14,445 research outputs found

    T-spline based unifying registration procedure for free-form surface workpieces in intelligent CMM

    Get PDF
    With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs). To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs

    Image collection pop-up: 3D reconstruction and clustering of rigid and non-rigid categories

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper introduces an approach to simultaneously estimate 3D shape, camera pose, and object and type of deformation clustering, from partial 2D annotations in a multi-instance collection of images. Furthermore, we can indistinctly process rigid and non-rigid categories. This advances existing work, which only addresses the problem for one single object or, if multiple objects are considered, they are assumed to be clustered a priori. To handle this broader version of the problem, we model object deformation using a formulation based on multiple unions of subspaces, able to span from small rigid motion to complex deformations. The parameters of this model are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training data at all. Extensive validation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid categories with small and large deformations. In all cases our approach outperforms state-of-the-art in terms of 3D reconstruction accuracy, while also providing clustering results that allow segmenting the images into object instances and their associated type of deformation (or action the object is performing).Postprint (author's final draft

    Sparse-to-Continuous: Enhancing Monocular Depth Estimation using Occupancy Maps

    Full text link
    This paper addresses the problem of single image depth estimation (SIDE), focusing on improving the quality of deep neural network predictions. In a supervised learning scenario, the quality of predictions is intrinsically related to the training labels, which guide the optimization process. For indoor scenes, structured-light-based depth sensors (e.g. Kinect) are able to provide dense, albeit short-range, depth maps. On the other hand, for outdoor scenes, LiDARs are considered the standard sensor, which comparatively provides much sparser measurements, especially in areas further away. Rather than modifying the neural network architecture to deal with sparse depth maps, this article introduces a novel densification method for depth maps, using the Hilbert Maps framework. A continuous occupancy map is produced based on 3D points from LiDAR scans, and the resulting reconstructed surface is projected into a 2D depth map with arbitrary resolution. Experiments conducted with various subsets of the KITTI dataset show a significant improvement produced by the proposed Sparse-to-Continuous technique, without the introduction of extra information into the training stage.Comment: Accepted. (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware Completion

    Get PDF
    Technologies for 3D data acquisition and 3D printing have enormously developed in the past few years, and, consequently, the demand for 3D virtual twins of the original scanned objects has increased. In this context, feature-aware denoising, hole filling and context-aware completion are three essential (but far from trivial) tasks. In this work, they are integrated within a geometric framework and realized through a unified variational model aiming at recovering triangulated surfaces from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex optimization problem incorporates two regularisation terms: a discrete approximation of the Willmore energy forcing local sphericity and suited for the recovery of rounded features, and an approximation of the l(0) pseudo-norm penalty favouring sparsity in the normal variation. The proposed numerical method solving the model is parameterization-free, avoids expensive implicit volumebased computations and based on the efficient use of the Alternating Direction Method of Multipliers. Experiments show how the proposed framework can provide a robust and elegant solution suited for accurate restorations even in the presence of severe random noise and large damaged areas

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Daylight and Architectural Simulation of the Egebjerg School (Denmark): Sustainable Features of a New Type of Skylight

    Get PDF
    This article discusses the performance of a new skylight for standard classrooms at the Egebjerg School (Denmark), which was built ca. 1970. This building underwent important reforms under a European project to which the authors contributed. This research aimed to create a new skylight prototype that is useful for several schools in the vicinity, since there is a lack of educational facilities. The former skylights consisted of plastic pyramids that presented serious disadvantages in terms of sustainability matters. During the design process, the priority changed to studying the factors that correlate daylighting with energy and other environmental aspects in a holistic and evocative approach. Accordingly, the new skylight features promote the admittance and di usion of solar energy through adroit guidance systems. In order to simulate di erent scenarios, we employed our own simulation tool, Diana X. This research-oriented software works with the e ects of direct solar energy that are mostly avoided in conventional programs. By virtue of Lambert’s reciprocity theorem, our procedure, which was based on innovative equations of radiative transfer, converts the energy received by di usive surfaces into luminous exitance for all types of architectural elements. Upon completion of the skylights, we recorded onsite measurements, which roughly coincided with the simulation data. Thus, conditions throughout the year improved
    • …
    corecore