6 research outputs found

    Iterated local search algorithm for the vehicle routing problem with backhauls and soft time windows

    Get PDF
    The vehicle routing problem with backhauls and soft time windows contains two disjoint sets of customers: those that receive goods from the depot, who are called linehauls, and those that send goods to the depot, named backhauls. To each customer is associated an interval of time (time window), during which each one should be served. If a time window can be violated it is called soft, but this violation implies an additional cost. In this paper, only the upper limit of the interval can be exceeded. For solving this problem we created deterministic iterated local search algorithm, which was tested using a large set of benchmark problems taken from the literature. These computational tests have proven that this algorithm competes with best known algorithms in terms of the quality of the solutions andcomputing time. So far as we know, there is no published paper for this problem dealing with soft time windows, and, therefore, this comparison is only with the algorithms that do not allow time windows violation.info:eu-repo/semantics/publishedVersio

    A unified tabu search algorithm for vehicle routing problems with soft time windows

    Get PDF
    The different ways of allowing time window violations lead to different types of the vehicle routing problems with soft time windows (VRPSTW). In this paper, different types of VRPSTW are analysed. A unified penalty function and a unified tabu search algorithm for the main types of VRPSTW are presented, with which different types of VRPSTW can be solved by simply changing the values of corresponding parameters in the penalty function. Computational results on benchmark problems are provided and compared with other methods in the literature. Some best known solutions for the benchmark problems in the literature have been improved with the proposed algorithm

    Integrated zone picking and vehicle routing operations with restricted intermediate storage

    Get PDF
    The competitiveness of a retailer is highly dependent on an efficient distribution system. This is especially true for the supply of stores from distribution centers. Stores ask for high flexibility when it comes to their supply. This means that fast order processing is essential. Order processing affects different subsystems at the distribution center: Orders are picked in multiple picking zones, transferred to intermediate storage, and delivered via dedicated tours. These processing steps are highly interdependent. The schedule for picking needs to be synchronized with the routing decisions to ensure availability of the delivery orders at the DC’s loading docks when their associated tours are scheduled. Concurrently, intermediate storage represents a bottleneck as capacities for order storage are limited. The simultaneous planning of picking and routing operations with restricted intermediate storage is therefore relevant for retail practice but has not so far been considered within an integrated planning approach. Our work addresses this task and discusses an integrated zone picking and vehicle routing problem with restricted intermediate storage. We present a comprehensive model formulation and introduce a general variable neighborhood search for simultaneous consideration of the given planning stages. We also present two alternative sequential approaches that are motivated by the prevailing planning situation in industry. Numerical experiments that we have conducted show the need for an integrated planning approach to obtain practicable results. Further, we identify the impact of the main problem characteristics on the overall planning problem and provide valuable insights for the application of this approach in industry

    Effects of distribution planning systems on the cost of delivery in unique make-to-order manufacturing

    Get PDF
    This thesis investigates the effects of simulation through the use of a distribution planning system (DPS) on distribution costs in the setting of unique make-to-order manufacturers (UMTO). In doing so, the German kitchen furniture industry (GKFI) serves as an example and supplier of primary data. On the basis of a detailed market analysis this thesis will demonstrate that this industry, which mostly works with its own vehicles for transport, is in urgent need of innovative logistics strategies. Within the scope of an investigation into the current practical and theoretical use of DPS, it will become apparent that most known DPS are based on the application of given or set delivery tour constraints. Those constraints are often not questioned in practice and in theory nor even attempted to be omitted, but are accepted in day-to-day operation. This paper applies a different approach. In the context of this research, a practically applied DPS is used supportively for the removal of time window constraints (TWC) in UMTO delivery. The same DPS is used in ceteris paribus condition for the re-routing of deliveries and hereby supports the findings regarding the costliness of TWC. From this experiment emerges an overall cost saving of 50.9% and a 43.5% reduction of kilometres travelled. The applied experimental research methodology and the significance of the resulting savings deliver the opportunity to analyse the removal of delivery time window restrictions as one of many constraints in distribution logistics. The economic results of this thesis may become the basis of discussion for further research based on the applied methodology. From a practical point of view, the contributions to new knowledge are the cost savings versus the change of demand for the setting of TWC between the receiver of goods and the UMTO supplier. On the side of theoretical knowledge, this thesis contributes to filling the gap on the production – distribution problem from a UMTO perspective. Further contributions to knowledge are delivered through the experimental methodology with the application of a DPS for research in logistics simulation

    Algorithms for vehicle routing problems with heterogeneous fleet, flexible time windows and stochastic travel times

    Get PDF
    Orientador: Vinícius Amaral ArmentanoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho aborda três variantes multiatributo do problema de roteamento de veículos. A primeira apresenta frota heterogênea, janelas de tempo invioláveis e tempos de viagem determinísticos. Para resolvê-la, são propostos algoritmos ótimos baseados na decomposição de Benders. Estes algoritmos exploram a estrutura do problema em uma formulação de programação inteira mista, e três diferentes técnicas são desenvolvidas para acelerá-los. A segunda variante contempla os atributos de frota heterogênea, janelas de tempo flexíveis e tempos de viagem determinísticos. As janelas de tempo flexíveis permitem o início do serviço nos clientes com antecipação ou atraso limitados em relação às janelas de tempo invioláveis, com custos de penalidade. Este problema é resolvido por extensões dos algoritmos de Benders, que incluem novos algoritmos de programação dinâmica para a resolução de subproblemas com a estrutura do problema do caixeiro viajante com janelas de tempo flexíveis. A terceira variante apresenta frota heterogênea, janelas de tempo flexíveis e tempos de viagem estocásticos, sendo representada por uma formulação de programação estocástica inteira mista de dois estágios com recurso. Os tempos de viagem estocásticos são aproximados por um conjunto finito de cenários, gerados por um algoritmo que os descreve por meio da distribuição de probabilidade Burr tipo XII, e uma matheurística de busca local granular é sugerida para a resolução do problema. Extensivos testes computacionais são realizados em instâncias da literatura, e as vantagens das janelas de tempo flexíveis e dos tempos de viagem estocásticos são enfatizadasAbstract: This work addresses three multi-attribute variants of the vehicle routing problem. The first one presents a heterogeneous fleet, hard time windows and deterministic travel times. To solve this problem, optimal algorithms based on the Benders decomposition are proposed. Such algorithms exploit the structure of the problem in a mixed-integer programming formulation, and three algorithmic enhancements are developed to accelerate them. The second variant comprises a heterogeneous fleet, flexible time windows and deterministic travel times. The flexible time windows allow limited early and late servicing at customers with respect to their hard time windows, at the expense of penalty costs. This problem is solved by extensions of the Benders algorithms, which include novel dynamic programming algorithms for the subproblems with the special structure of the traveling salesman problem with flexible time windows. The third variant presents a heterogeneous fleet, flexible time windows and stochastic travel times, and is represented by a two-stage stochastic mixed-integer programming formulation with recourse. The stochastic travel times are approximated by a finite set of scenarios generated by an algorithm which describes them using the Burr type XII distribution, and a granular local search matheuristic is suggested to solve the problem. Extensive computational tests are performed on instances from the literature, and the advantages of flexible windows and stochastic travel times are stressed.DoutoradoAutomaçãoDoutor em Engenharia Elétrica141064/2015-3CNP
    corecore