29 research outputs found

    Secrecy in Untrusted Networks

    No full text
    We investigate the protection of migrating agents against the untrusted sites they traverse. The resulting calculus provides a formal framework to reason about protection policies and security protocols over distributed, mobile infrastructures, and aims to stand to ambients as the spi calculus stands to ?. We present a type system that separates trusted and untrusted data and code, while allowing safe interactions with untrusted sites. We prove that the type system enforces a privacy property, and show the expressiveness of the calculus via examples and an encoding of the spi calculus

    Types for ambient and process mobility

    Get PDF
    We present a new kind of ambient calculus in which the open capability is replaced by direct mobility of generic processes. The calculus comes equipped with a labelled transition system in which types play a major role: this system allows us to show interesting algebraic laws. As usual, types express the communication, access and mobility properties of the modelled system, and inferred types express the minimal constraints required for the system to be well behave

    Space-Aware Ambients and Processes

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    When Ambients Cannot be Opened

    No full text
    International audienceWe investigate expressiveness of a fragment of the ambient calculus, a formalism for describing distributed and mobile computations. More precisely, we study expressiveness of the pure and public ambient calculus from which the capability open has been removed, in terms of the reachability problem of the reduction relation. Surprisingly, we show that even for this very restricted fragment, the reachability problem is not decidable. At a second step, for a slightly weaker reduction relation, we prove that reachability can be decided by reducing this problem to markings reachability for Petri nets. Finally, we show that the name-convergence problem as well as the model-checking problem turn out to be undecidable for both the original and the weaker reduction relation. The authors are grateful to S. Tison and Y. Roos for fruitful discussions and thank the anony mous ferees for valuable comments. This work is supported by an ATIP grant from CNRS

    Session Types with Runtime Adaptation: Overview and Examples

    Full text link
    In recent work, we have developed a session types discipline for a calculus that features the usual constructs for session establishment and communication, but also two novel constructs that enable communicating processes to be stopped, duplicated, or discarded at runtime. The aim is to understand whether known techniques for the static analysis of structured communications scale up to the challenging context of context-aware, adaptable distributed systems, in which disciplined interaction and runtime adaptation are intertwined concerns. In this short note, we summarize the main features of our session-typed framework with runtime adaptation, and recall its basic correctness properties. We illustrate our framework by means of examples. In particular, we present a session representation of supervision trees, a mechanism for enforcing fault-tolerant applications in the Erlang language.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    Boxed ambients with communication interfaces

    Get PDF
    We define BACI (Boxed Ambients with Communication Interfaces), an ambient calculus with a flexible communication policy. Traditionally, typed ambient calculi have a fixed communication policy determining the kind of information that can be exchanged with a parent ambient, even though mobility changes the parent. BACI lifts that restriction, allowing different communication policies with different parents during computation. Furthermore, BACI separates communication and mobility by making the channels of communication between ambients explicit. In contrast with other typed ambient calculi where communication policies are global, each ambient in BACI is equipped with a description of the communication policies ruling its information exchange with parent and child ambients. The communication policies of ambients increase when they move: more precisely, when an ambient enters another ambient, the entering ambient and the host ambient can exchange their communication ports and agree on the kind of information to be exchanged. This information is recorded locally in both ambients. We show the type-soundness of BACI, proving that it satisfies the subject reduction property, and we study its behavioural semantics by means of a labelled transition syste

    When Ambients Cannot be Opened

    Get PDF
    International audienceWe investigate expressiveness of a fragment of the ambient calculus, a formalism for describing distributed and mobile computations. More precisely, we study expressiveness of the pure and public ambient calculus from which the capability open has been removed, in terms of the reachability problem of the reduction relation. Surprisingly, we show that even for this very restricted fragment, the reachability problem is not decidable. At a second step, for a slightly weaker reduction relation, we prove that reachability can be decided by reducing this problem to markings reachability for Petri nets. Finally, we show that the name-convergence problem as well as the model-checking problem turn out to be undecidable for both the original and the weaker reduction relation. The authors are grateful to S. Tison and Y. Roos for fruitful discussions and thank the anony mous ferees for valuable comments. This work is supported by an ATIP grant from CNRS
    corecore