

REM WORKING PAPER SERIES

Iterated Local Search Algorithm for the Vehicle Routing Problem with

Backhauls and Soft Time Windows

José Brandão

REM Working Paper 010-2017

October 2017

REM – Research in Economics and Mathematics
Rua Miguel Lúpi 20,

1249-078 Lisboa,
Portugal

ISSN 2184-108X

Any opinions expressed are those of the authors and not those of REM. Short, up to
two paragraphs can be cited provided that full credit is given to the authors.

1

Iterated Local Search Algorithm for the Vehicle Routing Problem with Backhauls

and Soft Time Windows

José Brandão

Departamento de Gestão, Escola de Economia e Gestão, Universidade do Minho, Largo do Paço, 4704 – 553,

Braga, Portugal.

CEMAPRE and REM, ISEG, University of Lisbon, Portugal.

E-mail: sbrandao@eeg.uminho.pt

Abstract

The vehicle routing problem with backhauls and soft time windows contains two disjoint sets of

customers: those that receive goods from the depot, who are called linehauls, and those that send goods to the

depot, named backhauls. To each customer is associated an interval of time (time window), during which each

one should be served. If a time window can be violated it is called soft, but this violation implies an additional

cost. In this paper, only the upper limit of the interval can be exceeded. For solving this problem we created

deterministic iterated local search algorithm, which was tested using a large set of benchmark problems taken

from the literature. These computational tests have proven that this algorithm competes with best known

algorithms in terms of the quality of the solutions andcomputing time. So far as we know, there is no published

paper for this problem dealing with soft time windows, and, therefore, this comparison is only with the

algorithms that do not allow time windows violation.

Keywords: Backhauls; iterated local search; linehauls; logistics; soft time windows, vehicle routing.

 1. Introduction

The vehicle routing problem with backhauls and time windows (VRPBTW) consists

in finding a set routes, in order to serve a given number of dispersed customers, whose

geographical location, demand, and time window for the service are known. Each route is

2

travelled by one vehicle assigned to it, which starts the trip at the depot, visits each customer

of the route according to a given schedule, and, in the end returns to the depot.

In this problem there are two distinct sets of customers – those that require the

delivery of goods, who are called linehauls, and those that require the collection of goods,

named backhauls or pickup customers. In a route, the linehaul customers must be served

first, followed by the backhauls (precedence constraint). Contrary to what happens in the

VRPB, a route can contain only linehauls or only backhauls. Amongst the problems that

make up delivery and pickup, there is another type in which no precedence constraints are

imposed and each customer can require delivery, or pickup, or both. However, according to

the literature, the type studied in this paper is the most common in practice. In the literature

several different objective functions have been used by different authors. In this paper, the

objective is to minimise the number of routes and, for the same number of routes, to minimise

the total distance travelled by the vehicles. If the time window of a vertex is allowed to be

violated it is called soft and the acronym for the problem is VRPBSTW.

The VRPBTW can be defined more precisely using graph theory, as follows. Let G

= (V, A) be a directed network where V = {0} ∪ L ∪ B is a set of vertices and A = {(i, j): i, j

∈ V} is the set of arcs. The subsets L = {1, 2, …, n} and B = {n + 1, n + 2, n + m}, represent

the linehaul customers and the backhaul customers, respectively, and 0 represents the depot.

The total number of customers is represented by N. To each arc (i, j) ∈ A is associated a

distance (or time) dij, with dij = dji for each i, j ∈ V, except if j∈ B and i∈ L; dji = +∞, for

each j∈ B and i∈ L. In the depot there are an unlimited number of identical vehicles, , with

a capacity Q. Each customer i∈ L ∪ B requires a given quantity qi to be delivered (i∈ L) or

collected (i∈ B). The time window during which the service of vertex i must start is [ei, li], i

∈ V. (the time window of the depot corresponds to the driver’s working day). The time of

unloading at vertex i is ui, i ∈ V, u0 = 0. The travel time between i and j, plus ui, (i, j) ∈ A is

3

tij, being assumed that dij = tij – ui, (i, j) ∈ A. Two customers i and j cannot be served on the

same route if ei + tij > lj and ej + tji > li, and it is not possible to travel from i to j if i ∈ B and

j ∈ L. Furthermore, a customer j cannot be served after customer i if ei + tij > lj, ∀i, j ∈ L ∪

B. It is well established that the VRPBTW is NP-hard.

There are plenty of articles and books that describe real-world applications

comprising linehaul and backhaul customers, and surveys that classify the different types of

problems of this kind and describe several algorithms for solving them. Some examples of

these are the following: Casco et al. (1988), Toth and Vigo (2002), Berbeglia et al. (2007),

Battarra et al. (2014) and Irnich et al. (2014).

Among the algorithms published in the literature for solving the VRPBTW,we can

mention the following: Gélinas et al. (1995) – an exact algorithm; Duhamel et al. (1997) – a

tabu search heuristic; Küçükoğlu and Öztürk (2015) – hybrid meta-heuristic that combines

simulated annealing and tabu search; Thangiah et al. (1996 – the initial solution obtained by

an insertion heuristic is then improved λ-interchanges and 2-opt* exchanges; Reimann et al.

(2002) – insertion based ants; Ropke and Pisinger (2006) – large neighbourhood search

heuristic; Vidal et al. (2014) – hybrid genetic search. Only the last four papers assumed an

objective function identical to the one used here.

As far as we know, no article has been published for the VRPBSTW. Fu et al. (2008)

identified six types of soft time windows for the VRPTW. This classification is based on the

kind and amount of violation of the time window that is allowed. In this paper we allowed

the time window violation that seems to be the most relevant in practice: the latest start time

of the delivery can be exceeded by a given percentage, i.e., li' = αli, where α ≥ 1, i ∈ L ∪ B.

The amount of the violation is penalized with a constant β.

The remainder of this paper is organised as follows. In Section 2, the method for

generating the initial solution is defined. In Section 3, we present our iterated local search

4

algorithm. In Section 4, we present the computational experiments for both the VRPBSTW

and the VRPBTW and, for this one, we compare the quality of our algorithm with the best

algorithms published, and in the final section, we draw the main conclusions.

2. Method for generating the initial solution

The initial solution was generated by a sequential insertion method based on time

window wideness. First, are routed all the linehaul customers and then the backhauls. Each

route is started with the unrouted customer with the narrowest time window (in the case of

tie, the nearest to the depot is chosen). Then, the feasible customer i, not yet routed, with the

lowest insertion “cost” (ci) is selected. This “cost” is given by the distance increase (di), due

to its insertion in the route, plus the wideness of its time window (wi) weighted by a

parameter (p), i.e., ci = di + pwi. This parameter takes values between 0 and 2 with an

increment of 0.1. For each value of p a different solution is obtained, being selected the best.

If no customer can be inserted in the current route, then a new route is constructed in the

same way, and the process is repeated until all customers are routed.

3. The iterated local search algorithm

The reader can find a detailed description of the iterated local search (ILS) in

Lourenço et al. (2003). Very succinctly, this metaheuristic consists of applying iteratively

and sequentially local search and perturbation.

Given a solution s, the local search finds a local optimum, s*, by exploring the

neighbourhood of s and performing a set of descent moves. The perturbation consists of

applying a set of non-descent moves to given local optimum, s*, generating sp*, in order to

escape from this optimum, orienting the search towards a new region of the solution space.

The strength of a perturbation procedure can be measured by the number of elements of s*

that is different sp*. Strong perturbations increase the diversity of regions explored, which

5

may contribute for finding better solutions. However, if these regions are far apart from each

other, many good solutions close to the local optima found, may be missed.

The solution perturbed in each iteration is chosen according to the acceptance

criterion.

In the following, first we describe the components of our iterated local search

algorithm (ILSA) and then we present its general framework.

3.1. Local search

The ILSA comprises the following neighbourhood structures for improving a given

solution: i) cross over, ii) swap, iii) insertion, iv) interchange of chains; v) intra swap, vi)

shift and vii) 2-opt. The first four kinds of structures consist of moves between the routes of

s, whilst the other three are performed inside each route of s. All the solutions generated

along the search process must be feasible. Therefore, only the moves that keep the feasibility

are allowed. With all these types of moves a first best strategy is applied, i.e., if a solution

better than s is found, it is immediately accepted and the search pursues from this new

solution.

The cross over between two routes ri and rj consists of deleting one arc (i, j) ∈ ri and

another arc (k, l) ∈ rj and replacing them by arcs (i, l) and (k, j). The customers i, j, k and l

do not need to be of the same type but, if they are of a different type, only combinations that

keep the solution feasible are allowed. The potential moves are constituted by all the

combinations obtained, taking into consideration all pairs of routes of s and all arcs (i, l) and

(k, j) for each pair of routes.

A swap move consists of exchanging two customers of the same type (both linehauls

or both backhauls) belonging to two different routes. Given a customer i ∈ ri (route ri) and a

customer j ∈ rj, first i and j are removed from their routes and then they are inserted,

6

respectively, in rj and ri, in the best feasible position. All the pairs of customers (i, j) ∈ L

and (i, j) ∈ B are considered.

In the insertion move, a customer i is removed from its current route and a trial

insertion is made in any one of the other routes between the vertices where its insertion cost

is lower.

The interchange of chains comprises three independent cases: interchange (2, 0),

interchange (2, 1) and interchange (2, 2). The move consists of an exchange of two

consecutive customers from ri and inserting them into rj in the same position occupied by the

customers that are removed from rj (0, 1 or 2, depending on the case) and go to ri, taking the

place of the two customers removed. The customers moved must be of the same type and

remain connected, but their order can be reversed, if that is feasible and reduces the cost of

insertion.

The intra swap move exchanges two customers of the same type inside a route. The

shift move consists of moving one customer backward or forward inside the same route. The

2-opt is very well known and consists of deleting two arcs and adding two new ones. This

move is applied to those routes containing only linehauls or only backhauls.

3.2. Perturbation

As explained before, the role of a perturbation is to drive the search towards a region

of the solution space not yet explored. In the ILSA, the perturbation is always applied to the

current solution, except when an elite solution is used, as will be described later.

In the ILSA, the following five types of perturbation procedures were used: P1 -

ejection chain, P2 - swap of linehauls with backhauls and interchange of chains, P3 - direct

swap, P4 - insertion, and P5 - filling. Note that some of these procedures are similar to those

already defined to perform the local search, but in the perturbation are executed non

improving moves. The ejection chain is applied in every iteration before one of the other

four, which are applied in this sequence alternately. All the operators used in the ILSA are

7

deterministic. Therefore, in order to reduce the likelihood of cycling a large number of

operators have been used and the way of applying some of them depends on the iteration.

The ejection chain as its name suggests, comprises a chain of moves. The process

starts with the ejection (removal) of a customer from a route, which is then inserted in a

different route after removing another customer from this route; after, this free customer is

inserted in another route, etc. The chain ends when a free customer can be inserted without

removing any other or if the free customer cannot be inserted in any route. This perturbation

has two purposes: to eliminate routes and to perturb the solution. Because of the first aim, in

phase 1 (the meaning of the phases is explained below), the search starts with the route with

the least number of customers (least route, for short), and the route containing the customer

that starts the ejection chain cannot receive any customer. Besides, in phase 1, the least route

cannot receive customers ever, i.e., even when the chain starts in another route. In phase 2,

there is no specific order for starting the search and any route can receive customers.

The direct swap consists in the direct exchange of two customers belonging to two

different routes, being both linehauls or both backhauls. Any feasible move is accepted either

if it is improving or non improving. Each time that this perturbation is applied, half of the

customers are candidates for being swapped, and these candidate customers alternate at each

application.

In the swap of a linehaul with a backhaul two customers of different type belonging

to different routes are exchanged. They are removed and then inserted in the new route in

any position where they are feasible. After the application of this operator, the interchange

of chains is applied, considering the three cases mentioned before.

The insertion works as in local search, but the set of candidates at each application is

formed by half of the customers, alternating at each application.

Filling consists of inserting in the least route as many customers from the other routes

as possible. In phase 1, this perturbation is only applied if P1 is not succeeded in removing

8

one or more customers from the least route. In phase 2, the filling alternates between the least

and the second least route.

3.3. Elite solutions

These solutions are a set of solutions selected during the execution, after finishing

the local search cycle. The composition of this set may change at each iteration, depending

on the quality of the solution just found. This quality is evaluated according to the following

hierarchical criteria: i) Phase 1 - number of routes, number of customers of the least route,

distance of the least route; ii) Phase 2 - number of routes, total distance of the solution. After

T iterations without improving the best known solution, the route chosen to apply the

perturbation is the best solution of this elite set not yet explored. The value of T and the

cardinality of the elite set, E, are defined below.

3.4. Mechanisms for minimising the number of routes

The mechanisms used for minimising the number of routes are the following:

1 – In any iteration, if the trial move generates a feasible solution with one route less

than the best known feasible solution, this move is immediately accepted, independently of

its cost. The operators that may eliminate one route of the current solution are cross over,

interchange (2, 0), ejection chain, filling (not the route that is being filled, but another route

of the solution from which the customers transferred are taken) and insertion.

2 – In order to reinforce the natural ability of the insertion move to eliminate a route,

the following is done in phase 1: the trial insertion moves always start with the least route,

then if a customer is removed from this route the (trial) insertion cost is reduced by a fixed

cost (Fc), but if a customer inserted in this route the insertion cost is increased by Fc. This

value has been defined as Fc = RD/N. Where R is the total number of routes of the initial

solution and D is the total distance of this solution.

3.5. Phases of the algorithm and parameters setting

9

The ILSA comprises phase 1 and phase 2. These two phases are executed in this

sequence twice. The only difference between them is that phase 1 tries directly to minimise

the number of routes, while phase 2 tries to minimise the distance. This is why mechanism 2

is not applied in phase 2. The execution of each phase stops after T iterations without

improving the best known solution. After repeating this cycle twice, phase 2 is executed

again during T iterations without improving the best known solution. After some

experiments, T was set equal 350 during the first two cycles (phase 1 followed by phase 2)

and 1000 in the last application of phase 2.

The values of the parameters have been defined based on some experiments with the

group of test problems that are faster to solve, i.e., the problems with N = 100. Besides,

because most of the parameters can take an unlimited number of values, many of them were

also defined by intuition. In general, if an algorithm allows sufficient diversification, the

quality of the solutions increases when the number of iterations grows. However, it is also

important to keep the computing time under reasonable limits. Two parameters that have a

significant influence on the results are E and K. The values tried were 5 and 10 for E and 100

and 150 for K, i.e., 4 different combinations. The conclusions are that 5 and 100 generate

slightly better solutions, but the computing time is a little lower when are used the values of

5 and 150 for E and K, respectively. Therefore, the best combination is 5 and 100. The most

relevant for the evaluation of the final performance of the algorithm is not to try to find the

best combination of parameter values, but to solve all the test problems with the same values.

This is what happens with results presented in the tables of Section 4 and used in the

comparison with the other algorithms.

3.6. Framework of the algorithm

sb – best solution found.
t – counter of the number of iterations without improving the best solution. It restarts

from zero in the beginning of each phase and when a new best solution is found.

1. Generate the initial solution, s; sb = s.

10

2. Apply phase 1 or phase 2 while t < T // phase 1 and 2 are repeated twice
sequentially.

3. Repeat while there is an improvement of the current solution, s:
♦ Apply cross over;
♦ Apply swap;
♦ Apply interchange (2, 0) and (2, 1);
♦ Repeat while there is an improvement of s:

• Apply insertion and then intra swap to each route r∈s.
♦ Apply interchange (2, 2);
♦ Apply intra shift to each r∈s and then 2-opt if r contains one type of customers

only.
4. Insert s in the elite if it is better than any those already in it.
5. Perturb s or the best solution of the elite set not yet explored if t mod 100 = 0, set

t = t +1 and go to step 2.
6. Update T, set s = sb and execute phase 2 again, going to step 2.

4. Computational experiments

The benchmark problems were created by Gélinas et al. (1995) and Thangiah et al.

(1996 based on Solomon (1987) data for the VRPTW. There are three sets of problems,

containing 100, 250 and 500 customers, where the first set contains 15 problems and the

other two sets contain 12 problems each. The number of backhauls is 10%, 30% or 50% of

the total number of customers, as will clear in the tables below.

Our algorithm was programmed in the C language, and was executed on a desktop

computer with an Intel i7-3820 processor at 3.6 GHz, and 32 GB of RAM. In order to

evaluate the performance of the ILSA, we compare it, in terms of solution cost and

computing time, with the best algorithms found in the literature that assume the same

objective function, namely the following: Thangiah et al. (1996) – Thangiah, for short,

Reimann et al. (2002) – Reimann, Ropke and Pisinger (2006) – Ropke, and Vidal et al. (2014)

– Vidal. These algorithms were executed on the following computers, respectively: NeXT,

Pentium III at 900 MHz, Pentium IV at 1.5 GHz, and Opteron 250 at 2.4 GHz. Following

the literature, their speeds, measured in millions of floating-point operations per second

(Mflop/s), can roughly be estimated as presented in Table 1.

Table 1 - Relative speeds of the computers used by the algorithms.

Algoritm Processor Mflop/s Speed scaled

ILSA Intel i7-3820, 3.6 GHz 1960 1

11

Thangiah NeXT 1 0.0005
Reimann Pentium III, 900 MHz 234 0.1194
Ropke Pentium IV, 1.5 GHz 326 0.1663
Vidal Opteron 250, 2.4 GHz 1385 0.7066

The ILSA is deterministic and, therefore, the results presented in the tables were

obtained with one execution of the algorithm with the set of parameters defined in Section

3.5. Since in these articles there are several versions of the algorithm, we compare with the

version that produces better results, except in the case of Thangiah where we use the best

overall. The algorithms of Reimann, Ropke and Vidal contain several stochastic parameters.

Therefore, the authors executed them 10 times, but they presented the results in different

ways, as follows: Reimann – best results of the 10 executions; Ropke – average number of

routes (but not the average distance), best solutions (routes and distance) and average

computing time; Vidal – average solutions (routes and distance), best solutions and average

computing time. The average results are the most relevant for the sake of comparison with

our algorithm, but if they are not provided, we present the best solutions and the computing

time required by the 10 executions. Note also that Reimann and Vidal only solved the first

set of problems, and Ropke only present the global results for the other two sets. In the tables,

R is the number of routes of the solution, CPU is the total computing time, in seconds. The

computing times presented in Table 5 results from scaling the original times given by the

authors, according to the relative speeds of the computers defined by Table 1.

Table 2 shows that the ILSA produces very slightly worse solutions than the

algorithm of Vidal, a little bit better than the algorithm of Ropke (note that the distance

presented for this algorithm is the best from 10 executions and, consequently, it is not directly

comparable with the distance yield by the ILSA), better than Reimann, and substantially

better than Thangiah. In terms of computing time, Table 5 shows that Thangiah is much

faster than the ILSA, and this is faster than any of the others, being much faster than the

algorithms of Vidal and of Reimann (about ten times).

12

Table 2 - Results for the first set of problems.

a) This is the average of 10 runs. b) This the best of 10 runs.

Table 3 - Results for the second set of problems.

N = 250 #B
Thangiah Ropke ILSA

R Distance R Distance R Distance CPU

R1Do250A 10% 49 5085.0 46 4900.0 229.3

R1Do250B 30% 48 5423.0 45 5120.6 155.3

R1Do250C 50% 52 5403.1 49 5215.4 173.4

R1Up250A 10% 39 4278.6 32 4020.2 98.3

R1Up250B 30% 41 4715.2 34 4598.0 112.7

R1Up250C 50% 43 4921.4 36 4567.2 128.4

RC1Do250A 10% 39 4613.4 33 4200.5 94.2

RC1Do250B 30% 41 4852.2 34 4570.3 99.9

RC1Do250C 50% 41 4329.4 34 4531.6 117.5

RC1Up250A 10% 40 4445.8 33 4165.1 114.7

RC1Up250B 30% 43 4722.4 35 4568.3 90.0

RC1Up250C 50% 41 4899.4 35 4604.9 89.9

Total 517 57688.9 449a 54499b 446 55062.0 1553.6

Difference (%) 15.9 4.8 0.7 -1.0 - - -

a) This is the average of 10 runs. b) This the best of 10 runs.

The results of Tables 3 and 4 follow the same trend of those of Table 2. Additionally,

they show that the quality of the solutions given by the ILSA becomes increasingly better

than the yield by the other two algorithms (Thangiah and Ropke) as long as the number of

customers increases. For example, the total number of routes given by Thangiah is 5.8%,

15.9% and 20.5% more than the yield by the ILSA, for the problems with 100, 250 and 500

N = 100 #B
Thangiah Reimann Ropke Vidal ILSA

R Distance R Distance R Distance R Distance R Distance CPU

R101A 10% 24 1842.3 22 1831.7 22 1818.9 22 1818.9 22 1827.5 7.5

R101B 30% 24 1928.6 23 1999.2 23 1959.6 23 1959.5 23 1968.9 6.1

R101C 50% 25 1937.6 24 1945.3 24 1939.1 24 1939.1 24 1943.4 6.0

R102A 10% 20 1654.1 19 1677.6 19 1653.2 19 1653.2 19 1656.7 15.3

R102B 30% 21 1764.3 22 1754.4 22 1750.7 22 1750.7 22 1760.2 15.2

R102C 50% 21 1745.7 22 1782.2 22 1775.8 22 1775.8 22 1790.9 10.9

R103A 10% 15 1371.6 16 1348.4 15 1387.6 15 1385.4 15 1402.8 17.8

R103B 30% 16 1477.6 16 1395.9 15 1390.3 15 1390.3 15 1415.6 12.4

R103C 50% 17 1543.2 17 1467.7 17 1456.5 17 1456.5 17 1489.0 14.1

R104A 10% 13 1220.3 11 1205.8 11 1084.2 10.4 1157.9 11 1121.9 28.3

R104B 30% 12 1302.5 12 1128.3 11 1154.8 11 1155.7 11 1196.6 24.3

R104C 50% 13 1346.6 12 1208.5 11 1191.4 11 1190.9 11 1223.9 20.7

R105A 10% 17 1553.4 16 1544.8 15.4 1561.3 15 1561.6 15 1579.3 10.2

R105B 30% 18 1706.7 16 1592.2 16 1583.3 16 1583.3 16 1585.7 11.0

R105C 50% 18 1657.4 17 1633.0 16.5 1710.2 16 1709.9 16 1710.2 8.0

Total 274 24051.9 265b 23514.9b 259.9a 23416.7b 258.4a 23488.7a 259 23672.6 207.8

Difference (%) 5.8 1.6 2.3 -0.7 0.3 -1.1 -0.2 -0.8 - - -

13

customers, respectively, and a similar trend is observed with Ropke. In what concerns to the

computing time, the behaviour in relation to the algorithm of Thangiah is just the opposite,

i.e., the percentage difference decreases when the dimension of the problem increases, but it

is still much faster than the ILSA. On the contrary, the ILSA becomes increasingly slower

than the algorithm of Ropke.

Table 4 - Results for the third set of problems.

N = 500 #B
Thangiah Ropke ILSA

R Distance R Distance R Distance CPU

R1Do250A 10% 67 7620,4 58 6925,5 798,1

R1Do250B 30% 69 8020,2 58 7386,6 821,3

R1Do250C 50% 76 8388,3 60 7526,6 786,6

R1Up250A 10% 64 7267,2 53 6757,3 816,4

R1Up250B 30% 73 7926,6 56 7255,2 643,8

R1Up250C 50% 68 8043,7 58 7222,6 684,9

RC1Do250A 10% 61 7099,4 50 6474,1 774,5

RC1Do250B 30% 63 7707,1 53 6933,2 503,4

RC1Do250C 50% 65 7771,6 53 7107,1 482,1

RC1Up250A 10% 63 7209,4 53 6718,7 405,2

RC1Up250B 30% 63 7967,1 56 7087,5 335,1

RC1Up250C 50% 67 8135,1 55 7052,3 329,8

Total 799 93156,1 680a 82796b 663 84446,7 7381,2

Difference (%) 20.5 10.3 2.6 -2.0 - - -

a) This is the average of 10 runs. b) This the best of 10 runs.

Table 5 – Computing times for each set of problems, in seconds.

a) Time to execute all the versions. b) Time to execute 10 runs. c) Average time of 10 runs.

As final conclusion, we can say that, in general, the ILSA produces better solutions

than the other algorithms and it is rather fast. Note that the algorithm of Thangiah is much

faster, but this is not sufficient to compensate the difference in the quality of the solutions.

For example, for the set of problems with 500 customers the initial solution of the ILSA is

better (34 routes less) and takes less than one tenth of computing time.

Problem set Thangiaha Reimannb Ropkec Vidalc ILSA

N = 100 0.4 2686 283 2607 206

N = 250 6.0 - 1006 - 1504

N = 500 63.4 - 3492 - 7381

14

The experiments concerning the VRPBSTW were performed with α = 1.03 and β =

100, and the results obtained are presented in Table 6. In this case the cost of a solution, s, is

given by the following equation:

c(s) = d(s) + βL(s).

Where d(s) is the total distance travelled and L(s) is the total lateness of s.

Table 6 – Global results for the three sets of problems when the time windows are soft.

Problem set
Hard time window Soft time window Difference (%)

R D R D Av. V. (%) R D

N = 100 259 23672.6 238 24042.2 3.4 -8.1 1.6

N = 250 446 55062.0 417 56541.4 3.0 -6.5 2.7

N = 500 663 8446.8 632 88331.3 3.7 -4.7 4.6

Total 1368 163181.4 1287 168914.9 3.3 -5.9 3.5

Av. V. – Average number of customers whose time window is violated.

We can conclude from Table 6 that allowing a lateness of 3% at each customer and

using a penalty of 100 for this lateness, the number of routes was reduced on average 5.9%

and the number customers with non violated time windows was 96.7%, i.e., only 3.3% of the

customers have the latest start time exceeded, on average.

 5. Conclusions

This paper presents an iterated local search algorithm for the VRPBSTW, which

shows that allowing the violation of the time windows by a small amount the fleet of vehicles

can be reduced substantially. On the other hand, when the same algorithm is used to solve

the VRPBTW it is very competitive with the existing algorithms, both in terms of quality of

the solutions and computing time. Furthermore, our algorithm is deterministic, what means

that the results are fully reproducible. The performance of our algorithm is mainly due to the

use of ejection chains, elite solutions and effective perturbation procedures.

References

15

Battarra M, Cordeau J-F, Iori M (2014). Pickup-and-Delivery Problems for Goods Transportation.
In: Toth P, Vigo D (eds) Vehicle Routing: Problems, Methods, and Applications. MOS/SIAM Series
on Optimization, 2nd edition, pp 161–192.
Berbeglia G, Cordeau J-F, Gribkovskaia I, Laporte G (2007). Static pickup and delivery problems: a
classification scheme and survey. TOP 15:1-31.
Casco D, Golden B, Wasil E (1988). Vehicle routing with backhauls: models, algorithms and case
studies. In: Golden B, Assad A (eds) Vehicle routing: methods and studies, Elsevier Science
Publishers, pp 127-147.
Duhamel, C, Potvin, J-Y, Rousseau, J-M (1997). A tabu search heuristic for the vehicle routing
problem with back-hauls and time windows, Transportation Science, 31, 49–59.
Fu Z, Eglese R, Li, L (2008). A unified tabu search algorithm for vehicle routing problems with
soft time windows, Journal of the Operational Research Society, 59, 663-673.
Gélinas, S, Desrochers, M, Desrosiers, J, Solomon, M (1995). A new branching strategy for time
constrained routing problems with application to backhauling, Annals of Operations Research, 61,
91–109.
Irnich S, Schneider M, Vigo D (2014). Four Variants of the Vehicle Routing Problem. In: Toth P,
Vigo D (eds) Vehicle Routing: Problems, Methods, and Applications. MOS/SIAM Series on
Optimization, 2nd edition, pp 241–272.
Küçükoğlu, I and Öztürk, N (2015). An advanced hybrid meta-heuristic algorithm for the vehicle
routing problem with backhauls and time windows. Computers and Industrial Engineering, 86, 60-
68.
Lourenço H, Martin O, Stützle T (2003). Iterated local search. In: Glover F, Kochenberger, G (eds)
Handbook of Metaheuristics, Kluwer, pp 321-353.
Reimann M, Doerner M, Hartl R (2002). Insertion based ants for vehicle routing problems with
backhauls and time windows. In: Dorigo et al. (eds) Ant algorithms, Lecture Notes in Computer
Science, Springer, Berlin/Heidelberg vol. 2463, pp 135–147.
Ropke S, Pisinger D (2006). A unified heuristic for a large class of vehicle routing problems with
backhauls. European Journal of Operational Research 171:750-775.
Solomon, M. M., (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints. Operations Research, 35, 2, 254-265.
Thangiah R, Potvin J, Sun T (1996). Heuristic approaches to vehicle routing with backhauls and time
windows. Computers and Operations Research 23:1043-1057.
Toth P, Vigo D (2002). VRP with backhauls. In: Toth P, Vigo D (eds) The vehicle routing problem,
SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, PA vol. 9, pp
195–224.
Vidal T, Crainic T, Gendreau M, Prins C (2014). A unified solution framework for multi-attribute
vehicle routing problems. European Journal of Operational Research 234, 658-673.

