9,568 research outputs found

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Unified cooperative location system

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.The widespread use of smaller, less expensive, and more capable mobile devices, has opened the door for more complex and varied mobile computing applications. Additionally, manufacturers are increasingly equipping these handheld devices with every type of wireless connectivity and sensors that can be explored for providing more complex services. In recent years, several techniques for location estimation have been developed, providing different degrees of accuracy. Some of these solutions require the installation of specific hardware in the environment, while others explore the existing infrastructure. In particular, it is possible to explore the existing communication infrastructure to build a location system relying on signal strength measures. However, while several systems already exist to locate users based on different approaches, there is no single one that is good for every situation while providing high accuracy, low cost and ubiquitous coverage. Not only that, but very few research has been made regarding on how a group of users can cooperate to improve accuracy or reduce energy consumption while using the location system. This work presents the Unified Cooperative Location System, a modular and extensible location system. Its modular design can use every available technology on each device and different algorithms for location estimation. This approach allows to provide location services with high availability by relying on different technologies. It also allows to reduce the energy consumption on devices by sharing the responsibility of executing energy-heavy operations. The system also includes an information exchange mechanism, allowing devices to gather location information from nearby users, like GPS or Wi-Fi, which would otherwise be unavailable for some. The results of our experiences show that the possibility of exchanging GSM information provides a practical solution for location estimation based on multiple GSM signals, thus significantly increasing location accuracy with this technology

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Framework for a Perceptive Mobile Network using Joint Communication and Radar Sensing

    Full text link
    In this paper, we develop a framework for a novel perceptive mobile/cellular network that integrates radar sensing function into the mobile communication network. We propose a unified system platform that enables downlink and uplink sensing, sharing the same transmitted signals with communications. We aim to tackle the fundamental sensing parameter estimation problem in perceptive mobile networks, by addressing two key challenges associated with sophisticated mobile signals and rich multipath in mobile networks. To extract sensing parameters from orthogonal frequency division multiple access (OFDMA) and spatial division multiple access (SDMA) communication signals, we propose two approaches to formulate it to problems that can be solved by compressive sensing techniques. Most sensing algorithms have limits on the number of multipath signals for their inputs. To reduce the multipath signals, as well as removing unwanted clutter signals, we propose a background subtraction method based on simple recursive computation, and provide a closed-form expression for performance characterization. The effectiveness of these methods is validated in simulations.Comment: 14 pages, 12 figures, Journal pape

    Intelligent Multi-Modal Sensing-Communication Integration: Synesthesia of Machines

    Full text link
    In the era of sixth-generation (6G) wireless communications, integrated sensing and communications (ISAC) is recognized as a promising solution to upgrade the physical system by endowing wireless communications with sensing capability. Existing ISAC is mainly oriented to static scenarios with radio-frequency (RF) sensors being the primary participants, thus lacking a comprehensive environment feature characterization and facing a severe performance bottleneck in dynamic environments. To date, extensive surveys on ISAC have been conducted but are limited to summarizing RF-based radar sensing. Currently, some research efforts have been devoted to exploring multi-modal sensing-communication integration but still lack a comprehensive review. Therefore, we generalize the concept of ISAC inspired by human synesthesia to establish a unified framework of intelligent multi-modal sensing-communication integration and provide a comprehensive review under such a framework in this paper. The so-termed Synesthesia of Machines (SoM) gives the clearest cognition of such intelligent integration and details its paradigm for the first time. We commence by justifying the necessity of the new paradigm. Subsequently, we offer a definition of SoM and zoom into the detailed paradigm, which is summarized as three operation modes. To facilitate SoM research, we overview the prerequisite of SoM research, i.e., mixed multi-modal (MMM) datasets. Then, we introduce the mapping relationships between multi-modal sensing and communications. Afterward, we cover the technological review on SoM-enhance-based and SoM-concert-based applications. To corroborate the superiority of SoM, we also present simulation results related to dual-function waveform and predictive beamforming design. Finally, we propose some potential directions to inspire future research efforts.Comment: This paper has been accepted by IEEE Communications Surveys & Tutorial

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Integrated Sensing and Communications: Recent Advances and Ten Open Challenges

    Full text link
    It is anticipated that integrated sensing and communications (ISAC) would be one of the key enablers of next-generation wireless networks (such as beyond 5G (B5G) and 6G) for supporting a variety of emerging applications. In this paper, we provide a comprehensive review of the recent advances in ISAC systems, with a particular focus on their foundations, system design, networking aspects and ISAC applications. Furthermore, we discuss the corresponding open questions of the above that emerged in each issue. Hence, we commence with the information theory of sensing and communications (S&\&C), followed by the information-theoretic limits of ISAC systems by shedding light on the fundamental performance metrics. Next, we discuss their clock synchronization and phase offset problems, the associated Pareto-optimal signaling strategies, as well as the associated super-resolution ISAC system design. Moreover, we envision that ISAC ushers in a paradigm shift for the future cellular networks relying on network sensing, transforming the classic cellular architecture, cross-layer resource management methods, and transmission protocols. In ISAC applications, we further highlight the security and privacy issues of wireless sensing. Finally, we close by studying the recent advances in a representative ISAC use case, namely the multi-object multi-task (MOMT) recognition problem using wireless signals.Comment: 26 pages, 22 figures, resubmitted to IEEE Journal. Appreciation for the outstanding contributions of coauthors in the paper

    6G—Enabling the New Smart City: A Survey

    Get PDF
    Smart cities and 6G are technological areas that have the potential to transform the way we live and work in the years to come. Until this transformation comes into place, there is the need, underlined by research and market studies, for a critical reassessment of the entire wireless communication sector for smart cities, which should include the IoT infrastructure, economic factors that could improve their adoption rate, and strategies that enable smart city operations. Therefore, from a technical point of view, a series of stringent issues, such as interoperability, data privacy, security, the digital divide, and implementation issues have to be addressed. Notably, to concentrate the scrutiny on smart cities and the forthcoming influence of 6G, the groundwork laid by the current 5G, with its multifaceted role and inherent limitations within the domain of smart cities, is embraced as a foundational standpoint. This examination culminates in a panoramic exposition, extending beyond the mere delineation of the 6G standard toward the unveiling of the extensive gamut of potential applications that this emergent standard promises to introduce to the smart cities arena. This paper provides an update on the SC ecosystem around the novel paradigm of 6G, aggregating a series of enabling technologies accompanied by the descriptions of their roles and specific employment schemes

    Near-Space Communications: the Last Piece of 6G Space-Air-Ground-Sea Integrated Network Puzzle

    Full text link
    This article presents a comprehensive study on the emerging near-space communications (NS-COM) within the context of space-air-ground-sea integrated network (SAGSIN). Specifically, we firstly explore the recent technical developments of NS-COM, followed by the discussions about motivations behind integrating NS-COM into SAGSIN. To further demonstrate the necessity of NS-COM, a comparative analysis between the NS-COM network and other counterparts in SAGSIN is conducted, covering aspects of deployment, coverage, channel characteristics and unique problems of NS-COM network. Afterwards, the technical aspects of NS-COM, including channel modeling, random access, channel estimation, array-based beam management and joint network optimization, are examined in detail. Furthermore, we explore the potential applications of NS-COM, such as structural expansion in SAGSIN communication, civil aviation communication, remote and urgent communication, weather monitoring and carbon neutrality. Finally, some promising research avenues are identified, including stratospheric satellite (StratoSat) -to-ground direct links for mobile terminals, reconfigurable multiple-input multiple-output (MIMO) and holographic MIMO, federated learning in NS-COM networks, maritime communication, electromagnetic spectrum sensing and adversarial game, integrated sensing and communications, StratoSat-based radar detection and imaging, NS-COM assisted enhanced global navigation system, NS-COM assisted intelligent unmanned system and free space optical (FSO) communication. Overall, this paper highlights that the NS-COM plays an indispensable role in the SAGSIN puzzle, providing substantial performance and coverage enhancement to the traditional SAGSIN architecture.Comment: 28 pages, 8 figures, 2 table
    • …
    corecore