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Abstract. We show how to use static analysis to provide information
about security issues related to mobility. First the syntax and semantics
of Mobile Ambients is reviewed and we show how to obtain a so-called
0CFA analysis that can be implemented in polynomial time. Next we
consider discretionary access control where we devise Discretionary Am-
bients, based on Safe Ambients, and we adapt the semantics and 0CFA
analysis; to strengthen the analysis we incorporate context-sensitivity to
obtain a 1CFA analysis. This paves the way for dealing with mandatory
access control where we express both a Bell-LaPadula model for confi-
dentiality as well as a Biba model for integrity. Finally, we use Boxed
Ambients as a means for expressing cryptographic key exchange proto-
cols and we adapt the operational semantics and the 0CFA analysis.

1 Introduction

Mobile Ambients (see Section 2) were introduced by Cardelli and Gordon [13,
16] as a formalism for reasoning about mobility. Ambients present a high-level
view of mobile computation and give rise to a high-level treatment of the related
security issues.

An ambient is a named bounded place and the boundary determines what is
outside and what is inside. Ambients can be nested inside each other and thereby
form a tree structure. Mobility is then represented as navigation inside this
hierarchy. Each ambient contains a number of multi-threaded running processes;
the top-level processes of each ambient have direct control over it and can instruct
it to move and thereby change its future behaviour. The ambient names are
unforgeable and are essential for controlling access to the ambients. As in [12]
we shall impose a simple type structure by assigning groups to ambients.

The basic calculus has three so-called subjective mobility capabilities: an en-
closing ambient can be instructed to move into a sibling ambient, it can be
instructed to move out of its enclosing ambient, and a sibling ambient can be
dissolved. The literature contains a number of extensions to the basic calculus:
so-called objective moves, various forms of communication and primitives for
access control etc; we shall begin by considering the basic calculus in Section 2,
then add access control features in Sections 3 and 4, and finally revert to the
basic calculus in order to add communication primitives in Section 5.
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The operational semantics is a standard reduction semantics with a structural
congruence relation. The static analysis is modelled on the simple 0CFA analysis
originally developed for functional programs. In the case of Mobile Ambients
the control structure is expressed by the hierarchical structure of ambients (with
separate components taking care of the communication, if present). Hence we aim
at modelling the father-son relationship between the nodes of the tree structure
[31, 30].

The precision of the 0CFA analysis is roughly comparable to that of early type
systems for Mobile Ambients [11, 14] and may be used for validating security
properties related to crossing control and opening control [12]. In the spirit of
type systems the main semantic result showing the correctness of the 0CFA
analysis is a subject-reduction result expressing that the analysis information
remains valid during execution.

The efficiency of the analysis is good and the worst-case complexity is cubic [36].
In practical terms we find it convenient to translate the analysis into a fragment
of first order logic known as Alternation-free Least Fixed Point Logic (ALFP)
and implemented by our Succinct Solver [35].

Discretionary access control (see Section 3) imposes conditions on when an am-
bient can perform a given mobility primitive on another ambient. As an example,
an ambient (the subject) may move into another ambient (the object) by execut-
ing a suitable capability (an access operation). In the Safe Ambients of Levi and
Sangiorgi [24] there is a simple notion of access control; here the object must
agree to being entered and this is expressed by requiring the object to execute
the corresponding co-capability (an access right).

This rudimentary kind of access control does not fully model the usual notion of
access control where an access control matrix lists the set of capabilities that each
subject may perform on each object. (In the classical setting [22], the subjects
correspond to programs, the objects correspond to files, and the access operations
could be the read, write, and execute permissions of UNIX.) We overcome this
shortcoming by designing the Discretionary Ambients where co-capabilities not
only indicate the access rights but also the subject that is allowed to perform it.

We then adapt the semantics to incorporate the necessary checks and hence to
block execution whenever an inadmissible access operation is performed. Simi-
larly we adapt the analysis and later strengthen it using context-sensitivity; this
is a standard technique from data flow and control flow analysis that can be
used to improve the precision of a simple 0CFA analysis in order to obtain a so-
called 1CFA analysis [29]. As mentioned above the 0CFA analysis approximates
the hierarchical structure of the ambients by a binary father-son relationship.
Context-sensitivity then is based on the observation that more precise results are
likely to be obtained using a ternary grandfather-father-son relationship between
ambients. This 1CFA analysis still has reasonable complexity and we report on
practical experiments confirming that the use of ternary relations strikes a use-
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ful balance between precision and efficiency. (A considerably more precise and
costly analysis is presented in [37, 38].)

Mandatory access control (see Section 4) imposes confidentiality and/or integrity
by combining the access control matrices with additional information [22]. The
Bell-LaPadula model assigns security levels to objects and subjects and imposes
confidentiality by preventing information from flowing downwards from a high
security level to a low security level. The Biba model assigns integrity levels to
objects and subjects and then imposes integrity by preventing trusted high-level
entities from being corrupted by dubious low-level entities — thus information
is prevented from flowing upwards.

These security models were originally developed in a setting much more static
than the one of Discretionary Ambients. For comparison, an ambient may be
viewed as a system with a distributed access control matrix that dynamically
evolves and that is concerned with multiplicities whereas classically the access
control matrix is partly centralised and static. In this paper we show how the
security policies may be re-formulated in the dynamic and mobile setting of the
Discretionary Ambients.

The formal development amounts to adapting the semantics so as to incorporate
reference monitors that block execution whenever an inadmissible access opera-
tion is performed (according to the mandatory access control policy considered).
The analysis is extended to perform tests comparable to those of the reference
monitors, and as an extension of the subject reduction theorem we show that if
all static tests are satisfied then the reference monitor can be dispensed with.

Cryptographic protocols (see Section 5) are most naturally expressed using com-
munication. The full calculus of Mobile Ambients includes a notion of local
communication where there is a communication box inside each ambient; this
naturally leads to dealing with asynchronous communication. For some purposes
it is more convenient to allow communication between adjacent layers of ambi-
ents and this motivated the design of Boxed Ambients [9, 8]. Here an ambient
can directly access not only its local communication box but also the commu-
nication box of its parent (but not grandparents) as well as its children (but
not grandchildren). We show that perfect symmetric cryptography as well as
a number of cryptographic key exchange protocols (Wide Mouthed Frog, Ya-
halom and the Needham-Schroeder symmetric key protocol) can be expressed in
a rather natural manner in Boxed Ambients. We adapt the semantics and the
0CFA analysis to this setting and prove the usual results; thanks to a small sim-
plification also the implementation is relatively straightforward. This analysis
may additionally be used for validating security properties related to exchange
analysis as presented in [12].

In the Conclusion (see Section 6) we summarise the development performed and
briefly discuss extensions of the work as well as directions for future research: the
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•

Fig. 1. A packet p moves from site A to site B and finally gets dissolved.

notion of hardest attackers as a means for characterising all Dolev-Yao attackers
to a firewall [31, 30], and the possibility of extending this to capture all Dolev-Yao
attackers to the protocols considered [5].

2 Mobile Ambients

In the ambient view of the world each ambient is a bounded place where compu-
tations take place. The boundary determines what is inside and what is outside
and as such it represents is a high-level security abstraction. Additionally it pro-
vides a powerful abstraction of mobility where ambients move as a whole. This
view is sufficiently flexible to apply to a variety of scenarios: applets, agents,
laptops, etc.

Ambients can be nested inside other ambients forming a tree structure. Mobil-
ity is then represented as navigation within this hierarchy of ambients. As an
example, consider Figure 1 where a packet p moves from one site A into another
site B. First we move the packet out the enclosing ambient (2) and then into the
new enclosing ambient (3). Finally in (4), the payload of the packet is opened
inside site B and the packet p is, thereby, dissolved.

Each ambient contains a number of multi-threaded running processes. The top-
level processes of an ambient have direct control over it and can instruct it to
move and thereby change the future behaviour of its processes and sub-ambients;
consequently, the processes of sub-ambients only control the sub-ambient in
which they are placed. Processes continue to run while being moved.

Each ambient has a name. Only the name can be used to control the access to
the ambient (entry, exit, etc.) and the ambient names are unforgeable.

The mobility primitives of ambients are based on the notion of subjective moves.
Here the movements of an ambient are caused by the threads running at top-level
inside it. The in-capability directs an ambient to move into a sibling (i.e. another
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ambient running in parallel). This can be depicted as:

m

inn.P Q

n

R −→

n

R

m

P | Q

The left hand side shows two sibling ambients named m and n; the ambient m
has a thread instructing it to move into the ambient n. The right hand side of
the figure then shows the result of this action.

The out-capability directs an ambient to move out of its father (i.e. the enclosing
ambient). In the figure below the ambient m contains a thread instructing it to
move out of its father named n:

n

R

m

outn.P | Q −→
m

P | Q
n

R

The open-capability allows a process to dissolve the boundary around a sibling
ambient (named n below):

open n.P
n

Q −→ P Q

The ambient view of systems directly focuses on the ability to express a number
of high-level security issues related to mobility; as for example, ensuring that
packets with sensitive information can only pass through classified sites, or that
packets with sensitive information may pass through unclassified sites but can
only be opened at classified sites.

2.1 Syntax and Semantics of Mobile Ambients

To make this precise we formally define the syntax of processes, P , and capabil-
ities, M , by the following grammar:

Processes based on the π-calculus:

P ::= (ν n : µ) P introduces a process with private name n in group µ
| (ν µ)P introduces a new group named µ with its scope
| 0 the inactive process
| P1 | P2 two concurrent processes
| !P replication: any number of occurrences of P

| n [P ] an ambient named n containing P (drawn as P
n

)
| M.P a capability M followed by P
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P ≡ P
P ≡ Q ∧ Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ Q ≡ P

P ≡ Q ⇒ (ν n : µ) P ≡ (ν n : µ) Q
P ≡ Q ⇒ (ν µ) P ≡ (ν µ) Q
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ !P ≡ !Q
P ≡ Q ⇒ n [P ] ≡ n [Q]
P ≡ Q ⇒ M. P ≡ M. Q

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
P | 0 ≡ P

!P ≡ P | !P
!0 ≡ 0
(ν n : µ)0 ≡ 0
(ν µ)0 ≡ 0

(ν n : µ) (ν n′: µ′) P ≡
(ν n′: µ′) (ν n : µ) P if n 6= n′

(ν µ) (ν µ′) P ≡ (ν µ′) (ν µ) P
(ν n : µ) (ν µ′) P ≡ (ν µ′) (ν n : µ) P if µ 6= µ′

(ν n : µ) (P | Q) ≡ P | (ν n : µ) Q if n /∈ fn(P )
(ν µ) (P | Q) ≡ P | (ν µ) Q if µ /∈ fg(P )

(ν n′ : µ) (n [P ]) ≡ n [(ν n′ : µ) P ] if n 6= n′

(ν µ) (n [P ]) ≡ n [(ν µ) P ]

(ν n : µ) P ≡ (ν n′ : µ) (P{n ← n′}) if n′ 6∈ fn(P )

Table 1. The structural congruence relation.

Capabilities of the core calculus:

M ::= inn move the enclosing ambient into a sibling named n
| outn move the enclosing ambient out of a parent named n
| open n dissolve a sibling ambient named n

In the graphical representation the inactive process is usually not written ex-
plicitly. Our syntax of ambients follows [12] and extends the basic calculus of
[13, 16] in not having an operation (ν n)P for introducing a new private name
n for use in P but instead two operations: (ν µ) P for introducing a new group
name µ for use in P and then (ν n : µ) P for introducing a new private name n
belonging to the group µ. A group can be viewed as the “type” of a name and
has no semantic consequence.

The importance of groups becomes clear in the 0CFA analysis where we will
need that the group name is stable under α-renaming of names. We achieve
this by means of a careful definition of the structural congruence (see Table 1
and the explanation below). For simplicity there will be no α-renaming of group
names; for this to work we make the simplifying assumption that all (ν µ) must
be distinct and must not occur inside some replication operator (!).

The semantics of mobile ambients consists of a structural congruence relation,
written P ≡ Q, and a transition relation, written P → Q. The structural con-
gruence relation allows to rearrange the syntactic appearance of processes as
the pictorial representation suggests (e.g. P | Q ≡ Q | P ), it deals with the
semantics of replication (e.g. !P ≡ !P | P ) and allows to perform α-renaming;
the details are fairly standard and may be found in Table 1. We write fn(P )
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P → Q

(ν n : µ) P → (ν n : µ) Q

P → Q

(ν µ) P → (ν µ) Q

P → Q

n [P ] → n [Q]

P → Q

P | R → Q | R
P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q

P → Q

m [in n. P | Q] | n [R] → n [m [P | Q] | R]

n [m [out n. P | Q] | R] → m [P | Q] | n [R]

open n. P | n [Q] → P | Q

Table 2. The transition relation for Mobile Ambients.

and fg(P ) for the free names and the free groups of P , respectively. The transi-
tion relation formalises the three subjective moves and clarifies that capabilities
deeply nested inside ambients may execute provide they are not prefixed with
other capabilities; the details are fairly standard and may be found in Table 2.

Example 1. Let us consider a packet p moving from a site A to another site B
as in Figure 1. The first configuration (1) in Figure 1 could be the process:

A [p [out A. in B]] | B [open p]

Using the transition relation of Table 2 we can get an execution sequence corre-
sponding to that of Figure 1:

(1) A [p [out A. in B]] | B [open p] →
(2) A [ ] | p [in B] | B [open p] →
(3) A [ ] | B [open p | p [ ]] →
(4) A [ ] | B [ ]

¤

2.2 A 0CFA Analysis for Mobile Ambients

The aim of the static analysis is to determine which ambients and capabilities
may turn up inside given ambients. Fixing our attention on a given ambient
process P our aim is to find an estimate I of this information that describes all
configurations reachable from P . In the Flow Logic approach to static analysis
[28, 39] we proceed in the following stages:

Specification: First we define what it means for the estimate I to be an ac-
ceptable description of the process P .

Correctness: Then we prove that all acceptable estimates will remain accept-
able during execution.
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Implementation: Finally, we show that a best acceptable estimate can be
calculated in polynomial time.

This approach should be rather natural to readers familiar with type systems:
first one formulates the type system (thereby making precise the notion of type
checking), then one shows semantic soundness of the type system (usually in the
form of a subject-reduction result), and finally one shows how to obtain principal
types for processes (thereby making precise the notion of type inference).

Example 2. Consider the Mobile Ambient process of Example 1

A [p [out A. in B]] | B [open p]

site A
packet p

•
site B

where ambients A and B belong to the group S of sites, and the ambient p belongs
to the group P of packets. The analysis will provide a safe approximation of which
ambients may turn up inside other ambients.

The exact answer is that p may turn up inside A, p may turn up inside B, but
that A and B never turn up inside p nor inside each other. In terms of groups we
shall simply say that P may turn up inside S but that S never turns up inside P
nor inside S. We shall represent this using a mapping

I : Group → P(Group ∪Cap)

that for each ambient group µ ∈ Group tells us not only which ambient groups
may be inside an ambient in group µ but also which group capabilities may be
possessed by an ambient in group µ; here a group capability m ∈ Cap is given
by:

m ::= inµ | out µ | open µ

The optimum value of I for the example discussed above is given by

I(?) = {S, P}
I(S) = {P, openP}
I(P) = {in S, outS}

where ? denotes the group of the overall system (i.e. the top level). A somewhat
less precise over-approximation of I, where extra elements are included, is

I(?) = {S, P}
I(S) = {P, S, in S, outS, openP}
I(P) = {in S, outS}

and it will turn out that this is the one that will be obtained using the simplest
of our analyses (the 0CFA analysis developed in this subsection). ¤
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Fig. 2. The nature of approximation.

Remark 3. The choice of the domain of I determines which kind of informa-
tion the analysis can provide about a process and, consequently, what it cannot
record.

For example, with the choice of I as in Example 2 we can record whether an
ambient or a capability is present inside some other ambient, but not the number
of ambients and capabilities that are present. To get such information we will
have to change the domain of the analysis estimate as done in e.g. [37, 23, 38].

Furthermore, we can only records the presence of capabilities but not the order
in which they appear. Thus, we do not capture the order in which capabilities
are executed and cannot determine whether one capability is executed before
another; in other words the analysis is not flow-sensitive. Adding sequences of
capabilities have been studied in [23].

In the remainder of this paper we do not consider neither multiplicities nor
flow-sensitivity. As we will see, even these “simple” analyses are able to give
analysis estimates that are sufficiently precise to determine interesting security
properties. ¤

Specification of the 0CFA analysis. In the above example we displayed the
best value of I that one can hope for. In general this is not always possible
since the problem of finding the best value of I is really undecidable due to
the Turing completeness of Mobile Ambients. Hence we will have to settle for
more approximate estimates saying that S may turn up inside P, whereas we
shall never accept an estimate saying that P never turns up inside S. In terms
of approximation this means that we opt for an over-approximation of the set
of containments; this is illustrated in Figure 2.

To make precise when an estimate I : Group → P(Group∪Cap) describes an
acceptable over-approximation of the behaviour of a process P under consider-
ation we shall axiomatise a judgement

I |=µ
Γ P

meaning that I is an acceptable analysis estimate for the process P when it
occurs inside an ambient from the group µ and whenever the ambients are in
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groups as specified by the type environment Γ (e.g. Γ (p) = P and Γ (A) =
Γ (B) = S). The judgement is defined by structural induction on the syntax of
the process P (as shown below).

Analysis of composite processes. Each acceptable analysis estimate for a com-
posite process must also be an acceptable analysis estimate for its sub-processes;
perhaps more imprecise than need be. This is captured by the following clauses
where Γ is the current type environment and ? is the ambience i.e. the group
associated with the enclosing ambient.

I |=?
Γ (ν n : µ)P iff I |=?

Γ [n7→µ] P update type env.; check process

I |=?
Γ (ν µ)P iff I |=?

Γ [µ7→¦] P update type env.; check process

I |=?
Γ 0 iff true nothing to check

I |=?
Γ P1 | P2 iff I |=?

Γ P1 ∧ I |=?
Γ P2 check both branches

I |=?
Γ !P iff I |=?

Γ P check process; ignore multiplicity

I |=?
Γ n [P ] iff µ ∈ I(?) ∧ I |=µ

Γ P µ is inside ?; check process

where µ = Γ (n)

In the first clause we update the type environment with the type of the newly
introduced name; in the second clause we update the type environment with a
special placeholder ¦ indicating a group name; in the last clause we ensure that
the analysis estimate I records that the group of n occurs inside the ambience
? and we analyse the internals of n in an appropriately updated ambience.

Remark 4. Elaborating on the analogy to type systems explained above, one
could coin the slogan:

Flow Logic is the approach to static analysis that presents Data
and Control Flow Analysis as a Type System.

To make this more apparent we could formulate the first clause above as an
inference rule

I |=?
Γ [n 7→µ] P

I |=?
Γ (ν n : µ)P

and similarly for the other clauses presented here. These formulations are equiv-
alent1 whenever the judgement is defined by structural induction on processes.
The formulation chosen here is perhaps more in the spirit of the equational
approach of Data Flow Analysis. ¤
1 For some applications of Flow Logic to programming languages with higher-order

features this need not be the case and then the inference system presentation amounts
to an inductive definition rather than the desired co-inductive definition [29, 39];
however, this subtle but important point will not be an issue in the present paper
where the inductive definition turns out to coincide with the co-inductive definition.
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In-capability. Each acceptable analysis estimate must mimic the semantics: if
the semantics allows one configuration to evolve into another then it must be
reflected in the analysis estimate. For the in-capability this is achieved by the
following clause:

I |=?
Γ in n. P iff in µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µa, µp : in µ ∈ I(µa) ∧ µa has the capability in µ

µa ∈ I(µp) ∧ µp is the parent of µa

µ ∈ I(µp) µa has a sibling µ

⇒ µa ∈ I(µ) µa may move into µ

where µ = Γ (n)

Here the first line records the presence of the actual capability and also analyses
the continuation – this is in line with what happened for ambients above. The
remaining lines model the semantics. To understand the formulation it may be
helpful to recall the semantics of the in-capability as follows (writing n : µ to
indicate that Γ (n) = µ and writing · : µ when the ambient name is of no
importance for the analysis):

· : µa

in n.P

n : µ

· : µp

−→
n : µ
· : µa

P

· : µp

The precondition of the universally quantified implication above recognises the
structure depicted to the left of the arrow by querying if the relevant entries
already are in I; the conclusion then records the only new structural ingredient
depicted to the right of the arrow.

Example 5. Let Γ be given by Γ (p) = P and Γ (A) = Γ (B) = S and let I be
given by the second estimate in Example 2:

I(?) = {S, P}
I(S) = {P, S, in S, outS, openP}
I(P) = {in S, outS }

Checking that
I |=?

Γ A [p [out A. in B ] ] | B [open p]

involves checking
I |=PΓ in B

which holds because inS ∈ I(P) and

inS ∈ I(µa) ∧ µa ∈ I(µp) ∧ S ∈ I(µp) ⇒ µa ∈ I(S)

holds for all non-trivial (µa, µp) ∈ {(S, ?), (S, S), (P, ?), (P, S)}. ¤
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Out-capability. For the out-capability the clause is

I |=?
Γ outn. P iff out µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µa, µg : out µ ∈ I(µa)∧ µa has the capability out µ

µa ∈ I(µ) ∧ µ is the parent of µa

µ ∈ I(µg) µg is the grandparent of µa

⇒ µa ∈ I(µg) µa may move out of µ

where µ = Γ (n)

corresponding to the operational semantics:

· : µa

P

n : µ

· : µg

−→
n : µ
· : µa

out n.P

· : µg

Example 6. Continuing Example 5, checking

I |=?
Γ A [p [out A. in B] ] | B [open p]

involves checking
I |=PΓ out A. in B

which holds because I |=PΓ in B (see Example 5) and outS ∈ I(P) and

outS ∈ I(µa) ∧ µa ∈ I(S) ∧ S ∈ I(µg) ⇒ µa ∈ I(µg)

holds for all (µa, µg) ∈ {(S, ?), (S,S), (P, ?), (P, S)}. ¤

Open-capability. For the open-capability the clause is

I |=?
Γ open n. P iff open µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µp : open µ ∈ I(µp) ∧ µp has the capability open µ

µ ∈ I(µp) µ is a sibling of open µ

⇒ I(µ) ⊆ I(µp) everything in µ may be in µp

where µ = Γ (n)

corresponding to the operational semantics:

P

· : µp

−→open n.P

n : µ

· : µp

Example 7. Continuing Example 5 and Example 6, checking that

I |=?
Γ A [p [out A. in B ]] | B [open p]

involves checking
I |=SΓ open p

12



P1 → P2 → · · · → Pi → · · ·~ww� |=?
Γ

~ww� |=?
Γ

~ww� |=?
Γ

I I · · · I · · ·

Fig. 3. Subject reduction: the analysis estimate remains acceptable under execution.

which holds because openP ∈ I(S) and

openP ∈ I(µp) ∧ P ∈ I(S) ⇒ I(P) ⊆ I(µp)

holds for µp = S. ¤

This concludes the Flow Logic definition of the judgement I |=?
Γ P in a style

close to that of a type system.

Example 8. Ensuring that the analysis estimate I of Example 5 is an acceptable
analysis estimate for the entire process A [p [out A. in B] ] | B [open p] amounts
to checking that

I |=?
Γ A [p [out A. in B] ] | B [open p]

This involves checking the clauses for composite processes. The top-level parallel
composition gives rise to the two checks that

I |=?
Γ A [p [out A. in B]] and I |=?

Γ B [open p]

which, for the first part, leads to the checks that

S ∈ I(?) and I |=SΓ p [out A. in B]

In turn, checking the clauses for composite processes leads to the checks of
capabilities performed in Example 5, 6, and 7. Performing all the required checks
we find that the analysis estimate I of Example 5 is indeed an acceptable analysis
estimate for the 0CFA analysis. ¤

Correctness of the 0CFA analysis. Although the specification of the judge-
ment in the previous subsection was motivated by the transition relation it was
not formally linked to it. To do so we take the rather natural approach, famil-
iar from type systems, that the analysis estimate should not only describe the
initial configuration in an acceptable way but it must remain acceptable under
execution; then we know that all reachable configurations will be described by
the analysis estimate.

This is the “subject reduction” approach to correctness; it is illustrated in
Figure 3 and formalised by the following theorem:
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Theorem 9. If I |=?
Γ P and P →∗ Q then I |=?

Γ Q.

For the proof we first show that the analysis estimate is invariant under the
structural congruence:

If P ≡ Q then I |=?
Γ P if and only if I |=?

Γ Q.

This amounts to a straightforward induction on the inference of P ≡ Q.

Next we prove that the analysis estimate is preserved under the transition rela-
tion:

If P → Q and I |=?
Γ P then I |=?

Γ Q.

This amounts to a straightforward induction on the inference of P → Q.

Finally we prove the theorem by a simple numerical induction on the number of
steps k in P →k Q.

Implementation of the 0CFA analysis. An abstract argument for why there
always is a best acceptable analysis estimate borrows from abstract interpreta-
tion [19, 20, 29]. The notion of “best estimate” means “least estimate” since we
decided to opt for over-approximation and hence we are looking for a value of I
that contains as few elements as possible. The abstract argument then amounts
to the Moore Family result (or model intersection property in model-theoretic
terminology):

Theorem 10. For each P , the set {I | I |=?
Γ P} is a Moore family; in other

words: for each P , if Y ⊆ {I | I |=?
Γ P} then uY |=?

Γ P where (uY)(µ) =⋂{I(µ) | I ∈ Y}.

The proof is by structural induction on P . We are interested in the Moore family
property because a Moore family always contains a unique least element. Thus
it follows that the least analysis estimate can be expressed as u{I | I |=?

Γ P}
and in the world of type systems this corresponds to each process admitting a
single principal type.

The ALFP logic. To actually compute the intended solution in polynomial time
we shall follow a rather general and elegant method where the specification is
translated into an extension of Horn clauses known as Alternation-free Least
Fixed Point Logic (ALFP). This is a first-order logic where the set of formulae
(or clauses), clause, and the set of preconditions, pre, are given by the following
grammar (subject to a notion of stratification limiting the use of negation):

pre ::= R (x1, . . . , xk) | ¬R (x1, . . . , xk) | x = y | x 6= y
pre1 ∧ pre2 | pre1 ∨ pre2 | ∀x : pre | ∃x : pre

clause ::= R (x1, . . . , xk) | 1 | clause1 ∧ clause2 |
pre =⇒ clause | ∀x : clause
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(ρ, σ) |= R (x1, . . . , xk) ⇔ (σ x1, . . . , σ xk) ∈ ρ R
(ρ, σ) |= ¬R (x1, . . . , xk) ⇔ (σ x1, . . . , σ xk) 6∈ ρ R

(ρ, σ) |= x = y ⇔ σ x = σ y
(ρ, σ) |= x 6= y ⇔ σ x 6= σ y

(ρ, σ) |= pre1 ∧ pre2 ⇔ (ρ, σ) |= pre1 and (ρ, σ) |= pre2

(ρ, σ) |= pre1 ∨ pre2 ⇔ (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= ∀x : pre ⇔ (ρ, σ[x 7→ a]) |= pre for all a ∈ U
(ρ, σ) |= ∃x : pre ⇔ (ρ, σ[x 7→ a]) |= pre for some a ∈ U

(ρ, σ) |= R (x1, . . . , xk) ⇔ (σ x1, . . . , σ xk) ∈ ρ R
(ρ, σ) |= 1 ⇔ true

(ρ, σ) |= clause1 ∧ clause2 ⇔ (ρ, σ) |= clause1 and (ρ, σ) |= clause2

(ρ, σ) |= pre =⇒ clause ⇔ (ρ, σ) |= clause whenever (ρ, σ) |= pre
(ρ, σ) |= ∀x : clause ⇔ (ρ, σ[x 7→ a]) |= clause for all a ∈ U

Table 3. Semantics of ALFP.

Here R is a k-ary predicate symbol for k ≥ 0, and y, x, x1, . . . denote arbitrary
variables, while 1 is the always true clause. (Since we shall not use negation in
this paper we dispense with explaining the notion of stratification.)

Given a universe finite U of atomic values and interpretations ρ and σ for pred-
icate symbols and free variables, respectively, the satisfaction relations (ρ, σ) |=
pre for pre-conditions and (ρ, σ) |= clause for clauses are defined in a straightfor-
ward manner as shown in Table 3. Note that the definitions for pre-conditions
and clauses are similar for predicates R (x1, . . . , xk)), conjunction (∧), and uni-
versal quantification (∀). We view the free variables occurring in a formula as
constant symbols or atoms from the finite universe U . Thus, given an interpre-
tation σ of the constant symbols, in the clause clause, we call an interpretation
ρ of the predicate symbols a solution provided (ρ, σ) |= clause.

Implementation using ALFP. Calculating a least analysis estimate is done by
finding the least solution to an ALFP clause that is logically equivalent to the
specification of the analysis. The calculation of the least solution ρ is done auto-
matically using our Succinct Solver [35]. Recall that being the least interpretation
means that it contains as few elements as possible while still being acceptable.

In the specification of an analysis we are free to use any mathematical notation,
while in the implementation we are limited by what we can express in ALFP.
For simple powerset based analyses, such as the ones considered in this paper,
the transformation from the specification to ALFP is relatively straightforward.
For the analysis considered here the following transformations suffice:

– The mapping I : Group → P(Group∪Cap) is encoded as a binary predi-
cate of sort Group× (Group ∪Cap).
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– Correspondingly, set membership such as µ′ ∈ I(µ) is written as I(µ, µ′).
– Subset relations such as I(µ) ⊆ I(µ′) are written by explicitly quantifying

the elements in the first set: ∀u : I(µ, u) ⇒ I(µ′, u).
– All groups µ and group capabilities inµ, outµ, and open µ are elements in

the universe U ; for a given process this universe will be finite.

It is straightforward to establish a formal relationship between the specifica-
tion and the implementation by giving a mapping (actually an isomorphism)
between the two representations of I and showing that the specification and the
implementation are logically equivalent under this mapping.

We apply the above encodings systematically to the specification of the analysis
thus getting a new formulation from which we can generate ALFP clauses for
any given process P . The analysis of composite processes remains unchanged
except for the analysis of the ambient construct, which is changed into:

I |=?
Γ n [P ] iff I(?, µ) ∧ I |=µ

Γ P

where µ = Γ (n)

That is, the set membership is now written I(?, µ). Similarly, the analysis of
the capabilities are changed and in the case of open µ (where subset is used) the
clause becomes:

I |=?
Γ open n. P iff I(?, open µ) ∧ I |=?

Γ P ∧
∀ µp : I(µp, open µ) ∧

I(µp, µ)
⇒ ∀u : I(µ, u) ⇒ I(µp, u)

where µ = Γ (n)

The rules for in- and out-capabilities are obtained in an analogous way.

Example 11. Finding the least analysis estimate for the 0CFA analysis of the
process

A [p [out A. in B]] | B [open p]
with Γ given by Γ (p) = P and Γ (A) = Γ (B) = S now amounts to finding the
solution to the ALFP clause:

I(?, S) ∧ Ambient A

I(S,P) ∧ Ambient p

I(P, outS) ∧ Capability out A
(∀µa, µg : I(µa, outS) ∧ I(S, µa) ∧ I(µg, S)

⇒ I(µg, µa)) ∧
I(P, inS) ∧ Capability in B
(∀µa, µp : I(µa, inS) ∧ I(µp, µa) ∧ I(µp,S)

⇒ I(S, µa)) ∧
I(?, S) ∧ Ambient B

I(S, openP) ∧ Capability open p
(∀µp : I(µp, openP) ∧ I(µp,P)

⇒ ∀u : I(P, u) ⇒ I(µp, u))
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The resulting least solution I which satisfies the clause is:

I : (?, S), (S,P), from ambients
(P, outS), (?,P), from out
(P, inS), (S, S), from in
(S, openP), (S, outS), (S, inS) from open

This corresponds to the solution displayed in Example 5. ¤

The solution of an ALFP clause can be found in polynomial time in the size
of the universe i.e. in the number of groups and capabilities. This complexity
is due to a generalisation [35] of a meta-complexity result for Horn Clauses by
McAllester [25], which states that:

– The time needed to compute a solution is asymptotically the same as the
time needed to check the validity of an estimate.

– The degree of the complexity polynomial is dominated by one plus the nest-
ing depth of quantifiers occurring in the clause.

Consequently, the complexity bound can sometimes be improved by reformulat-
ing the clause to reduce the amount of quantifier nesting. Rather than improving
formulae using a general transformation scheme, like the use of tiling to reduce
quantifier nesting [36], or automatically estimating the run-time [32], we take
the more pragmatic, and more precise, approach of estimating the run-time em-
pirically [7], and use this as a basis for transforming the clause so as to improve
its running time [7].

A result of such an experiment is shown in Figure 4. Here the analysis has been
run on a number of processes with the same overall structure where a packet is
routed through a grid of m×m sites. The actual time that the Succinct Solver
spends on computing a solution is plotted against the size of the process.

The plot is shown using logarithmic scales on both axes so that a power function
shows up as a straight line. A crude least-squares estimate of the degree of the
complexity polynomial is displayed in the legend of the plot and we see that
the solving times are linear in the size of the process being analysed. This is
typical for most processes, though the analysis in some cases runs in time that
is quadratic in the size of the process.

Remark 12. We already said that for ALFP the time needed to compute the least
solution is asymptotically the same as the time needed to check the acceptability
of an estimate. Elaborating on the analogy to type systems explained above, one
could then coin the slogan:

ALFP-based Flow Logic studies a class of simple Type Systems
where type checking and type inference have the same asymptotic
complexity.
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Fig. 4. Estimating the complexity empirically.

In the absence of principal types this is quite different from type systems based
on subtyping where type checking usually takes polynomial time but where type
inference often would seem to require non-deterministic polynomial time (in
practise exponential time) due to the need to search for the right types. ¤

2.3 Crossing Control and Opening Control

The analysis not only approximates the hierarchical structure of the ambients
but also the access operations that an ambient may possess. This facilitates
validating the following security properties [12]:

– Crossing control: may an ambient m cross the boundary of another ambient
n either by entering it (using in-capabilities) or by exiting it (using out-
capabilities)?

– Opening control: may an ambient n be dissolved by another ambient m (using
open-capabilities)?

In each case we proceed as follows:
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– First, we describe the desired property dynamically, i.e. we express it using
the concepts and notation of the reduction semantics.

– Second, we describe the property statically, i.e. we re-express it using the
concepts and notation of the static analysis.

– Third, we show the semantic correctness of these formulations: that the static
formulation of the property implies the dynamic formulation.

– Finally, we argue that the test can be performed by means of the techniques
used for implementing the analysis, which in our case means that the static
properties can be determined in polynomial time.

Crossing control. The dynamic notion amounts to saying that an ambient n
can cross the ambient n′ during the execution of a process P whenever in some
reachable configuration n executes the in n′ or the outn′ capability. This can be
reformulated in terms of groups:

Definition 13 (Dynamic notion of crossing). Ambients of group µ can
cross ambients of group µ′ during the execution of P whenever

1. P →∗ Q,
2. some ambient n in Q contains an executable capability inn′ or an executable

capability outn′, and
3. n is of group µ and n′ is of group µ′.

We could choose to define the dynamic notion both with and without groups but
we shall focus on the former since it more directly relates to the static notion
studied below.

The static notion is expressed in terms of the 0CFA analysis. It amounts to saying
that ambients of group µ may cross ambients of group µ′ during the execution
of P whenever the precondition in the clause for in-capabilities is satisfied or
the precondition in the clause for out-capabilities is satisfied. To express this in
a succinct manner we decide to introduce an“observation predicate”, named D
for dynamics, to keep track of the capabilities recorded by I that may actually
execute according to the analysis. We let D be a mapping D : Group → P(Cap)
and modify the clauses for in and out to read:

(I,D) |=?
Γ inn. P iff in µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µa, µp : in µ ∈ I(µa) ∧

µa ∈ I(µp) ∧
µ ∈ I(µp)

⇒ µa ∈ I(µ) ∧ in µ ∈ D(µa)
where µ = Γ (n)
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(I,D) |=?
Γ out n. P iff out µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µa, µg : out µ ∈ I(µa)∧

µa ∈ I(µ) ∧
µ ∈ I(µg)

⇒ µa ∈ I(µg) ∧ out µ ∈ D(µa)
where µ = Γ (n)

Using the information in the “observation predicate” D the static notion of what
it means for an ambient to cross the boundary of another ambient can be defined
as follows:

Definition 14 (Static notion of crossing). Ambients of group µ possibly
may cross ambients of group µ′ during the execution of P whenever

inµ′ ∈ D(µ) ∨ outµ′ ∈ D(µ)

for the least I and D such that (I,D) |=?
Γ P .

This static condition is checkable in polynomial time.

Example 15. With respect to Γ and I as displayed in Example 5 the least esti-
mate for the modified analysis will produce a relation D that contains exactly
the same capabilities as recorded in I; i.e. ∀µ : D(µ) = I(µ) ∩Cap. Hence the
analysis can be used to validate (where “will never” is the negation of “possibly
may”):

– Ambients of group P possibly may cross ambients in group S;
because in S ∈ D(P) ∨ outS ∈ D(P).

– Ambients in group S will never cross ambients in group P;
because inP 6∈ D(S) ∧ outP 6∈ D(S).

It is interesting to observe that a more precise analysis is needed to validate that
ambients of group S will never cross ambients in group S since we do not have
that in S 6∈ D(S) ∧ outS 6∈ D(S). And indeed, we also have S ∈ I(S) indicating
that as far as the analysis can see, some ambient of group S may turn up inside
some ambient of group S. ¤

The correctness of the static test with respect to the dynamic semantics is for-
mally expressed as follows:

Theorem 16 (Crossing Control).

1. If ambients of group µ can cross ambients of group µ′ during the execution
of P then ambients of group µ possibly may cross ambients of group µ′

during the execution of P .
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2. If ambients of group µ will never cross ambients of group µ′ during the
execution of P then ambients of group µ cannot cross ambients of group
µ′ during the execution of P .

The proposition is a corollary of the subject reduction result (Theorem 9); also
note that the second statement is the contrapositive version of the first statement
(and hence that they are logically equivalent).

Opening control. The dynamic notion amounts to saying that an ambient n
can open the ambient n′ during the execution of P whenever some n executes the
open n′ capability in some reachable configuration. Again we define the notion
in terms of groups.

Definition 17 (Dynamic notion of opening). Ambients of group µ can
open ambients of group µ′ during the execution of P whenever

1. P →∗ Q,
2. some ambient n in Q contains an executable capability open n′, and
3. n is of group µ and n′ is of group µ′.

The static notion is once again expressed in terms of the 0CFA analysis. It
amounts to saying that ambients of group µ may open ambients in group µ′

whenever the precondition in the clause for open-capabilities is satisfied. As
before we use a modified clause for extracting the “executable” capabilities in D:

(I,D) |=?
Γ open n. P iff open µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µp : open µ ∈ I(µp) ∧

µ ∈ I(µp)
⇒ I(µ) ⊆ I(µp) ∧ open µ ∈ D(µp)

where µ = Γ (n)

and the static property can be defined accordingly:

Definition 18 (Static notion of opening). Ambients of group µ possibly
may open ambients of group µ′ during the execution of P whenever

open µ′ ∈ D(µ)

for the least I and D such that (I,D) |=?
Γ P .

As before the condition is checkable in polynomial time.

Example 19. With respect to Γ , I and D as given in Examples 5 and 15, respec-
tively, the analysis can be used to validate that ambients of group S possibly
may open ambients in group P, because openP ∈ D(S), and that ambients in
group P will never open any ambients, because ∀µ : open µ 6∈ D(P). ¤
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Theorem 20 (Opening Control).

1. If ambients of group µ can open ambients in group µ′ during the execution
of P then ambients of group µ possibly may open ambients in group µ′

during the execution of P .
2. If ambients of group µ will never open ambients in group µ′ during the

execution of P then ambients of group µ cannot open ambients in group
µ′ during the execution of P .

As before this is a corollary of the subject reduction result (Theorem 9).

3 Discretionary Access Control

The notion of discretionary access control originates from operating systems
where it is used to define a reference monitor for governing the access operations
(typically read, write and execute) that active subjects (typically programs or
users) can perform on passive objects (typically files or external devices). The
reference monitor is then implemented as part of the operating system. Although
traditionally implemented as access control lists, often based on grouping users
into three layers (the user, a group of users, all users), conceptually the specifi-
cation of access control takes the form of a matrix [22]:

o
b
j
e
c
t
s

s u b j e c t s

the operations a

subject may perform

on an object
»»»»9

When adapting discretionary access control to Mobile Ambients we should re-
think the concepts of subject, object and access operation. It seems very natural
to let the access operations be the basic capabilities (in, out and open) of Mobile
Ambients since the notions of read, write and execute are indeed the basic op-
erations of a traditional operating system. Then subjects and objects will both
be ambients; the subject will be the ambient containing the capability and the
object the other ambient involved (typically the one being moved into or being
moved out of).

Safe Ambients [24] extend Mobile Ambients to deal with discretionary access
control. Since it is not in the distributed nature of Mobile Ambients to have
a single global access control matrix it is implemented as access rights, or co-
capabilities, placed inside the objects. Syntactically this leads to modifying the
syntax of Mobile Ambients as follows:

P ::= · · · as before · · ·
M ::= in n | out n | open n capabilities ≈ access operations

| in n | out n | open n co-capabilities ≈ access rights
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A transition only takes place if a capability of the subject is matched by a
corresponding co-capability in the object:

– If m wants to move into n then n should be willing to let ambients enter;
i.e. n must have the co-capability in n:

m

inn.P Q

n

in n.R | S −→

n

R | S
m

P | Q

– If m wants to move out of n then n should be willing to let ambients leave;
i.e. n must have the co-capability out n:

n

out n.R | S

m

outn.P | Q −→
m

P | Q
n

R | S

– If m wants to dissolve n then n should be willing to be dissolved; i.e. n must
have the co-capability open n:

open n.P

n

open n.Q | R −→ P | Q | R

This amounts to integrating the reference monitor into the semantics i.e. the
transition relation.

3.1 Syntax and Semantics of Discretionary Ambients

Discretionary Ambients goes one step further in giving an account of discre-
tionary access control that is as refined as illustrated by the access control ma-
trix above. We do so by augmenting co-capabilities with a subscript indicating
the group of ambients permitted to perform the corresponding capability:

P ::= (νµ)P | (νn : µ)P | 0 | P1 | P2 | !P | n[P ] | M. P

M ::= in n | out n | open n | inµn | outµn | openµn

Hence the basic transitions need to be determined relative to a type environment
Γ mapping ambient names to groups; below we write n : µ to indicate that
Γ (n) = µ.
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– For the in-capability we have

m : µ

inn.P Q

n

inµ n.R | S −→

n

R | S
m

P | Q

so n is willing to let ambients of group µ enter.

– For the out-capability we have
n

outµ n.R | S

m : µ

outn.P | Q −→
m

P | Q
n

R | S

so n is willing to let ambients of group µ leave.

– For the open-capability we have

open n.P

n

openµ n.Q | R

m : µ

−→

m

P | Q | R

so n is willing to be dissolved within ambients of group µ.

The semantics of Discretionary Ambients is a straightforward extension of the
semantics of Mobile Ambients. It consists of the structural congruence relation,
P ≡ Q, defined in Table 1 and the transition relation, Γ ` P → Q, defined in
Table 4. Here Γ is a type environment mapping names to groups and groups to
the special token ¦.

Example 21. We may express the process of Figure 1 in Discretionary Ambients
as follows:

A[p[out A.in B.openS p] | outPA] | B[inPB.open p]

where we assume that Γ (A) = Γ (B) = S and Γ (p) = P i.e. that the sites A and
B are in the group S and the packet p is in the group P. The packet may move
out of A since it has the capability out A and furthermore A grants it the right
to do so because it has the co-capability outPA (and exploiting that p is in the
group P). So in the first step the system may evolve into:

A[ ] | p[in B.openS p] | B[inPB.open p]

Now p has the capability to enter B and B has the co-capability to let it do so;
the system becomes:

A[ ] | B[p[openS p] | open p]
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Γ [µ 7→ ¦] ` P → Q

Γ ` (νµ)P → (νµ)Q

Γ ` P → Q

Γ ` n[P ] → n[Q]

Γ ` P → Q

Γ ` P | R → Q | R

P ≡ P ′ Γ ` P ′ → Q′ Q′ ≡ Q

Γ ` P → Q

Γ [n 7→ µ] ` P → Q

Γ ` (νn : µ)P → (νn : µ)Q
if µ ∈ dom(Γ )

Γ ` m[in n. P | Q] | n[inµn. R | S]

→ n[m[P | Q] | R | S] if Γ (m) = µ

Γ ` n[m[out n. P | Q] | outµn. R | S]

→ m[P | Q] | n[R | S] if Γ (m) = µ

Γ ` m[open n. P | n[openµn. Q | R]]

→ m[P | Q | R] if Γ (m) = µ

Table 4. Transition relation for Discretionary Ambients.

In the final step B has the capability to open p and p grants it the right to do
so since B is in the group S and we then obtain:

A[ ] | B[ ]

as the final configuration. ¤

Remark 22. The classical Mobile Ambients do not support access control: an
object has no way of restricting which operations the subjects may perform on
it. Safe Ambients [24] allows to model a very rudimentary form of access control
as the objects may use the co-capabilities in n, out n and open n to control which
operations they engage in. However, the possession of one of these co-capabilities
gives access to any subject with a corresponding capability; there is no way of
allowing some subjects but not others to perform the operation. Discretionary
Ambients models the more general form of access control corresponding to the
classical developments because the co-capabilities put restrictions on the subjects
allowed to perform the operations.

The difference can be illustrated for the running example where the access control
matrices could be viewed as being:

Safe subject
Ambients

object

A B p

A out A out A out A
B in B in B in B
p open p open p open p

Discretionary subject
Ambients

object

A : S B : S p : P
A − − outP A
B − − inP B
p openS p openS p −

Note that for Safe Ambients columns must necessarily be equal.

Compared to the classical setting the access control matrices in Discretionary
Ambients are much more dynamic structures that may evolve as the process
executes. This is due to the fact that co-capabilities vanish once they have been
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used. If we want to model the classical setting more faithfully we should therefore
always use co-capabilities that are individual threads and prefixed with the repli-
cation operator: e.g. ! inP B will continue to grant subjects of group P permission
to enter the ambient B as many times as needed. ¤

3.2 Adapting the 0CFA Analysis to Discretionary Ambients

To adapt the 0CFA analysis to deal with Discretionary (or Safe) Ambients we
must modify the functionality of I to record

– as before: which ambient groups may be inside an ambient in group µ,

– as before: which access operations (capabilities) may be possessed by an am-
bient in group µ (as subject), and

– additionally: which access rights (co-capabilities) may be possessed by an
ambient in group µ (as object).

Hence we shall use

I : Group → P(Group ∪Cap ∪Cap)

where capabilities and co-capabilities are given by:

capabilities m ∈ Cap m ::= in µ | out µ | open µ
co-capabilities m ∈ Cap m ::= inµ′ µ | outµ′ µ | openµ′ µ

We shall find it useful also to incorporate the observations D as discussed in
Subsection 2.3 and thus have:

D : Group → P(Cap ∪Cap)

Specification of the adapted 0CFA analysis. It is straightforward to adapt
the specification of the 0CFA analysis from Section 2.2 to deal with Discretionary
Ambients. In particular no changes are needed for the analysis of the composite
processes.

For co-capabilities we simply record the presence of the co-capability much as
was the case for ambients:

(I,D) |=?
Γ inµa n. P iff inµaµ ∈ I(?) ∧ (I,D) |=?

Γ P
where µ = Γ (n)

(I,D) |=?
Γ outµa n. P iff outµaµ ∈ I(?) ∧ (I,D) |=?

Γ P
where µ = Γ (n)

(I,D) |=?
Γ openµp n. P iff openµpµ ∈ I(?) ∧ (I,D) |=?

Γ P
where µ = Γ (n)
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For capabilities we need to add one conjunct in each precondition that ensures
that the capability is matched by a corresponding co-capability:

(I,D) |=?
Γ in n. P iff in µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µa, µp : in µ ∈ I(µa) ∧ µa ∈ I(µp) ∧ µ ∈ I(µp) ∧

inµaµ ∈ I(µ) µ provides the access right to µa

⇒ µa ∈ I(µ) ∧ in µ ∈ D(µa) ∧ inµaµ ∈ D(µ)
where µ = Γ (n)

(I,D) |=?
Γ outn. P iff out µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µa, µg : out µ ∈ I(µa) ∧ µa ∈ I(µ) ∧ µ ∈ I(µg) ∧

outµaµ ∈ I(µ) µ provides the access right to µa

⇒ µa ∈ I(µg) ∧
out µ ∈ D(µa) ∧ outµaµ ∈ D(µ)

where µ = Γ (n)

(I,D) |=?
Γ open n. P iff open µ ∈ I(?) ∧ (I,D) |=?

Γ P ∧
∀ µp : open µ ∈ I(µp) ∧ µ ∈ I(µp) ∧

openµpµ ∈ I(µ) µ provides the access right to µp

⇒ I(µ) ⊆ I(µp) ∧
open µ ∈ D(µp) ∧ openµpµ ∈ D(µ)

where µ = Γ (n)

Here D records capabilities and co-capabilities whenever they may be executed.

Example 23. Continuing Example 21 we take Γ to be as before (i.e. Γ (p) = P
and Γ (A) = Γ (B) = S) and obtain the following best estimates of I and D of
the 0CFA given above:

I(?) = {S, P}
I(S) = {P, in S, outS, openP, inP S, outP S, openS P}
I(P) = {inS, out S, openS P}
D(?) = ∅
D(S) = {openP, inP S, outP S}
D(P) = {inS, out S, openS P}

The notion of crossing control from Section 2.3 can easily be adapted to the set-
ting of Discretionary Ambients. Now the analysis finds that ambients of group S
will never cross ambients of group S since in S 6∈ D(S) and out S 6∈ D(S). This is
unlike what was the case for the analysis of Mobile Ambients in Example 15. ¤

Remark 24. Clearly the analysis can be simplified to deal with Safe Ambients,
rather than Discretionary Ambients, although with a loss in precision. This is
done by “ignoring” the groups in the co-capabilities in the specification of the
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analysis above. Continuing Example 23 we can express the system in Safe Am-
bients by omitting the subscripts to the co-capabilities:

A [ p [ out A. in B. open p ] | out A ] | B [ in B. open p ]

When we apply the (modified) analysis from above to this process, however,
the best analysis estimate will resemble the one found for Mobile Ambients in
Example 15 and is no longer able to ensure that ambients of group S cannot
cross ambients of group S. ¤

Correctness of the adapted 0CFA analysis. The correctness of the analysis
for Discretionary Ambients is still a “subject reduction” result saying that the
validity of an analysis estimate is preserved during execution:

Theorem 25. If (I,D) |=?
Γ P and Γ ` P →∗ Q then (I,D) |=?

Γ Q.

Implementation of the adapted 0CFA analysis. The Moore Family prop-
erty still ensures that all processes admit a least analysis estimate:

Theorem 26. The set {(I,D) | (I,D) |=?
Γ P} is a Moore family.

Also the implementation in ALFP proceeds exactly as in Section 2.2.

Precision of the adapted 0CFA analysis. The 0CFA analysis of Discre-
tionary Ambients seems to be more precise than the corresponding 0CFA analy-
sis of Mobile Ambients. An occurrence of this phenomenon is Example 23 where
the analysis of Discretionary Ambients reveals that ambients of group S will
never cross ambients of S; on the other hand the analysis of the Mobile Am-
bients version of the same process in Example 15 is not able to give the same
precise result.

The better precision can be ascribed to the extra information that co-capabilities
give about the behaviour of the process. This extra information allows for addi-
tional constraints on the analysis result, which in turn makes the analysis more
precise. For example, accumulated errors where one “incorrect element” in the
solution gives rise to several more incorrect elements are less likely to occur
because it is improbable for an incorrect element to fulfil the extra constraints
inferred by the co-capabilities.

Example 27. The analysis gains precision by the way access control is added to
the processes. Consider for example the process:

a[ ] | b[ ] | c[b[in a]]
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which is analysed in a type environment where Γ (a) = A, Γ (b) = B, and
Γ (c) = C. When analysed with the 0CFA analysis for Mobile Ambients we get
the correct but imprecise result I1 indicating that that b may turn up inside a.

I1(?) = {A,B,C}
I1(A) = {B}
I1(B) = {in A}
I1(C) = {B}

I2(?) = {A,B,C}
I2(A) = ∅
I2(B) = {in A}
I2(C) = {B}

I3(?) = {A,B,C}
I3(A) = {inBA,B}
I3(B) = {in A}
I3(C) = {B}

Suppose that we add access rights to the above process in order not to allow b to
enter a. In that case, we do not add any co-capabilities and the process above is
just viewed as a Discretionary Ambient process. The analysis result I2 found us-
ing the 0CFA analysis of Discretionary Ambients, however, now correctly shows
that b cannot show up inside a.

Suppose on the other hand that we add access rights in order to allow b to
enter a. Then we add the co-capability inBa and get the process:

a[inBa] | b[ ] | c[b[in a]]

Now, we get the analysis result I3 that imprecisely shows that b can turn up
in a. We conclude that the additional precision strongly depends on how access
rights are added. ¤

3.3 A Context-Sensitive 1CFA Analysis

In preparation for the study of mandatory access control in the next section we
shall now develop a more precise analysis of Discretionary Ambients. Instead
of merely recording the father-son relationship it takes the grandfather into
account and directly records the grandfather-father-son relationship by means
of a ternary relation.

As before the analysis approximates the behaviour of a process by a single ab-
stract configuration that describes all the possible derivatives that the process
may have. It distinguishes between the various groups of ambients but not be-
tween the individual ambients. Unlike before the analysis is context-sensitive in
keeping track of the grandfather relevant for the father-son relationship. Hence
the analysis represents the tree structure of the processes by a ternary relation

I : Group×Group → P(Group ∪Cap ∪Cap)

so that µs ∈ I〈µg, µf 〉 means that µs is a son of µf while at the same time µf

is a son of µg. In a similar way the “observation predicate” becomes a ternary
relation

D : Group×Group → P(Cap ∪Cap)

Example 28. For the running example of Example 21 we may use the following
definition of I. Here > is the father of ?, i.e. > is the grandfather of the top-level
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ambients in the process being analysed. The entries specify the set of sons with
a given combination of grandfather and father:

grandfather

f
a
t
h
e
r

I > ? S P
? {P, S}
S {P, in S, out S, open P,

inPS, outPS, openSP}
P {in S, out S, openSP} {in S, out S, openSP}

To be more specific, the fragment p[out A.in B.openS p] will give rise to in S ∈
I(S,P), out S ∈ I(S,P), openSP ∈ I(S,P) as shown above. We shall come back
to D in Example 29. ¤

Specification of the 1CFA analysis. The judgement of the analysis takes
the form

(I,D) |=〈>,?〉
Γ P

and expresses that I and D are safe approximations of the configurations that
P may evolve into when ambient names are mapped to groups as specified by
Γ and when > and ? are the ambient groups of the grandfather and father,
respectively.

Analysis of composite processes. It is rather straightforward to adapt the clauses
for analysing composite processes:

(I,D) |=〈>,?〉
Γ (νn : µ)P iff (I,D) |=〈>,?〉

Γ [n7→µ] P

(I,D) |=〈>,?〉
Γ (νµ)P iff (I,D) |=〈>,?〉

Γ [µ7→¦] P

(I,D) |=〈>,?〉
Γ 0 iff true

(I,D) |=〈>,?〉
Γ P1 | P2 iff (I,D) |=〈>,?〉

Γ P1 ∧ (I,D) |=〈>,?〉
Γ P2

(I,D) |=〈>,?〉
Γ !P iff (I,D) |=〈>,?〉

Γ P

(I,D) |=〈>,?〉
Γ n[P ] iff µ ∈ I〈>, ?〉 ∧ (I,D) |=〈?,µ〉

Γ P
where µ = Γ (n)

The only modification worth observing is the change of ambience in the final
rule: the father ? now becomes the grandfather and the ambient µ now becomes
the father when analysing the process P .

Analysis of co-capabilities hardly requires any changes:

(I,D) |=〈>,?〉
Γ inµn. P iff inµµ′ ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉

Γ P
where µ′ = Γ (n)
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(I,D) |=〈>,?〉
Γ outµn. P iff outµµ′ ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉

Γ P
where µ′ = Γ (n)

(I,D) |=〈>,?〉
Γ openµn. P iff openµµ′ ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉

Γ P
where µ′ = Γ (n)

Analysis of capabilities require a number of changes; we begin with the in-
capability (explained below):

(I,D) |=〈>,?〉
Γ in n. P iff




in µ ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉
Γ P ∧

∀µa, µp, µq :




in µ ∈ I〈µp, µa〉 ∧
µa ∈ I〈µq, µp〉 ∧
µ ∈ I〈µq, µp〉 ∧
inµaµ ∈ I〈µp, µ〉


 ⇒




µa ∈ I〈µp, µ〉 ∧
I〈µp, µa〉 ⊆ I〈µ, µa〉 ∧
in µ ∈ D〈µp, µa〉 ∧
inµaµ ∈ D〈µp, µ〉







where µ = Γ (n)

Recall that the semantic rule is:
· : µq

m : µa

in n.P

n : µ

inµan.Q

· : µp

−→

· : µq

n : µ

| Q
m : µa

P

· : µp

As before the first step is to identify a potential redex:

– in µ ∈ I〈µp, µa〉 ensures that the in n capability is present inside some am-
bient m; here n has group µ and m has group µa whereas µp is the group of
m’s father.

– µa ∈ I〈µq, µp〉 establishes more of m’s (i.e. µa’s) context: its father is µp

and its grandfather is µq.
– µ ∈ I〈µq, µp〉 will now ensure that n (i.e. µ) is a sibling of m: it has the same

father µp and grandfather µq.
– inµaµ ∈ I〈µp, µ〉 finally ensures that n (i.e. µ) grants the access right to m

(i.e. µa) in the context established by the father µp of µ.

In addition to identifying possible n’s and m’s of the semantic rule these steps
also identify the context of the redex and thereby rule out some of the confusion
that is inevitable when the ambient names are replaced by groups.

Having identified a potential redex in this way the next step is to record in I
the effect of reducing the redex. This is expressed by:

– µa ∈ I〈µp, µ〉 records that m (i.e. µa) is moved into n (i.e. µ) and this hap-
pens only when µp is the father.
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– I〈µp, µa〉 ⊆ I〈µ, µa〉 records that everything inside µa with grandfather µp

(the processes P and Q in the semantic rule) as a result of the reduction
also may have grandfather µ.

Note that the latter step is considerably more involved than in the 0CFA analysis
due to the need to update the context of all entities moved. Finally we need to
update the “observation predicate” D:

– in µ ∈ D〈µp, µa〉 records that the in-capability was executed.
– inµaµ ∈ D〈µp, µ〉 records that the in-co-capability was executed.

The out-capability follows much the same pattern

(I,D) |=〈>,?〉
Γ out n. P iff




out(µ) ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉
Γ P ∧

∀µa, µg, µq :




out(µ) ∈ I〈µ, µa〉 ∧
µa ∈ I〈µg, µ〉 ∧
µ ∈ I〈µq, µg〉 ∧
outµaµ ∈ I〈µg, µ〉


 ⇒




µa ∈ I〈µq, µg〉 ∧
I〈µ, µa〉 ⊆ I〈µg, µa〉 ∧
out(µ) ∈ D〈µ, µa〉 ∧
outµaµ ∈ D〈µg, µ〉







where µ = Γ (n)

corresponding to the semantics:
· : µq

· : µa

P| outµan.Q

n : µ

Q

· : µg

−→

· : µq

n : µ

· : µa

out n.P

· : µg

Also the open-capability follows much the same pattern

(I,D) |=〈>,?〉
Γ open n. P iff



open µ ∈ I〈>, ?〉 ∧ (I,D) |=〈>,?〉

Γ P ∧

∀µp, µq :



open µ ∈ I〈µq, µp〉 ∧
µ ∈ I〈µq, µp〉 ∧
openµpµ ∈ I〈µp, µ〉


 ⇒



I〈µp, µ〉 ⊆ I〈µq, µp〉 ∧
open µ ∈ D〈µq, µp〉 ∧
openµpµ ∈ D〈µp, µ〉







where µ = Γ (n)

corresponding to the semantics:

· : µq

P Q

· : µp

−→

· : µq

open n.P

n : µ

openµp
n.Q

· : µp

Example 29. Consider the analysis of our running example of Example 21 (again
taking Γ (A) = Γ (B) = S and Γ (p) = P):

(I,D) |=〈>,?〉
Γ A [ p [ out A. in B. openS p ] | outP A ] | B [ inP B. open p ]
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This formula will be satisfied when I is (as in Example 28)

grandfather

f
a
t
h
e
r

I > ? S P
? {P, S}
S {P, in S, out S, open P,

inPS, outPS, openSP}
P {in S, out S, openSP} {in S, out S, openSP}

and D is given by:

grandfather

f
a
t
h
e
r

D > ? S P
?
S {in S, open P,

inPS, outPS}
P {in S} {out S, openSP}

One may observe that D(· · · ) is often a strict subset of I(· · · ) ∩ (Cap ∪Cap).
This shows that a number of capabilities will never occur in a setting where they
are allowed to execute. In particular, even though I(?,P) contains out S as well
as openSP, they are absent in D(?,P) and hence cannot execute. ¤

Correctness of the 1CFA analysis. The semantic correctness of the analysis
is expressed by the following subject reduction result:

Theorem 30. If (I,D) |=〈>,?〉
Γ P and Γ ` P →∗ Q then (I,D) |=〈>,?〉

Γ Q.

As before the proof is by induction in the length of the derivation sequence; each
step is by induction on the inference in the semantics and uses that structurally
congruent processes admit the same analysis results.

Implementation of the 1CFA analysis. The Moore family property ensures
that all processes can be analysed and admit a least analysis estimate:

Theorem 31. The set {(I,D) | (I,D) |=〈>,?〉
Γ P} is a Moore family.

Though the analysis is more complex that the 0CFA analysis it is still expressible
in ALFP using the encodings described in Section 2.2. Hence, the implementation
is again done using the Succinct Solver. However, the time complexity of the
calculation of the analysis result for the 1CFA analysis is higher than that of
the 0CFA analysis although still within polynomial time. We report in Table 5
on some practical experiments where the time spent for computing the analysis
result is expressed in terms of the size N of the process for four scalable test
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A B C D

0CFA O(N1.03) O(N1.03) O(N2.32) O(N1.22)

1CFA O(N1.98) O(N2.00) O(N3.34) O(N2.01)

Size of
Group

O(N1) O(N1) O(N1/2) O(N2/3)

Table 5. Running times for 0CFA versus 1CFA on four scalable test processes.

processes. The test processes describe a packet being routed though a network
of sites with different network topology.

One reason for the higher complexity of the 1CFA is that the size of the analysis
estimate for the 1CFA potentially is larger than size of the analysis estimate for
the 0CFA by a factor corresponding to the number of groups in Group (i.e. the
potential number of elements in Group×Group → P(Group ∪Cap ∪Cap)
versus Group → P(Group ∪Cap ∪Cap)). The results for the first two test
processes, A and B behave exactly as expected. This is also largely the case for
the last test process, D, taking into account that the number of groups here
is not linear in the size of the process. The odd-one-out is the result for the
test process C; here we conjecture that the 1CFA analysis is more costly than
expected because the lower number of groups means that many ambients get
mixed up, i.e. that many more contexts have occurrences of the same group.
Thus the precision of the 1CFA is outweighed by the imprecision of the group
information.

Precision of the 1CFA analysis. The 1CFA analysis is more precise than
the 0CFA analysis in that it records more of the context in which capabilities
can be used.

Example 32. Recall the process of Example 27

a[inBa] | b[ ] | c[b[in a]]

where the 0CFA of Discretionary Ambients imprecisely finds that b may enter a
(as shown by I3 of Example 27).

The 1CFA analysis gives rise the least estimate I:

I > ? A B C
? {A,B,C}
A {inBA}
B {in A}
C {B}

It shows that the 1CFA analysis is able to record that the capability in a is not
inside b in a context where b is actually a sibling to a. Thus, the analysis result
show that b will not show up in a. ¤
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Fig. 5. Example security lattices for confidentiality.

4 Mandatory Access Control

The aim of this section is to show how the Bell-LaPadula [3, 22] and Biba [4, 22]
models can be reformulated for Discretionary Ambients and thereby to construct
the appropriate reference monitor semantics. The first design decision is to assign
security levels/integrity levels to the groups rather than the ambients; an ambient
then inherits the level of its group. We shall therefore extend the syntax of group
introduction to have the form (νµ`)P meaning that µ has the level `. It is now
straightforward to extend the semantics to map groups to security/integrity
levels; the key rule is:

Γ [µ 7→ `] ` P → Q

Γ ` (νµ`)P → (νµ`)Q

The security/integrity level information is then used in formalising reference
monitors in the spirit of the Bell-LaPadula and Biba models; this is covered in
the following subsections and takes the form of defining augmented semantics
with judgements of the forms Γ ` P →→ Q. We shall allow to write →→BLP and
→→Biba to differentiate between the two choices.

4.1 Confidentiality: the Bell-LaPadula Model

Dynamic formulation of the Bell-LaPadula model. The Bell-LaPadula
security model [3, 22] is expressed using an access control matrix and an assign-
ment of security levels to objects and subjects; the security levels are arranged
in a lattice (L,≤) where `1 ≤ `2 means that `1 has a lower security level than
`2. The overall aim is then to enforce confidentiality by preventing information
from flowing downwards from a high security level to a low security level.

To exemplify our interpretation of the Bell-LaPadula model for ambients we use
a simple lattice (L,≤) with L = {public, secret} and public ≤ secret as is one of
the possibilities illustrated in Figure 5. Conceptually we regard a secret ambient
as a protective boundary from which no information is allowed escape outwards
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to a public ambience. Thus, “anything” is allowed to happen inside or outside
the boundary but restrictions are imposed on which ambients can leave it. This
can be effectuated by making a number of restrictions on when operations (i.e.
in, out, and open) on ambients are allowed. Informally, we state these restrictions
as follows:

– any ambient can enter any other ambient;
– an ambient can only leave a secret ambient in a secret ambience; and
– a secret ambient can only be dissolved in a secret ambience.

The first item reflects that since nothing moves outwards when an in-capability
is executed then confidentiality cannot be effected. This is in contrast to the
situation for an out-capability where we must prevent movement from a secrets
ambient out to a public ambience. Correspondingly, the third condition expresses
that secret information inside a secret ambient is not allowed to flow into a public
ambience when the secret ambient is opened.

These conditions can be formalised as side conditions to the semantic rules as
shown below. The side conditions are modifications of the previous rules in that
they incorporate the dynamic checks to be performed by the reference monitor.
As an example, the rule for out now contains information about the encapsulating
ambient in order to formalise the second condition. The formulation below is
specialised to the security lattice {public, secret} whereas the formulation in Table
6 is sufficiently general to deal with an arbitrary security lattice.

m : µ

in n.P Q

n

inµn.R | S −→→

n

R | S

m

P | Q

any ambient can enter any
other ambient (hence, there
is no side condition).

p :µ′′
n :µ′

outµn.R | S

m : µ

out n.P | Q −→→

p

m

P | Q

n

R | S

a secret ambient can leave
an ambient in a secret am-
bience:
Γ (µ) = secret ⇒

Γ (µ′′) = secret

open n.P

n : µ′

openµn.Q | R

m : µ

−→→

m

P | Q | R

a secret ambient can be dis-
solved in a secret ambience:
Γ (µ′) = secret ⇒

Γ (µ) = secret

Note that the clause for the out-capability compares the security levels of p and
m — and that p and m have a grandfather-son relationship; this is the key
reason for why the 1CFA analysis is going to produce better results than the
0CFA analysis.

Example 33. Returning to the running example (expressed in Discretionary Am-
bients) of Example 21 we first assume that the sites are secret, that the packet is
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Γ [µ 7→ `] ` P →→ Q

Γ ` (νµ`)P →→ (νµ`)Q

Γ [n 7→ µ] ` P →→ Q

Γ ` (νn : µ)P →→ (νn : µ)Q
if µ ∈ dom(Γ )

Γ ` P → Q

Γ ` n[P ] → n[Q]

Γ ` P → Q

Γ ` P | R → Q | R
P ≡ P ′ Γ ` P ′ → Q′ Q′ ≡ Q

Γ ` P → Q

Γ ` m[in n. P | Q] | n[inµn. R | S] →→ n[m[P | Q] | R | S] if Γ (m) = µ

Γ ` p[n[m[out n. P | Q] | outµn. R | S]] →→ p[m[P | Q] | n[R | S]] if Γ (m) = µ ∧
Γ (µ) ≤ Γ (Γ (p))

Γ ` m[open n. P | n[openµn. Q | R]] →→ m[P | Q | R] if Γ (m) = µ ∧
Γ (Γ (n)) ≤ Γ (µ)

Table 6. Reference monitor semantics for Bell-LaPadula.

public, and that the overall system is in a public ambience. The packet can move
out of the site A because it is public and thus it does not impose the additional
conditions on the ambience. The packet can always move into the site B and
since it is public it can be opened inside B. So the execution explained in Ex-
ample 21 is accepted by the reference monitor. This means that the transitions
outlined in Example 21 hold for → as well as →→.

Alternatively, let us assume that the sites are public but that the packet is secret.
Now the packet is not allowed to leave A unless the overall system is in a secret
ambience. The packet can always move into B but then it cannot be opened
because it is secret and the ambience provided by B is indeed public. Thus in
this case the reference monitor will “kick in” and prevent the execution from
happening. This means that the transitions outlined in Example 21 hold for →
but not for →→. ¤

Static formulation of the Bell-LaPadula model. Having obtained an ap-
proximation to the behaviour of the processes the next step is to formulate the
Bell-LaPadula conditions as checks on the analysis results — the idea being
that if the analysis result passes these checks then the reference monitor will not
intervene in the execution of the process.

The analysis result (I,D) satisfies the Bell-LaPadula security conditions with
respect to the assignment Γ of security levels to groups, written BLPΓ (I,D), if
the following conditions are fulfilled:

∀µa, µg :
[∃µ : outµaµ ∈ D〈µg, µ〉] ⇒ Γ (µa) ≤ Γ (µg)

∀µp, µ :
[
openµpµ ∈ D〈µp, µ〉] ⇒ Γ (µ) ≤ Γ (µp)

37



The precondition of the first formula identifies a potential out-redex and the
conclusion then requires that the security level of the subject (µa) is less than
that of the ambience (µg) — exactly as required by the reference monitor. The
second formula expresses the corresponding condition for the open-redex. In
both cases we make good use of the “observation predicate” D in order to avoid
copying large parts of the clauses in the 1CFA analysis.

Example 34. Corresponding to Example 33 let us assume that Γ (S) = secret
and Γ (P) = Γ (?) = Γ (>) = public. We shall check the Bell-LaPadula conditions
imposed on the analysis result presented in Example 29. The precondition of
the out-capability is only satisfied for µ = S, µa = P, and µg = ? and the
check Γ (µa) ≤ Γ (µg) amounts to public ≤ public, which clearly holds. The
precondition for the open-capability is only satisfied for µ = P and µp = S
and the check Γ (µ) ≤ Γ (µp) amounts to public ≤ secret, which also holds.
Consequently the analysis result ensures that the reference monitor will not
“kick in” and, therefore, its tests can be dispensed with — as was also observed
in Example 33.

Alternatively, we may assume that Γ (P) = secret and Γ (S) = Γ (?) = Γ (>) =
public. For the out-capability the check Γ (µa) ≤ Γ (µg) amounts to secret ≤ public
and since this does not hold we cannot guarantee that the reference monitor will
not “kick in” — as we reasoned in Example 33. ¤

The correctness of the static test can be expressed as follows; the result says
that we can dispense with the reference monitor if the static checks are fulfilled:

Theorem 35. Suppose BLPΓ (I,D) holds for some analysis estimate that sat-
isfies (I,D) |=〈>,?〉

Γ P ; then any execution Γ ` P →∗ Q can be mimicked as an
execution Γ ` P →→∗

BLP Q.

The proof is by induction in the length of the derivation sequence using the
subject reduction theorem; each step is by induction on the inference in the
semantics; we omit the details.

Efficient implementation of the 1CFA analysis is is as before. It is straightfor-
ward to translate BLPΓ (I,D) into ALFP and the test can be performed in low
polynomial time.

4.2 Integrity: the Biba Model

Dynamic formulation of the Biba model. The Biba model for integrity [4,
22] combines the access control matrix with an assignment of integrity levels to
subjects and objects; the integrity levels are arranged in a lattice and the overall
aim is to prevent the corruption of high-level entities by low-level entities:
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As a simple example we use the lattice {dubious, trusted} with dubious ≤ trusted.
Again we view ambients as protective boundaries but now we want to prevent
dubious ambients from moving into trusted ambients. We can state this as the
following requirements to operations on ambients:

– only trusted ambients can enter trusted ambients;
– only trusted ambients can leave in a trusted ambience;
– inside a trusted ambient it is only possible to dissolve trusted ambients that

only contain trusted sub-ambients.

The first item reflects that a trusted ambient will be corrupted if it is entered
by a dubious sibling. The second item reflects that a trusted ambient will also
be corrupted if it is “entered” by a dubious grandchild. The third item again
protects a trusted ambient against corruption by dubious grandchildren but
this time as a result of a child being opened. Furthermore, we disallow dubious
ambients to be opened in a trusted ambience, since this could unleash “dubious
capabilities”.

This is formalised by the following extension of the semantics. As before the
formulation below is adapted to the security lattice {dubious, trusted} whereas
the formulation in Table 7 is sufficiently general to deal with an arbitrary security
lattice. In the clause for open we write top(Q | R) for the ambients occurring
at the top-level of the process Q | R; we demand that all of these ambients
must have an integrity level that is at least as high as that of the encapsulating
ambient.

m : µ

in n.P Q

n : µ′

inµn.R | S −→→

n

R | S

m

P | Q

only trusted ambients can
enter a trusted ambient:
Γ (µ′) = trusted ⇒

Γ (µ) = trusted

p :µ′′
n :µ′

outµn.R | S

m : µ

out n.P | Q −→→

p

m

P | Q

n

R | S

a trusted ambience can only
be entered by a trusted am-
bient:
Γ (µ′′) = trusted ⇒

Γ (µ) = trusted

open n.P

n : µ′

openµn.Q | R

m : µ

−→→

m

P | Q | R

only trusted ambients with
trusted sub-ambients can be
dissolved inside a trusted
ambient:
Γ (µ) = trusted ⇒

Γ (µ′) = trusted ∧
∀p[·] ∈ top(Q | R) :

Γ (Γ (p)) = trusted

Note that also here the ambients of interest have a grandfather-son relationship;
once again this motivates our study of the 1CFA analysis.

Example 36. Returning to Example 21 we now assume that sites are dubious,
that the packet is trusted, and that the overall system is trusted. The packet can
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Γ [µ 7→ `] ` P →→ Q

Γ ` (νµ`)P →→ (νµ`)Q

Γ [n 7→ µ] ` P →→ Q

Γ ` (νn : µ)P →→ (νn : µ)Q
if µ ∈ dom(Γ )

Γ ` P → Q

Γ ` n[P ] → n[Q]

Γ ` P → Q

Γ ` P | R → Q | R
P ≡ P ′ Γ ` P ′ → Q′ Q′ ≡ Q

Γ ` P → Q

Γ ` m[in n. P | Q] | n[inµn. R | S] →→ n[m[P | Q] | R | S] if Γ (m) = µ ∧
Γ (Γ (n)) ≤ Γ (µ)

Γ ` p[n[m[out n. P | Q] | outµn. R | S]] →→ p[m[P | Q] | n[R | S]] if Γ (m) = µ ∧
Γ (Γ (p)) ≤ Γ (µ)

Γ ` m[open n. P | n[openµn. Q | R]] →→ m[P | Q | R] if Γ (m) = µ ∧
µ ≤ Γ (n) ∧
∀p[·] ∈ top(Q | R) :

Γ (µ) ≤ Γ (Γ (p))

Table 7. Reference monitor semantics for Biba.

move out of A because the overall system is trusted and it can now move into
B because the sites are dubious. Since the site is dubious there is no problem
opening the packet although it is trusted. So the execution of Example 21 will
be accepted by the reference monitor. This means that the transitions outlined
in Example 21 hold for → as well as →→.

Alternatively, assume that the sites are trusted but that the packet as well as the
overall system are dubious. Then the reference monitor will prevent the packet
from entering the site B as it will corrupt its integrity. This means that the
transitions outlined in Example 21 hold for → but not for →→. ¤

Static formulation of the Biba model. The analysis result (I,D) satisfies
the Biba integrity condition with respect to the assignment Γ of integrity levels
to groups, written BibaΓ (I,D), if the following conditions are fulfilled:

∀µ, µa :
[∃µp : inµaµ ∈ D〈µp, µ〉] ⇒ Γ (µ) ≤ Γ (µa)

∀µa, µg :
[∃µ : outµaµ ∈ D〈µg, µ〉] ⇒ Γ (µg) ≤ Γ (µa)

∀µp, µ : [openµpµ ∈ D〈µp, µ〉 ⇒
[Γ (µp) ≤ Γ (µ) ∧ ∀µc : µc ∈ I(µp, µ) ⇒ Γ (µp) ≤ Γ (µc)]]

Again the preconditions express the presence of a potential redex and the con-
clusion then imposes the relevant integrity constraint of the reference monitor.
Note that the top-level ambients (µc) occurring inside the subject (µ) easily can
be accessed using the relation I.
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Example 37. Corresponding to Example 36 let us assume that Γ (S) = dubious
and Γ (P) = Γ (?) = Γ (>) = trusted and let us check the Biba conditions on
the analysis result of Example 29. The precondition for the in-capability is only
satisfied for µ = S, µa = P, and µp = ? and the check Γ (µ) ≤ Γ (µa) amounts to
dubious ≤ trusted, which clearly holds. The precondition for the out-capability
is only satisfied for µa = P, µ = S, and µg = ? and the check Γ (µg) ≤ Γ (µa)
amounts to trusted ≤ trusted, which also holds. The precondition for the open-
capability only holds for µ = P and µp = S. This leads to the two requirements
that dubious ≤ trusted and that the universally quantified implication must hold
for these values of µ and µp. The latter trivially holds since there exists no
µc to fulfil the precondition reflecting that P never contains any sub-ambients.
Consequently the analysis result ensures that the reference monitor will never
“kick in” as we already observed in Example 36.

Alternatively we may assume that Γ (S) = trusted but Γ (P) = Γ (?) = Γ (>) =
dubious. For the in-capability the check Γ (µ) ≤ Γ (µa) amounts to trusted ≤
dubious and since this does not hold we cannot guarantee that the reference
monitor will not “kick in” — as we already observed in Example 36. ¤

The correctness of the static test can be expressed as follows; the result says
that we can dispense with the reference monitor if the static checks are fulfilled:

Theorem 38. Suppose BibaΓ (I,D) holds for some analysis estimate that sat-
isfies (I,D) |=〈>,?〉

Γ P ; then any execution Γ ` P →∗ Q can be mimicked as an
execution Γ ` P →→∗

Biba Q.

The proof is by induction on the length of the derivation sequence using the
subject reduction theorem; each step is by induction on the inference in the
semantics; we omit the details.

Efficient implementation is as before: translating BibaΓ (I,D) into ALFP, the
test can be performed in low polynomial time.

Remark 39. The static tests for Bell-LaPadula and Biba could also be phrased
using the father-son relations found by the 0CFA. Since the tests are of a
grandfather-child nature the 0CFA is, however, likely to be too imprecise. An-
other approach to improving the simple father-son analysis is considered by
Braghin, Cortesi, and Focardi in [6] (for the classical Mobile Ambients with la-
bels). Their idea is to extend the analysis with a third component holding the
security level of the grandfather. While their analysis will in general be more
precise than using our 0CFA it is coarser than the one developed here using the
1CFA because the security information of a grandfather may identify a rather
large superset of the set of grandfathers possible.

Related work of studying mandatory access control within ambient calculi has
also been done by Bugliesi, Castanga, and Crafa [9]. They interpret access control
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in an ambient setting as access to communication between ambients rather than
mobility as we do. This leads to the definition of a new calculus called Boxed
Ambients (see Section 5), which extends the communication primitives of the
original Mobile Ambient calculus. Their main result is a type system which
checks that communication does not violate a given access policy. The type
system primarily builds on the exchange types of [14] (see Remark 50) and, as
such, is quite far from our analysis which tracks mobility.

More recently, the same authors have studied information flow in a variant of
Boxed Ambients [21]. They partition information (i.e. names and capabilities)
into high and low security levels and define a type system which impose access
control on low level processes. Next, they define processes to be contextually
equivalent whenever they exhibit a certain kind of communication out of low level
ambients. Finally, they show that a well-typed low level process is equivalent to
itself composed with any well-typed high level process. Thus, a low level process
cannot observe the difference between running on its own or running together
with a well-typed high level process. Thereby they ensure that a low level process
cannot deduce anything about well-typed high level processes. As the authors
themselves point out, the requirement for high level processes to be well-typed is
rather strict since it is not ensured that every process can be typed. Therefore,
the high-level processes must be known so the method only applies to closed
systems. ¤

5 Cryptographic Protocols

Mobile Ambients as originally introduced in [13] also admit communication prim-
itives. However, rather than following full-fledged channel-based communication
as in the π-calculus the designers opted for a more limited form of communica-
tion where each ambient has a mailbox that allows both ambient names as well as
capabilities to be communicated. In this way all communication is local between
the top-level processes of an ambient and one achieves long distance commu-
nication by a combination of local communication and movement within the
ambient hierarchy. Also they opted for asynchronous rather than synchronous
communication. In the case of monadic input and output the asynchronous2

communication primitives are:

〈M 〉 outputs the message M asynchronously to the local mailbox;
(x).P inputs a message from the mailbox, binds it to x and continues as P .

Boxed Ambients [9, 8] takes the view that ambients should not only be allowed
to communicate locally but also with their children (but not grandchildren) and
parents (but not grandparents). In the monadic calculus the new communication
primitives are
2 To obtain synchronous communication we should write 〈M 〉.P and modify the se-

mantics.
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– 〈M〉↑ outputs a message to the mailbox of the parent;
– 〈M〉◦ outputs a message to the local mailbox;
– 〈M〉n outputs a message to the mailbox of a child named n;
– (x)↑.P inputs a message from the mailbox of the parent;
– (x)◦.P inputs a message from the local mailbox;
– (x)n.P inputs a message from the mailbox of a child named n.

Example 40. Boxed Ambients are well suited for expressing perfect symmetric
cryptography although there is no explicit cryptographic primitives. We shall
code symmetric keys as names and introduce them using restriction; the perfect
nature of the cryptography is then due to the semantics of restriction, (νn : µ)P ,
that ensures that the name n introduced is distinct from all other names whether
already introduced or yet to be introduced. In this model even a brute force
attack cannot succeed.

A plain-text message msg encrypted under a key K is then coded as

K[〈msg〉◦]
whereas decrypting a ciphertext cph under the key K is coded as:

cph | (x)K. · · · x · · ·
Here the decryption only succeeds if indeed cph contains a top-level ambient of
the form K[〈msg〉◦]. If the encrypted message needs to survive for later decryption
it can be “protected” from destruction by placing a replication operator (!) in
front of it. ¤

5.1 Syntax and Semantics of Boxed Ambients

For definition of the syntax of Boxed Ambients we revert to Mobile Ambients as
explained in Section 2 and add polyadic communication.

Syntax. As in other presentations of ambients we make a distinction between
names (introduced by restrictions) and variables (introduced by input); in our
view, this distinction adds clarity both to the semantics and to the analysis. We
shall therefore find it helpful to introduce a new syntactic category N of namings
that can be both variables and names and to use namings where names where
used before. Furthermore we introduce an auxiliary syntactic category η for the
communication direction. The syntax then reads:

P ::= (νµ)P | (νn : µ)P | 0 | P1 | P2 | !P | N [P ] | M. P |
〈M1, · · · ,Mk〉η | (x1, · · · , xk)η. P

M ::= in N | out N | N

N ::= n | x

η ::= N | ↑ | ◦
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We follow the designers of Boxed Ambients in not including the open-capability.
For simplicity of presentation we have not allowed the formation of composite
capabilities, i.e., we disallow the nil capability ε and the concatenation M1.M2

as would be needed for communicating complete routes along which movement
could take place; most of the development would work for these extensions as
well but the actual implementation would be more complex.

Semantics. The semantic changes are rather minor with respect to the specifi-
cation of Tables 1 and 2. For the structural congruence we simply need to add
the rule:

P ≡ Q ⇒ (x1, · · · , xk)η. P ≡ (x1, · · · , xk)η. Q

For the transition relation of Table 2 we add a number of rules for communi-
cation. The rules are depicted in their monadic version below, i.e. where only
one message is communicated at a time. The polyadic version of the rules are
summarised in Table 8 where P{x1 ← M1} · · · {xk ← Mk} denotes P with Mi

substituted for xi with the usual α-renaming in order to avoid capturing free
names in the Mi. We shall only apply the transition relation to closed processes,
i.e. processes without any free variables, and hence Mi contains no variables.
Consequently we shall dispense with α-renaming of variables (since this simpli-
fies the specification of the 0CFA analysis).

First we have local communication, which takes place between any two sibling
processes

〈M〉◦ | (x)◦. P −→ P{x ← M}
and binds the value of the message M to the variable x in the receiving pro-
cess P . Next we add the following rules for output to a child, either by explicitly
naming the child (and using the child’s mailbox for the exchange of the message)

〈M〉n
n

(x)◦. P | Q −→
n

P{x ← M} | Q

or anonymously (using the enclosing ambients mailbox for the exchange of the
message)

〈M〉◦
n

(x)↑. P | Q −→
n

P{x ← M} | Q

Finally, we add the following rules for output to a parent
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〈M1, · · · , Mk〉◦ | (x1, · · · , xk)◦. P → P{x1 ← M1} · · · {xk ← Mk}
〈M1, · · · , Mk〉n | n [(x1, · · · , xk)◦. P | Q ] → n [P{x1 ← M1} · · · {xk ← Mk} | Q ]

〈M1, · · · , Mk〉◦ | n [(x1, · · · , xk)↑. P | Q ] → n [P{x1 ← M1} · · · {xk ← Mk} | Q ]

(x1, · · · , xk)◦. P | n [〈M1, · · · , Mk〉↑| R ] → P{x1 ← M1} · · · {xk ← Mk} | n [R ]

(x1, · · · , xk)n. P | n [〈M1, · · · , Mk〉◦| R ] → P{x1 ← M1} · · · {xk ← Mk} | n [R ]

Table 8. Transition relation for Boxed Ambients. Additions to Table 2.

(x)◦. P

n

〈M〉↑ | R −→ P{x ← M}
n

R

and

(x)n. P

n

〈M〉◦ | R −→ P{x ← M}
n

R

In particular, we do not have a rule for output to grandchildren such as:

〈M1, · · · ,Mk〉n | n [m [(x1, · · · , xk)↑. P | Q ] | R ] 6→ · · ·
Instead communication between grandparent and its grandchildren will have to
be forwarded e.g. as done by m below (for monadic output of a message M):

〈M〉m | m[(x)◦. 〈x〉◦ | n[(x)↑. · · ·x · · ·]]

Example 41. Continuing Example 40 we have that

K[〈msg〉◦] | (x)K. · · · x · · · → K[ ] | · · ·msg · · ·
showing that after the decryption an empty message, K[ ], is left behind. ¤

Example 42. Boxed Ambients allows to code a package moving around on a
network where it communicates the name of a new ambient to be created at the
destination:

A [ p [ out A. in B. 〈C〉↑ ]] | B [ (x)◦.x [ ]]

→ A [ ] | p [ in B. 〈C〉↑ ] | B [ (x)◦.x [ ]]

→ A [ ] | B [ p [ 〈C〉↑ ] | (x)◦.x [ ]]

→ A [ ] | B [ p [ ] | C [ ] ]
This example illustrates the usefulness of being able to communicate between
adjacent layers and why this reduces (if not obviates) the need for the open-
capability. ¤
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5.2 Cryptographic Protocols in Boxed Ambients

Boxed Ambients seems rather well suited for expressing a number of crypto-
graphic protocols. In this subsection we consider a number of protocols that
involve a server S and agents (or principals) A and B.

Agents present themselves with their name and frequently there is the need to
find the corresponding key. In traditional programming languages one might
have an array that is indexed with the name and that produces the key, i.e. the
key to be used by the server for encryption or decryption of messages from the
agent. In Boxed Ambients it is natural to represent the “array” as a process of
the form

KeyTable = n1[!〈K1〉◦] | · · · | nm[!〈Km〉◦]
corresponding to the name of the principal ni being mapped to the key Ki. We
use replication to ensure that the “array” can be queried any number of times.
Hence, whenever a process performs the action

KeyTable | (yK)xn . · · · yK · · ·
it will obtain the key yK corresponding to the agent xn.

Occasionally there is a need to test that two random numbers are equal before
proceeding. In traditional programming languages one would test the equality
of n and m using a conditional. In Mobile Ambients the traditional coding trick
is to create an ambient, n[ ] and then let an open-capability, open m, guard the
then-branch (ignoring the else-branch). In Boxed Ambients we do not have the
open-capability and hence will use communication: we create an ambient, n[〈〉◦],
that performs a local nullary output and then let an input, ()m. · · ·, guard the
then-branch. In other words

n[〈〉◦] | ()m. P

will block the execution of P unless n equals m.

Whenever a principal sends a message to another principal it would be natural to
encode the message in an anonymous packet (e.g p). Often the message consists
of some public names together with a message encrypted by some key (e.g. K)
and consisting of some secret names. One could then send the pair (public, secret)
from A to B by means of the packet:

p[out A.in B.(〈public〉◦ | K[out p.〈secret〉◦])]
To avoid an overly heavy coding we shall generally prefer to dispense with the
anonymous packet and instead reuse the cryptographic key. We therefore send
(public, secret) from A to B by means of:

K[out A.in B.(〈public〉↑ | 〈secret〉◦)]
Once the capabilities out A and in B have been executed the enclosing ambient
will have access to the public parts of K without knowing the key, e.g.

K[〈public〉↑ | 〈secret〉◦] | (x)◦. x −→ K[〈secret〉◦] | public
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Fig. 6. Wide Mouthed Frog protocol.

In order to get hold of the secret parts of the message the enclosing ambient
needs knowledge of the key K:

K[〈public〉↑ | 〈secret〉◦] | (x)K. x −→ K[〈public〉↑] | secret

Wide Mouthed Frog. We consider here the Wide Mouthed Frog protocol
originally described in [10] in the simplified version of [1] where agents A and B
are given together with a trusted server S. Also secret master keys are in place
between the server and the agents: KAS is known only to A and S, and KBS is
known only to B and S. Hence the KeyTable to be used in the server is

KeyTable = A[!〈KAS〉◦] | B[!〈KBS〉◦]
The purpose of the protocol is first to exchange a secret session key KAB for
use between A and B, and then to communicate a secret message M using the
session key. The protocol depicted in Figure 6 begins with A creating the session
key KAB and the message M. Next A forwards the key to S, encoded with KAS,
thereby asking S to forward it to B. The key is forwarded to B, encoded with
KBS. At this point B is ready to receive the message M communicated by A, this
time encrypted with the secret session key KAB. The classical way of presenting
protocols (see e.g. [18]) is to write a narration where the messages of the protocol
are listed in order. For each message the principals involved in the message
exchange are given along with the content of the message. For the Wide Mouthed
Frog protocol this looks as follows (where we write K[ M ] for the message M
encrypted under the key K):

1. A → S : A, KAS[B, KAB ]
2. S → B : KBS[ A,KAB ]
3. A → B : KAB[ M ]

In more detail the steps are as follows (writing Alice for A, Bob for B and Server
for S as is customary when discussing protocols):

1. Alice generates a new random session key (KAB)

(ν KAB : KAB)
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and then sends her name (A), Bobs name (B) and the session key (KAB) to
the Server (S) encrypted by her master key KAS:

KAS[out A. in S. (〈A〉↑ | 〈B, KAB〉◦) ]

As discussed above, Alice’s name (A) can be received by any enclosing am-
bient once out A. in S has been executed whereas Bob’s name and the session
key (B, KAB) can only be received by those ambients holding the master key
KAS under which the message is encrypted.

2. The Server first receives Alice’s name (yA = A) and obtains her master
key (yKAS

= KAS) from the KeyTable and uses it to decrypt the remaining
components (yB = B and yKAB

= KAB) of the message:

KeyTable | (yA)◦. (yKAS
)yA . (yB, yKAB

)yKAS .

The Server obtains Bob’s master key (yKBS
= KBS) from KeyTable and uses

it to encrypt Alice’s name (yA = A) and the random key (yKAB
= KAB) and

sends it to Bob (yB = B):

(yKBS
)yB . yKBS

[out S. in yB. 〈yA, yKAB
〉◦]

Bob decrypts the message using his master key KBS and obtains Alice’s name
(zA = A) and the session key (zKAB

= KAB):

(zA, zKAB
)KBS .

3. Alice creates her message (M) and sends it encrypted with the session key
KAB to Bob

(ν M : M) KAB[out A. in B. 〈M〉◦]
which Bob receives and decrypts using the session key (zKAB

= KAB):

(x)zKAB . · · · x · · ·

The overall protocol can be written as follows:

A [(ν KAB : KAB) KAS[out A. in S. (〈A〉↑ | 〈B, KAB〉◦) ] |
(ν M :M)KAB[out A. in B. 〈M〉◦] ]

|
S [KeyTable |

(yA)◦. (yKAS
)yA . (yB, yKAB

)yKAS .
(yKBS

)yB . yKBS
[out S. in yB. 〈yA, yKAB

〉◦ ] ]
|
B [(zA, zKAB

)KBS . (x)zKAB . · · · x · · · ]

We refer to the literature for the security properties of the Wide Mouthed Frog
protocol. Actually, our encoding is a bit “more secure” than the original protocol.
As an example, in step (1) we ensure that no one can listen to neither Alice’s
name nor Bob’s name and the session key until after the package has been
delivered. Rather than attempting to weaken the encoding to open up for more
attacks we consider this a benefit of performing the encoding in Boxed Ambients.
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Yahalom. The Yahalom protocol is described in [10]; its classical narration is
as follows:

1. A → B : A,RA

2. B → S : B,KBS[ A, RA, RB ]
3. S → A : KAS[B, KAB, RA,RB ],KBS[ A, KAB ]
4. A → B : KBS[A, KAB ],KAB[RB ]
5. A → B : KAB[ M ]

In Boxed Ambients it can be encoded as follows:

1. Alice sends her name and a random number to Bob:

(ν RA : R) p[out A. in B. 〈A,RA〉↑]

Here there is no encryption in the message and we have to revert to the use
of an anonymous package.

2. Bob receives Alice’s name and random number and generates his own random
number; he then encrypts Alice’s name, her random number and his own
random number with his own master key and sends it to the Server together
with his name:

(yA, yR)◦. (ν RB : R) KBS[out B. in S. (〈B〉↑ | 〈yA, yR, RB〉◦)]

3. The Server receives Bob’s name and obtains his master key from KeyTable;
he then decrypts Alice’s name and the two random numbers and obtains
Alice’s master key and creates a random session key. Then he constructs two
messages. The first message is encrypted with Alice’s master key and is sent
to Alice; it contains Bob’s name, the session key, Alice’s random number
and Bob’s random number. The other message is sent to Alice too although
intended for Bob (and hence may be instructed to go there) and is encrypted
with Bob’s master key and consists of Alice’s name and the session key:

KeyTable |
(zB)◦. (zKBS

)zB . (zA, zR, z′R)zKBS . (zKAS
)zA . (ν K : K)

zKAS
[out S. in zA.〈zB, K, zR, z′R〉◦] |

zKBS
[out S. in zA. (y1, y2)↑. y1. y2. 〈zA, K〉◦]

4. Alice decrypts the message intended for her and checks that the random
number is her own. Then she sends two messages to Bob: one being the mes-
sage from the Server and the other being Bob’s random number encrypted
with the session key:

(xB, xK, xR, x′R)KAS . (xR[〈〉◦] | ()RA . ( 〈out A, in B〉◦ |
xK[out A. in B. 〈x′R〉◦]))

Note that we test the equality of xR and RA as illustrated above; in a similar
way we could have decided to test the equality of xB and B (but protocol
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narrations are often a bit unclear about how many tests actually have to be
carried out).
Bob decrypts the first message with his master key thereby obtaining the
session key and uses it to decrypt the other message and checks that it equals
his random number:

(yA, yK)KBS . (yR)yK . (yR[〈〉◦] | ()RB . · · ·)
5. Alice creates her message and sends it encrypted with the session key to Bob

(ν M : M) xK[out A. in B. 〈M〉◦]
which Bob receives and decrypts using the session key:

(yM)yK . · · · yM · · ·

The protocol may be summarised as follows:

A [(ν RA : R) p[out A. in B. 〈A,RA〉↑] |
(xB, xK, xR, x′R)KAS . (xR[〈〉◦] |

()RA . (〈out A, in B〉◦ |
xK[out A. in B. 〈x′R〉◦] |
(ν M :M) xK[out A. in B. 〈M〉◦]))]

|
S [KeyTable |

(zB)◦. (zKBS
)zB . (zA, zR, z′R)zKBS . (zKAS

)zA . (ν K : K)
zKAS

[out S. in zA.〈zB, K, zR, z′R〉◦] |
zKBS

[out S. in zA. (y1, y2)↑. y1. y2. 〈zA, K〉◦] ]
|
B [(yA, yR)◦. (ν RB : R) KBS[out B. in S. (〈B〉↑ | 〈yA, yR, RB〉◦)] |

(yA, yK)KBS . (yR)yK . (yR[〈〉◦] | ()RB . (yM)yK . · · · yM · · ·)]
We refer to the literature for the security properties of the Yahalom protocol.

Needham-Schroeder. The Needham-Schroeder symmetric key protocol is de-
scribed in [27]; its classical protocol narration is as follows

1. A → S : A, B, RA

2. S → A : KAS[ RA, B,KAB, KBS[ A,KAB ] ]
3. A → B : KBS[ A, KAB ]
4. B → A : KAB[RB ]
5. A → B : KAB[RB − 1 ]
6. A → B : KAB[M ]

In Boxed Ambients this can be encoded as follows:

1. Alice sends her name, Bob’s name and a random number to the Server:

(ν RA : R) p[out A. in S. 〈A, B,RA〉↑ ]
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2. The Server receives the message, generates a random session key K, and sends
a single message to Alice encrypted with her master key. It contains Alice’s
random number and the session key. It also contains a message intended for
Bob (and hence may be instructed to go there) and encrypted with Bob’s
master key containing the session key and Alice’s name. To make this work
the message sent to Alice must act as a forwarder from the ambience of the
message to the message intended for Bob (as discussed previously):

KeyTable | (yA, yB, yR)◦. (yKAS
)yA . (yKBS

)yB . (ν K : K)
yKAS

[out S. in yA. (〈yR, K〉◦ |
(y1, y2, y3)◦. 〈y1, y2, y3〉◦ |
yKBS

[(y1, y2, y3)↑. y1. y2. y3. 〈yA,K〉◦]) ]

3. Alice decrypts the message and checks that she got her random number back;
then she sends the included message to Bob:

(xR, xK)KAS . (xR[〈〉◦] | ()RA . 〈outKAS, out A, in B〉KAS)

4. Bob decrypts the message using his master key, generates a random number,
encrypts it with the session key and sends it to Alice:

(zA, zK)KBS . (ν RB : R) zK[out B. in zA. 〈RB〉◦]

5. Alice decrypts the message using the session key, she modifies Bobs random
number (by duplicating it rather than subtracting one), encrypts it with the
session key and sends it back to Bob:

(x′R)xK . xK[out A. in B. 〈x′R, x′R〉◦]

Bob decrypts the message with the session key and verifies that it is obtained
from his random number:

(zR, zR′)xK . (zR[〈〉◦] | zR′ [〈〉◦] | ()RB . ()RB . · · · )

6. Alice creates her message and sends it encrypted with the session key to Bob

(ν M : M) xK[out A. in B. 〈M〉◦]

which Bob receives and decrypts using the session key:

(zM)zK . · · · zM · · ·
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The protocol may be summarised as follows:

A [(ν RA : R) p[out A. in S. 〈A,B, RA〉↑ ] |
(xR, xK)KAS . (xR[〈〉◦] | ()RA . (〈outKAS, out A, in B〉KAS |

(x′R)xK . xK[out A. in B. 〈x′R, x′R〉◦] |
(ν M : M) xK[out A. in B. 〈M〉◦] )) ]

|
S [KeyTable | (yA, yB, yR)◦. (yKAS

)yA . (yKBS
)yB . (ν K : K)

yKAS
[out S. in yA. (〈yR, K〉◦ |

(y1, y2, y3)◦. 〈y1, y2, y3〉◦ |
yKBS

[(y1, y2, y3)↑. y1. y2. y3. 〈yA,K〉◦]) ] ]
|
B [(zA, zK)KBS . (ν RB : R) zK[out B. in zA. 〈RB〉◦] |

(zR, zR′)xK . ( zR[〈〉◦] | zR′ [〈〉◦] |
()RB . ()RB . (zM)zK . · · · zM · · ·) ]

We refer to the literature for the security properties of the Needham-Schroeder
protocol.

5.3 Adapting the 0CFA Analysis to Deal with Communication

As far as the analysis is concerned we revert to the 0CFA based analysis presented
in Section 2.2. As before we need to have a component

I : Group → P(Group ∪Cap)

keeping track of whom is inside whom. Additionally we need a component keep-
ing track of the values bound to variables

R : Var → P(Group ∪Cap)

and a component keeping track of the contents of the mailboxes:

C : Group → P((Group ∪Cap)∗)

Judgements then take the form

(I, C,R) |=µ
Γ P

where there is only one superscript to |= because we are reverting to the context-
insensitive 0CFA based analysis.

Example 43. Suppose that an ambient A has gotten hold of a message encrypted
under the key K and that the message instructs A where to move. Assuming that
A knows the key K this may be illustrated by the process

A [K [〈in S〉◦] | (x)K. x] | S [ ]
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Assuming that we analyse the process in an environment Γ with Γ (A) = A,
Γ (K) = K, and Γ (S) = S the analysis estimate

I(?) = {A, S}
I(A) = {K, inS}
I(S) = {A}
I(K) = ∅

C(K) = {inS}
C(?) = C(A) = C(S) = ∅

R(x) = {inS}
will show the possible behaviour of the process. This estimate is in fact the best
estimate found by the analysis specified below. The ambient hierarchy is once
again recorded in I and records that A may turn up inside S (i.e. {A} ⊆ I(S)).
Inspection of C shows that communication may only take place within K where
the capability in S may be communicated. The variable environment R shows
that the variable x may be bound to exactly this value.

Note that while capabilities are recorded directly in I, communication primitives
are recorded indirectly. Outputs are recorded by the effect they have on the
mailboxes, i.e. on the content of C, while inputs show up as the possible values
in R of the variables that will be bound by the input. ¤

Specification of the communication analysis. As before each acceptable
analysis estimate for a composite process must also be an acceptable analysis
estimate for its sub-processes:

(I, C,R) |=?
Γ (ν n : µ)P iff (I, C,R) |=?

Γ [n7→µ] P

(I, C,R) |=?
Γ (ν µ)P iff (I, C,R) |=?

Γ [µ7→¦] P

(I, C,R) |=?
Γ 0 iff true

(I, C,R) |=?
Γ P1 | P2 iff (I, C,R) |=?

Γ P1 ∧ (I, C,R) |=?
Γ P2

(I, C,R) |=?
Γ !P iff (I, C,R) |=?

Γ P

(I, C,R) |=?
Γ N [P ] iff ∀µ ∈ NΓ,R(N) : µ ∈ I(?) ∧ (I, C,R) |=µ

Γ P

One change from before is that the name of an ambient can also be given by a
variable. We therefore use the auxiliary function NΓ,R to map namings to sets
of groups:

NΓ,R(x) = R(x) ∩Group

NΓ,R(n) = {µ} where µ = Γ (n)

This function can be extended to obtain the function MΓ,R for mapping capa-
bilities to sets of values (capabilities or names):

MΓ,R(in N) = {in µ | µ ∈ NΓ,R(N)}
MΓ,R(out N) = {outµ | µ ∈ NΓ,R(N)}

MΓ,R(x) = R(x)

MΓ,R(n) = {µ} where µ = Γ (n)

53



In Boxed Ambients there is no open-capability so we only need to adapt the
clauses for the in- and out-capabilities. Since we shall use the function MΓ,R we
have an additional quantification over µ; for in-capabilities we have

(I, C,R) |=?
Γ in N. P iff MΓ,R(in N) ⊆ I(?) ∧ (I, C,R) |=?

Γ P ∧
∀ inµ ∈MΓ,R(in N) : ϕin(µ)

where the “closure condition” ϕin is defined by

ϕin(µ) iff ∀µa, µp : in µ ∈ I(µa) ∧
µa ∈ I(µp) ∧
µ ∈ I(µp)
⇒ µa ∈ I(µ)

For out-capabilities we have

(I, C,R) |=?
Γ outN. P iff MΓ,R(outN) ⊆ I(?) ∧ (I, C,R) |=?

Γ P ∧
∀ outµ ∈MΓ,R(outN) : ϕout(µ)

where the “closure condition” ϕout is defined by

ϕout(µ) iff ∀µa, µg : out µ ∈ I(µa)∧
µa ∈ I(µ) ∧
µ ∈ I(µg)
⇒ µa ∈ I(µg)

Finally, for “mixed capabilities” we have:

(I, C,R) |=?
Γ N. P iff MΓ,R(N) ∩Cap ⊆ I(?) ∧ (I, C,R) |=?

Γ P ∧
∀ in µ ∈MΓ,R(N) : ϕin(µ) ∧
∀ outµ ∈MΓ,R(N) : ϕout(µ)

Thus, if N is a variable containing a capability then the capability must be in
I(?) and the “closure conditions” ensures that this capability is analysed all
ambients where it may end up.

The new clauses deal with polyadic input and output for each of the three
directions. For local communication the clauses are

(I, C,R) |=?
Γ 〈M1, · · · ,Mk〉◦ iff MΓ,R(M1)× · · · ×MΓ,R(Mk) ⊆ C(?)

(I, C,R) |=?
Γ (x1, · · · , xk)◦. P iff ∀(v1, · · · , vk) ∈ C(?) :

v1 ∈ R(x1) ∧ · · · ∧ vk ∈ R(xk) ∧
(I, C,R) |=?

Γ P

where output ensures that the values are “put” into the local mailbox C(?) while
input “copies” values from C(?) into the variables. For communication with a
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child we add the clauses:

(I, C,R) |=?
Γ 〈M1, · · · ,Mk〉N iff ∀µ ∈ NΓ,R(N) : µ ∈ I(?)

⇒ MΓ,R(M1)× · · · ×MΓ,R(Mk) ⊆ C(µ)

(I, C,R) |=?
Γ (x1, · · · , xk)N .P iff ∀µ ∈ NΓ,R(N) : µ ∈ I(?)

⇒ ∀(v1, · · · , vk) ∈ C(µ) :
v1 ∈ R(x1) ∧ · · · ∧ vk ∈ R(xk) ∧

(I, C,R) |=?
Γ P

Here we obtain all the possible groups µ of the child N and check that the
corresponding ambient indeed occurs in the ambience ?; for each successful group
µ the communication is recorded by adapting the clause for local communication.

For communication with a parent we add the clauses:

(I, C,R) |=?
Γ 〈M1, · · · ,Mk〉↑ iff ∀µ : ? ∈ I(µ)

⇒ MΓ,R(M1)× · · · ×MΓ,R(Mk) ⊆ C(µ)

(I, C,R) |=?
Γ (x1, · · · , xk)↑.P iff ∀µ : ? ∈ I(µ)

⇒ ∀(v1, · · · , vk) ∈ C(µ) :
v1 ∈ R(x1) ∧ · · · ∧ vk ∈ R(xk) ∧

(I, C,R) |=?
Γ P

One may note that the analysis is a bit imprecise with respect to the semantics
because although 〈M〉n | n [m [(x)↑. P | Q ] | R ] 6→ · · · the analysis will pre-
tend that the communication succeeds. One should also point out that the anal-
ysis of the communication primitives would have been somewhat more complex
if the designers of Boxed Ambients had decided to keep the open-primitive; the
reason is that then the communication may take place in other ambiences than
where first encountered in the analysis (see [30] for how to deal with this.)

Correctness of the communication analysis. Once more the correctness of
the analysis amounts to a “subject reduction” result:

Theorem 44. If (I, C,R) |=?
Γ P and P →∗ Q then (I, C,R) |=?

Γ Q.

Implementation of the communication analysis. Once more the existence
of a least analysis is a consequence of the Moore family result:

Theorem 45. For each P , the set {(I, C,R) | (I, C,R) |=?
Γ P} is a Moore

family.

The implementation in ALFP proceeds much as before. One caveat is the use of
the universal quantification over µ in the clause for ambients:

∀µ ∈ NΓ,R(N) : (I, C,R) |=µ
Γ P
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Here we must make sure that the variable µ is not in the domain or range of Γ .

Another issue is that the communication component C uses sequences to repre-
sent messages in the mailboxes. Instead of encoding sequences in general into a
relational form that can be described in ALFP we use the fact that the analysis
(and the semantics) only compares messages of the same length. Therefore, we
can split C into mappings Ck : Group → P((Group ∪ Cap)k) for each mes-
sage arity k occurring in the process we analysis. This intuitively corresponds to
having different mailboxes for messages of different length. We reformulate the
analysis into an equivalent analysis where analysing a communication primitive
of arity k only gives requirements to the content of the communication compo-
nent Ck. In turn, this allows us to encode each communication component Ck as
a relation of fixed arity k + 1.

We then obtain an implementation much as before. However, now it is no longer
the case that there is a fixed upper bound on the nesting depth of quantifiers
and therefore the worst-case complexity is exponential; in practice it will be
polynomial if there is a small nesting depth of ambients in the original process
(or at least when the nesting depth of variable-named ambients is less than linear
in the size of the process).

If we were to admit composite capabilities (i.e. M.M) we would face the problem
that the universe is no longer finite for a given process since the process may
output a few simple capabilities and then repeatedly input two capabilities and
then output their composition. A rather crude way of dealing with this (taken
in [30]) is to abandon recording the causal structure of capabilities. The better
way is to adapt the solving technology to deal with a possibly infinite universe.
A possibly infinite subset of the universe is then described using a tree grammar
(or tree automaton). We can express this using our Succinct Solver by manually
translating the specification into one that constructs the tree grammar; we refer
to [33] for an account of how to do so for the Spi-calculus [1]. Alternatively
we may replace the Succinct Solver with a more appropriate solver based on
set-constraints [2] or H3 [34].

Remark 46. Our restriction to finitary calculi is in line with some recent devel-
opments for Mobile Ambients. In [17] Charatonik, Gordon, and Talbot provide a
type system, which can check whether a process has finite behaviour. It is then
possible to model check such a process against a so-called ambient logic [15].
Teller, Zimmer, and Hirschkoff [40] models a resource as an ambient R with a
fixed capacity given by the maximal number of other ambients allowed inside R
at top level. They provide a type system for resource control that checks whether
the resource capacities in a system may be exceeded at run-time. ¤

5.4 Protocol and Exchange Analysis

Protocol analysis. We now show a number of properties of the Wide Mouthed
Frog protocol that can be obtained using the 0CFA analysis.
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Example 47. We can analyse the Wide Mouthed Frog protocol using the 0CFA
analysis and aim at “maximal precision” by keeping as many groups distinct as
possible. This means that we analyse the protocol in a group environment where
Γ (A) = A, Γ (B) = B, Γ (S) = S, Γ (KAS) = KAS and Γ (KBS) = KBS. Recall that
the protocol additionally specifies the groups of the session key and the message
(i.e. (ν KAB : KAB) and (ν M : M) ). Then the possible values of variables in the
analysis component R are given by:

R x zKAB
zA yKBS

yKAB
yB yKAS

yA

{M} {KAB} {A} {KBS} {KAB} {B} {A,KAS} {A}
Note in particular that zKAB

can only be bound to the session key created by
Alice. Consequently Bob may receive the messages Alice sends encrypted under
the session key as shown by the values of R(x). The reason that both A and KAS

show up in R(yKAS
) is that the analysis does not distinguish the ambient A that

represents Alice and the ambient A in the KeyTable. ¤

Example 48. In the specification of the Wide Mouthed Frog protocol the server
only allows known principals to participate in the protocol, since keys shared
between the server and a principal needs to appear in KeyTable. Suppose that
an unknown principal E (for Enemy) tries to participate in the protocol by
carrying out the part of Alice. That is, suppose that the Enemy is as the process
describing Alice with A replaced by E everywhere. This is the process below
where KES, M

′,KEB, and M′ are arbitrarily chosen free names and free groups,
respectively.

E [(ν KEB : KEB) KES[out E. in S. (〈E〉↑ | 〈B,KEB〉◦) ] |
(ν M′ :M′) KEB[out E. in B. 〈M′〉◦] ]

Since the Server does not know the key KES the attempt to participate in the
protocol will fail. This can in fact be guaranteed using the 0CFA analysis by
analysing the process implementing the Wide Mouthed Frog protocol in parallel
with the ambient E above. The interesting part of the analysis result is:

R x zKAB

{M} {KAB}
which guarantees that Bob will never receive the message M′ in the variable
x. Since KES and M′ are arbitrarily chosen the result guaranties that any such
attempt by the Enemy to conform with the protocol will indeed fail.

Suppose on the other hand that the Server does know the key KES, i.e. that
KeyTable is extended to:

KeyTable′ = A [!〈KAS〉◦] | B [!〈KBS〉◦] | E [!〈KES〉◦]
Now the Server may successfully let E participate in the protocol as confirmed
by the analysis result:

R x zKAB

{M,M′} {KAB,KEB}
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This corresponds to the Enemy being a dishonest principal rather than an in-
truder. ¤

Example 49. Assume that an enemy E shares a key KES with the Server in the
Wide Mouthed Frog protocol (i.e. that the Server uses KeyTable′ of Example
48). The enemy may now attempt to “impersonate Alice” by sending an A in
the unencrypted part of the first message. This can be encoded as the process

E [(ν KEB : KEB) KES[out E. in S. (〈A〉↑ | 〈B,KEB〉◦) ] |
(ν M′ :M′)KEB[out E. in B. 〈M′〉◦] ]

The goal of the Enemy is to “fool” Bob into believing that the key KEB was a
session key generated by Alice. However, the 0CFA analysis guarantees us that
this never happens. By analysing the above ambient E in parallel with the Wide
Mouth Frog protocol (using KeyTable′ instead of KeyTable) we get:

R x zKAB

{M} {KAB}
This in fact ensures that the key KEB will never even reach Bob i.e. it will never
be bound to the variable zKAB

. Thus, in particular, this attack cannot fool Bob
into believing that the key came from Alice. ¤

Exchange analysis. Besides opening and crossing control also exchange anal-
ysis of ambients is considered in [12] (and links back to the type system of
[14]). Exchange analysis deals with determining what the topic of conversation
is for some ambient n: is there no communication at all, is there an exchange of
ambient names only, or is there an exchange of capabilities only.

These questions can be answered using the analysis as follows. Suppose that
(I, C,R) |=?

Γ P and let µ = Γ (n).

– No communication at all takes place in case C(µ) = ∅;.
– There is exchange of ambient names only, in case C(µ) ⊆ Group∗;

– There is exchange of capabilities only, in case C(µ) ⊆ Cap∗.

The correctness of these claims are immediate consequences of Theorem 44. We
obtain the best answer by using the least analysis estimate as guaranteed by
Theorem 45.

Remark 50. Numerous type systems for ambient calculi deals with communica-
tion and much of the work is based on the original type system by Cardelli and
Gordon [14] including type systems for Boxed Ambients [9, 8, 21, 26]. Further-
more, some type systems incorporates information about mobility (e.g. [11, 12]),
which is also the case for Merro and Sassone’s recent type system [26] for Boxed
Ambients.
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The type system of [26] checks whether exchange types of send and receive are
compatible both for local and non-local communication. If any pairs of com-
munications within a process are incompatible the process does not type check.
In comparison, our 0CFA analysis will analyse any process; as such, our 0CFA
analysis is closer to soft typing. The information conveyed by the exchange types
is, in essence, similar to the content of the C component of our 0CFA analysis as
described in the section above. A notable difference is that [26] forbids commu-
nications of different arities within the same ambient. This restriction is present
in many type systems for ambient calculi and probably goes back to the type
system of [14].

Also the type system of [26] incorporates mobility types that for a given ambient
n gives the set of other ambients in which n is allowed to occur; this is similar
to the I component of our 0CFA analysis. All types are ordered by a subtyping
relation that allows to say that some types are ”better” than others and to
define a best type. Though listed as work-in-progress, they do not provide a
type inference algorithm so they cannot automatically calculate the mobility
and communication behaviour of a given process. ¤

6 Conclusion

Mobile Ambients and their variants have established themselves as a useful class
of process algebras in which to study mobility. Our first aim was to extend the
calculus to express discretionary access control in a manner compatible with
the classical studies of operating systems; we achieved this goal by developing
the Discretionary Ambients (and thereby generalising the Safe Ambients). Our
second aim was to extend the calculus to express mandatory access control for
confidentiality as well as integrity; we achieved this goal by modifying the seman-
tics to enforce the checks of the reference monitor. Our third aim was to show
that cryptographic key exchange protocols could be coded rather naturally in
Boxed Ambients where we make use of the more general communication primi-
tives of Boxed Ambients over those of Mobile Ambients; as far as we are aware
this is the first treatment of key exchange protocols in a calculus for mobility.

Throughout we have defined the semantics and developed 0CFA or 1CFA anal-
yses for the calculi studied. They could be implemented in our Succinct Solver
by re-expressing the specification in a fragment of Alternation-free Least Fixed
Point Logic (ALFP). Except for Boxed Ambients we could guarantee a worst-
case complexity being a polynomial of a low degree; for Boxed Ambients the
degree of the polynomial is proportional to the nesting depth of ambients in the
original process (and hence exponential to the size of the process in the worst
case).

We believe that our Flow Logic approach to analysis gives us a number of conve-
niences. We share with type systems the convenience of separating specification
from implementation thereby obtaining a conceptually cleaner formulation of
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the analysis that interacts well with semantic correctness and state-of-the-art
techniques for efficient implementation. But unlike most type systems based on
subtyping we achieve polynomial time complexity for most of the analyses of
interest.

Perhaps more importantly the logical or constraint-based nature of our approach
lead us to the formulation of “hardest attackers”: a finite process characterising
all possible malicious processes (somewhat in the manner of hard problems for
a given complexity class). The key element in our success is that we limit our
attention to the finitary world of the static analysis. In the original development
[31, 30] we considered the firewall described in [13]. Here only agents knowing
the required passwords are supposed to enter, and it is shown that all agents in a
special form will in fact enter. However, it is at least as important to ensure that
an attacker not knowing the required passwords cannot enter, since this presents
a useful technique for screening a system against attackers. This is achieved
using the “hardest attacker” [31, 30]. We conjecture that a similar development
may be possible for the key exchange protocols considered in Subsection 5.2; a
preliminary study for protocols expressed in the LySa-calculus is reported in [5].
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