negative impact on effciency. As a reasonable trade-off 

between quality and performance, we set the overall bucket size L = 12 with 4 buckets per 

attribute, and k = 5. 
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Bed-tree Effectiveness for Plain Strings 

We also need to have a sense of the effectiveness of the Bed-tree index in general. We 

use the original implementation of the Bed-tree1. We employ a set of 12K distinct strings 

corresponding to business names and post top-k queries. On average, we obtained a 0.99 

matching ratio for k = 5, 10, 15 and 20. Larger k values are not used in practical systems 

in the online setting. The Bed-tree index is indeed effective when applied to plain strings. 

This will serve as the baseline behavior for the modifed version of Bed-tree. 

2.6.2 ORLF Experiments 

We implemented an in-house metasearch engine to create a controlled experimental 

environment, we used two datasets: (1) Real Web data, to show how the system behaves 

in the wild; (2) Synthetic data, to show that the system is not sensitive to the data domain 

being used, and to better evaluate the RL quality since we know the set of duplicates for all 

the records. To obtain the Web dataset, we crawled the data of 9 Web databases that provide 

information about restaurant listings in the metropolitan Chicago, US. We also compared 

ORLF’s fusion with Solaris [37] on a book dataset. 

Table 2.8.: Dirtiness statistics of the crawled data 

Number of records with distinct Number of records without 
Source # Recs. Name Address Zip Phone Name Address City State Zip Phone Rating Reviews Price 

ChicagoReader 3,096 2,759 2,877 0 2,930 0 0 0 0 3,096 35 1,436 1,436 209 
CitySearch 12,695 9,162 9,867 124 0 0 0 0 0 3,035 12,695 8,883 6,866 12,695 
DexKnows 5,843 4,577 5,509 61 5,706 0 0 0 0 3 3 5,636 5,636 5,843 
MenuIsm 8,508 6,492 7,022 0 0 0 0 0 0 8,508 8,508 6,795 6,795 889 

MenuPages 3,629 3,032 3,382 0 0 0 0 0 0 3,629 3,629 1,465 1,464 3,629 
Metromix 5,044 4,599 4,719 0 0 0 7 7 0 5,044 5,044 1,627 1,627 5,044 

Yahoo 10,820 8,049 9,724 0 10,490 0 47 0 0 10,820 0 5,854 5,854 10,820 
YellowPages 7,798 6,547 7,159 101 7,485 0 21 1295 0 17 0 4,741 4,741 7,798 

Yelp 10,115 8,200 8,914 107 8,744 0 0 87 0 37 367 2,080 2080 255 

Table 2.8 gives a general picture of the “dirtiness” of the data crawled from the 9 Web 

databases. The part titled “Number of records with distinct” includes four of the cache 

1We thank the authors of [27] for sharing their source code. 



31 

attributes. “City” and “State” are omitted as most records are from Chicago, IL. We show 

the number of distinct values in each of the cache attributes, e.g., there are 8,200 distinct 

names in Yelp. A “0” in the column of an attribute means that there are no values for the 

attribute in the corresponding crawled data, e.g., no record has a zip code in the crawled 

data from MenuPages. The part of the table titled “Number of records without” looks at 

the missing values in all the attributes. If we analyze the two tables jointly, we note that all 

the records have a name value, but not all of them have a phone number, e.g., in Yelp there 

are 8,744 distinct phone numbers and 367 records have no phone number. 

A key question is whether the content of real Web databases overlaps signifcantly. 

We use overlap rate to measure the degree of overlap among a group of databases [38]: P m |Di| − |Du|i=1 , where m is the number of databases, |Di| is the number of records in 
(n − 1)|Du|

database Di and |Du| is the total number of distinct records in the union of the n databases. 

The overlap rate for our metasearch engine is 0.38. This is a global score; pairwise, the 

databases have higher rates. Consequently, the likelihood of at least two records referring 

to the same entity to occur in a query is very high. This emphasizes the practical importance 

of addressing the problem of online RL&F. 

Matching Function Thresholds: We use the dataset 12Q2 for learning and the Restaurant 

dataset from the RIDDLE3 repository for testing. We obtain 12Q by posting queries to 

the 9 component search engines. The thresholds to match restaurant entities have been 

learned and applied to the ORLF system custom function to match restaurant pairs from 

the real-world data crawled from the Web. 

Cache Warmup: A well-known result from information retrieval is that query frequencies 

follow a power-law distribution for text search engines [39, 40]. Thus, a few queries have 

very high frequencies and the rest appears very infrequently. To our knowledge, there is 

no similar study for the queries posted over search engines for (semi)structured data. It is 

however known that the sales of books, music recordings and almost every other branded 

commodity follow a power law distribution [41, 42]. Hence, we can “deduce” that the 

queries used to fnd them also follow a power law distribution. To warm up the cache, we 
2www.cis.temple.edu/˜edragut/research.htm 
3www.cs.utexas.edu/users/ml/riddle/data.html 

https://3www.cs.utexas.edu/users/ml/riddle/data.html
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generate a stream of structured queries following a power law distribution. We select the 

top 20% most frequent queries, post them, and download their results. We then apply an 

offine RL&F algorithm, namely FRIL [28], on their results. 

Generating Simulated Queries: To empirically analyze the behavior of ORLF we need 

to generate queries that simulate the infux of queries faced by a search engine. To our 

knowledge, there is no published method for simulating a stream of structured queries to a 

search engine. We give a method here. First, suppose that we know the set of query felds, 

say F . For example, F = {Cuisine, Price, Location} are common felds in restaurant 

search engines. We assume that each feld f has a predefned list of values Df . This is 

quite common on the Web. Otherwise, we can draw values from some sample datasets. 

We then generate the entire query space by taking the cross-product of the domains of Y 
the felds, Df . We also insert a null value in the domain of f in order to account for 

f ∈F 

the queries when f is not mentioned. For instance, the query (Cuisine = “Mexican”; 

Neighborhood = “Loop, Chicago”) does not mention the price. We draw a stream of 

queries from the set of all queries according to a power law distribution, i.e., p(x) = C xβ . 

C = β+1 , Q is the total number of distinct queries. We set β to values observed in literature 
Qβ 

(e.g., [40]) for keyword queries, e.g., β ∈ {0.83, 1.06}. We denote the generated stream of 

queries by Q. 

Obtaining the Gold Standard: Since no automatic RL tool can guarantee perfect results, 

we manually construct a subset of matching records. We randomly select a subset RM of 

100 records from the crawled data. Then, we apply the record linkage tool Febrl to RM 

and the entire crawled data and obtain a set of candidate matches for the records in RM . 

We manually investigate the generated pairs to keep only the correct matching pairs PGS . 

PGS contains 420 pairs. We use PGS to measure the effectiveness of ORLF. 

Dynamic Cache with Infnite Size: In these experiments, ORLF is set up with a dynamic 

cache of infnite size, and k=5, L=12 for the Bed-tree index. In the frst part, we evaluate 

the quality of ORLF in the task of RL against PGS . We simply count correct matching pairs 

that ORLF returns as it goes through the stream of queries. The experiment is conducted in 

the following manner: 
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Figure 2.6.: ORLF quality experiments 

1. Let Q be a stream of queries and QM ⊂ Q a sub-stream of queries with the property 

that the list of results of each query contains exactly one record in RM and each 

record in RM appears in the list of results of some query. 
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2. We run 1,000 queries from Q − QM . Then, we run all queries in QM randomly. 

3. For each query q ∈ QM , ORLF yields a set of duplicate record pairs Pq corresponding 

to q. 

4. We collect all matching pairs PORLF generated by ORLF (Eq. 2.2) over the entire 

stream QM . Then, we extract the set of correct matching pairs from PORLF (Eq. 2.3) . 

PORLF = ∪q∈QM Pq (2.2) 

CorrectnessORLF = |PORLF ∩ PGS | (2.3) 

5. We repeat 2-4 until ORLF processes 100,000 queries. The goal is to show that ORLF 

incrementally benefts from past queries and yields signifcantly improved RL results. 

In general, both Pq and PORLF are different at subsequent iterations because more and 

more records are appended to the cache. CorrectnessORLF is independent of the number of 

processed records when performing RL. Hence, it is a good indicator of ORLF effectiveness 

since it provides a uniform way to measure effectiveness across iterations. The goal is 

to show that ORLF converges to PGS as the system processes more queries. Note that 

in this and in the following experiment, to increase the randomness of the testing, we 

tested ORLF with three different query streams, corresponding to different values for the 

parameter β ∈ {0.64, 0.7, 1.3} of the power law distribution, and reported the average 

number of correct pairs across the three runs. 

Figure 2.6a shows that the overall quality of ORLF improves sharply as the system 

processes more queries, then it remains relatively stable. More importantly, it does not 

deteriorate; ORLF benefts from previously processed queries and improves the quality of 

the current and future queries. 

The second part of the experiment compares our system to simply applying an off-the-

shelf offine RL tool. We choose Febrl [29] because its source code is readily available 
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online. Febrl takes two sets of records S1 and S2 as input and outputs the set PFebrl of 

duplicate pairs from these two sets. We employ the same setting described above. Febrl 

is used as follows. For each query q ∈ QM let Di(q), 1 ≤ i ≤ 9 be the set of results 

returned by the ith Web database in response to q. Febrl is then applied to every pair 

Di(q) and Dj (q) of result sets, 1 ≤ i < j ≤ 9. Febrl is applied to 36 pairs of result 

sets per query. (This experiment is the most time consuming and it took several days to 

complete). We then union the pairs of matching records obtained from the 36 runs of 

Febrl, we call this set PFebrl(q). The set of pairs of record matchings produced by Febrl S 
for all the queries in QM is given by PFebrl = q∈QM 

PFebrl(q). PFebrl is computed every 

1,000 queries as is PORLF. The set of correct pairs of matching records for Febrl is given by 

CorrectnessFebrl = |PFebrl ∩ PGS |. 

Figure 2.6b plots CorrectnessFebrl and CorrectnessORLF side by side. The graph 

clearly shows that for the initial set of queries, Febrl outperforms ORLF. However, as 

more queries are processed, ORLF starts to gradually catch up with Febrl and eventually 

outperforms it. Figure 2.6b approximately mirrors the trend presented in Figure 2.1. 

Observe that Febrl’s effectiveness remains about the same across the query stream. 

Dynamic Cache with Eviction and Static Cache: We evaluated two caching strategies: 

dynamic caching with three eviction policies (LRU, MRU and LFU) and static caching. We 

use Febrl to clean all the crawled data from the 9 databases offine; the resulting clusters 

(or entities) are loaded increasingly by fraction into the cache. We report the number of 

returned correct pairs (Eq. 2.3) computed from randomly selected queries from Q. We 

report the numbers for each of the considered cache sizes. 

Overall, LRU has the best results and MRU has the poorest as shown in Figure 2.6e– 

MRU evicts the most recently used entity from the cache, which is likely to be needed for 

future queries. The static cache performs worse than the dynamic cache, but it becomes 

almost as good as the dynamic cache as the cache size approaches 100% of the total enti-

ties. LRU and LFU dynamic caches show better peformance than the static cache since a 

dynamic cache continues to update the content of the cache over time, while a static cache 
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does not. Increasing the cache capacity allows ORLF to evict less records (and thus, to 

keep more “useful data”); this decreases the likelihood to miss an incoming record. 

We report experiments that assess ORLF’s performance. First, we evaluate the average 

query response time by varying the number of returned records per source, we used a total 

of 10 sources in this experiment. Figure 2.7b shows the average query response time when 

using different values for the maximum number of returned records per source, we can see 

that ORLF is very effcient, even when processing 20 records from each source, the average 

query response time does not exceed 0.4 second. We also evaluate the scalability of ORLF 

by computing the average query response time for a set of 200 randomly selected queries, 
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while increasing the number of sources to which we submit the queries. The response time 

is the time between querying the cache for top-k matches and producing the query’s output. 

We do not take the database querying time into account as it depends on factors (e.g., access 

method, internet bandwidth) that are outside the scope of this work. We start with 9 distinct 

sources. We gradually increase the number of sources up to 100 by duplicating the original 

sources. Figure 2.7c shows the scalability results. We observe that the increase in the 

query response time is linear in the number of sources. We have observed that the query 

response time is primarily dominated by the top-k query time, this is expected because the 

top-k queries in the Bed-tree index require computing edit distance for each string in the 

tree leaves to fnd the possible matches to the querying record. In addition, the similarity 

search algorithms based on B-tree indices explore many branches (in the worst case all of 

them) in the tree that may contain candidate matches [43]. 

2.6.3 Synthetic Dataset 

In this experimental study, we compare ORLF against an ideal system that has a perfect 

RL algorithm. That is, the ideal system does not miss a pair of matches in the list of 

returned records of a query. We want to showcase that because the system is stateless (does 

not keep information from previous queries), it cannot deliver a “clean” representation of 

an entity in most cases, while ORLF does. The experiment is set up as follows. For an 

entity e, let Le be the set of records from all sources that need to be known for a fusion 

algorithm to compute the correct representation of e. Le is computed by RL (over time). 

Missing any portion of Le would render an imperfect version of e regardless of the fusion 

algorithm being used. The “cleanliness” of e is measured as the ratio |L|/|Le|, where L is 

the set of records discovered by one of the two systems. For ORLF, L is the union of the 

pairs discovered across processed queries, while for the perfect offine RL system, it is the 

set of matching record pairs for a given query. 

We use synthetically generated data to track the duplicates of all the records in the 

dataset, and hence, to accurately measure the effectiveness of the two systems. We gen-
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erated a synthetic dataset of 1M records that contains made-up personal information such 

as frst name, last name, and social security number. We used the tool dsgen which is part 

of Febrl to generate this dataset. We generated 200K records along with 800K duplicates. 

The maximum number of duplicates per record was set to 10. The tool introduces different 

types of noise to the original records to generate duplicates. In order to simulate the setup 

of a VIS, we randomly split the set of synthetic data into 10 sources, each containing 100K 

records. 

The matching function checks if two records have a similar SSN, surname and phone. 

The string edit distance threshold for the three attributes is empirically set to 0.8. 

Figure 2.6c shows the results obtained for a query stream of 1K queries posted to 10 

sources; we can see that ORLF greatly improves the quality of the returned results to the 

posted queries over the perfect RL tool. Such improvement comes from the proposed 

caching system which makes ORLF beneft from previously processed queries. 

2.6.4 Comparison with Solaris 

We compare ORLF to Solaris [37], which performs online fusion of records returned 

by a query with copying and accuracy constraints on the sources. Solaris has two methods: 

ACCU and PRAGMATIC. As reported in [37], PRAGMATIC has a slightly better precision 

than ACCU, but it is slower. We only implemented ACCU for the comparison. 

Dataset: We use the dataset Books [37]4 since Solaris requires the accuracy information 

of the Web sources. Books has book records (ISBN, title and authors) from 894 sources. It 

comes with a gold standard set of 100 books for which we know the correct authors. 

Query stream: We generate a set Qbooks of 3000 queries that ask for the books in the gold 
i i idata. For a book entity Bi that has a set of records Ri = {r1, r2, ..., r } across the sources, n 

there exists a set of queries that have different coverage ratios on Ri. ORLF is expected to 

do well even when the query coverage ratio is low (thanks to the cache), whereas Solaris, 

4We thank the authors for sharing with us the dataset, the accuracy of the sources, and the gold standard. 
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due to its stateless nature, performs well when the query has a high coverage ratio. We 

consider queries of different coverage ratios to be fair to both systems. 

We post the queries in Qbooks to ORLF and Solaris to assess the accuracy of their fusion 

results. We measure this accuracy by assessing their ability to return the correct value for 

the authors of the books in the gold data. We consider only the sources that contain books 

in the gold data. There are 238 such sources. As we see in Figure 2.6d, the two systems 

perform quite similarly. However, unlike Solaris, ORLF performs RL (besides data fu-

sion). ORLF is thus exposed to RL mistakes (which may lead to low-quality fusion). Data 

fusion in the current implementation of ORLF is naive and only considers majority voting 

among conficting values. We observe that in the beginning, Solaris slightly outperforms 

ORLF . As ORLF processes more queries, it starts outperforming Solaris as it benefts 

from the cached fused results. 

Using the same dataset, we compare the average response time for both systems, ex-

cluding the data sources querying time. We use a query stream of 100 randomly chosen 

queries from Qbooks. Figure 2.7a shows that ORLF slightly outperforms Solaris since it 

does not perform any preprocessing for the conficting values to be fused, it just takes the 

majority value. As the number of data sources increases, Solaris’s average time becomes 

closer to ORLF’s; this is because Solaris does not necessarily query all the data sources, 

and hence it is not as sensitive to the number of sources as ORLF. 

2.7 Related Work 

Our work is related to four areas: metasearch engines for structured data, data fusion, 

record linkage and caching. It also builds upon existing offine RL&F techniques, most 

of them comprehensively summarized in [11] and [44]. We are not aware of any caching 

method for metasearch engines over structured data. Caching nonetheless has received 

substantial consideration in text Web search engines [45]. 

To our knowledge, an RL&F system for online settings as presented in this chapter, i.e., 

for metasearching, has not been proposed before. We are aware of three other recent works 
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that propose online solutions [33, 37, 46]. In [46], the term “online” denotes an entirely 

different setting than ours, namely, a set of distributed databases whose records need to 

be matched over a network. The goal is to minimize the communication overhead, i.e., to 

minimize the number of records transferred over the network. 

The approach proposed in [37] (referred to as Solaris) performs online fusion with 

copying and accuracy constraints on the data sources. The key idea is to stop probing 

additional sources, in response to a query, once the system is confdent enough that data 

from the remaining sources are unlikely to change the answer computed from the probed 

sources. The main differences between Solaris and our system are: (1) Solaris does not 

perform RL (in the reported experiments, ISBN is assumed clean and used as key for RL 

purposes) and (2) Solaris is stateless, thus its fusion accuracy for an attribute value is as 

good as the number of records having that value or related values in the query result set. 

Our experiments on the same dataset show similar accuracy for both systems. 

A Bayesian approach for fusing records is also described in [33]. It infers the quality 

of a data source for different attribute types without any supervision and incorporates this 

quality in the fusion process. While both works present interesting frameworks for online 

fusion, there are at least two issues with these solutions. First, as illustrated in Section 2.1, 

the lists of returned records for a query do not a have high degree of overlap. Second, 

as shown in these works, a large number of sources may need to be probed to reach the 

desired quality level at query-time. For example, in [37] the authors show experimentally 

that 73 out of 100 (book) records reach a stable version after 14 sources are probed and 

all 100 are stable after over 90 sources are probed. Although a metasearch engine may 

connect to hundreds of component search engines, in practice and for effciency reasons, it 

submits a query to a very small number of them: a few tens of them [47]. The databases are 

selected based on the query at hand and the profle of each database [26,48]. The above two 

observations suggest that the proposed fusion approach may not be suitable for metasearch 

engines. Data from past queries, i.e., caching, is needed for accurate online data cleaning. 

While iterative caching was not used to effciently perform data quality, effcient (of-

fine) RL nonetheless is a major topic. Methods to speed up the performance of RL include 
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iterative blocking [30], size fltering [49], order fltering [50], suffx fltering [51], iterative 

hashing [31] or “hints” as in the pay-as-you-go technique proposed in [52]. Three type 

of hints are proposed: sorted lists of record pairs, partition hierarchy, and sorted list of 

records. 

Incremental record linkage is also a related topic [21,53,54]. An incremental clustering 

technique is proposed in [53]. For a new record, it estimates its likely cluster through a 

voting scheme and then it recursively updates the clusters. The algorithm is not suitable for 

online settings because the recursion may pass through the entire database. The solution 

in [54] is a heuristic incremental clustering algorithm that ignores the propagation step. 

The neighboring objects are never analyzed, the clusters never merge or split: a new record 

is either added to a cluster or forms a new cluster. [21] proposes two graph incremental 

clustering algorithms for RL. The proposed algorithms are intractable in general and the 

proposed solutions are not suitable for the online setting. 

[55] reports a probabilistic approach to online RL. The aim is to return alternative 

linkage assignments with assigned probabilities in a response to a query, whereas we return 

duplicate-free query results along with fused attribute values. 

2.8 Concluding Remarks 

In this chapter, we presented a novel approach for record linkage and fusion in an online 

setting. Our approach is based on iterative caching: a set of frequently requested records 

(obtained from the different Web databases through sampling) is cleaned offine and cached 

for future references. Newly arriving records in response to a query are cleaned jointly with 

the records in the cache, presented to users and appropriately appended to the cache. Our 

solution allows a “fast” response to the current query and an “improved” data quality for 

subsequent queries. 

There are at least two items for future work: (1) Devise a measure of degradation of 

the cache, which would trigger a cache refresh. (2) Incorporate better fusion algorithms in 
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ORLF. The solution presented in [33] seems to be better amenable to our framework due 

to its incremental nature. 
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3 PATTERN-DRIVEN DATA CLEANING 

A large class of data repair algorithms rely on data-quality rules and integrity constraints 

to detect and repair the data. A well-studied class of integrity constraints is Functional 

Dependencies (FDs, for short) that specify dependencies among attributes in a relation. 

In this chapter, we address three major challenges in data repairing: (1) Accuracy: Most 

existing techniques strive to produce repairs that minimize changes to the data. However, 

this process may produce incorrect combinations of attribute values (or patterns). In this 

work, we formalize the interaction of FD-induced patterns and select repairs that result in 

preserving frequent patterns found in the original data. This has the potential to yield a 

better repair quality both in terms of precision and recall. (2) Interpretability of repairs: 

Current data repair algorithms produce repairs in the form of data updates that are not 

necessarily understandable. This makes it hard to debug repair decisions and trace the 

chain of steps that produced them. To this end, we defne a new formalism to declaratively 

express repairs that are easy for users to reason about. (3) Scalability: We propose a linear-

time algorithm to compute repairs that outperforms state-of-the-art FD repairing algorithms 

by orders of magnitude in repair time. 

The chapter is organized as follows. We present the preliminaries in Section 3.2. We 

defne the space of repairs and the problem in Section 3.3. Section 3.4 presents the for-

malisms we use to express repairs in terms of their underlying FD patterns. Section 3.5 

presents the metrics we propose to compute the quality of FD patterns. In Section 3.6, we 

present the building blocks to our repairing technique and propose a set of data repairing 

algorithms. We highlight key experimental results in Section 3.7 and review related work 

in Section 3.8. Finally, Section 3.9 concludes the chapter. 
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3.1 Introduction 

In rule-based data cleaning, various types of rules have been proposed to characterize 

clean data including functional dependencies (FDs) [17], conditional FDs (CFDs) [56], 

inclusion dependencies [17], and denial constraints [16]. While the ultimate goal of data 

cleaning is to take a data instance from its “dirty” state to its “clean” state, i.e., the ground 

truth, most automatic rule-based data-repairing tools only guarantee consistency of the 

data with respect to the defned rules. This process may not necessarily lead to the “truth” 

version of the data. 

In general, correct data is a genuine representation of reality. Hence, correct values will 

maintain some data patterns based on their distribution and relationships to each other [57, 

58]. For example, in Figure 3.1, the pattern [country = “Germany”, capital = “Berlin”] 

is strongly supported in the data compared to the pattern [country = “Russia”, capital = 

“Berlin”]. In a situation where we need to change the data (or repair it) due to some errors, 

these changes or repairs should strive to keep data patterns that are likely correct. In the 

example, we would strive to keep the former pattern. The main focus of current repairing 

algorithms is to compute repairs that minimize the changes to the data without considering 

the overall effect of each repair on the underlying data patterns. We illustrate this limitation 

through a motivating example. 

Example 3.1.1 Consider Table Tour in Figure 3.1 listing names and countries of cyclists 

that participated in Tour de France 2016. Consider the following FDs defned over Ta-

ble Tour: fd1 : cyclist → country and fd2 : country → capital. fd1 states 

that records with the same cyclist name must have the same country while fd2 states that 

records with the same country name must have the same capital. 

Standard solution. Tuples t1 and t2 violate fd1. To repair this violation, most data-

repairing algorithms would change the value of any of the four cells involved in the vio-

lation. For example, by changing the value of country to either “Germany” or “Russia”, 

the violation will be eliminated and the data instance will be consistent with the two FDs. 

At a frst glance, both values seem equally good because they appear once for the cyclist 
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1

4

e1

fd1: cyclist       country
fd2: country      capital

Paul 
Martens

Germany

Russia

Berlin

Table Tour

e2

cyclist country capital
t1 Marcel Kittel Russia Berlin
t2 Marcel Kittel Germany Berlin
t3 Andre Greipel Germany Berlin
t4 Emanuel Buchmann Germany Berlin
t5 Paul Martens Germany Berlin

Figure 3.1.: Sample instance and the graph representing data dependencies with respect to 
fd1 and fd2 

“Marcel Kittel”. Choosing “Russia” would result in a consistent instance but would create 

incorrect combinations with values from other attributes. For instance, the value com-

bination [country=“Russia”, capital=“Berlin”] is incorrect. Existing repairing algorithms 

look at the violating values in isolation from the non-violating ones. Consider the exam-

ple above. Looking at the values “Russia” or “Germany” in isolation from other attribute 
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values may create incorrect value combinations with other attribute values. Therefore, it is 

important to recognize and preserve correct value combinations across multiple attributes. 

Modeling Value Combinations. One way to capture value combinations that bind 

semantically-related attributes is through FDs. When instantiated on the data, these depen-

dencies form data patterns that bind together semantically-related data values. For instance, 

the pattern [country = “Germany”, capital = “Berlin”] is a binding of data values [country 

= “Germany”] and [capital = “Berlin”] through fd2. Consequently, every FD generates a 

set of patterns. We refer to these patterns as FD patterns. In our proposal, we treat FD 

patterns as frst-class citizens. We extract FD patterns from the dirty data and reason about 

their quality and interactions to compute a repair. The goal is to add more context to dif-

ferent repair choices by looking at data values as members of data patterns. Thus, updating 

a value would update its underlying patterns. In other words, we want to ensure that the 

introduced repairs maintain data patterns that are most likely to be present in the clean ver-

sion of the data. For example, from Figure 3.1, a possible repair would update t1[country] 

to “Germany” that would result in the correct pattern: [country = “Germany”, capital = 

“Berlin”] (a pattern is correct if it corresponds to the ground-truth). An alternative repair is 

to update t2[country] to “Russia” creating the incorrect pattern [country = “Russia”, capital 

= “Berlin”]. 

Repairing a violation of an FD may introduce errors that may not even be detectable. 

For example, in Figure 3.1, updating t2[country] to “Russia” introduces errors in the data 

that do not trigger new FD violations. Thus, we need a better way to reason about different 

repairs beyond the satisfability of the FDs. In particular, we need to assess the effect of 

different repairs on the underlying data patterns. 

Key Observation. Automatic data-repairing algorithms assume that most of the data is 

correct. Thus, they strive to change the data minimally to repair violations. This minimality 

principle has been instilled in various repairing algorithms, e.g., [15–17, 59]. When most 

of the data is clean, most of the value combinations (e.g., the FD patterns) in the data are 

correct. For instance, in the previous example, the pattern [country = “Germany”, capital = 
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“Berlin”] is strongly supported in the data, making it likely correct as opposed to the pattern 

[country = “Russia”, capital = “Berlin”] that is weakly supported in the data. 

The Proposed Repair Strategy. In practice, FDs interact with each other through shared 

attributes. Thus, the FDs’ corresponding patterns interact with each other as well. This 

interaction offers an opportunity to assess the effect of repairing the violation in one FD, say 

fdi, on the FD patterns of other FDs that interact with fdi. For instance, in Example 3.1.1, 

fd1 and fd2 share the attribute country. We illustrate how this interaction can be leveraged 

to reason about the quality of different repairs. 

Example 3.1.2 In Example 3.1.1, we can distinguish two repairs R1 and R2 that generate 

different sets of FD patterns: 

1. R1: Update t2[country] to “Russia”. This results in FD patterns p1 : [cyclist = 

“Marcel”, country = “Russia”] and p2 :[country = “Russia”, capital = “Berlin”] 

for fd1 and fd2, respectively. 

2. R2: Update t1[country] to “Germany”. This results in FD patterns p3 : [cyclist 

= “Marcel”, country = “Germany”] and p4 : [country = “Germany”, capital = 

“Berlin”] for fd1 and fd2, respectively. 

While both R1 and R2 result in a consistent instance with respect to fd1 and fd2, it is 

important to dissect the patterns they produce to reason about their quality. In particular, R1 

results in FD patterns p1 and p2 that are both supported by one tuple only (t1) in the original 

data. R2 results in FD patterns p3 and p4. While p3 is only supported by one tuple (t2) in 

the original data, p4 is supported by four tuples, making R2 the better repair. Notice that 

the interaction of fd1 and fd2 allows us to consider different value choices for the attribute 

country in the context of the patterns that carry them. That is, the value of country is 

part of patterns p1 and p2 in R1 and patterns p3 and p4 in R2. This added context help in 

identifying the better repair R2. 

To help highlight the interplay among FD patterns, we represent each FD pattern by an 

edge in a dependency graph (refer to Figure 3.1). The graph is the result of instantiating the 
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FDs on the data. The nodes represent data values and a directed edge from a value v of an 

attribute X to a value w of an attribute Y exists if there is an FD X → Y and the database 

contains the pair v, w in one of the tuples. The weight of an edge represents its quality that 

is captured through the number of tuples that support the FD pattern this edge encodes. 

The dependency graph in Figure 3.1 illustrates how each choice to repair the violation 

of fd1 affects the FD patterns of fd2 (for clarity of explanation, the graph only includes 

tuples t1 to t5 because the other tuples do not contribute information to fx the violation). 

Because both choices are supported by one tuple only, looking at the FD patterns of fd1 in 

isolation would not provide a good idea about the best value to choose. Looking “beyond” 

the FD patterns of fd1 and observing how they affect those of fd2 would provide a better 

idea about the value to choose to repair the violation. The correct repair R2 corresponds to 

the highlighted path (e1, e2). An important implication of this data-repairing approach is 

that even if we had a majority value to fx fd1’s violation, this majority value may lead to 

low-quality FD patterns for fd2. Therefore, looking at the FD patterns collectively is key 

to producing repairs that preserve data patterns that are strongly supported in the data and 

hence leading to a better quality repair. 

Interpretability. Automatic data repairing needs debugging information for users to make 

sure the data is clean. While there have been numerous efforts to develop formalisms to 

express data quality rules [15, 16], little attention has been given to express repairs in a 

form that facilitates their examination and evaluation. Current repairing algorithms express 

repairs in terms of the transformations they make to the data [58]. This makes it hard for 

users to understand and trace the reasons why certain repair decisions were made. An im-

portant by-product of our repairing model is the Interpretability of its repairs. In particular, 

when the user wants to trace the decisions that have been made to choose a certain value 

update, one can easily identify the path in the dependency graph that has led to that repair. 

This provides the user with a rich context to analyze the chain of patterns that have been 

involved to produce a certain repair. Furthermore, patterns are more intuitive to analyze 

than cell values seen in isolation. For instance, in Example 3.1.1, if the user wants to trace 

the chosen value update R2, she would be given the path e1 → e2 that produces this value 
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update. This feature makes it easy to understand which edges have been involved in the 

decision (e1 and e2). 

The contributions presented in this chapter are as follows: 

• We propose a novel data characterization in the form of FD patterns to model value 

combinations and their interactions by leveraging FD rules. We also defne a binary 

operator to express a dirty data instance and its repairs in terms of its underlying FD 

patterns. 

• We introduce a new class of repairs that aims at maximizing the frequency of FD 

patterns in the data. We project the FDs over data values to produce a dependency 

graph, where each edge represents an FD pattern and the edge’s weight represents 

the FD pattern’s quality (based on the FD pattern’s frequency in the data). We then 

use this graph to select edges with higher weights to repair tuples. 

• We present effcient algorithms to generate repairs in linear time in the size of the 

data and the FDs. Traversing the dependency graph is driven by a set of heuristics 

that maximize the quality of the selected edges based on the edges they lead to. 

• We express the fnal instance repair in terms of the FD patterns in the original data. 

This abstraction makes it easy for users to examine and debug the repair output. 

• We provide a thorough experimental study to showcase the performance of our ap-

proach compared to a variety of state-of-the-art data repairing algorithms. 

3.2 Preliminaries 

Let R be a relational schema of a data instance I . Let A = {A1, A2, ..., An} be the set 

of attributes in R with domains dom(A1), dom(A2), ..., dom(An) respectively. Let ΣR be 

the set of functional dependencies (FDs) defned over R. We say that an instance I of R 

satisfes ΣR denoted by I |= ΣR if I has no violations of any of the FDs in ΣR . We assume 

that ΣR is minimal and is in canonical form [60]. In the remainder of the chapter, we refer 
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to the set of FDs as simply Σ. Let T be the set of tuples in I . T = {t1, t2, ..., tn}. A cell t[A] 

denotes the value of attribute A in tuple t. An FD f in ΣR has the format X → Y , where 

X, Y ∈ A. Let Left(f) and Right(f) be the left- and right-hand sides of f , respectively. 

X and Y are referred to as the antecedent and consequent attributes, respectively. The set 

of attributes involved in f and Σ are referred to as attr(f) and attr(Σ) respectively. When 

f is projected on a tuple t, we refer to t[X] and t[Y ] as LHS and RHS values of f . 

Defnition 3.2.1 Repair Instance [17]: Given an instance I of schema R violating FDs 

ΣR , an instance I 0 is a repair of I iff I 0 |= ΣR and I 0 retains the same number of tuples 

as I . 

According to Defnition 3.2.1, a repair is achievable only by modifying attribute values 

of tuples. Insertion or deletion of tuples or attributes are not allowed. Unlike [17], our 

space of repairs only contains constants from the active domain. There have been numerous 

efforts to compute repairs that are as close to the clean data as possible [15, 16, 59]. Most 

existing FD repairing techniques aim at minimizing changes to the data to produce a repair. 

Defnition 3.2.2 Cardinality-Minimal Repair [17]. A cardinality-minimal repair I 0 of 

Database Instance I differs minimally from I . That is, there is no other repair I 00 , where 

|Δ(I, I 00)| < |Δ(I, I 0)|. 

Δ(I, I 0) denotes the set of cells in I that have different values in I 0 . 

Without loss of generality, in our proposal we consider binary distance functions to 

compute the distance between two data values (1 if two data values are equal and 0 oth-

erwise). Thus, the cost of a repair I 0 , denoted Cost(I 0), is the number of cells (a specifc 

attribute value in a specifc tuple) in the original instance I that are not equal to those in I 0 . 

Defnition 3.2.3 Functional Dependency Graph. A Functional Dependency Graph (FDG) 

is a directed graph G(V, E), where V contains the set of attribute sets involved in Left(Σ) 

and Right(Σ) and E is the set of directed edges, such that (Ai, Aj ) ∈ E iff there is an FD 

f(Ai → Aj ) ∈ Σ. 
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3.3 Modeling Patterns using FDs 

In this section, we explain how we project the FDs on the instance to produce value 

combinations, or FD patterns, of the attributes in the FDs. These patterns constitute the 

building block of our proposal. We then present the space of repairs we generate. 

3.3.1 Functional Dependency Patterns 

Data patterns induced by FDs are at the core of our framework. Data is as good as 

the patterns that constitute it. A wrong value combination at a tuple results in an erroneous 

tuple. First, we defne simple FD patterns and discuss their role in our framework. Addi-

tionally, simple FD patterns can be composed to embed more than one FD as we show in 

Section 3.4.3. 

Defnition 3.3.1 A simple FD pattern P is a pair (φ, V ), where (1) φ is a single FD from 

Σ, and (2) V contains a set of pairs (A, a) where A ∈ attr(φ) and a ∈ dom(A). We denote 

by P [A] the value of pattern P at attribute A, where A ∈ attr(φ). To ease the readability of 

examples, we sometimes omit the name of attributes in V . The antecedent and consequent 

of P are the attribute values in Left(φ) and Right(φ), respectively. 

Though their syntax is similar, FD patterns are fundamentally different from CFDs [56]. 

The semantics of FD patterns is different from CFDs. FD patterns describe an instance in 

terms of its FDs and data values, while CFDs are data quality rules meant to be enforced 

over the instance. 

Example 3.3.1 In Figure 3.1, example FD patterns include: 

• P1 : ([fd1], {“Marcel Kittel”, “Russia”}). 

• P2 : ([fd2], {“Germany”, “Berlin”}). 

• P3 : ([fd1], {“Paul Martens”, “Germany”}). 

• P4 : ([fd2], {“Russia”, “Berlin”}). 
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Figure 3.2.: FD Patterns interaction cases 
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We introduce two metrics to distinguish different instance repairs in terms of their un-

derlying FD patterns. 

Instance Quality: The instance quality of I denoted Q(I) containing a set of tuples T is 

the frequency of each FD pattern in every tuple in T : 

X X 
Q(I) = F requency(p) (3.1) 

t∈T p∈P (t) 

P (t) denotes the set of FD patterns in a given tuple t. Frequency(p) is the frequency of 

pattern p : (X → Y, x, y) in I . 

Repair Gain: The gain of a repair I 0 of instance I is the difference in instance quality 

between I 0 and I: 

Gain(I 0, I) = Q(I 0) − Q(I) (3.2) 

The gain of a repair I 0 is measured by the increase/decrease in frequency of the FD patterns 

as compared to I . Clearly, we want to compute repairs whose gain is positive. 

3.3.2 Problem Defnition 

As illustrated in Example 3.1.1, it is important to preserve the patterns that are strongly 

supported by the data. Thus, we extend the cardinality-minimality metric to consider the 

space of repairs that result in the most supported FD patterns in the data. 

Defnition 3.3.2 Pattern-Preserving Repair. A repair I 0 of Instance I with a cost k 

is pattern-preserving if there is no repair I 00 s.t. (1) |Δ(I, I 00)| < |Δ(I, I 0)|, and 

(2) Gain(I 00) > Gain(I 0) 

Notice that the frst condition can be reduced to the Cardinality-Minimality condition 

(with k being the minimum cost). Condition (2) ensures that the repair results in the highest 

repair gain, i.e., the repair has to preserve the FD patterns that are strongly supported in 

the data. 
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Proposition 3.3.1 Computing a pattern-preserving repair is NP-complete for a constant 

Repair Cost k. 

Proof sketch: The problem of generating pattern-preserving repairs can be reformulated as 

the the 0/1 knapsack problem for a given cost k. Let I 0 be the repair that has the maximum 

repair gain with the repair cost k. That is, there is no other repair I 00 such that Gain(I 00, I) > 

Gain(I 0, I). From Defnition 3.3.2, I 0 also has the maximum instance quality among all 

other repairs for a given repair cost k. Thus, given the set of all FD Patterns S in I , we want 

to fnd a subset P ⊂ S that maximizes the Repair Quality of a repair I 0 . In other words, we 

want to update tuples in I such that the resulting instance I 0 has the highest Repair Gain 

for a cost k. Therefore, I 0 contains, for each tuple, a set of FD patterns corresponding to 

each FD in Σ such that Q(I 0) is maximal for a given Repair Cost k. 

X X X X 
maximize F requency(p) subject to: Cost(I 0) ≤ k (3.3) 

t∈T p∈P t∈T p∈P 

In Section 3.6, we present linear-time repairing algorithms that compute near-optimal 

pattern-preserving repairs. 

Example 3.3.2 We follow up on Example 3.1.2 to give an example of a pattern-preserving repair. 

Let I be the T our instance presented in Figure 3.1. Notice that Repairs R1 and R2 are cardinality-

minimal with Cost 1. Notice further that there are two other repairs that are cardinality-minimal 

with Cost 1 besides R1 and R2, namely (1) R3 : change the value of cyclist in t1 or (2) R4: change 

the value of cyclist in t2. In this example, we only consider R1 and R2 for simplicity. For a cost 

of 1, only R2 is a pattern-preserving repair. We now show that Gain(R2, I) > Gain(R1, I) for 

k = 1. 

Let t11 and t12 be the tuple t1 after applying R1 and R2 to I , respectively. Similarly, let t21 

and t22 be the tuple t2 after applying R1 and R2 to I , respectively. A summation between brackets 

denotes the sum of the frequency of each FD pattern at a given tuple. 

Gain(R2, I) = Q(R2) − Q(I) 

Q(R2) = (2 + 5) +(2 + 5) +(1 + 5) +(1 + 5) +(1 + 5) = 32| {z } | {z } | {z } | {z } | {z } 
t12 t22 t3 t4 t5 

Q(I) = (1 + 1) +(1 + 4) +(1 + 4) +(1 + 4) +(1 + 4) = 22| {z } | {z } | {z } | {z } | {z } 
t1 t2 t3 t4 t5 
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Gain(R2, I) = 32 − 22 = 10 

Gain(R1, I) = Q(R1) − Q(I) 

Q(R1) = (2 + 2) +(2 + 2) +(1 + 3) +(1 + 3) +(1 + 3) = 20| {z } | {z } | {z } | {z } | {z } 
t11 t21 t3 t4 t5 

Gain(R1, I) = 20 − 22 = −2 

Thus, Gain(R2, I) > Gain(R1, I). 

3.4 FD Pattern Composition and Pattern Expressions 

In this section, we study the interactions among FD patterns, and present a formalism 

to declaratively express repairs in terms of their underlying FD patterns. 

3.4.1 Encoding FD Patterns 

We encode the FD patterns by projecting the FD graph on the instance. Refer to Fig-

ure 3.1 for illustration. Every simple FD pattern (X → Y, [x, y]) is encoded with a directed 

edge (x, y). We refer to x and y as the LHS and RHS nodes respectively. 

Defnition 3.4.1 The Instance Graph (IG) of Instance I is a directed graph, say G(V, E), 

where: (1) Each node v ∈ V has two attributes v.attribute and v.val encoding an attribute 

a ∈ A and a data value d ∈ dom(a), respectively; (2) A directed edge (v, w) ∈ E encodes 

a simple FD pattern (X → Y, [x, y]) ∈ I such that v.attribute = X , v.val = x, and 

w.attribute = Y , w.val = y. 

For example, the graph illustrated in Figure 3.1 is the instance graph for Instance Tour. 

In the remainder of the chapter, since the edges in IG encode simple FD patterns, we refer 

to them as (simple) FD patterns. Additionally, to ease the readability of the graph fgures, 

we label the nodes with their values. 
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3.4.2 Interactions among FD Patterns 

Figure 3.2 enumerates four cases in which FD patterns interact with each other. FD 

patterns P1 : (fd1, V1) and P2 : (fd2, V2) interact with each other iff: (1) fd1 and fd2 

share at least one attribute, and (2) the value of the shared attribute(s) between fd1 and fd2 

is the same in V1 and V2. Note that different cases of interactions have different semantics. 

Consider a dirty tuple t containing two FD patterns P1 and P2 corresponding to two differ-

ent FDs f1 and fd2. Without loss of generality, we discuss interaction cases with FDs that 

have one attribute in their antecedent. P1 and P2 can exhibit the following four cases of 

interaction depending on the FDs they embed (Figure 3.2): 

Case 1 (fd1 = A → B, fd2 = A → C): t[A] = a1 can be mapped to any RHS value in 

B and C, i.e., the choice of values of B is independent of the choice of the value of C. In 

other words, choosing the RHS of a1 to satisfy A → B does not affect the choice of the 

RHS of a1 to satisfy A → C. 

Case 2 (fd1 = A → C, fd2 = B → C): t[A] = a1 and t[B] = b1 must be mapped to the 

same RHS value C. In other words, Patterns P1 and P2 have to share the C value. Thus, 

the choice of the C value for A affects the choice of the C value for B, and vice-versa. 

Case 3 (fd1 = A → B, fd2 = B → C): In this case, the consequent of P1 is the 

antecedent of P2. In this case, the choice of the value of B affects the C value. That is, 

choosing a value B = bx in P1 would make bx the antecedent of P2. 

Case 4 (fd1 = A → B, fd2 = B → A): This is the case of circular FDs; the choice of the 

value of A affects the choice of the value of B and vice-versa. 

If two patterns P1 and P2 interact following any of the above four cases, we say that 

they are composable, denoted by P1 ↔ P2. Otherwise, we say they are not composable, 

denoted P1 6↔ P2. 

In the above cases, depending on the interaction case of the FDs, selecting an FD pattern 

for one FD in a tuple t may affect the choice of the FD patterns for the subsequent FDs that 

interact with it. We now formalize this observation. 
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Defnition 3.4.2 Pattern Independence. Two FD patterns P1 : (φ1, V1) and P2 : (φ2, V2) 

are independent if any of the following is true: (1) P1 and P 2 exhibit interaction Case 1; 

(2) The shared attributes between φ1 and φ2 do not carry the same values in V1 and V2, 

respectively; or (3) φ1 and φ2 do not share any attribute. If P1 and P2 are not independent, 

we say they are dependent. 

3.4.3 Composition of FD Patterns 

The target is to declaratively describe an instance in terms of its underlying FD pat-

terns. We defne the composition operator to describe FD patterns whose FDs share one or 

multiple attributes. 

Defnition 3.4.3 Direct Composition Operator. The binary composition operator for FD 

patterns, denoted by B, is a binary operator such that ⎧ 

Pij : (φi ∪ φj , Vi ∪ Vj ) if Pi ↔ Pj⎪⎨ 
Pi B Pj = ⎪⎩P : (∅, ∅) if Pi 6↔ Pj 

Intuitively, the binary composition operator allows us to express patterns of multiple 

FDs when they share some common attributes and the values for these attributes are the 

same in the composed FD patterns. The binary composition operator is commutative (Pi B 

Pj = Pj B Pi) and is left-associative. We refer to FD patterns that embed more than one 

FD as composed FD patterns. The Pattern Independence defned in 3.4.2 for simple FD 

patterns applies to composed FD patterns as well. 

Maximal Composition of FD Patterns: We say that an FD pattern P : (φ, V ) is a 

maximal composition (or maximal pattern) w.r.t. a set of FDs in Σ if there is no simple FD 

pattern pi : (fi, vi), where Pi is composable with P and fi 6∈ φ. In other words, P should 

contain a composition of all the simple FD patterns that can interact with each other (based 

on Interaction Cases 1-4). 
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Example 3.4.1 Consider the FD patterns in Example 3.3.1. P1 is composable with P4 

(P1 ↔ P4) and their composition produces a composed FD pattern P14 = P1 B P4 = 

([fd1, fd2], cyclist=“Marcel Kittel”, country = “Russia”, capital = “Berlin”). P14 is 

also a maximal composition w.r.t. fd1 and fd2. 

Notice that P1 is not composable with P2 (P1 6↔ P2) because they have different values 

in the common attribute capital. 

3.4.4 Pattern Expressions 

In this section, we show how we can describe any instance as a composition of its 

underlying simple FD patterns. 

Defnition 3.4.4 A pattern expression for a tuple t, denoted by P exp(t) contains the set S 

of maximal FD patterns such that S covers all FDs in Σ. 

Because all FD patterns in a pattern expression are maximal, it follows that a pattern 

expression for a tuple contains independent FD patterns. Pattern expressions are particu-

larly useful to express the repair instance. The reason is that they enable users to see a 

repaired tuple in terms of the FD patterns in the original data that have been composed to 

produce the tuple. This facilitates the interpretability of the repairs because users can trace 

repair decisions in terms of the edges (or FD patterns) in the Instance Graph. 

Example 3.4.2 We build on Example 3.1.2 to generate repair expressions for the instance 

T our in Figure 3.1. We complement the set of FD patterns in Example 3.1.2 to include those 

of tuples t3, t4 and t5 as follows: P5 : [cyclist = “Andre Greipel”, country = “Germany”], 

P6 : [cyclist = “Emmanuel Buchmann”, country = “Germany”], P7 : [cyclist = “Paul 

Martens”, country = “Germany”]. The repair expressions for the tuples in Table T our are 

as follows: 

P exp(t1) = {P3 BP4}; P exp(t2) = {P3 BP4}; P exp(t3) = {P5 BP4}; P exp(t4) = {P6 BP4}; 

P exp(t5) = {P7 B P4} 
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Table 3.1.: Extended instance Tour rank 

rank cyclist country capital 
t1 166 Marcel Kittel Russia Berlin 
t2 166 Marcel Kittel Germany Berlin 
t3 166 Andre Greipel Germany Berlin 
t4 133 Andre Greipel Germany Berlin 
t5 21 Emanuel Buchmann Germany Berlin 
t6 98 Paul Martens Germany Berlin 

3.5 Pattern Quality 

Our target is to select “good” FD patterns in the instance graph to compute instance 

repairs. Therefore, it is crucial to characterize the quality of simple FD patterns in the in-

stance graph. This step is required by the repair algorithm (Section 3.6) to reason about 

the quality of the various candidate FD patterns. We presented in Section 3.3 simple qual-

ity metrics of FD patterns based on their frequency in the data. We now present a general 

model to characterize the quality of FD patterns that also captures their interaction. Based 

on well-known frequency-based metrics defned for association rules [61], we present sev-

eral metrics to capture the quality of FD patterns (and the ones they affect) in the instance 

graph. By looking at a simple FD pattern P : (X → Y, [x, y]) as an association rule 

(P [x] → P [y]), its Support is the number of tuples with X = x and Y = y in I over the 

number of tuples in I . The Confidence of P is the number of tuples with X = x and 

Y = y in I over the number of tuples with X = x in I [61]. 

|P |
Conf(P ) = (3.4)

|(X → Y, [x, ∗])| 

|P |
Sup(P ) = (3.5)

|(X → Y, ∗, ∗)| 

* denotes “any value”. |(X → Y, [x, ∗])| denotes the number of tuples in I with the LHS 

value x and any RHS value. 

As illustrated in Example 3.1.1, greedily selecting FD patterns based on their frequen-

cies is not a good strategy for selecting the best FD patterns. It is better if the score of an 
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FD pattern not only includes its own confdence and support, but also the confdence and 

support of the FD patterns it can lead to. Thus, we extend Equations 3.4 and 3.5 to capture 

the quality of the FD patterns that can be reached from a simple FD pattern P . We defne 

the quality of a simple FD pattern P by the set of FD patterns it can lead to (denoted P →) 

as follows: 

X X 
Score(P ) = Conf(P ) + Sup(P ) + Conf(Q) + Sup(Q) (3.6) 

Q∈P → Q∈P → 

Score(P )
Quality(P ) = (3.7)

2(|P →| + 1) 

Score(P ) (Equation 3.6)) is the sum of: (1) the Support and Confidence of P , and 

(2) the Support and Confidence of all the simple FD patterns that can be reached from 

P . We normalize the score of a pattern using the average over the number of edges in |P →| 

(we multiply it by two since every edge embeds Sup and Conf ) (Equation 3.7). One 

can normalize Score(P ) using other aggregate functions, but we found that the average 

captures well the quality of simple FD patterns. 

So, far, we have presented quality metrics for a simple FD pattern that corresponds to an 

edge in the instance graph. We generalize Equation 3.7 to defne the quality of a composed 

FD pattern Q as follows (|Q| denotes the number of simple FD patterns in Q): P 
Quality(p)

Quality(Q) = p∈Q (3.8)
|Q| 

Algorithm 4 shows the pseudocode to compute the quality of simple FD patterns in 

IG. It uses Algorithm 4 to traverse IG. Algorithm 3 performs a Depth-First Search (DFS) 

traversal over IG, and computes the quality of each visited edge and vertex. The quality 

of an edge is computed according to Equation 3.7. The quality of a vertex v is the average 

quality of all the edges that can be reached from v. To guarantee termination, back-edges 

(those that correspond to cyclic FDs) are processed when the DFS traversal is complete. 

Specifcally, Algorithm 3 performs the following steps: (1) Build a DFS tree from the 

input root vertex v; (2) For every edge e = (v, w), if e is a back-edge, it is added to a set 



61 

Algorithm 3: Traverse(Vertex v) 
output: Average quality of edges starting from Input Vertex v 

1 if v.adjacent() = ∅ then 
2 vQuality[v] ←0 

3 forall w ∈ v.adjacent() do 
4 Edge e = (v, w) 
5 Score ← 0 
6 if visited[w] = true then 
7 BackEdges ← BackEdges ∪ e 
8 return 0 

9 else 
10 visited[w] ← true 
11 Score ← Conf(e) + Sup(e) + Traverse(w) 

Score 12 Quality[e] ← 
2(|e→|+1) 

13 vQuality[v] ← vQuality[v]+ Score 

14 return vQuality[v] 

BackEdges (Line 7). If not, compute the edge quality (Line 12); (3) compute the quality of 

the root vertex v (Line 13). After the DFS step is completed, all back-edges are processed 

(Algorithm 4, Lines 7-8). The quality of a back-edge e = (v, w) is the average of three 

values: the quality of vertex w (computed in the DFS step), Conf(e) and Sup(e). 

Complexity: Given an instance graph IG(V, E), the time and space complexities of Algo-

rithm 3 are both O(|V | + |E|). 

Example 3.5.1 Consider the instance Tour rank in Table 3.1. Consider the FDs defned in 

Example 3.1.1 and add the following ones: fd3 : rank → cyclist; fd4 : cyclist → rank. 

Figure 3.3 illustrates the Instance Graph obtained from Instance Tour rank with the edge 

quality computed using Algorithm 4. For instance, Quality(e1) = avg[Sup(e1) + Conf(e1) 

+ Quality(v2)] = avg[Sup(e1) + Conf(e1) + (Sup(e3) + Conf(e3)) + (Sup(e4) + Conf(e4)) 

+ Quality(v3) Quality(v4)] = avg[Sup(e1) + Conf(e1) + (Sup(e3) + Conf(e3)) + (Sup(e4) + 

Conf(e4)) + (Sup(e5) + Conf(e5)) + (Sup(e6) + Conf(e6))] = [(0.4 + 0.66) + (0.2 + 0.5) + 

(0.2 + 0.5) + (0.2 + 1) + (0.8 + 1)]/10 = 0.54 

https://0.4+0.66
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Algorithm 4: ComputePatternsQuality(FD Pattern Graph G) 
output: Edge-weights refecting the quality of the FD patterns 

1 BackEdges ← ∅ 
2 V ← G.vertices 
3 

4 

for i ← 0 to |V| do 
visited[i] ← false 

5 forall v ∈ V do 
6 Traverse(v) 

7 forall Edge e(v, w) ∈ BackEdges do 
8 Quality[e] ← avg(Sup(e), Conf(e), vQuality[w]) 

Another example is to compute the quality of the back-edge e2: Quality(e2) = 

avg[Sup(e2) + Conf(e2) + Quality(v2)] = avg[Sup(e2) + Conf(e2) + (Sup(e3) + 

Conf(e3)) + (Sup(e4) + Conf(e4)) + (Sup(e5) + Conf(e5)) + (Sup(e6) + Conf(e6))] = 

[(0.4 + 0.1) + (0.2 + 0.5) + (0.2 + 0.5) + (0.2 + 1) + (0.8 + 1)]/10 = 0.49 
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Figure 3.3.: Instance graph of instance Tour rank with quality scores 

3.6 Traversing the Instance Graph for Data Repairing 

An important step in data repairing is to decide which cell values in the input tuples 

should be retained and which ones should be modifed. We classify the attributes involved 
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in the FDs as bounded (attributes whose values cannot change) or free (attributes whose 

values can be changed). This is a reasonable assumption made in prior repairing algorithms, 

e.g., [57] and [18] to limit the scope of changes by the repair algorithm. 

3.6.1 Determining Bounded and Free Attributes 

FDs impose a “many-to-one” relationship between LHS and RHS values. That is, for 

the instance to be consistent, a LHS value is mapped with a single RHS value. An attribute 

A that does not appear as a RHS of an FD is said to be a bounded attribute. Bounded 

attributes have two properties: (1) They appear as part of the LHS in Σ and are thus used to 

determine the value of RHS attributes, and (2) Since they do not appear as RHS attributes 

in Σ, we cannot use other attributes to determine their values (because of the many-to-one 

relationship, we can only determine attribute values from LHS to RHS and not the other 

way around). If an attribute is not bounded, then, it is a free attribute, i.e., its values are 

determined from other attributes. Obviously, an attribute cannot be bounded and free at 

the same time. Therefore, all free attributes must appear as RHS attributes in Σ (we discuss 

the case of cyclic FDs next). 

Proposition 3.6.1 For every free attribute A in Σ, there must exist at least an attribute B 

such that: (1) There is an FD φ1(B → A) ∈ Σ (2) If there is an FD φ2(A → B) ∈ Σ, then, 

there must exist at least an FD φ3 ∈ Σ where φ3(C → A) or φ3(C → B). If φ3 6∈ Σ, then 

we designate either A or B to be a bounded attribute. 

Proposition 3.6.1 states that every RHS attribute (free attribute) has to have at least 

one set of LHS attributes that determines it in Σ. This proposition is trivial when there 

are no cyclic FDs in Σ. However, if Σ contains cyclic FDs, some attributes could be free 

but would not have an LHS attribute that determines them outside the cycle. For instance, 

consider Example 3.5.1. rank and cyclist are both free attributes (they appear as RHS 

attributes), but they do not have LHS attribute outside the cycle that determines either 

one of them (Condition 2 in Proposition 3.6.1). In this case, we randomly pick one of the 

attributes involved in the cycle to be a bounded attribute (and not a free attribute) and use 
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it to determine the remaining nodes in the cycle. As a result, the value of this attribute is 

taken from the input tuples. For example, one could choose attributes cyclist or rank in 

Example 3.5.1 to be bounded attributes. This way, we can set the value of one attribute to 

determine the value of other attributes. 

Example 3.6.1 Consider the following FDs: A, B → C; C, D → E. The free attributes 

are C, E and the bounded attributes are A, B, D. C and E are free because they appear 

as RHS attributes in the FDs. A, B, and D are bounded attributes because they do not 

appear as RHS attributes in any FD. 

Consider another set of FDs, where we have cycles: A → B; B → A. Both A and 

B appear as RHS attributes. In this case, we have to choose one attribute from the ones 

involved in the FD cycle (i.e., A or B) to be a bounded attribute and the other would be 

free. 

Consider the following FDs: E → A; A → B; B → A. E is a bounded attribute 

and both A and B are free attributes. Notice that in this case, even though A and B are 

involved in a cycle, we do not have to make either one of them a bounded attribute because 

there is an FD (E → A) (Condition 2 in Proposition 3.6.1). 

3.6.2 Instance Graph Traversal using Attribute Boundedness 

As stated in Defnition 3.4.1, every value v from Attribute A is represented as a node, 

say n, where n.val = v and n.attribute = A. Consequently, the node values coming 

from bounded attributes are assigned from the input tuples. For example, consider instance 

Tour rank in Table 3.1 and its corresponding IG in Figure 3.3. The set of bounded attributes 

can contain either cyclist or rank. Assume that we choose cyclist to be the bounded 

attribute. The rest of the attributes are free. Given Tuple t1 in Instance Tour rank, one 

would “fx” the value t1[cyclist] that corresponds to the node labeled “Marcel Kittel” in 

IG in Figure 3.3. Starting from this node, we follow (or chase) the edges in IG for each 

FD in Σ (details about the graph traversal are discussed in the next section). This traversal 
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(a) Repairing a tuple using the chase graph (b) Example of computing the FD order 

Figure 3.4.: Example of the steps taken to repair a tuple 

produces a single FD pattern for each FD in Σ. We call the subgraph induced by this 

traversal the Chase Graph. 

Proposition 3.6.2 For a given assignment β of bounded attribute nodes A in the IG(V, E), 

there exists a subgraph G(T, Y ) such that: (1) T ⊂ V and Y ⊂ E and A ⊂ T ; (2) 

∀φ(X → Y ) ∈ Σ : ∃e(V, W ) ∈ E : V.attribute = X ∧ W.attribute = Y . 

Proposition 3.6.2 states that assigning values to the bounded attribute nodes in the IG 

produces a subgraph (the chase graph) that covers all the FDs in Σ. In other words, the set 

of bounded attribute values is all we need to determine the value of all the other attributes 

in Σ. Figure 3.4 illustrates the chase graph generated with rank as a bounded attribute. For 
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example, given Tuple t1 (a), the assignment of the bounded attribute is β = {t1[rank] = 

166}, all the other attributes can be modifed (b). Then, we start the chase to get the FD 

patterns of the other FDs from IG (c). Then, the resulting chase graph (d) is used to repair 

Tuple t1 (e). We discuss strategies and details for the traversal in the next section. 

3.6.3 Repair Covers 

Based on the classifcation of FD attributes (i.e., bounded or free), we observe a few 

properties that can be leveraged to repair the data. When we have FD patterns that interact 

with each other, the choice of value for one attribute affects the FD patterns in which that 

attribute appears. In other words, every node in the FD graph infuences the FD patterns 

it belongs to. Refer to Example 3.1.1 for illustration. Attribute “country” is involved in 

two FDs, and hence it infuences the FD patterns of both FDs. For instance, in Figure 3.1, 

the value [country=“Russia”] affects FD patterns ([cyclist = “Marcel Kittel”, country = 

“Russia”] and [country = “Russia”, capital = “Berlin”]). Thus, when choosing a value of 

“country” to associate with the LHS attribute “cyclist”, one should consider FD patterns 

from fd1 and fd2. Ideally, we want to choose FD patterns with the maximum quality. 

Therefore, given the FD graph and the set of bounded and free attributes, we can de-

termine for each FD attribute the set of FD patterns it infuences. Consider Example 3.1.1. 

Attribute “country” infuences the FD patterns of fd1 and fd2. 

Defnition 3.6.1 Given an FD Graph G(V, E) and a Node n ∈ V , the Repair Cover 

RC(n) is defned as: (1) If n.attribute is free, then RC(n) contains for each FD in Σ a 

single edge e:(x, y) in IG, where x = n or y = n, (2) If n.attribute is bounded, then RC(n) 

is empty. 

Intuitively, a repair cover of a node n contains all the edges (or simple FD patterns) in 

IG, where n is involved (one for each FD) if n.attribute is free. Since we cannot change 

data values of bounded attributes, if n.attribute is bounded, then its repair cover is empty. 

Note that the repair cover of a node is not unique, and a node typically has multiple repair 
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Figure 3.5.: Example Instance Graph for FDs A → B and B → C 

covers involving different simple FD patterns. Additionally, repair covers can be expressed 

as a composition of simple FD patterns, and their quality is computed as in equation 3.8. 

The purpose of a repair cover is to assess the quality of the “neighborhood” of a can-

didate RHS node before mapping it to an LHS node. Thus, the repair cover contains all 

the edges n is involved in. As a result, if n.value is a “correct” value, then, it should 

be connected to high-quality edges, if not, then n should lower the quality of its adjacent 

edges. 

Example 3.6.2 Figure 3.5 gives an example instance graph for the FDs: A → B and 

B → C. The repair covers for some nodes in the example instance graph (we put different 

possible repair covers in a set): 

• RC(a1) = ∅, RC(a2) = ∅ 

• RC(b1) = {P(a1,b1) B P(b1,c1), P(a1,b1) B P(b1,c2), P(a1,b1) B P(b1,c2), P(a2,b1) B P(b1,c1), 

P(a2,b1) B P(b1,c2)} 

• RC(c2) = {P(b1,c2), P(b2,c2)} 
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3.6.4 Optimal Pattern-Preserving Data Repairing 

Computing the optimal pattern-preserving repair requires fnding a chase graph with 

maximum edge weights for each assignment of bounded attributes. Let U be the set of 

bounded attributes, and D be the free ones. Also, let d be the number of distinct values 

of each attribute A ∈ attr(Σ) (we assume we have d distinct values in each attribute 

A). Finding the chase graph in IG with the highest sum of weights requires traversing all 

the graph nodes for each assignment of bounded nodes (Proposition 3.6.2). We have d|U | 

assignments, where each is chased in IG to associate a single RHS node for every LHS 

node. Thus, the complexity is O(d|U | ∗ d|D|) = O(d|A|). Next, we present heuristics to fnd 

a near-optimal Pattern-Preserving repair in linear time. 

3.6.5 Traversing the Instance Graph 

We present the necessary building blocks to traverse the Instance Graph and compute 

repairs in linear time. In order to clean to the data, we need to map every LHS node 

in IG to a single RHS node. This imposes a traversal order going from LHS nodes to 

RHS nodes. Ideally, we want to start traversing IG from the leftmost attributes in Σ, and 

chase the adjacent nodes until we build a chase graph for each input tuple. To devise a 

traversal order to generate the chase graphs, we start chasing the nodes from the leftmost 

attributes in Σ to the rightmost ones. This linear ordering can be obtained by applying 

topological sort on the FD graph. However, since cyclic FDs in Σ is possible, i.e., FDs 

whose RHS attribute appears in the LHS of another FD, we cannot apply topological sort 

directly. Instead, we apply topological sort on the Strongly Connected Component Graph 

(SCCG) induced by the FD graph. We obtain the SCCG using T arjan0s algorithm [62] 

that runs in O(|A| + |E|), where A and E are the vertices and edges in the FDG. Let 

SCCG(C, E) be the SCC graph induced by the FD graph, where C is the set of SCCs in 

the FD graph, and E is the set of edges connecting them. Applying topological sort on 



⎪⎪⎪⎪
⎪⎪⎪⎪

69 

SCCG produces a partial order Γ on the SCCs in C. Formally, a SCC ci ∈ C is assigned 
oan order o, denoted by ci as follows: ⎧ 

c0 = {c ∈ C|∀c0 ∈ C : (c0, c) ∈/ E}⎪ i⎨ 
Γ = 

⎩ 0⎪ 
c i+1 = {c ∈ C|∀c0 ∈ C, (c , c) ∈ E : c0 ∈ Cj} s.t. j ≤ ii 

Note that multiple SCCs can have the same topological order. 

Our traversal of IG is driven by the set of FDs in Σ. More specifcally, for a given input 

tuple t, we choose the “best” FD pattern (from IG) for every FD in Σ, and then insert these 

patterns in t. Hence, we want to assign orders to all the FDs in Σ, which correspond to the 

edges in the FD graph. Thus, we introduce a function OrderFDs in Algorithm 5 that takes 

as input the ordered SCCs (OC) computed using Γ and assigns an order to each FD in Σ. 

Algorithm 5: OrderFDs(Σ, OC) 
output: Array A of FDs, where A[k] contains FDs with order k 

1 A ← [] 
2 k ← 0 
3 V ← G.vertices 
4 for (i ← 0; i ¡ |OC|; i++) do 
5 c ← OC[i] 
6 forall e(v, w) ∈ IN(c) do 
7 ω ← GetFD(Σ, e) 
8 A[k] ← ω 
9 k ← k + 1 

10 forall e(v, w) ∈ OUT (c) do 
11 ω ← GetFD(Σ, e) 
12 A[k] ← ω 

13 k ← k + 1 

Algorithm 5 computes the order of every FD in Σ. The output is an array A where 

A[k] contains FDs with order k. The algorithm proceeds as follows: Since we have to 

visit all the edges inside an SCC c (IN(c)) before visiting c’s adjacent SCCs in the SCCG, 

we incrementally assign an order to each edge (that corresponds to an FD) inside c (Lines 
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6-9). Note that it does not matter which FD to visit frst inside c (all nodes can be reached 

from any node in c). Next, the algorithm assigns an order k to the outgoing edges from c 

(OUT (c)). Since outgoing edges should only be traversed after traversing all the edges in 

IN(c), k has to be greater than the highest order assigned to an edge in IN(C). Addition-

ally, edges in OUT (c) can be visited after traversing all the edges in IN(c). Therefore, 

edges in OUT (c) share the same order (Lines 10-12). Figure 3.4(b) illustrates how Algo-

rithm 5 orders the FDs in Example 3.5.1. In particular, we perform the following steps: 

(1) From Σ, compute the FD Graph; (2) Compute the SCCG and its topological sorting 

using Γ, and (3) Compute the order of the FDs in Σ using Algorithm 5. 

3.6.6 Pattern-Preserving Repair Algorithms 

We present a repair algorithm that computes a repair instance in the form of pattern ex-

pressions. Notice that a pattern expression corresponds to a Chase Graph in IG. Our fnal 

goal is to choose Chase Graphs that have heavy weights on their edges without resorting to 

an exponential solution. 

Algorithm 6 takes as input a dirty table D and the set of FDs Σ, and produces as output 

pattern expressions that correspond to clean tuples. Mappings of LHS to RHS values are 

stored in tables (termed Repair Tables). Every FD has its own Repair Table that contains 

(LHS, RHS) mappings produced by the repair algorithm. Since the algorithm proceeds one 

tuple at a time, these tables are required to check if an LHS value has been assigned an RHS 

value in a previous iteration. Repair tables are used to update the input tuples accordingly. 

This part is straightforward, and is omitted for brevity. First, we build the Instance Graph 

and compute its edge weights (Lines 1-2), and compute the partial order of FDs (Lines 

3-5). The algorithm processes the input data tuple at a time (Line 7), and creates a pattern 

expression P exp(t) for each Tuple t by building the chase graph from IG (Lines 18-21). 

Then, the (LHS, RHS) mappings are written into the repair tables of each corresponding 

FD (Lines 17 and 21). We traverse the set of ordered FDs (Line 9), and assign a RHS value 

to the LHS value found in the input tuple. If this LHS is already mapped to a RHS value 
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Algorithm 6: GeneratePatternPreservingRepairs(Σ, D) 

1 

2 
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18 

19 

20 

21 

22 

output: For every tuple in D, return a pattern expression 
IG ← BuildInstanceGraph(D, Σ) 
IG ← ComputePatternsQuality(IG) 
SCCG ← BuildSCCGraph(Σ) 
OC ← TopologicalSorting(SCCG) 
Ordered FDs ← OrderFDs(Σ, OC) 
pattern expressions ← ∅ 
forall Tuple t ∈ D do 

for i ← 0 to |Ordered FDs| do 
forall FD f ∈ Ordered F Ds[i] do 

Lval ← t[f.LHS] 
if Rtable(f).contains(Lval) then 

FDPattern p ← New FDPattern(f, Lval → Rtable(f).get(Lval)) 
P exp(t) ← P exp(t) B p 

else if f.RHS ∈ P exp(t) then 
FDPattern p ← New FDPattern(f, Lval → 
GetAttributeValue(P exp(t), f.RHS)) 
P exp(t) ← P exp(t) B p 
Rtable(f).Add(Lval, GetAttributeValue(P exp(t), f.RHS)) 

else 
FDPattern p ← Edge Selection(IG) 
P exp(t) ← P exp(t) B p 
Rtable(f).Add(Lval, p.RHS) 

pattern expressions = pattern expressions ∪ P exp(t) 



72 

(Line 11), then we fetch this mapping from the repair table, build a pattern (Line 12), and 

then add this pattern to the pattern expression using the composition operator (Line 13). 

If the RHS attribute of the current FD has been assigned a value in the pattern expression 

P exp (Line 14), then, we cannot replace it with another value (pattern interaction Case 2). 

In this case, we map the current LHS to that RHS value (Line 15) and the pattern is added 

to the pattern expression (Line 16). The last case (Line 18) is when the LHS value has 

not been assigned a RHS value. In this case, we fetch the “best” RHS value from the IG 

(Line 19). Depending on the edge-selection strategy (presented next), we may get different 

patterns. Then, the pattern is added to the pattern expression (Line 22). 

Edge Selection Strategies: We implement three strategies to map, for a given FD (X → 

Y ), a LHS node to a RHS node in IG: (1) Greedy: This heuristic performs a greedy 

traversal of the Instance Graph. Given an LHS node, we choose the adjacent edge with 

the highest quality. Notice that this is not a trivial traversal of IG, as it still benefts from 

the quality scores and the ordered traversal of IG. In fact, experiment results show that 

this heuristic performs in some cases better than RC. (2) RC-based Traversal (RC): The 

repair cover of all the adjacent RHS nodes is computed. Then, the RC with the highest 

score is selected to map an LHS node to an RHS node. This traversal evaluates the 

neighborhood of the adjacent nodes (and the nodes they lead to), before selecting an RHS 

node. (3) Hybrid: A hybrid of the previous two, this heuristic decides, given an LHS node 

and Threshold θ, whether to choose an RHS node by only looking at the adjacent edges 

(Greedy) or compute the repair covers of the RHS nodes, and then decide which RHS 

nodes to select (RC). The intuition is that if the adjacent edges have a high-enough score 

(i.e., ≥ θ), then looking at their neighbors could decrease the quality of the repair. This 

is especially relevant when we have an idea about the error rate in the data. Experiments 

demonstrate that this heuristic outperforms Greedy and RC in repair quality. 
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Discussion on Repair Requirements 

We highlight key properties of Algorithm 6. FD Requirement: The algorithm ensures 

that every LHS value is mapped to a single RHS through the repair tables. Particularly, if 

the LHS has been previously mapped to an RHS value, that mapping is used in the pattern 

expression (Lines 11-13). In case we have a backedge in the FD graph, i.e., an attribute 

appears as both an LHS and RHS in Σ, the algorithm (Lines 14-17) makes sure that an LHS 

value is only mapped to an RHS value in the current pattern expression. Soundness: The 

weight computation of FD patterns (Line 2) offers a key parameter for the edge-selection 

strategies. We have three examples of edge-selection strategies, mainly, greedy, RC-based, 

and Hybrid. Coverage: The algorithm computes a pattern expression for every input tuple 

t. Termination: For every tuple, the traversal of IG is bounded by the number of FDs in 

Σ (Line 8), due to the topological sort of the FD graph (Line 3-4) that imposes an order 

on the traversal of IG (Line 5). Interpretability: The output of Algorithm 6 is a pattern 

expression for each tuple t. Users can use this output to trace repairs to their underlying 

FD patterns. 

3.7 Experimental Study 

We evaluate our repair approach against other repairing algorithms. In this section, we 

present and discuss the experimental results. 

3.7.1 Setup 

Dataset. We use the following two datasets:(1) A synthetic dataset [56] that contains 

records pertaining to tax information for different persons, e.g., frst name, last name, and 

whether the person has a child. For measuring effectiveness, we use 100K tuples (Tax) 

while we generate millions of tuples for the scalability study (Tax Extended). (2) Hospital 

is a real-world dataset that contains information about health-care providers and hospitals. 

It contains 100K tuples. We defne four FDs for each dataset. 
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Figure 3.6.: Precision and Recall vs. #tuples 

Error generation. We use BART [63] to benchmark different repair algorithms. BART 

makes it possible to introduce synthetic errors to the data so as to trigger violations of 

their corresponding FDs. For each dataset, we generate errors for all the defned FDs with 

varying noise levels and report the quality of the evaluated repair algorithms. We vary the 

size of the datasets, and for each size, we generate errors to violate the FDs. 

Algorithms. We evaluate the following repair algorithms: 

• Greedy, RC and Hybrid: We evaluate the three variants of our algorithm (as outlined 

in Section 3.6) and contrast their performance on different data sizes and error rates. 

As a notation, GRH refers to all the three variants. 

• Holistic [16]: This is the state-of-the-art rule-based repairing algorithm. As reported 

in [16], this algorithm, though designed for Denial Constraints, performs better than 
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Figure 3.7.: Precision and Recall vs. %Errors 

other FD repair algorithms as it takes advantage of the interaction between the viola-

tions of different integrity constraints to achieve a minimal repair. 

• SAMP [59]: This repairing algorithm computes FD (and CFD) repairs. The technique 

relies on sampling from different possible repairs, and may produce a different repair 

at each run. In order to be fair to this technique, we report the best repair quality 

results over 5 different runs. 

• TREP [64]: This is a recent FD repair algorithm that computes string similarity to 

decide, given a threshold, if two tuples violate a given FD. 

Metrics. We consider the traditional metrics to evaluate the quality of the produced repair 

instances: (1) Precision: The number of correct cells over the total number of changed 
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cells; (2) Recall: The number of correct cells over the total number of dirty cells.We also 

evaluate the runtime for different sizes of the data. 

Implementation and Hardware Platform. All the algorithms are implemented in Java. 

All the experiments are conducted on a Linux machine with 8 Intel Xeon E5450 3.0GHz 

cores and 32GB of main memory. 

3.7.2 Effectiveness Results 

Figures 3.6(a-d) show the precision and recall on the Tax and Hospital datasets when 

the number of input tuples is varied for the various repair algorithms. In general, the three 

variants of our algorithm outperform the other baselines with the exception of Holistic in 

the case of precision for one of the datasets. Figure 3.6(a-b) illustrate that the precision 

of our algorithms is generally stable over different data sizes. In the Hospital dataset, 

Holistic and GRH have a comparable precision and recall, whereas in the Tax dataset, GRH 

performs much better. SAMP and TREP produce repairs with low precision and recall. The 

reason is that the former makes minimal random changes to the data to produce a repair (a 

consistent instance w.r.t. the FDs) while the latter relies on high similarity of FD attribute 

values to produce good repairs. Notice that TREP does not terminate for some data sizes 

(80K and 100K on Tax) as it runs out of memory (32 GB main memory). 

From the results in Figure 3.6(a-d), observe that Hybrid reports the most consistent 

precision and recall values. The reason is that sometimes it is better to select the next FD 

pattern greedily (when it has a quality value above a given threshold). However, when 

the adjacent FD patterns have low quality, it is more benefcial to perform more careful 

pattern selection by computing the repair cover of the adjacent nodes before selecting an 

FD pattern. The threshold for Hybrid is set to 0.5, i.e., Greedy is used when an edge quality 

exceeds 0.5, otherwise RC is used. 

Holistic performs poorly on the Tax dataset compared to the Hospital dataset. To guar-

antee termination, Holistic assigns fresh values when it cannot assign a value that eliminates 

the violations. We notice that the number of introduced fresh values is signifcantly higher 

in the Tax dataset compared to the Hospital dataset. 

https://cells.We
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Figure 3.8.: Runtime results on Tax and Hospital 

The rate of data errors affect all algorithms. That is, the more the errors the less ev-

idence there is to correctly repair the data. Figures 3.7(a-d) report the precision of the 

produced repairs w.r.t. different data error-rates. Our algorithms clearly outperform the 

other systems, especially when there are more errors in the data. The reason is that adding 

more errors to data makes it harder for minimality-based algorithms to identify correct cell 

values, whereas in GRH, we go beyond the attribute-level when selecting a repair value; 

we select values that lead to the most supported FD patterns. 

Greedy performs well when the error-rate is small (Figure 3.7(a-d)). However, as the 

error-rate increases, Greedy is outperformed by RC and Hybrid. The reason is that Greedy 

performs best when the FD patterns adjacent to the LHS nodes in the instance graph are 

most likely correct, but this changes as the error-rate increases, and a more careful traversal 

of the instance graph (as in RC and Hybrid) is needed for best results. 
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3.7.3 Runtime Results 

We report the runtime results in Figures 3.8a and 3.8b for the Tax and Hospital datasets 

respectively. Our algorithms signifcantly outperform Holistic and SAMP by an order of 

magnitude, and TREP by three orders of magnitude when the data size is 100K. This is 

not surprising as our algorithm does not perform the detection step typically used in data 

repairing algorithms. This step is usually the most costly part of repairing algorithms. 

Since our algorithms run linearly in the number of FDs and tuples, the repairing time grows 

linearly as the data size increases. 

We report the runtime of different variations of our algorithm in Figure 3.8c and 3.8d 

for the Tax and Hospital datasets, respectively. We observe that RC takes the longest to run 

compared to Greedy and Hybrid. This is expected as RC computes repair covers of every 

node before selecting FD patterns. Hybrid takes less time to run but has a higher running 

time than Greedy. In general the difference in running time between our algorithms is not 

signifcant. 
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We report runtime results on Tax Extended in Figure 3.9. Missing data points indicate 

that the algorithm does not fnish after 24 hours. In the 1-million dataset, GRH outperforms 

Holistic and SAMP by three and two orders of magnitude, respectively. The reason is that 

Holistic and SAMP focus on fnding minimal repairs to the data, which is typically a slow 

process. Due to its linear-time algorithm, GRH scales very well in larger datasets (it takes 

75 seconds to clean a 5-million dataset). 

3.8 Related work 

There is a plethora of research on data cleaning [7]. Rule-based data cleaning tech-

niques are the most related to our work as they take the same input as our algorithms, and 

do not assume the presence of external sources of clean data (master data) or humans to 

aid the repair process. Similar to our work, rule-based techniques output a database that is 

consistent with the defned rules. In a broader spectrum, our work is related to data clean-

ing efforts that may or may not use rules to derive their repairs, as well as those that beneft 

from the user’s feedback. There is also a body of research on pattern discovery in the data 

for the purpose of deriving interesting rules to clean the data. 

Existing rule-based data repairing techniques focus on computing repairs that change 

the database minimally to satisfy a set of rules, e.g., FDs [17, 18]. Conditional Functional 

Dependencies [65], Denial Constraints [16]. A wide array of techniques have been pro-

posed to repair the data by modifying it minimally. Our work provides a signifcant addi-

tion to this family of repair algorithms from the way we model the data (FD patterns) to the 

way we present it to the user (repair expressions). Furthermore, unlike existing rule-based 

solutions, our work benefts from evidence from all the data values, including those that are 

not involved in violations to compute repairs. 

In [58], probabilistic inference is employed to produce repairs based on different sig-

nals (constraint violations, external data, etc.). The produced repairs are associated with 

marginal probabilities that refect their accuracy. The Algorithm proposes different sets 

of repairs that can then be validated by the user. Our work is different than [58] in two 
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ways: (1) unlike [58] we do not treat error detection as a black box, which makes the repair 

decisions highly infuenced by the error detection approach used; (2) we produce “exact” 

repairs instead of probabilistic repairs that have to be processed by the user. Another prob-

abilistic approach [57] relies on prediction of attribute values given the data distribution. 

Unlike our work, since the technique in [57] does not involve data quality rules, it does not 

produce an instance that is consistent w.r.t. to any defned rules (even if they are available). 

Another related line of research focuses on discovering patterns in the data to build 

rules, which are then used to detect errors in the data [66]. In [66], the authors propose 

a technique to discover patterns that are then used as CFDs to enforce on the data. An 

attribute lattice is computed to explore different combinations of attributes and evaluate the 

interestingness of their value combinations. In our work, we discover the patterns that are 

induced from the interaction of FDs to repair the data and not to discover rules. 

3.9 Concluding Remarks 

In this chapter, we presented a novel repair approach that is a radical departure from 

most existing repair approaches. Guided by functional dependencies on the data, our pro-

posal aims to generate a set of data modifcations that exploit inherent patterns found in the 

data, in the form of value combinations based on the functional dependencies, to produce 

an accurate repair instance. Additionally, we compute the repair instance in linear time 

and produce pattern expressions that can easily be consumed by a human to understand the 

rationale behind the data modifcations. 
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4 QUERY-TIME FUNCTIONAL DEPENDENCY REPAIRING 

In this chapter, we present techniques to perform FD repairs at query time. As seen in 

Chapter 3, using pattern-preserving repairs signifcantly improves the quality of the re-

paired data. We adapt our previously presented solution to produce pattern-preserving 

repairs in the online setting, i.e., given a query result and a set of FD rules, we would like 

to repair the query result with respect to the defned FD rules. To achieve this goal, we 

present in this chapter adaptations to the techniques presented in Chapter 3 to support the 

online setting. 

This chapter is organized as follows. We discuss related work in Section 4.2. Sec-

tion 4.3 presents the problem defnition and we present our solution in Section 4.4. We 

present metrics for FD patterns in Section 4.5. Section 4.6 presents our query-time FD 

repairing algorithm. We present our experimental results in Section 4.7 and conclude in 

Section 4.8. 

4.1 Introduction 

As we collect massive data from several sources, it is often the case that we want to 

clean the integrated data. This is because data integration is especially prone to introducing 

errors in the integrated instance [37,67,68]. In many applications, access to the underlying 

sources is restricted through query interfaces only, e.g., deep Web [19, 20]. In this chapter, 

we present techniques to enforce a set of FDs on query answers integrated from multiple 

Web sources. Particularly, we present a proof of concept adaptation of our techniques 

presented in Chapter 3 to work in the online setting. This chapter is a direct continuation 

of Chapter 3, therefore, the reader should refer to Chapter 3 prior to reading this chapter. 

As in Chapter 2, we use a virtual integration system (VIS) as an example application. The 

VIS integrates query results from several Web databases at query time. 
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Consider the example two query results in Table 4.1 and the following FDs: φ1 : 

P hone → Zip and φ2 : Zip → State. As was observed in the case of online record 

linkage and fusion (Chapter 2), looking at query results in isolation to clean them is not 

effective. For instance, in Table 4.1, Q2’s answer contains a violation of φ1, however, with-

out looking at Q1’s answer, existing FD repair algorithms would choose either one of the 

Zip code values in t4[Zip] or t5[Zip] to lift the violation. A better way to compute the re-

pair would be to repair Q2’s answer jointly with Q1’s answer. This allows gathering more 

evidence to compute the repair. Furthermore, sometimes records would not even trigger a 

violation when they appear in a query result, but, looking at them jointly with other query 

result sets would. For instance, we would not even know that records t1, t2 and t6 are in 

violation of φ2 if we do not repair Q2 jointly with Q1. We outline our contributions as 

follows: 

• We propose a technique to perform qualitative FD repairs at query time and for mul-

tiple sources. To the best of our knowledge, this is the frst time this has been ad-

dressed. 

• We propose a model to represent query results as instance graphs, that are then cached 

for future reference. 

• We develop metrics to measure the quality of FD patterns coming from several 

sources. 

• We propose a model to incrementally update the quality scores of cached FD patterns 

4.2 Related Work 

There is a plethora of proposals that fall in the area of “rule-based data cleaning”. Previ-

ous work that relates to FD repairing in the offine setting has been discussed in Chapter 3. 

In this section, we focus on previous proposals that deal with iterative and query-time in-

tegrity constraint repairing. 
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Table 4.1.: Sample query results on multiple Web sources 

Source Name State Zip Phone 
Query Q1 

t1 S1 Bacino’s Of Lincoln Park IL 60615 (773) 472-7400 
t2 S2 Hyde Park Bbq & Bakery IL 60615 (773) 330-0440 
t3 S3 Caffe Deluca Forest Park Inc IL 60130 (708) 366-9200 

Query Q2 
t4 S1 Caffe Deluca Forest Park Inc IL 60130 (708) 366-9200 
t5 S2 Caffe Deluca Forest Park Inc IL 94016 (708) 366-9200 
t6 S3 Hyde Park Bbq & Bakery NY 60615 (773) 330-0440 

Returning query answers that are consistent with respect to integrity constraints has 

been tackled in a research topic known as Consistent Query Answering [69]. The goal of 

Consistent Query Answering is to produce a query answer that is consistent with respect 

to a set of integrity constraints [69–73]. The idea of a consistent query answer is this: 

given the set of all possible repairs R for a query Q, produce a repair that is true in all the 

repairs in R. This is achieved through tuple deletion [71] or updates to existing tuples [73]. 

Most of the existing approaches adopt a query-rewriting strategy to capture all the possible 

repairs for a given query [69, 70]. This line of research focuses on the query structure and 

different approaches deal with different classes of queries. Our work does not depend on 

the query structure since we do not adopt query-rewriting as a strategy to generate repairs. 

Moreover, efforts in Consistent Query Answering solely focus on generating query answers 

that are consistent with respect to the integrity constraints, without considering the quality 

of the generated repairs. This is different from our proposal where consistency and quality 

of repairs are both considered. 

The proposal in [22] studies the problem of FD repairing in the iterative setting. That 

is, the data and the rules are assumed to change over time and the system identifes repairs 

that need to be recomputed. A classifer is trained by a human and then applied to predict 

the type of repair to perform, i.e., change the data, the FDs, or both, given an FD violation. 

Our proposal is different from this system as we do not require a human intervention as 
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part of the cleaning algorithm. Moreover, in our setting, we are not only considering the 

iterative setting, but also the online setting, in which repair time is critical. 

4.3 Terminology and Problem Statement 

Let Q be a query posted to S = {S1, S2, ..., Sn} relational tables and let I = 

{I1, I2, ..., In} be the lists of records returned by each source table where Ii is the list 

of records returned by source Si (i < n). 

The union of Q’s results is mapped to a global target table with schema T . The mapped 

instance is denoted by IQ. Let Σ be the set of functional dependencies defned over T . 

As in Chapter 3, we assume that Σ is minimal and is in canonical form [60]. We aim 

to compute a repair for IQ, denoted Repaired(IQ), that is consistent with Σ (denoted by 

Repaired(IQ) |= Σ). Additionally, we denote by S(X → Y, x, y) the list of sources that 

returned the simple FD pattern P (X → Y, x → y) for a given query Q. 

Let S∪ be the union instance containing all the records in the source tables in S (we 

assume every record has a unique identifer and no two records can share the same identi-

fer). That is, S∪ = S1 ∪ S2 ∪ ...Sn. Let S∗ be a pattern-preserving repair of S∪ . Let IQ 
∗ be 

the set of records in S∗ where ∀t ∈ IQ, t.id ∈ IQ 
∗ and IQ 

∗ contains only the records in IQ. 

Our goal is to: (1) enforce Σ over IQ; and (2) minimize the distance between 

Repaired(IQ) (query-time repair of IQ) and IQ 
∗ (query result cleaned by looking at the 

entirety of the data). The distance between two instances is the number of cell values that 

differ between them. Minimizing the distance between the cleaned instance and a ref-

erence instance has been widely used in the literature as a cost model for data cleaning 

algorithms [7, 16, 17]. Intuitively, we would like to produce query-time pattern-preserving 

repairs that are as close as possible to pattern-preserving repairs we would get if we had all 

the data. 
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4.4 Solution Overview 

In Chapter 3, we showed that our proposed techniques work well to clean the data in one 

shot, and when all the data is available. However, in the online setting, where we perform 

cleaning at query time, data comes in small chunks, produced by user-posted queries. This 

calls for key changes in our proposed offine techniques (Chapter 3) to support the online 

setting. We outline those changes as follows: 

1. Lack of global data view: Since the data is not available in its entirety, we need a 

way to collect relevant data to help us clean query results. Cleaning query results 

in isolation is bound to produce poor quality results. We maintain a cache that we 

update every time we process a new query, i.e., the cache contains FD patterns from 

previously processed query results. This cache will then be used to repair the query 

results jointly with previously processed query results. 

2. Cache updates: Updating the cache has to be performed carefully as new query 

results could trigger updates to a large portion of the cache instance graph. The 

quality scores (as presented in Chapter 3) have to be updated every time we update 

the edges in the cache instance graph. In Section 4.5, we present two strategies to 

address this challenge. 

Figure 4.1 outlines the architecture of our system. After a query Q is posted to the 

VIS, the system generates the FD patterns PQ for Q using FDs in Σ. Those patterns are 

then appended to the cache Instance Graph IG containing FD patterns from previously 

processed queries. The update in the Instance Graph incurs an update to the quality scores 

of FD patterns affected by PQ. We will outline different strategies to update the quality 

scores in Section 4.5. Finally, the system generates the repair expressions which constitute 

the cleaned query answer. The static analysis part (highlighted with a dashed rectangle in 

Figure 4.1) generates the FD graph, orders the FDs and generates a traversal order. Those 

steps are identical to the ones presented in Chapter 3. 
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Figure 4.1.: Architecture for query-time FD repairing 

4.4.1 Iterative Caching of Functional Dependency Patterns 

Since we do not assume we have access to the entirety of the data, we build a cache 

from posted queries and clean incoming queries jointly with the cache. We employ a sim-

ilar philosophy as in our previous work [20], where we used iterative caching to perform 

query-time record linkage and fusion. In the absence of a “global” view on the data, it is 

not realistic to expect any cleaning algorithm to clean the data reasonably, i.e., cleaning 

algorithms cannot “invent” data that was not even part of the input data. We aim to ad-

dress this problem by iteratively constructing a cache that contains the simple FD patterns 

of previously processed queries. We frst construct the instance graph of query result IQ 

which only contains the simple FD patterns seen in IQ. We refer to this graph as the Query 

Instance Graph, or IGQ for short. The cache is modelled as a graph of simple FD patterns, 

i.e., it contains all the FD patterns that were processed in previously posted queries, we 

refer to this graph as the Global Instance Graph (IG), or simply the cache. 
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Figure 4.2.: Example query instance graphs being appended to the cache over time 

Appending the Query Instance Graph into the Cache 

Our system processes query results one at a time. Every query result IQ is inserted 

to the cache before answering the query Q. We defne the union of IGQ(VQ, EQ, SQ) and 

IG(V, E, S) such that VQ, EQ and SQ are the set of vertices, edges and sources in the query 

instance graph, respectively, and V , E and S are the set of vertices, edges and sources in 

the cache. Appending IQ to IG (denoted IQ ⊕ IG) is defned as follows: 

IGQ(VQ, EQ, SQ) ⊕ IG(V, E, S) = G(VQ ∪ V, EQ ∪ E, SQ ∪ S) (4.1) 

Figure 4.2 illustrates an example timeline (on the top in Figure 4.2) with two queries 

posted Q1 and Q2 (from Table 4.1) at times t1 and t2. Initially, the cache is empty at time 

t0. At time t1, a query Q1 is posted. Q1’s Instance Graph is inserted into the cache. At 

time t2, query Q2 is posted and its Instance Graph is inserted into the cache. The parts that 

are coloured in blue are the ones that were inserted as a result of processing Q2. Each edge 
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in the graphs embeds the set of sources that provided that edge, which will be required to 

compute the quality scores of the edges (Section 4.5). 

4.5 Quality Metrics 

Contrary to the setup in Chapter 3, we now have multiple data sources. We would like 

to harness the source provenance of records to characterize the quality of FD patterns. We 

modify the measures presented in Chapter 3 to express the quality of an FD pattern as a 

function of the number of data sources that provide it. 

For a simple FD pattern P : (X → Y, [x, y]), the Support of P , denote Sup(P ), is the 

number of sources with X = x and Y = y in query result instance I over the total number 

of sources |S(X → Y, x, ∗)|. 

|S(X → Y, x, y)|
Sup(P ) = (4.2)

|S(X → Y, x, ∗)| 

* denotes “any value”. |S(X → Y, [x, ∗])| denotes the number of sources in I with the 

LHS value x and any RHS value. 

As shown in Chapter 3, quantifying the quality of a simple FD pattern P should also 

be done with respect to the set of simple FD patterns it leads to, denoted by P → . This is 

done by “propagating” the support values computed for all the FD patterns in P → back to 

P . We defne Score(P ) and Quality(P ) as follows: 

X 
Score(P ) = Sup(P ) + Sup(Q) (4.3) 

Q∈P → 

Score(P )
Quality(P ) = 

|P →| + 1 
(4.4) 

4.5.1 Propagating the Quality Scores in the Instance Graph 

In Chapter 3 (offine setting), we computed the quality of all FD patterns at once. How-

ever, in the online and iterative settings, queries cause the data to come in chunks and 
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Figure 4.3.: Score propagation at times t1 and t2: Q2 resulted in propagating the scores 
in the cache, dashed lines represent patterns whose scores were updated, boldface scores 
represent scores that were affected by the propagation 

not all at once. As a result, Quality(P ) has be computed incrementally when the data is 

updated, i.e., we should only propagate the support values for the FD patterns in P → . Par-

ticularly, we propose two strategies to propagate the scores in the instance graph at query 

time: (1) Active propagation: Given a query result IQ, we propagate the scores of the FD 

patterns in IQ to all the FD patterns they can lead to in the cache; and (2) Lazy propaga-

tion: Given a query result IQ, we propagate the scores of the FD patterns in IQ to only the 

FD patterns in the query instance graph IGQ. 
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Active Propagation 

Given the simple FD patterns PQ extracted from a query result IQ, we update all the 

simple FD patterns P in IG where: (1) P contains all the simple FD patterns in IG where 

each simple FD pattern p ∈ P is reachable from at least one simple FD pattern q ∈ PQ; (2) 

we recompute the quality scores for all the simple FD patterns in P and PQ. The worst-case 

time complexity of active propagation is O(|V |+|E|) where V and E are the set of vertices 

and edges, respectively in the cache instance graph. That is, it is possible that a query result 

triggers updates to all the edges in the cache instance graph. This is because we follow any 

edges that the edges in PQ lead to in the cache. 

Example 4.5.1 Consider the two query results in Table 4.1. Assume, the two queries Q1 

and Q2 are posted at times t1 and t2 respectively. Figure 4.3(a) illustrates the state of the 

cache after processing both queries using active propagation. At time t1, Q2’s query result 

has resulted in updating seven simple FD patterns (dashed lines). The scores are recom-

puted for all the edges that were affected by Q2’s results. To show an example calculation 

of the quality scores, consider the following simple FD patterns at time t2 in Figure 4.3(a): 

• P1 : (φ2, “60615”, “NY ”) 

• P2 : (φ2, “60615”,“IL”) 

• P3 : (φ1, “(765) 330 − 0440”, “60615”) 

• P4 : (φ1, “(765) 472 − 7400”, “60615”) 

The quality of P3 with P → = {P1, P2} is calculated as follows: Quality(P3) = 3 

Sup(P3)+Sup(P1)+Sup(P2) 0.33+0.33+0.66= = 0.44|P →|+1 33 

Lazy Propagation 

Given the simple FD patterns PQ extracted from a query result IQ, we update only 

the simple FD patterns P in IG where P contains the simple FD patterns in IG where 

https://Sup(P3)+Sup(P1)+Sup(P2)0.33+0.33+0.66
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P = PQ. That is, we only update the scores of the query’s simple FD patterns. In this 

approach, we may have simple FD patterns in the cache that have “incomplete” quality 

scores, i.e., those FD patterns will only be updated if they appear as part of future query 

results. The worst-case time complexity of this strategy is O(|VQ| + |EQ|), where VQ 

and EQ are the set of vertices and edges in the query instance graph. Since this latter is 

generally signifcantly smaller than the cache graph, this strategy is suitable in cases where 

the cache graph becomes very large and active propagation becomes a big overhead to the 

query response time. 

Example 4.5.2 Refer to Figure 4.3(b). The dashed lines highlight the FD patterns that 

were updated at t2. Note that as opposed to the case of active propagation (Figure 4.3(a)), 

P4 : (φ1, “(765)472 − 7400”, “60615”) was not updated. This is because P4 was not part 

of Q2’s answer. Note that with lazy propagation, the FD patterns that were affected as a 

result of processing Q2, and are not in Q2’s answer, are updated only when another query 

returns those FD patterns. For example, the quality score of P4 will only be updated if a 

future query returns P4 in its answer. 

Algorithm 8 performs the propagation of quality scores at query time. Given a query re-

sult IQ, we frst insert its set of simple FD patterns PQ into the Instance Graph IG (Line 3). 

We then do a Depth-First Search traversal of the Instance Graph (Line 7). The traversal 

routine is described in Algorithm 7: we frst check if we are doing an Active or Lazy prop-

agation (Line 1). In Active Propagation, we recompute the quality scores for all the edges 

that can be reached from a given vertex v in the Instance Graph IG (v.adjacent(G)). In 

the case of Lazy Propagation, we only recompute the quality scores for the edges in PQ 

(those that are part of the query result) (v.adjacent(PQ)). The rest of Algorithms 7 and 8 

is the same as Algorithms 3 and 4 (Chapter 3). 

4.6 Query-Time FD Repairs 

We are now ready to present adaptations to Algorithm 6 (Chapter 3) to support query-

time FD repairing. Algorithm 9, given a query Q, computes a repaired query answer (ex-



92 

Algorithm 7: Traverse(Vertex v) 
output: Average quality of edges starting from Input Vertex v 

1 if Active Propagation then 
2 W ← v.adjacent(G) 

3 else if Lazy Propagation then 
4 W ← v.adjacent(PQ) 

5 if W = ∅ then 
6 vQuality[v] ← 0 

7 forall w ∈ W do 
8 Edge e = (v, w) 
9 Score ← 0 

10 if visited[w] = true then 
11 BackEdges ← BackEdges ∪ e 
12 return 0 

13 else 
14 visited[w] ← true 
15 Score ← Sup(e) + Traverse(w) 

Score 16 Quality[e] ← |e→|+1 

17 vQuality[v] ← vQuality[v]+ Score 

18 return vQuality[v] 

Algorithm 8: ComputePatternsQuality(Instance Graph G, Query FD patterns PQ) 
output: Edge-weights refecting the quality of the FD patterns 

1 BackEdges ← ∅ 
2 V ← PQ.vertices 
3 G = G ⊕ PQ 

4 

5 

for i ← 0 to |V| do 
visited[i] ← false 

6 forall v ∈ V do 
7 Traverse(v) 

8 forall Edge e(v, w) ∈ BackEdges do 
9 Quality[e] ← avg(Sup(e), vQuality[w]) 

pressed as a pattern expression). The Algorithm follows the same logic as Algorithm 6, 

except that it computes repairs per query (Line 5). After computing the query answer IQ 

(Line 6), the set of simple FD patterns in IQ is extracted (Line 7) and then appended to 
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the cache instance graph (Line 9) where the quality scores are propagated. After that, we 

simply use the instance graph to compute the repairs. The repairing steps (Lines 10-24) are 

the same used in the offine setting (refer to Chapter 3 for details). 

Algorithm 9: QueryTimePatternPreservingRepairs(Σ, Query Stream QS, Data 
Sources S) 

output: For every query in QS, return pattern expressions 
1 SCCG ← BuildSCCGraph(Σ) 
2 OC ← TopologicalSorting(SCCG) 
3 Ordered FDs ← OrderFDs(Σ, OC) 
4 IG ← ∅ 
5 forall Query Q ∈ QS do 
6 IQ ← Query Data Sources(q, S) 
7 PQ ← Get FD Patterns(IQ) 
8 pattern expressions ← ∅ 
9 ComputePatternsQuality(IG, PQ) 

10 forall Tuple t ∈ IQ do 
11 for i ← 0 to |Ordered FDs| do 
12 forall FD f ∈ Ordered F Ds[i] do 
13 Lval ← t[f.LHS] 
14 if Rtable(f).contains(Lval) then 
15 FDPattern p ← New FDPattern(f, Lval → Rtable(f).get(Lval)) 

P exp(t) ← P exp(t) B p16 

17 else if 

else 

f.RHS ∈ P exp(t) then 
18 FDPattern p ← New FDPattern(f, Lval → GetAttributeValue(P exp(t), 

f.RHS)) 
P exp(t) ← P exp(t) B p19 

20 Rtable(f).Add(Lval, GetAttributeValue(P exp(t), f.RHS)) 

21 

22 FDPattern p ← Edge Selection(IG) 
P exp(t) ← P exp(t) B p23 

24 Rtable(f).Add(Lval, p.RHS) 

25 pattern expressions = pattern expressions ∪ P exp(t) 

4.7 Experimental Study 

We evaluate our query-time FD repairing algorithm on the real-world restaurant dataset 

that we described in Chapter 2. We considered different variants of the cache as well as the 
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used score propagation strategies to evaluate our algorithm. Experiment results show not 

only a gain in repair quality over a state-of-the-art repairing algorithm, but also a runtime 

gain in query answering time. 

4.7.1 Dataset and Queries 

We use the restaurant datasets that we crawled from nine Web sources (Chapter 2). 

From this dataset, we synthetically generate a query stream of 100K queries following the 

approach described in Chapter 2. We defned four FDs over a target schema in which we 

integrate query results posted to the nine sources. The data as it stands contains errors, so 

we did not add any noise to it. 

4.7.2 Ground Truth 

We do not have the ground truth for the restaurant data we crawled. We use random 

sampling to pick queries for which we generate the ground truth manually. We divide the 

query stream into fve buckets (0-20K, 20K-40K, 40K-60K, 60K-80K, 80K-100K) and we 

select 50 random queries within each bucket. In total we have 250 queries for which we 

manually generate the ground truth. 

4.7.3 Algorithms 

In Chapter 3, we assessed the quality of our pattern-preserving repairing algorithms 

against several other data repairing algorithms. As our experiment results showed, Holis-

tic [16] seems to be the most promising competitor to our repairing approach. Therefore, 

we adapted Holistic to support query-time data repairing by making it process one query at 

a time instead of processing all the data at once. Since Holistic does not use any caching 

mechanisms, every query result is cleaned in isolation. 

In our setting, a dynamic cache can be updated by every query posted to the system. A 

static cache is loaded with a set of queries (e.g., 20K queries), and then, the cache becomes 
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static. Incoming queries on a static cache do not modify the cache. As we show in our re-

sults, a static cache can greatly improve the query response time and can be a good option 

especially if we have cache data that we know is clean (e.g., human-curated data). 

We have implemented three variants of our online algorithm: (1) Active-Dynamic: 

Greedy repair strategy with active score propagation and dynamic cache; (2) Lazy-

Dynamic: Greedy repair strategy with lazy score propagation and dynamic cache; (3) 

Active-Static: Greedy repair strategy with active score propagation and static cache; and 

(4) Lazy-Static: Greedy repair strategy with lazy score propagation and static cache. 

As experiment results showed in Chapter 3, the Greedy variant of our algorithm pro-

vides reasonable quality compared to RC and Hybrid. Since Greedy is more effcient than 

RC and Hybrid, we chose Greedy to be the repairing strategy in the online version of the 

algorithm, i.e., in the online setting, we would like to strike a balance between the quality 

of query results and query response time. 

Implementation and Hardware Platform. The algorithms are implemented in Java. The 

experiments are conducted on a Linux machine with 192 Intel Xeon Platinum 8168 2.70 

GHz cores and 3 TB of main memory. 

4.7.4 Metrics 

We use Precision and Recall to measure the quality of query results. Let IQ, 

Repaired(IQ) and Ground(IQ) be the raw query result, its repaired version (at query-

time) and its ground truth, respectively. Moreover, if a cell was originally clean in IQ and 

our repairing algorithm did not change it, this cell will not be considered in our computa-

tions of Precision and Recall. That is, Repaired(IQ) only contains cells that were changed 

in IQ and not initially clean. Similarly, Ground(IQ) only contains cells that are not initially 

clean in IQ and IQ contains cells that are not clean. Precision for a query Q is defned as 

the ratio of correctly repaired cells (|Repaired(IQ) ∩ Ground(IQ)|) over the total number 

of cells in the query result (|IQ|). Formally, precision for a query Q is defned as follows: 
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Figure 4.4.: Online FD repairing effectiveness results 

|Repaired(IQ) ∩ Ground(IQ)|
P recision(IQ) = (4.5)

|IQ| 

Recall for a query Q is defned as the ratio of correctly repaired cells (|Repaired(IQ) ∩ 

Ground(IQ)|) over the total number of cells in the ground truth of the query result 

(|Ground(IQ)|). Formally, recall for a query Q is defned as follows: 

|Repaired(IQ) ∩ Ground(IQ)|
Recall(IQ) = (4.6)

|Ground(IQ)| 

We compute the precision and recall for the randomly picked 50 queries and we average 

the result. 
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4.7.5 Results 

Figures 4.4a and 4.4b report the precision and recall results of Active-Dynamic, Active-

Lazy and Holistic. We observe that Active-Dynamic and Lazy-Dynamic signifcantly out-

perform Holistic by up to 5 times. We can also see that the recall results for Active-Dynamic 

and Lazy-Dynamic (Figure 4.4b) greatly outperform Holistic. This whopping difference in 

quality between our approach and Holistic is due to two factors: (1) In Holistic, every query 

result is cleaned in isolation, so, there is no “global view” over the data when repairing the 

query result; and (2) As shown in Chapter 3, pattern-preserving repairs are generally more 

accurate than repairs computed by Holistic, even when all the data is available. We can 

see that the active propagation strategy is generally superior to the lazy strategy, but only 

marginally (Figures 4.4a and 4.4b). This is because the posted queries were able to mini-

mize the window during which the quality scores of FD patterns are not propagated. That 

is, eventually, there were queries that resulted in propagating the scores, and hence, render-

ing the FD pattern scores current. Though it performs marginally less in terms of quality 

than its active counterpart, the runtime of the lazy strategy is far less than the runtime of 

the active strategy (Figure 4.5a). This suggests that the lazy propagation strategy strikes a 

good balance between quality of produced repairs and runtime. 

Interestingly, our query-time repair algorithm also performs signifcantly faster than 

Holistic (Figure 4.5a), even though we have to do score propagation for every received 

query. This is due to the smart ordered traversal of the instance graph and the incremental 

propagation of quality scores. 

The static confguration of the cache produces good quality repairs that are comparable 

to those computed with the dynamic cache confguration (Figures 4.4c and 4.4d). At each 

number of posted queries n, we report the average precision and recall for the whole 100K 

query stream when the cache is loaded with n queries. As expected, loading more queries 

into the cache results in better quality. We also observe that Lazy-Static is more sensitive to 

cache size than Active-Static. This is because when building a cache with the lazy propaga-

tion strategy, we may be left with many pattern quality values that were not propagated yet. 
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Figure 4.5.: Online FD repairing effciency results 

This is because the system may not have processed a query that would result in computing 

them. Therefore, the more queries we load into the cache, the more likely we get the scores 

propagated in the cache, and hence, produce better repairs. 

Running the system with a static cache greatly improves runtime (Figure 4.5b). This 

is expected as the static confguration will avoid doing any score propagation or updates 

to the cache. A static cache is suitable when we have a subset of the data that has a high 

accuracy, e.g., curated by experts. 

4.8 Concluding Remarks 

We described in this chapter key adaptations to our offine FD repairing proposal to 

work in the online setting. We showed that our pattern-driven framework supports offine, 

iterative and online data cleaning settings. This is a signifcant step for data cleaning al-

gorithms as we showed that we can use the same repairing framework to support different 

settings and not separate cleaning logics for each separate setting. Our experimental re-

sults show that our online FD repairing proposal can produce not only query answers with 

a reasonable accuracy, but also does so very effciently, which is a critical requirement to 

support the online setting. 
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5 NEXT DIRECTIONS: HUMAN-DRIVEN DATA CLEANING 

In this chapter, we present a vision for an important next direction in data cleaning: human-

driven data cleaning, where humans and tools are both part of one data cleaning framework 

and can both participate in cleaning the data. Human involvement is instrumental at several 

stages of data cleaning, e.g., to identify and repair errors, to validate computed repairs, etc. 

There is currently a plethora of data cleaning algorithms addressing a wide range of data 

errors (e.g., detecting duplicates, violations of integrity constraints, missing values, etc.). 

Many of these algorithms involve a human in the loop, however, this latter is usually cou-

pled to the underlying cleaning algorithms. There is currently no end-to-end data cleaning 

framework that systematically involves humans in the cleaning pipeline regardless of the 

underlying cleaning algorithms. In this paper, we highlight key challenges that need to be 

addressed to realize such a framework. We present a design vision and discuss scenarios 

that motivate the need for such a framework to judiciously assist humans in the cleaning 

process. Finally, we present directions to implement such a framework. 

This chapter is organized as follows. We present the architecture of our envisioned 

system in Section 5.2. In Section 5.3, we discuss key features to characterize humans in 

the cleaning pipeline. In Section 5.4, we discuss the problem of automatically assigning 

humans to cleaning tasks. We present and contrast different cost optimization strategies in 

Section 5.5. We address strategies to identify bottlenecks in the data cleaning pipeline in 

Section 5.6. We discuss related work in Section 5.7 and conclude in Section 5.8 

5.1 Introduction 

Businesses often collect large volumes of data to inform key decisions. However, be-

cause data can be humongous and highly volatile, it is infeasible for humans to manually 

verify its accuracy. As a result, decision-makers have to deal with possibly-inaccurate data 
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that may inherently lead to faulty business decisions. There are abundant research efforts 

to detect and repair the many types of data errors that one sees in the wild. This process 

is also known as the data cleaning process. Data errors include duplicates [11], violations 

of integrity constraints [16], and missing values [74]. While ideally we want to be able to 

fully automate this process, it has been widely recognized that humans have to be involved 

at various stages of the data cleaning pipeline [7,12,75]. A large spectrum of data cleaning 

systems involve humans. Examples include Poter’s Wheel [76], GDR [12], KATARA [77], 

CrowdER [78], and UGuide [9]. Each of these systems involves humans to solve a par-

ticular data cleaning task. However, an end-to-end data cleaning framework that involves 

humans in a way that is orthogonal to the underlying cleaning algorithms is not yet avail-

able. Looking at existing data cleaning techniques, we make the following observations: 

Human involvement is algorithm-driven: Humans are the ultimate authority in verifying 

the accuracy of the data. Because it is impractical to have humans correct the entirety of the 

data, many techniques strive to involve humans judiciously so as to maximize the beneft 

of their feedback in the cleaning process [6, 12, 78, 79]. Typically, humans are tightly 

coupled to the cleaning logic, i.e., humans are involved in ways that are dictated by the 

cleaning algorithm being used. This coupling is necessary to produce good quality results 

for specifc data cleaning tasks. However, if we want to “plug-and-play” arbitrary tools to 

clean different types of data errors, then, we need a way to involve and manage humans 

in an algorithm-agnostic fashion in the data cleaning pipeline. This generic inclusion of 

humans is not meant to replace human-guided algorithms, in fact, they should go hand-in-

hand to unlock various use cases in the cleaning process. 

Data singularity: An assumption that is usually made in cleaning algorithms is that the 

data is subjected in its entirety to a given cleaning algorithm [8, 58]. However, in practice, 

different parts of the data are cleaned by different agents. For instance, one may use an au-

tomatic data cleaning tool to fnd the correct mapping of the Zip code to a City name while 

requesting humans to correct the Salary data (one would not trust an automatic algorithm 

to modify the salary data). This motivates the need for a cleaning framework that supports 
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both human and automatic agents to holistically clean different parts of the data. In the 

remainder of the chapter, we refer to the detection and repairing agents as cleaning agents. 

Source of errors: There are multiple factors that can infuence the quality of the computed 

repairs, e.g., the humans involved, the data quality rules, and the repair algorithm. However, 

existing techniques do not assess the effect of various factors that produce the data repairs 

(for example, many rule-based repair algorithms assume the rules are correct [17, 18, 65]). 

Understanding this effect is crucial in identifying bottlenecks in the data cleaning pipeline. 

Just as important as suggesting potential data errors for humans to verify, it is important to 

make it easy for humans to identify faulty factors (rules, humans, external resources, etc.) 

that have been involved to compute the inaccurate repairs. 

Humans are not always right: Many human-driven data cleaning techniques assume that 

humans (e.g., experts) are perfect [12]. However, in practice, humans may make mistakes 

at various stages of the data cleaning pipeline (e.g., in the detection, repairing, or validation 

phases). Understanding how humans interact with the data is important to judiciously 

involve them in the cleaning process. For instance, an error reported in the Sales data by 

a person working in the Sales department should have more weight than one reported by a 

human working in another department. Therefore, there are several nuances in the human 

feedback that need to be dissected to effectively involve humans in the cleaning process. 

Example 5.1.1 Refer to Figure 5.1. Table Employees contains employee data, e.g., name, 

salary, and the branch they belong to (BID). Table Branches contains the list of branches 

(BID) and their location (Zip, City). We assume all branches are based in the State of 

Indiana, thus we omit the State attribute from Table Branches. 

Scenario 1: As we illustrate in this example, there are many use cases where it is 

useful to have a high-level, algorithm-agnostic understanding of how different compo-

nents in the cleaning pipeline interact with each other. Because they were designed to 

solve a specifc data cleaning task, existing human-guided algorithms do not capture 

those use cases. In this scenario, we present a mix of data cleaning operations performed 

by various agents to repair the tables Employees and Branches. The workfow is as follows: 
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1. Bob validates record te3 as being correct. 

2. Table Employees is deduplicated using a tool, Dedup. This latter reports records te3 

and te6 as duplicates. 

3. We would like to fll in the missing values. Instead of assigning a human to do it, 

the system should be able to notice that since te3 and te6 are duplicates, and Bob 

previously marked record te3 as being correct, then, the missing value te6[Sal] can 

be set to te3[Sal]. The resulting table is Employees v1. 

4. Alice reports an error in cell te0 6[Sal] in table Employees v1. 

5. The system should be able to automatically ask a human, Sam, who is knowledgeable 

about the Salary data to repair the reported error. The system should be able to notice 

that it is better to choose a human other than Bob to examine the error, so that it can 

then compare their decisions. Sam then corrects the error and updates te0 6[Sal]. The 

system also updates te0 3[Sal], since te0 3 and te0 6 were previously marked as duplicates. 

6. Ben validates the repair Sam made. 

7. The system should be able to capture that Bob is not that reliable when it comes to 

validating employee records, that Alice reports valid errors, and that Sam is reliable 

in repairing the salary data. Table Employees v2 contains the fxed errors. 

8. We would like to enforce a functional dependency (FD) rule (φ1: Zip → City) on 

the Branches table. The cells marked in boldface violate φ1. We use an FD repair 

tool, R1, to automatically repair those violations. Table Branches v1 is the repaired 

instance. 

Scenario 1 shows that it could be useful to have a holistic strategy to deal with various 

cleaning agents acting on different parts of the data. Such a framework has the potential 

to facilitate the human involvement in the cleaning pipeline at a high-level. However, re-

alizing such a framework poses several challenges. Particularly, Scenario 1 raises several 

questions: 
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• How do we know how confdent Bob is about the validation he has performed on te3? 

Asking another human to verify Bob’s validation is expensive. How can we model 

Bob’s knowledge on different parts of the data? 

• How do we assess the quality of automatic tools, such as Dedup and R1 so that we 

know if a human validation is required after these tools are executed? 

• How do we assess Alice’s knowledge on the data? 

• How can the system automatically route reported errors to humans with the right 

expertise to examine them? 

• What if a certain repaired cell, say, tb0 3[City] is deemed incorrect. Should we examine 

R1 or the FD rule φ1, or both? In other words, how can the system isolate the culprits 

in the data cleaning pipeline so that humans can easily debug cleaning decisions? 

The above questions are among many others that need to be addressed to effectively 

involve humans in the data cleaning pipeline. To this end, we propose a vision for an 

end-to-end data cleaning system that supports the following features: 

• Heterogeneity: The system should be able to simultaneously support cleaning 

agents of different types, i.e., human, automatic or semi-automatic. Since differ-

ent parts of the data can be cleaned by different agents, each agent receives part or 

all of the data as input. 

• Isolation: The system should treat cleaning agents as black boxes while still en-

abling humans to detect, repair, and verify errors or bottlenecks (e.g., cleaning agents 

that are associated with wrong repairs) in the cleaning process. Thus, humans are iso-

lated from the specifc cleaning logic of a specifc cleaning algorithm. 

• Human Cost Optimization: The system should be able to reason about the exper-

tise of different humans when assigning cleaning tasks. It should also account for the 

cost and expertise when involving a given human in a cleaning task. 
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• Accountability: There are many factors involved in computing a given repair. 

Based on human feedback (e.g., human reports an error in a repaired cell), the sys-

tem should automatically assess the reliability of different factors (e.g., agents, rules, 

etc.) that were involved in computing a repair over time. This assessment is crucial 

for humans to identify bottlenecks, i.e., factors associated with inaccurate repairs, in 

the data cleaning process. 

5.2 Architecture Overview 

5.2.1 Terminology 

Consider a relational database D containing relations R1, R2, ..., Rn. Every relation Ri 

(1 ≤ i ≤ n) contains a set of attributes Ai 
1, A2 

i , ..., Ai
k with domains dom(Ai 

1), dom(A
i 
2), 

..., dom(Ai
k) respectively. For the instance Ii of Ri containing tuples T , a cell c is the value 

of a tuple t ∈ T in attribute A ∈ Ri, denoted t[A]. 

Detector: Detectors are humans or programs that, given a set of cells as input, provide a 

set of cells that are potentially erroneous as output. Example detector programs are those 

that use data quality rules (e.g., Denial Constraints) to identify the cells that violate those 

rules. 

Repairer: Repairers are humans or programs that update the input cells in a way that 

“fxes” the data errors. 

Repair: We refer to an update to a set of cells C made by a Repairer R as a repair. 

Accurate Repair: A repair is accurate if it contains cells with values that match the 

ground truth. 

5.2.2 Architecture 

Figure 5.2a illustrates the proposed architecture to implement our system vision. In 

a nutshell, there are four main components: Detectors, Repairers, Cleaning resources and 

Validators. All the Detectors and Repairers are treated as pluggable black boxes. One could 
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use any number of detection and repairing algorithms to clean the data. Since different 

agents can be involved to detect/repair different parts of the data, Detectors and Repairers 

are applied to different data views. Furthermore, Detectors and Repairers may use clean-

ing resources such as rules, masterdata, etc., to detect and/or repair the data. Cleaning 

resources are commonly produced by humans. We explore in Section 5.6 how the envi-

sioned system should make it easy for humans to identify agents or cleaning resources that 

produce inaccurate repairs. Finally, in addition to detecting and fxing errors, humans are 

also able to validate the computed repairs, and based on their feedback, the system assesses 

the reliability of different factors that were involved in computing the repairs. 

Data Cleaning job: The envisioned system allows humans to declaratively specify a data 

cleaning operation as a function of several parameters. Specifcally, a data cleaning job is 

represented as the quadruplet hC, D, R, V i where: C is the set of input cells (cannot be 

empty), D is the set of Detectors to be used to detect errors in C, R is the set of Repairers 

to repair the errors found in C, V is the set of humans to validate the produced repairs. 

Using this representation, we can capture most of the cleaning scenarios. For example, if 

D and R are empty and V is not empty, then, the job will be a validation task on the cells 

in C. 

Example 5.2.1 In Example 5.1.1 (scenario 1), the cleaning jobs are represented as: 

job1 : hC = ∗, D = ∅, R = ∅, V = {“Bob”}i 

job2 : hC = ∗, D = {“Alice”}, R = ∗, V = ∗i 

job3 : hC = {tb[Zip] = ∗, tb[City] = ∗}, D = {φ1}, R = {R1}, V = ∅i 

job1 states that “Bob” can validate any cell in the data. 

job2 states that “Alice” can report errors in any data cell, and if she does, the system 

should automatically assign a repairer to update the data, and a validator to verify the 

update. 

job3 states that we are using φ1 (in practice, there is a program that projects φ1 on the 

data to extract violations, but for simplicity, we are only including the rule) to detect errors 

in all the Zip and City cells. The errors are then repaired using the FD-repair tool R1. The 

repairs are not subjected to validation (V = ∅). 
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5.3 Humans in the Cleaning Process 

While several research efforts involve the human in specifc cleaning problems (e,g,. 

Entity Resolution [78], Integrity Constraints [12], Data Fusion [79]), there is no proposal 

that involves humans for general data cleaning (regardless of the cleaning problem at hand). 

Furthermore, characterizing human expertise for the purpose of general data cleaning re-

mains unexplored. Particularly, data cleaning efforts that use crowdsourcing [77, 78] as-

sume that crowd workers are non-experts. On the other end of the spectrum, we have data 

cleaning methods [9, 12] that assume humans are experts whose feedback is assumed to 

be always correct. In practice, humans can have different degrees of expertise on different 

parts of the data. We shed some light to highlight key challenges that need to be addressed 

to realize this characterization. 

5.3.1 Characterizing Human Expertise 

Cleaning tasks: Humans interact in various ways in the cleaning process. Based on our 

vision, we list four human-driven tasks, referred to in this chapter by cleaning tasks, that a 

human-centric data cleaning system needs to support. 

1. Detection: Humans should be able to report errors in a given set of cells. 

2. Repairing: When errors are reported, humans should be able to fx those errors by 

updating the data to refect accurate values. 

3. Validation: Humans should be able to verify a repair that has been made by another 

cleaning agent (human or automatic). 

4. Specifcation: Humans should be allowed to write specifcations (e.g., FD rules) to 

detect data errors. 

Human roles: The above interaction cases impose a distinction between different human 

roles in the cleaning process. Human roles in data cleaning are not well-studied. At a high 

level, we can think of a separation between human roles based on the knowledge of the 
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data, the domain, and the technical tools needed to update and transform the data. In the 

Detection task, the person reporting errors does not have to be technical. We refer to this 

person as the Data User. In the Repair task, because the human has to update the data 

with new values, the human has to possess the necessary technical background to perform 

the repair without introducing new data errors for technical reasons (e.g., a faulty SQL 

statement), we refer to this person as the Data Curator. In order to know how to repair 

a reported error, the Data Curator has to be knowledgeable enough about the erroneous 

data. In the Validation task, the humans validating the repairs have to be knowledgeable 

about the data they are asked to validate but do not have to be technical. For example, the 

system can ask a person yes/no questions about some data cells. We refer to this person as 

the Data Validator. In the Specifcation task, the person has to be a domain expert who can 

write specifcations (for example, in the form of rules) that are then used to capture data 

errors. We refer to this person as the Domain Expert. 

Data Expertise: Humans have different knowledge about different parts of the data. For 

example, a person working in the Sales department is probably more aware of the Sales data 

than someone working in the Marketing department. When assigning humans to cleaning 

tasks, it is important the system makes sure the assigned humans are knowledgeable enough 

in the data they are asked about. In a human-centric data cleaning system, every human 

has a history of the data cells they helped clean. Through the Validation task, the system 

can learn how good a given human is for a certain cleaning task and for a given cell. For 

example, a simple measure to quantify the expertise of a human h on data cells C, for a 

task T , is the following: 

#(h, C, T )
Expertise(h, C, T ) = (5.1)

#validated(C, T ) 

Equation 5.1 calculates the ratio of cells in which a human h performed a task T over 

to the number of cells in C that were subject to validation. 

For example, we would like to measure the expertise of a human h in the detec-

tion task for a set of cells C. Assume h correctly reported errors in two of these cells. 
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The total number of cells that were validated by a Data Validator in C is 4. Therefore: 

Expertise(h, C, T = “Detection”) = 
4
2 = 0.5 

Cost Model. Involving humans is generally expensive. It is important to be able to char-

acterize the cost of involving a human to perform a certain cleaning task. For example, 

involving domain experts is generally more costly than involving ordinary data users. This 

cost should also take into consideration the availability of different human roles. For in-

stance, if we have very few data curators, we would want to make sure they are assigned the 

most critical tasks only. Furthermore, it would be interesting to incorporate the cognitive 

effort of looking at the data to perform a cleaning task. 

Human Budget. The human budget for a data cleaning job j could be expressed as 

a combination of many factors including the maximum number of humans available to 

perform a certain task, the total money cost to spend to perform a task, time limit, etc. 

We are now ready to formally defne a Human characterization of a human h. 

Defnition 5.3.1 Human Characterization. A human h in a data cleaning scenario is 

represented as h: hRole, Data, Cost, Expertisei where Role is the role of the human, 

Data is the set of cells h is knowledgeable about, Cost is the cost of involving h, Expertise 

is a score that refects how good h is for the role Role in cells Data. 

5.4 Task Allocation 

The envisioned system should allow users to defne data cleaning jobs without explicitly 

stating the humans involved. Specifcally, the system should be able to select from a pool of 

humans H with different characterizations, the right human for the right task. An example 

job is defned as follows: 

job4 = hC = ∗, D = {“Alice”}, R = ∗, V = ∅i 

In job4, The set of repairers includes all the humans H available for this task. This 

makes the system responsible for assigning a repairer for the errors that Alice detects. In 

our system, we are only interested in automatically assigning humans to cleaning tasks. 

Assigning automatic agents to cleaning tasks is outside the scope of the proposed vision. 
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Given a set of humans with their characterizations, the proposed system should be able 

to automatically assign cleaning tasks to them. We now discuss key building blocks that 

are needed to effectively assign cleaning tasks to humans. 

5.4.1 Interaction Between Humans 

It is crucial to develop an interaction model between different human roles to optimize 

the cleaning effort. Ideally, we should aim for an interaction model that produces the 

best cleaning results at the least human cost. In particular, a “good” interaction model 

should: (1) Minimize the communication overhead between different human roles; and 

(2) Account for all possible human-to-human interaction cases in the cleaning scenario. 

These cases are dictated by the set of human roles and their expertise. For instance, as 

illustrated in Figure 5.2b and using the roles we defned previously, the possible human-to-

human interaction scenarios are the following: 

• Data User reports errors to the Data Curator. 

• Domain Expert provides specifcations (e.g., rules, etc.) to the Data Curator to en-

force on the data. 

• Data Curator reports errors found in specifcations to the Domain Expert. 

• Data Validator validates fxes performed by the Data Curator. 

5.4.2 Task Assignment 

Given a data cleaning job j for cells C, a pool of humans, say H , and a budget, say B, 

the framework should assign automatically cells in C to humans in H (e.g., job4 defned 

above). The assignment should guarantee the following properties: (1) Coverage: If the 

job is to be performed by humans only, every cell in C should be covered by at least one 

human; (2) Maximize expertise: The assigned humans should have good knowledge about 

cells in C; (3) Minimize cost: The human cost should not exceed Budget B. 
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Example 5.4.1 Assume that we have a validation task on all the Sal cells of Table Em-

ployees in Figure 5.1 defned as the data cleaning job job5 as follows: 

job5 = hC = Employees[Sal], D = ∅, R = ∅, V = ∗i 

Consider a pool of humans H = {Alice, Bob, and Sam}, and a human budget (B = 

1) for job5 expressed (for simplicity) as the maximum number of humans involved in the 

task. Alice, Bob, and Sam have good knowledge on the following sets of cells {te0 [Sal],1 

te2[Sal],te3[Sal], te4[Sal], te5[Sal]}, {te3[Sal], te4[Sal]}, and {te5[Sal]}, respectively. In 

this scenario, the system should assign job5 to Alice only (since B = 1 and Alice covers 

all the cells of Sal). 

5.5 Cross-Agent Cost Optimization 

Minimizing the human cost to repair the data has been the cornerstone of numerous 

research efforts [12]. However, when the human is not aware of the cleaning algorithm’s 

logic, it becomes hard to achieve this goal. For instance, consider a Detector Dedup that 

detects duplicate records using a clustering algorithm. Dedup uses some similarity measure 

Sim to decide if a set of data points belong to the same cluster. Knowing how Dedup 

works, if we want to validate its output, we could ask a human to verify if the closest points 

(using Sim) between the clusters are indeed not duplicates. In the case of our envisioned 

system, Dedup would simply provide its output as clusters expressed in terms of records 

(duplicate records would share the same value of a designated attribute). In this case, 

involving the human usefully becomes more challenging. 

We need to answer the following questions: (1) When we have human and automatic 

cleaning agents, what are the consequences of involving one over the other on human cost 

and data quality? (2) Given multiple humans that are assigned the same set of cells to 

repair, which human do we choose? (3) How do we schedule different cleaning jobs in 

order to achieve an optimal human cost and data quality? 
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5.5.1 Quantitative Cost Optimization 

When we have humans and automatic agents that are assigned overlapping input data, 

which one should we prioritize? and what are the consequences for each choice? For 

example, in Example 5.1.1, what if Sam has also been assigned to repair cells tb2[City], 

tb3[City], tb2[Zip], tb3[Zip]. In this case, the input to R1 (automatic agent) overlaps with 

the input to Sam. This overlap is possible in practice. For example, one may want an 

automatic agent to clean a large amount of data while requiring the human to repair only 

a small subset of it. If we want to minimize human intervention, we can simply prioritize 

automatic agents over humans for a given set of cells. As a result, because Sam is assigned 

cells that are part of the input to R1, we can simply save cost by not asking Sam to repair 

tb2[Zip], tb2[City], tb3[Zip], tb3[Zip], but we would still ask him to fx the Salary value in 

te0 6[Sal] because this cell is not input to an automatic agent. While human intervention is 

minimized in this strategy, we note the following points: 

• Human cost is minimized at the expense of data quality. That is, humans generally 

perform better repairs than automatic agents. 

• This strategy can be suitable if the automatic agents provide high repair accuracy. 

5.5.2 Qualitative Cost Optimization 

This strategy gives preference to humans over automatic agents. As a result, the human 

cost will be higher compared to the previous strategy. In this strategy, when the input cells 

for an automatic agent overlap with those for a human agent, the system frst invokes the 

automatic agent, and then asks the human to correct the overlapping cells. This way, the 

human updates will be ordered last and will not be undone by the automatic agent. Using 

this strategy, we note the following: 

• Because humans are prioritized over automatic agents, it is expected that this strategy 

results in better data quality compared to the previous one. 



114 

• Human cost is high in this strategy. This strategy is suitable when invoking the 

automatic agents would result in a low repair quality. 

5.6 Identifcation of Bottlenecks 

There are several factors involved in repairing a cell, say c. We refer to these factors 

by factors(c), where they include: (1) Detectors: Human or automatic agents that have 

fagged c’s old value as erroneous; (2) Repairers: Agents (humans or automatic) that have 

computed the repair in c; (3) Cleaning resources: Resources used to compute c, which 

include Rules, Metadata, etc. (4) Data Validators: Humans that validated c as a correct 

repair (if c has been subject to validation). Therefore, the framework has to keep track of 

the provenance of every computed repair expressed in terms of all the factors that were 

involved to compute the repair for given cells. 

After human validation, if a repair for c is deemed accurate (respectively, inaccurate), 

then every factor in factor(c) should be rewarded (respectively, penalized). Providing 

this accountability will help identify factors that are commonly associated with inaccurate 

repairs. This assessment is crucial for humans as it helps them identify bottlenecks in the 

cleaning pipeline as a whole. 

Scoring factors: One way to capture the reliability of different factors is to compute a 

score for each one of them that refects how “good” each factor is. A simple way to capture 

the quality of a given factor f ∈ factor(c) is the following: 

#correct(f)
Quality(f) = (5.2)

#validated(f) 

Equation 5.2 calculates the ratio of correct cells (as validated by a human) where f was 

involved over the total number of validated cells where f was involved. 

Since they would result in inaccurate repairs, the “bad” factors would elicit more human 

feedback than the “good” ones. Therefore, identifying them is crucial to minimize the 

human cost in the cleaning process. 
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Scenario 2: Consider Example 5.1.1. We want to perform a new cleaning iteration with 

an additional FD rule that will be enforced on table Branches v1 (Figure 5.1). Let us add 

an incorrect FD rule: φ2 : City → Zip. This rule states that records that share the same 

City should have the same Zip code. This is in reality not correct because a city can have 

multiple zip codes. We now create a new data cleaning job: job6 : hC = {tb0[Zip] = 

∗, tb0[City] = ∗}, D = {φ1, φ2}, R = {R1}, V = ∅i 
=The set of violating cells will be C 6| = {tb0 1[Zip], tb1 

0 [City], tb0 4[Zip], tb
0 
4[City], 

tb0 5[Zip], tb
0 
5[City]} . Let us assume that R1 lifts the violation by setting tb0 1[Zip] = 47904. 

Let us call the repaired cell tb00 1[Zip]. 

If we want to ask Jen, a human validator about the repairs computed by R1, which 

violating cells should we ask her to validate? More importantly, how does the choice of 

cells we choose to validate affect the ability to isolate troublesome factors? Furthermore, 

how can we adjust the choice of cells to validate to our available human budget? To shed 

some light on answering those questions, we discuss the following key cases: 

1. If we validate cells that were computed using many factors, we get an aggregate 

feedback on all the involved factors. For instance, asking Jen to validate tb0 5[City] 

would provide a feedback about φ1, φ2 and R1 (that cell was involved in two vio-

lations across different cleaning iterations). This is useful to get a feedback about 

many factors at once, however, it may not be good at isolating factors to identify 

the bottlenecks causing inaccurate repairs. This strategy is suitable when the cost 

of involving human validators is high. Therefore, this strategy allows us to have an 

idea about as many factors as possible using the least number of cells to hopefully 

identify a combination of factors that produced inaccurate repairs. 

2. If we validate cells that were computed using few factors, we get a more fne-grained 

feedback about the involved factors. For example, asking Jen to validate tb00 1[City] 

and tb00 1[Zip] (which represent the repairs for cells tb0 1[City] and tb1 
0 [Zip] respec-

tively) would isolate φ2 as a problematic FD rule (since tb0 1[Zip] and tb0 1[City] vio-
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lated φ2 only). While this strategy provides a better isolation of factors, it involves 

more cells to be validated which translates into spending a higher human cost. 

5.7 Related Work 

There is a rich literature on Data Cleaning techniques and theory [7,14,80]. We discuss 

a few papers in two areas: general data cleaning systems and human-assisted data cleaning 

techniques. 

General Data Cleaning Systems: A strongly related system to our proposal is the data 

cleaning system NADEEF [8]. Like our envisioned system, NADEEF adopts a system-

approach to realize an end-to-end data cleaning framework that supports a number of data 

cleaning tasks (rule-based repairing, deduplication, etc.). NADEEF offers a programming 

interface so that users can implement detection and repairing components. As opposed to 

NADEEF, our framework not only supports automatic agents, but supports involving hu-

mans in all the stages of the data cleaning pipeline. Another related system is KATARA [77] 

which leverages the crowd and knowledge bases (KB) to clean dirty tables. KATARA is not 

rule-driven and can repair any cells in the input tuples (hence its categorization as a general 

data cleaning system). KATARA jointly uses the KB and the crowd feedback to identify cor-

rect and erroneous data in the input dirty table. Our vision is different from KATARA as we 

are considering humans with different expertise and roles (as opposed to using non-expert 

crowd workers). Furthermore, our envisioned system supports any number of cleaning 

agents for different cleaning tasks (integrity constraints, deduplication, etc.). 

Human-Guided Data Cleaning: The idea of assisting humans in specifc data cleaning 

problems (Entity Resolution, Schema transformations, etc.) has been widely studied [9,12, 

75,76,81,82]. However, human involvement in these proposals is coupled to the underlying 

cleaning logic. Our proposal complements this line of work by enabling any number of 

cleaning tools to co-exist in the same platform while supporting multi-tool, algorithm-

agnostic use cases that are otherwise not captured when using a tool to perform a specifc 

data cleaning task. 
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The crowdsourcing literature [83] focuses mainly on scenarios that involve non-expert 

humans. However, in our framework, humans have multiple roles with varying degrees of 

expertise. Furthermore, our setup supports non-human agents as well. 

5.8 Concluding Remarks 

Scaling the generation and processing of big data often comes at the cost of its quality. 

We presented our vision for a framework that assists humans in all the major stages of the 

cleaning pipeline. We proposed several properties that need to be met to unlock the full 

potential of a given data cleaning scenario. We raised several questions that need to be 

addressed in order to bring such a vision to life. There are still many other questions that 

were not addressed in this vision such as data privacy, i.e., how can humans clean the data 

in the presence of privacy constraints? But we believe the proposed vision raises the central 

questions that we need to answer frst to realize a human-centric data cleaning system. 
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6 CONCLUSIONS 

In this dissertation, we addressed several data quality challenges in different settings. The 

process of data cleaning in the online setting does not come in a “one size fts all” fashion. 

We saw that we had to propose radically-different approaches to address different types of 

data errors, namely, duplicates and FD violations. 

For online record linkage, we proposed a framework that enables query-time record 

linkage and fusion. We proposed a caching solution and developed a lookup strategy to 

match query answers to cache records effciently. We then proposed mechanisms to iter-

atively update the cache with incoming query answers. We experimentally showed that 

our techniques provide a sharp gain in quality at a small time overhead. Furthermore, we 

enabled off-the-shelf record linkage and fusion tools to work in the online setting. 

For online FD repairing, we frst had to fundamentally rethink how FD repairing works. 

The traditional methods that enforce FDs on the data are quadratic as they require detecting 

all the pairs of tuples violating the FDs, and then lift the violations. We cannot afford to 

perform such a process at query-time, so we developed a novel way to approach FD repair-

ing without the need to perform detection. In particular, we proposed a graph structure on 

top of which we developed repair algorithms that run in linear time. The key idea of our 

FD repairing framework is to project the FDs on the data and generate FD patterns. We 

devised different cases of interaction for FD patterns and developed a model to compose 

them and reason about their quality. 

Furthermore, we adapted our FD repairing framework to work in the online setting. In 

particular, we implement a virtual integration system that integrates results from several 

Web sources at query time. We used this system as a test-bed to test our query-time FD 

repairing proposal. We showed that with small changes to our FD repairing framework, 

we were able to have a fully-functional query-time FD repairing system. In particular, we 

developed a method to compute the quality of FD patterns incrementally as query results 
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are processed in the system. The key takeaway from this project is that it is important to 

design cleaning algorithms that are setting-independent, and could be readily tuned to work 

in the offine, iterative or the online settings. 

Last but not least, we discussed future directions in data cleaning. Since humans are 

the ultimate authority to validate data repairs, they have to be involved in the data cleaning 

pipeline in a smart way. Moreover, data cleaning is a process that typically involves two 

agents, namely, tools (e.g. FD repairing tool) and humans (e.g. domain expert). However, 

there is currently a big gap between these two agents. Typically, we either fnd tools that 

are fully automatic or those that involve the human in the cleaning logic of the tool. It is 

important to design data cleaning frameworks that can involve humans no matter what the 

underlying cleaning algorithm is. 
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