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Abstract: With the development of the modern manufacturing industry, the free-form surface is
widely used in various fields, and the automatic detection of a free-form surface is an important
function of future intelligent three-coordinate measuring machines (CMMs). To improve the
intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs.
A unified model of the free-form surface is proposed based on T-splines. A discretization method
of the T-spline surface formula model is proposed. Under this discretization, the position and
orientation of the workpiece would be recognized by point cloud registration. A high accuracy
evaluation method is proposed between the measured point cloud and the T-spline surface formula.
The experimental results demonstrate that the proposed method has the potential to realize the
automatic detection of different free-form surfaces and improve the intelligence of CMMs.

Keywords: intelligent CMM; T-spline; unified model; discrete; high accuracy evaluation

1. Introduction

The coordinate measuring machine (CMM) is a powerful tool in the modern manufacturing
industry [1,2]. With the development of modern society, CMMs must be increasingly intelligent,
and the next generation of CMMs is the intelligent CMM [1]. Intelligent CMMs should be able to
recognize position and orientation, plan safe paths, and evaluate test results. Free-form surface parts
that have pleasing appearance and texture have been increasingly used with the development of
modern manufacturing. Due to the complex shape and expression of free-form surface, the intelligent
detection is still difficult, including finding model rapidly and calculating form error. The study on the
intelligent detection free-form surface is significantly important to improve the intelligence of CMMs.

A number of previous papers have discussed intelligent CMMs, which are mainly focused on
position recognition for conventional parts and path planning. Only a few studies have focused
on the position and orientation recognition of free-form surface workpieces. In relevant work on
intelligent CMMs [1–3], a single camera is used to identify the position and orientation of the parts and
a path planning method is proposed, but not for free-form surface parts [4]. Various methods, such
as the ant colony algorithm and the genetic algorithm, have been proposed for path planning in the
literature [5–10]. A method of path planning for free-form surface scanning has been presented [11].
An intelligent interface for computer aided design (CAD)-CMM [3] and an off-line interactive CMM [12]
have been proposed. Free-form surfaces have been detected and the error has been calculated based
on non-uniform rational B-spline curve (NURBS) and the CMM [2,13–15].

The registration of measured data and the surface model and the recognition of free-form surface
parts have similar principles. The registration method can be divided into two categories: one is
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the matching of the scanned point cloud and the designed surface point cloud [16–22]; the other is
associating the mathematical formula of the designed surface and the scanned point cloud [2,13–15,23].
Where “designed surface point cloud” is the point cloud generated by the design surface model, it is
usually generated with the help of the software as Unigraphics NX or NURBS sampling. “mathematical
formula of the designed surface” is NURBS formula of surface, which can be obtained from CAD
files. The point cloud registration is realized based either on local characteristics [16,17] or global
features [19]. A greedy search algorithm has been used for point cloud matching [13]. The fruit
fly optimization algorithm has also been used [20]. The iterative closest point (ICP) algorithm and
its improved counterpart have also been used [21,22]. The accuracy of the first matching class is
relatively low. If high accuracy matching is realized, the more intensive point cloud must be extracted.
This intensive point cloud will occupy a large amount of storage space and is not conducive to the
system software model database. The second class can achieve high accuracy [13,23], but the current
literature has generally focused on the NURBS surface and detection point cloud. When a complex
free-form surface cannot be fully expressed by NURBS, it is impossible to achieve a unified registration
and evaluation. A sub-evaluation must be performed using human intervention.

The T-spline has many advantages not afforded by NURBS, such as seamless splicing, a unified
formula, allow partial modification and fewer control points. The control points of T-spline no
need to be aligned in the entire row of rows as NURBS [24–26]. Numerous studies [24–29] have
focused on T-spline modeling technology. The concept, rules and seamless splicing method of T-spline
modeling have been proposed [24]. A local interpolation and modification method for the T-spline
surface has also been proposed [25]. A T-spline surface obtained using the Z-map fitting method has
been proposed [27]. A previous study noted that a T-spline surface can be converted into NURBS
patches, and T-spline surfaces can then be spliced into an overall surface [28]. The T-spline surface has
also been fit using periodic parameterization and automatic interaction [26]. A new algorithm was
proposed to transform a triangular mesh into a T-spline surface [29]. An adaptive T-spline surface
fitting method based on quad-tree segmentation was proposed [30]. Another study transformed
an irregular quadrilateral mesh into a T-spline surface and proposed a mesh generation method
around a single point [31,32]. Another study proposed a method for fitting the T-spline surface with
curvature guidance [33]. The T-spline can be used to fit large datasets [34]. A previous study performed
isogeometric analysis on an arbitrary T-spline [35,36]. T-spline modeling technology is still being
further developed, and an arbitrary order of T-spline has been analyzed in the parameter space [37].

To develop a more intelligent CMM, the current study designs a new visual inspection system.
A new visual system is designed based on the characteristics of CMMs. A unifying accurate registration
procedure using T-spline representation is proposed for various free-form surfaces. The practical
application of the procedure is to automatically detect the positions and orientations of free-form
workpieces in intelligent CMM. A discretization method of the T-spline surface formula model is
proposed, where the maximum distance between adjacent points can be set. Position and orientation
can be determined by the registration of the discretization of the T-spline surface formula model
and the extracted point cloud, which reduces the storage space. Using the point cloud registration
results as the initial solution, an overall high accuracy registration of the measured point cloud and
the T-spline surface is proposed. This approach reduces human intervention and achieves free-form
surface workpiece intelligent detection and error evaluation.

2. System Architecture

An intelligent CMM should be able to recognize the workpiece’s position and orientation, plan the
detection path, and evaluate the error automatically. This paper focuses on the automatic recognition
of the position and orientation of free-form surface parts, accurate registration and error evaluation.
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2.1. Overall System Procedure

In Figure 1, the workpiece unified models refer to the fact that the free-form surface parts are all
represented by T-spline surfaces. A number of T-spline surface artifacts can form a model database,
which is the basis of rapid recognition and accurate registration, shown in the green and red dashed
boxes. In the rapid recognition box, the extracted point cloud from the actual measured workpiece
is acquired by the visual system. The discrete model is the point cloud generated by the T-spline
surface formulas. In the rapid recognition procedure, the workpiece and the pose are recognized by the
registration between the extracted and generated point cloud, whose result is set as the initial position
of the high accuracy registration. The CMM performs accurate registration between the T-spline
surface formulas and the measured point cloud. Finally, based on the high accuracy registration, the
distance between the measured point and workpiece surface model is calculated as the error of the
T-spline generated model and the measured points.
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Figure 1. Diagram illustrating the coordinate measuring machine (CMM) intelligent detection system. 
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designed as shown in Figure 2. A laser is fixed on one side of the bodies of rotation such that the 
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Figure 1. Diagram illustrating the coordinate measuring machine (CMM) intelligent detection system.

2.2. The New Visual System

There are two methods for extracting the surface point cloud: contact and non-contact. This paper
adopts a non-contact visual detection method to extract the point cloud rapidly. The probe of the CMM
can rotate around two perpendicular axes. The CMM can detect points on a discrete surface larger
than a hemisphere. Based on the characteristics of the CMM, the visual inspection system is designed
as shown in Figure 2. A laser is fixed on one side of the bodies of rotation such that the visual system
can determine each position in the CMM measurement space. The system can also be used to detect
the same workpiece from different positions and angles, which provides relatively large flexibility.

The conversion relation between the CMM coordinate system and the vision coordinate is obtained
by calibration [38]. Finally, the coordinates of the extracted point cloud are converted into the CMM
coordinate system.Appl. Sci. 2017, 7, 1092  4 of 16 
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Figure 2. A visual system consisting of a laser and a camera is mounted on sides of the bodies
of rotation.
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3. Technology of the System

In 2003, Sederberg et al. extended the tensor product surface and proposed T-splines and
T-NURCCs [24]. Compared with NURBS, a T-spline provides a uniform expression for the entire spline
surface, with seamless splicing. The following three parts correspond to the unified workpiece model,
discrete model, high accuracy registration and error evaluation in Figure 1.

3.1. Establishment of a Unified Model

Based on the advantages of the T-spline, this paper establishes a unified T-spline surface model
for the entire measured free-form surface workpiece. The T-spline surface is a new representation
method for a parameter surface that allows T-junctions. The T-mesh is formed by all of the control
points. A T-spline surface is defined by the following formula [24,25].

S(s, t) =

m
∑

i=1
PiwiBi(s, t)

m
∑

i=1
wiBi(s, t)

(1)

where Pi and wi are the control points and weights, respectively, m is the number of control points.
(s,t) is the parameter field coordinates. The corresponding T-spline blending function is

Bi(s, t) = N[si](s)N[ti](t) (2)

where N[si](s) and N[ti](t) are the cubic B-spline basis functions associated with the knot vector, and
they have the similar form.

si = [si0, si1, si2, si3, si4], ti = [ti0, ti1, ti2, ti3, ti4]

N[si](s) = N0,3(s) =
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(si4−si3)(si4−si2)(si4−si1)
, si3 ≤ s < si4

0, s < si0 or s > si4

(3)

Based on the literature [30,33], the T-spline surface fitting is divided into the steps shown in
Figure 3.

To unify the representation of all free-form surface workpieces, the T-spline surface model
database is established by fitting the T-spline surface formula for all of the free-form surfaces based on
Figure 3. First, the triangular mesh is extracted from the designed model. There are many methods
for parameterizing triangular meshes [39–41]. Conformational parameterization [42] is used in this
paper due to its speed and effectiveness. The mean value parameterization method [43] is adopted
after the conformal parameterization to facilitate the construction of the pre-image of the T-mesh.
The parameter domain is split by the quad-tree. The result of the quad-tree is used to fit the T-spline
surface as the pre-image of the T-mesh. Finally, the accuracy of the surface fitting is determined based
on the needs of different applications. In this manner, a unified model is established.
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The basic principle of T-spline surface fitting is to minimize the distance between the triangular
mesh and the surface S, and the f equation can be obtained

E f it(P1, P2, · · · , Pm) =
n

∑
i=1

(S(si, ti)− qi)
2 (4)

where qi is the vertex of the triangular mesh and (si, ti) are the parameter domain coordinates
corresponding to the vertex of the triangular mesh. Sss(si, ti), Sst(si, ti) and Stt(si, ti) are the second order
derivatives of S(si, ti).The following energy function is used to smooth the surface

E f air(P1, P2, · · · , Pm) =
n

∑
i=1

(
S2

ss(si, ti) + S2
st(si, ti) + S2

tt(si, ti)
)

(5)

The overall objective function is

E(P1, P2, · · · , Pm) = E f it + σE f air (6)

where the coefficient σ is generally between 0.01 and 0.1. The control point and knot vector of the
surface are obtained by solving the above objective function. This point and vector form the complete
T-spline surface expression formula. The T-spline surface model of a girl’s face is shown in Figure 4a
as the original girl’s face model. The blue dot is the parameterized vertex distribution of the girl’s
face triangular mesh, and the red block diagram is the result of the quad-tree division in (b). The blue
points in (c) are control points, which form the T-mesh.
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Figure 4. Girl’s face model as an example of fitting T-splines, (a) the original girl’s face model,
(b) the pre-image of T-meshes and triangle mesh vertexes, (c) the spatial distribution of control points
and T-meshes.
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3.2. Discretization of the Model

The position and orientation recognition of the free-form surface workpiece is an important
function provided by the intelligent CMM. The specific requirement is to be able to quickly recognize
the different free surface workpieces in the detection space, including their position and orientation.
The unified model established in Section 3.1 is discretized to reduce the storage space required. A point
cloud is generated based on the T-spline surface formula. The recognition is realized by registration of
the generated point cloud and extracted point cloud. The center of gravity coordinates and eigenvector
direction are aligned via principle component analysis (PCA). Point cloud registration is achieved
using the ICP algorithm.

This paper uses the T-spline surface formula to generate the point cloud whose adjacent distance
is not larger than a specified value. The conversion between the two coordinate systems is achieved
via point cloud registration. After the registration, if the maximum distance (Dmax) between the
corresponding points is less than a certain value, the measured workpiece and the surface model are
considered to be the same.

The following formula provides the mapping of surface points to control points

Emap(pi) = S(si, ti)− pi, i = 1, 2, 3 · · · (7)

where (si,ti) are the coordinates of the pre-image point in the parameter field to the corresponding
control point and pi is the surface mapping point. pi is solved for using the least squares method to
minimize the energy function.

As shown in Figure 5, a knot is inserted based on the quad-tree split. When the distance between
the surface mapping points, which correspond to knots P1’P2’P3’P4’ in the parameter domain, is greater
than a certain value, the parameter space is split and knots P5’P6’P7’P8’P9’ are inserted. Then, the
corresponding surface mapping point and adjacent distance are calculated. When the adjacent distance
is less than a certain value, the quad-tree division is stopped, and finally, all of the mapping points are
saved as the final matching point cloud.
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Figure 5. According to the distance in real space the point cloud is generated.

The adjacent distance of the generated points is less a certain value, which ensures a certain
degree of accuracy and saves storage space by releasing dynamic data. Compared with other methods
based on software, such as Unigraphics NX (Siemens PLM software, Plano, TX, USA) generating the
point cloud, this method can set the Dmax to the nearest point, the overall generation, without human
intervention, reducing the software storage space required for the entire system.
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3.3. Overall Registration and Error Evaluation

This section is the last step of the intelligent CMM. The rotation translation matrix RT between
two different coordinate systems can be obtained as detailed in Section 3.2. The measured surface,
position and orientation are obtained by matching the point cloud. Then, a safe path is planned, and
the workpiece is detected. The error is calculated through the registration of the point cloud collected
by the CMM and the T-spline surface formula as follows

Edis(si, ti) =
nn

∑
i=1

(
S(si, ti)− q′i

)2 (8)

where nn is the number of points collected by the CMM. xd
yd
zd

 = R

 xw

yw

zw

+ T (9)

where, R =

 cos β cos γ sin α sin β cos γ− cos α sin γ cos α sin β cos γ + sin α sin γ

cos β sin γ sin α sin β sin γ + cos α cos γ cos α sin β sin γ− sin α cos γ

− sin β sin α cos β cos α cos β

, T =

 tx

ty

tz

.

The rotation transformation between the designed free-from surface workpiece coordinate system
od-xdydzd and the CMM coordinate system ow-xwywzw is executed as follows: first, the rotation angle
around the xd axis is α, the rotation angle around the yd axis is β, and the rotation angle around the zd
axis is γ.

The specific steps of accurate registration are as follows:

(1) RT solved through the point cloud registration is substituted as the initial solution.
(2) Based on the following formula to optimize si, ti, the sum of the distance of the collected points

to the T-spline surface, is calculated according to Formula (8) and (9).
(3) Cyclically optimize RT and perform step (2) until a certain level of accuracy is achieved.
(4) The distance data of each point corresponding to the formula surface model are retained as the

result of the error evaluation through Levenberg-Marquardt method.

When the amount of data is relatively large, the point cloud must be simplified according to the
relevant literature [44] to save time and in the case of error tolerance. Then, the rotation translation
matrix RT is solved by optimization, and finally, the distances of all of the collected points to the
T-spline surface are calculated.

4. Experiments

4.1. Workpiece Recognition

The human knee bone model, Chinese lion head model and girl’s face model are used in the
following experiments, as shown in Figure 6. The physical equipment is designed as shown in Figure 6,
where (a) is the overall physical Figure and (b) is the Figure partially enlarged. The Ximea MU9PM-MH
camera (Ximea, Münster, Germany) used in our experiment has a resolution of 2592 × 1944 and a pixel
size of 2.2 µm× 2.2 µm. The focal length of the lens is 6 mm. The CMM adopted in this paper is Global
classic SR 07. 10. 07 CMM (Hexagon, Qingdao, China).The maximum error of CMM is less 3 µm.
The error of the visual inspection system includes a camera and a laser is less 1 mm. The initial state
of the system is camera has a certain distance to platform, and parts are photographed and detected
roughly the size of the outline. And then according to the part of the outline size CMM move from
a side of the workpiece to the other side in a certain interval. The interval size is generally 2–5 mm,
and then if the workpiece is large enough to properly enlarge the scanning interval. In this paper,
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through the point cloud registration the workpiece and rough position and orientation are recognized.
The application condition of the system is that the point cloud collected by the visual system is enough
to represent the general shape of the workpiece. It is difficult to achieve accurate identification if the
interval size is too large or only part of the workpiece is collected.

Figures 7a and 8a are the human knee bone model and Chinese lion head model, respectively.
Figures 7b and 8b show the results of the quad-tree division of the parameter field, where the red grid
corresponds to the pre-image of the T-mesh and the point cloud in blue corresponds to the vertex of
the triangular mesh. The T-meshes obtained by fitting the T-spline surface are shown in Figures 7c
and 8c. The point in light blue is the control point of the T-spline surface. Part of the control point
is in the shape, which results in an intermittent display. This is a reasonable distribution of control
points. Figures 9a and 10a show the point clouds generated by the T-spline surface formula. Figures 9b
and 10b show the partial magnification. Here, the adjacent distance to the nearest point is no more
than 2 mm, as this department is only involved in the workpiece position recognition and initial
registration, within the error no more than 2 mm can meet the actual needs, it can also be specified
as some other value. This generated point cloud and that extracted by the visual system are then
registered. Figures 11 and 12 show the registration results of the point cloud collected by the visual
system and the point cloud generated by the T-spline surface formula.

In this paper, the free-form surface workpiece, position and orientation are recognized via point
cloud registration. In the experiment, the point clouds of the knee bone model, Chinese lion head model
and girl’s face model are collected by the visual system. Then, the collected point cloud and generated
point cloud are registered one by one. The results of the registration are shown in Table 1. When the
Dmax between the corresponding points after the registration is greater than a certain threshold, it is
not considered to be the same free-form surface workpiece. Table 1 shows that for the same workpiece,
the Dmax is less than 1 mm. The registration results between the different workpieces are considerably
larger than this threshold.
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Table 1. Recognition data (Dmax [mm]).

Chinese Lion Girl’s Face Knee Bone

Chinese lion 0.856 25.413 15.791
Girl’s face 25.361 0.985 15.145
Knee bone 14.832 14.107 0.913

4.2. Error Evaluation

Certain points covering the majority of the characteristics of the knee bone model and Chinese
lion head model are collected by the CMM. The registration and error evaluation are performedbased
on Section 3.3. The results are shown in Figure 13a,b, The curvature is relatively large and the error is
relatively large, which conforms to the conventionalmachining error distribution.
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Figure 13. Diagram illustrating (a) the actual error evaluation of knee bone, (b) the actual error
evaluation of Chinese lion model (units: mm).

Matching simulation experiments are also performed to further verify the effect of error evaluation,
as shown in Figure 14. Certain vertexes (shown in Figure 14a,d) of the triangular mesh of the knee
bone model and Chinese lion head model are extracted after rotation and translation and are used to
be matched as the extracted point cloud. These vertexes are used to simulate the point cloud collected
by the CMM, as shown in Figure 14b,e. The results of accurate registration are shown in Figure 14c,f.

The accurate registration results are shown in Table 2. There is only a slight error between the
solved rotation translation matrix RT and the ideal value, mainly because there is some degree of
error between the T-spline surface and triangular mesh. Therefore, the matching error and will be
further reduced as the T-spline surface fitting error decreases, as shown in Figure 15a. In Figure 15a,
the horizontal axis is the error threshold of the T-spline surface fitting and the vertical axis represents
the average distance of the matching point cloud to the T-spline surface. Figure 15a illustrates that
the average distance is also reduced with decreases in the T-spline surface fitting error. Figure 15b
the horizontal axis is the error threshold of the T-spline surface fitting and the vertical axis shows the
standard deviation of the distance of the matching point cloud to the T-spline surface, which shows
small standard deviation. As the T-spline fitting error increases, the standard deviation also increases
slightly. It can be seen from Figure 15 the proposed method has good performance and can realize
high accuracy. The average distance is solved as follows:

Er =
Edis(si, ti)

nn
=

nn
∑

i=1

√(
S(si, ti)− q′i

)2

nn
(10)
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Figure 15. Error analysis of accurate registration results, (a) the average distance error variation, (b) 
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Table 2. Matching simulation results of knee bone model and Chinese lion model. 

RT α (rad) β (rad) γ (rad) tx (mm) ty (mm) tz (mm) 
Solved RT (lion) 3.1413 0.7853 0.7856 50.026 40.021 29.975 
Precise RT (lion) 3.1416 0.7854 0.7854 50 40 30 

Error of RT 0.0003 0.0001 0.0002 0.026 0.021 0.025 
Solved RT (knee) 1.5710 0.5236 1.0471 60.022 69.972 79.983 
Precise RT (knee) 1.5708 0.5236 1.0472 60 70 80 

Error of RT 0.0002 0.0 0.0001 0.022 0.028 0.017 

The meaning of each parameter in Table 2 is given in Equation (9). 

5. Summary 

This study designs a new visual inspection system to improve the intelligence of the CMM for 
free-form surface workpiece detection. The new visual inspection system can extract more 
comprehensive 3D feature information for the free-form surface workpiece and has high flexibility. 
A unified model for all free-form surfaces is proposed based on T-splines. A discretization method 
of the T-spline surface formula model is proposed, where the maximum distance between adjacent 
points can be set. Position and orientation can be recognized by the registration of the discretized 
point cloud and extracted point cloud, which reduces the storage space. The overall high accuracy 
registration of the measured point cloud and the T-spline surface is proposed based on the point 
cloud registration results as the initial solution. This registration process reduces the amount of 
human intervention required, realizes the free surface workpiece intelligent detection and error 
evaluation and has high accuracy. 
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Table 2. Matching simulation results of knee bone model and Chinese lion model.

RT α (rad) β (rad) γ (rad) tx (mm) ty (mm) tz (mm)

Solved RT (lion) 3.1413 0.7853 0.7856 50.026 40.021 29.975
Precise RT (lion) 3.1416 0.7854 0.7854 50 40 30

Error of RT 0.0003 0.0001 0.0002 0.026 0.021 0.025
Solved RT (knee) 1.5710 0.5236 1.0471 60.022 69.972 79.983
Precise RT (knee) 1.5708 0.5236 1.0472 60 70 80

Error of RT 0.0002 0.0 0.0001 0.022 0.028 0.017

The meaning of each parameter in Table 2 is given in Equation (9).

5. Summary

This study designs a new visual inspection system to improve the intelligence of the CMM
for free-form surface workpiece detection. The new visual inspection system can extract more
comprehensive 3D feature information for the free-form surface workpiece and has high flexibility.
A unified model for all free-form surfaces is proposed based on T-splines. A discretization method
of the T-spline surface formula model is proposed, where the maximum distance between adjacent
points can be set. Position and orientation can be recognized by the registration of the discretized
point cloud and extracted point cloud, which reduces the storage space. The overall high accuracy
registration of the measured point cloud and the T-spline surface is proposed based on the point cloud
registration results as the initial solution. This registration process reduces the amount of human
intervention required, realizes the free surface workpiece intelligent detection and error evaluation
and has high accuracy.
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