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Università di Torino, Dipartimento di Informatica, Corso Svizzera 185,

10149 Torino, Italy

Email: {coppo,dezani,elio}@di.unito.it

Received 18 June 2006; revised 10 April 2007

In Memory of Sauro Tulipani

We present a new kind of ambient calculus in which the open capability is replaced by

direct mobility of generic processes. The calculus comes equipped with a labelled transition

system in which types play a major role: this system allows us to show interesting algebraic

laws. As usual, types express the communication, access and mobility properties of the

modelled system, and inferred types express the minimal constraints required for the system

to be well behaved.

1. Introduction

Spatial distribution and movement have taken on a prominent role in current information

technologies: computational entities spread across the World exchange data, move

from one location to another and interact with each other (either cooperatively or

competitively). An adequate theoretical foundation for this new dimension of computing

has therefore become a crucial objective, where computation has to be abstractly described

as something that develops not only in time and in memory space, either sequentially (λ-

calculus) or as a dynamic set of concurrent processes (π-calculus – see Milner et al. (1992)

and Milner (1993)), but also in a wide geographical and administrative space.

One of the first theoretical models integrating spatial aspects was the Distributed π-

calculus (Hennessy and Riely 2002), which we will refer to as Dπ for short. Dπ is an

extended π-calculus with immobile locations and processes moving between locations.

In the area of programming languages, starting from a different background (loosely

connected with logic programming), KLAIM was one of the first proposals explicitly

containing the notion of location (De Nicola et al. 1998), which later developed into a

fully-fledged project oriented to mobile and global computing (see Bettini et al. (2003)

and the references therein).

The calculus of Mobile Ambients (Cardelli and Gordon 2000), which we will refer to as

MA for short, is also built on the concurrency paradigm represented by the π-calculus
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PRIN’04 project ‘McTafi’, and the MURST PRIN’05 project ‘Logical Foundations of Distributed Systems

and Mobile Code’.
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and introduced the notion of an ambient as ‘a bounded place where (generally multi-

threaded) computation happens’: it can contain nested subambients in a dynamic tree

structure, and can move in and out of other ambients, that is, up and down the tree (thus

rearranging the structure itself). Direct communication can only occur locally within

each ambient (through a common anonymous channel); communication and interaction

between different ambients has to be mediated by movement and the dissolution of

ambient boundaries.

Ambients are intended to model in a uniform way mobile agents and processes, messages

or packets exchanged over the network, mobile devices, physical and virtual locations,

administrative and security domains, and so on.

For this reason, the distinction between processes and (possibly mobile) containers of

processes is intentionally blurred in ambient calculi. In MA there are, implicitly, two

main kinds of processes, which we will call lightweight processes (or naked processes) and

ambient processes (or simply ambients).

— Lightweight processes are unnamed lists of actions† act1.act2 . . . actm to be executed

sequentially, and generally concurrently with other processes: they may perform

communication and drive their containers through the spatial hierarchy, but in the

original MA calculus, they cannot individually go from one ambient to another.

— Ambient processes are named containers of concurrent processes m[P1 |P2 . . . |Pn]:

they can enter and exit other ambients, driven by their internal processes, but cannot

perform communication directly.

In MA, therefore, mobile processes must be represented by ambient-processes, with

communication between them represented by the exchange of other ambients of usually

shorter life, which have their boundaries dissolved by an open action so as to expose

their internal lightweight processes performing the input–output proper. The capability

of opening an ambient in this way has, however, been perceived by many as potentially

dangerous, since it could be used inadvertently or maliciously to open and thus destroy

the individuality of a mobile agent.

Among the many proposed variations of MA (for a survey, see Giovannetti (2003))

handling this issue, the calculus of Safe Ambients (Levi and Sangiorgi 2003; Bugliesi and

Castagna 2002) introduced the notion of coaction, through which, among other things,

an ambient cannot be opened without its agreement.

In the calculus of Boxed Ambients (Bugliesi et al. 2004), on the other hand, open

is dropped altogether, and its absence is compensated for by the possibility of direct

communication between the parent and child ambients.

In the present paper, we explore a slightly different approach, where we intend to

keep the purely local character of communication so that no hidden costs are present in

the input–output primitives. At the same time, we also want to represent inter-ambient

communication by pure input–output between lightweight processes, thus avoiding the

more general opening mechanism.

† In fact, a sequence of actions may also end with an asynchronous output, an ambient-process creation m[P ]

or a forking into different parallel processes.
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We do this by recovering the idea, present in Dπ (Hennessy and Riely 2002), that a

lightweight process may move directly from one location to another, without needing to be

enclosed in an ambient. Mobile lightweight processes also seem to represent strong software

mobility more closely: with this, a procedure (function, method or script, depending on the

programming model) can, through a go instruction, suspend its execution on one machine

and resume it exactly from the same point on another (generally remote) machine. Further

discussion of the relations between MA, Boxed Ambients and the present calculus can be

found in Section 7.

All ambient calculi come with type systems (Cardelli et al. 1999) as essential components,

since they are intended, like any formal description, as foundations for reasoning about

program behaviours in the new global computing reality. In our proposal also, the calculus

is an elementary basis for a type discipline that can control communication as well as

access and mobility properties. Among the many complex features that could be envisaged,

we have singled out a system that is non-trivial but simple enough to be easily readable

and understandable. We have named this system M3: a system of Mobile processes and

Mobile ambients with Mobility types.

Following Cardelli et al. (2002) and Merro and Sassone (2002), the notion of a group

is the key notion: groups characterise the possible movements and communications of

ambients and processes.

The type system is incremental in the sense that it can type components in incomplete

environments, and is equipped with a type inference algorithm that determines the

‘minimal’ requirements for accepting a component as well typed.

In addition to the usual reduction semantics, where types play no role (since the

rules are assumed to apply to well-typed terms only), a labelled transition system (LTS

for short) semantics is given, which allows us to define a notion of bisimilarity and to

compare it with a contextual equivalence, namely a barbed congruence. As M3 is a typed

calculus, the definition of the LTS involves types in an essential way: typed processes can

only perform actions that are allowed by their types. The transition relation, therefore, is

relative to an environment Ξ and to a process type g, and is, accordingly, denoted by the

symbol
α

−−→ Ξ,g. Spatial mobility is handled using the notions of concretion and higher-

order transition (Merro and Hennessy 2002; Bugliesi et al. 2005). The resulting notion

of bisimilarity is proved to be a congruence and to represent a sound approximation

to barbed (observational) equivalence. Natural notions of process and ambient mobility,

which are definable in terms of types, may be characterised using our LTS, and useful

algebraic laws may be proved.

In spite of its simplicity, the calculus seems to possess sufficient expressive power, as

shown by the compositional encodings in it of two standard calculi of concurrency:

π-calculus and Dπ. In our encoding of the π-calculus, as in the encoding given in Cardelli

and Gordon (1999), there are ambients that play the role of communication buffers:

the advantage of moving lightweight processes as well as ambients (which need to be

open for communicating) is that we can type such buffer-ambients as immobile, without

introducing objective moves as in Cardelli and Gordon (1999). This feature also appears

in the encoding in Mobile Safe Ambients (Levi and Sangiorgi 2003), thanks to the refined

type system and the presence of co-actions.
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The type system enjoys a kind of principal typing property, which is an adaptation to

our setting of Wells’ standard definition (Wells 2002). For every raw term, that is, a term

in which type annotations are missing, there exists a ‘most general’ way of completing

it with such annotations, where types provide the maximum amount of information that

they can give about the behaviour of the term. A type reconstruction algorithm is then

specified, which, given a raw term, yields its most general typing.

The algorithm is proved to be sound and complete, and a formal certification in Coq (of

a preliminary version of it) has been given (Honsell and Scagnetto 2004); it has also been

implemented in Prolog, through the intermediate step of a more algorithmic formulation

of the type system itself (Giovannetti 2004).

This paper is an extended and improved version of Coppo et al. (2003), which

was presented at CATS’03: in particular, the LTS behavioural semantics has been

added.

The paper is organised as follows. In Section 2 we present the syntax of the calculus

(without the type syntax) with the reduction operational semantics. The type system is

defined in Section 3, where the usual subject reduction property is proved.

We define the relation of barbed congruence between processes in Section 4. We also

present the new behavioural semantics and define a notion of full bisimilarity, which we

prove to be sound (but not complete) with respect to the barbed congruence. We also

state a number of useful algebraic laws and sketch the proofs.

In Section 5, we present some examples showing the expressiveness of the calculus and

type system. These show how we can encode some well-known calculi for concurrency,

and some common protocols.

In Section 6 we specify a type reconstruction algorithm, along with the proof of its

soundness and completeness with respect to the type system. Section 7 compares M3 with

other ambient calculi, and Section 8 gives a brief account of a Prolog implementation.

Finally, we present some concluding remarks in Section 9.

2. The calculus

The structural syntax of the pre-terms of the M3 calculus is shown in Figure 1. It

is the same as the MA syntax (Cardelli and Gordon 2000) apart from the absence

of open and the presence of the new primitive to for lightweight process mobility.

Also, synchronous output is allowed: the asynchronous version is a particular case of

this.

M3 is a typed calculus where types occur in the term syntax: namely, in the input

construct and in the restrictions with respect to ambient names and group names. Figure 1

is thus to be read in conjunction with Figure 4, which describes the type syntax. More

precisely, the pre-terms defined in Figure 1 are not exactly the terms of the calculus,

because type constraints are not considered; the well-formed terms are only those pre-

terms that are well typed (with respect to a typing environment) according to the typing

rules given in Figure 5.

The notions of reduction and structural equivalence are therefore defined relative to a

typing environment and a process type, just like the relations concerning the behavioural
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Fig. 1. Syntax of pre-terms.

semantics that will be presented in Section 4. In a well-typed term, however, reduction and

structural equivalence are always consistent with the typing of the term (Theorem 3.3).

So type information plays no explicit role in these rules, and is therefore omitted in their

definition.

Since group types contain group names, the possibility of simultaneously restricting a

set of group names becomes crucial: while ambient name restriction is, as usual, monadic,

the fact that groups can have mutually dependent group types requires group restriction

to be polyadic. We use ν{g1 : G1, . . . , gk : Gk} to denote the simultaneous restriction of the

group names g1, . . . , gk having group types G1, . . . , Gk , respectively. We adopt the standard

convention that action prefixing takes precedence over parallel composition: if act denotes

a generic prefix, act.α | β is read as (act.α)|β. We follow the traditional distinction between

letters m, n, . . . for ambient names and letters x, y, . . . for input variables standing for both

ambient names and capabilities.

Free and bound names and variables are defined in the usual way. A capability or a

process is closed if it does not contain free variables (though it may contain free names).

We identify processes up to α-renaming of bound names and bound variables.

The operational semantics consists, as usual, of a reduction relation on closed processes,

along with a structural congruence that allows trivial syntactic restructuring of a term so

that a reduction rule can be applied.

The structural congruence rules, which are shown in Figure 2, are standard for the

usual ambient constructors (Cardelli et al. 1999). The rules for group restriction allow us,

under suitable conditions, to permute, split and erase simultaneous restrictions. Despite
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Fig. 2. Structural congruence: general rules.

their awkward aspects, they are basically analogous to the rules for name restriction;

what complicates the notation is the fact that mutually dependent group types must be

handled simultaneously.

The reduction rules, shown in Figure 3, are the same as those for MA, with the obvious

differences arising from the inclusion of synchronous output and omission of open, and

with the new rule for the to action, which is similar to the go primitive of Dπ or to the

‘migrate’ instructions for strong code mobility in software agents.

A lightweight process executing a to m action moves between sibling ambients: more

precisely, it goes from an ambient n, where it is initially located, to a (different) ambient of

name m that is a sibling of n, thus crossing two boundaries in one step; the boundaries are,

however, at the same level, so that, unlike the case when moving upward or downward,

the process does not change its nesting level.

Observe that the form of the rule, while entailing non-determinism among different

destinations of the same name, guarantees that the destination, though possibly having

the same name as the source, must be present and different from the source ambient: so a

term of the form m[to m.P ] cannot reduce to m[P ], with a hop to the very same location!
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Fig. 3. Reduction.

In Dπ, by contrast, the go action moves processes independently of the formal presence

of the target location, so m[go m.P ] reduces to m[P ].

As usual, →∗ will denote the reflexive and transitive closure of the relation →.

3. The type system

As noted in the previous section, the syntax definition of Figure 1 is not complete

without the type syntax and typing rules. As is usual in ambient calculi, a first (trivial)

role of types is to ensure that no meaningless terms can be defined or can result from

a computation. In addition, types control access and mobility. As already observed in

Cardelli et al. (2002), expressing such properties in terms of single ambients leads to

dependent types, for example, in judgments of the form n: CanEnter({m1, . . . , mk}) – an

interesting proposal along these lines can be found in Lhoussaine and Sassone (2004).

Following the seminal work in Cardelli et al. (2002), and, among others, Merro and

Sassone (2002), we instead adopt the more common approach based on ambient groups,

which enables us to avoid the direct dependence of types on values.

As usual for ambients, there are three fundamental categories of types (corresponding to

the three main syntactic categories of terms): ambient types, capability types, and process

types. Since only ambient names and capabilities, but not processes, can be transmitted,

message types – that is, the types explicitly attached to input variables – can only be

ambient or capability types.

Syntactically, groups are merely names g, h, . . . occurring as basic components of other

types. Formally, they may be considered atomic types, which represent sets of ambients

sharing some common features.

We use a simplification with respect to the systems in Cardelli et al. (2002) and Merro

and Sassone (2002), in which ambient types have the schematic form amb(g,B), where B

is the expression of some behavioural properties concerning mobility and communication.

In our proposal the property B is instead (the content of) the type of the group, and the

typing judgment m :amb(g,B) becomes m :amb(g), g :B.
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Fig. 4. Types.

The first form is more general, allowing different ambient types for the same group.

In our approach, however, a group represents a set of ambients that are guaranteed to

share mobility and access properties (and communication behaviour), as specified by the

group’s type.

The only component of an ambient type amb(g) or of a process type proc(g) is a group

name g, whose type† G describes – in terms of other group names (possibly including the

very group g typed by G) – the properties of all the ambients and processes of that group.

In a sense, groups and group types work as indirections between types and values so as

to prevent types from directly ‘pointing to’ (that is, depending on) values.

The connection between ambients and processes is given in the standard way by the

fact that processes of type proc(g) can run safely only within ambients of type amb(g).

The form of capability types is relatively novel in that they are (very particular) sorts of

function types from processes to processes, corresponding to the fact that, from a syntactic

point of view, a capability turns a process into another process, which is designed to run in

a possibly different ambient. proc(g1)→ proc(g2) is the type of a capability that, prefixed

to a process of type proc(g1), transforms it into a process of type proc(g2). Or, viewed

at runtime, the type of a capability that, when exercised by a process of type proc(g2),

which is, of course, located in an ambient of type amb(g2), leaves a continuation of type

proc(g1) located in an ambient of type amb(g1).

This form bears some (non-superficial) resemblance to the one in Amtoft et al. (2001),

where a capability type is a type context that, when filled with a process type, yields

another process type.

Notational remark. We shall write g for both amb(g) and proc(g) as the distinction will

always be clear from the context. As a consequence, capability types will be written

concisely in the form g1 → g2.

† Note that a group type is the type of a type, that is, following a fairly standard terminology, a kind. Moreover,

since it contains group names, it might be considered a ‘kind dependent on types’. This double level, however,

is clearly used only in a very limited and ad hoc way, with no real stratification. We are, therefore, justified

in not using the expression group kind, but simply sticking to group type.
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We will also use the abbreviations g-ambients and g-processes for the ambients of group

g and the processes of group g, respectively.

The communication type is completely standard: it is either the atomic type shh, denoting

absence of communication, or a message type, which in turn may be an ambient type or

a capability type. Note that the type shh, which is typical of ambient systems, is not the

type of empty messages (which can be used for synchronisation), but the type denoting

the very absence of input–output.

Finally, group types (ranged over by G) consist of four components and are of the form

gr(S ,C ,E , T ), where S ,C and E are sets of group names, and T is a communication

type. If g is a group of type gr(S ,C ,E , T ), the intuitive meanings of the type’s components

are as follows:

— S is the set of ambient groups where the g-ambients can stay.

— C is the set of ambient groups that g-ambients can cross, that is, those that they may

be driven into or out of by in or out actions, respectively. Clearly, C ⊆ S (and C is

empty if the g-ambients are immobile).

— E is the set of ambients that (lightweight) g-processes can ‘enter’. More precisely, those

ambients to which a g-process may send its continuation by means of a to action (it

is empty if lightweight g-processes are immobile).

— T is the (fixed) communication type (or topics of conversation) within g-ambients.

The information contained in the S and C components was also considered in Merro

and Sassone (2002).

If G = gr(S ,C ,E , T ) is a group type, we write S (G), C (G), E (G), T (G) to denote the

components S , C , E , T of G, respectively.

The C component is essential for controlling ambient mobility. For instance, ambients

of a group whose group type has C = � are immobile. The novel E component is needed

to control the potentially most dangerous to-moves. So C and E serve different purposes,

and are not interrelated. The former is intended to control ambient mobility, the latter is

relevant for security. The S component is a superset of C . It is not directly connected

with security, and the reasons for its presence are not compelling. However, if we omit

S , the control of ambient mobility becomes rather lop-sided, because in the standard

out m construct, the argument m is the ambient to be exited, rather than the one to be

entered (as in the to m construct). Thus the C component cannot control which ambients

are allowed to enter a given ambient from underneath, and an additional more general set

of permissions like S is required. Using the S component, we require that the ambient

moved by an out m capability is allowed to stay in every ambient where m itself is allowed

to stay.

An environment Ξ consists of two components: a group environment Γ and a variable

(and ambient) environment ∆, as defined by the following syntax:

Ξ ::= Γ; ∆ Γ ::= � | Γ, g :G ∆ ::= � | ∆, ξ :W ,
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where ξ is a variable or an ambient name†.

The domain of an environment is Dom(Ξ) = Dom(Γ) ∪ Dom(∆), where

Dom(�) = � Dom(Γ, g :G) = Dom(Γ) ∪ {g} Dom(∆, ξ :W ) = Dom(∆) ∪ {ξ} .

GN(G) denotes the set of all group names occurring in a group type G, and GN(Ξ)

denotes the set of all group names occurring in Ξ, not just those in Dom(Γ) but also those

in the components of the types in Ξ. Environments are considered as sets of statements,

and therefore modulo permutations and duplications.

A variable environment ∆ is well formed if for each ξ ∈ Dom(∆) there is exactly one

type associated with it in ∆, that is, there cannot exist ξ :W1, ξ :W2 ∈ ∆ with W1 different

from W2. We assume that all variable environments are well formed.

Analogously, a group environment Γ is well formed if for each g ∈ Dom(Γ) there is

exactly one group type G associated with it in Γ. Of course, only well-formed group

environments are allowed in a typing judgement, but we will see that (potentially) non-

well-formed group environments are used by the type inference procedure.

We use the standard notation ∆, ξ :W to denote a variable environment containing a

statement ξ :W, assuming that ξ /∈ Dom(∆). We write ξ :W ∈ ∆ as an abbreviation for

∆ = ∆′, ξ :W for some ∆′, and write ξ :W ∈ Ξ if Ξ = Γ,∆ and ξ :W ∈ ∆. Also, we use

the notation ∆1,∆2 to represent the variable environment consisting of the set union of ∆1

and ∆2 (that is, with elimination of duplicates). We adopt similar conventions for group

environments and environments.

The formal definition of the type assignment rules is shown in Figure 5. The system’s

fundamental rule (Amb) is quite standard: it requires that in a term N[P ] the ambient

N and its content P be of the same group, while the process N[P ], as it is a completely

passive object that cannot either communicate or move other ambients, may, in turn,

stay in any ambient of any group g′ (that is, it may be of any group g′), provided

its ‘membrane’ N, of type g, has permission from the specification G to stay in a

g′-ambient.

Since a process executing an action to N goes from its ambient (in)to an ambient N,

the rule (To) states that the action to N, if performed by a g2-process (in a g2-ambient),

leaves as continuation a g1-process, if g1 is the group of N and, moreover, is one of the

groups to which g2-processes are allowed to go (that is, to send their continuations) by a

to.

The rules (In) and (Out) state that a process exercising an in/out N capability does

not change its group g2 since it does not change its enclosing g2-ambient, which must,

however, have permission to cross the g1-ambient N. Moreover, in the case of (Out), the

g2-ambient, which is being driven out of N, becomes a sibling of N, and must therefore

† Note that this syntactic definition of ξ as a variable or an ambient name is exactly the same as the definition

of an ambient N. The reason we introduce a different notation here is that ξ may be an ambient name,

an ambient variable or a capability variable, while the third alternative is clearly excluded for N. The two

notions only appear to coincide in the pre-term syntax because there, following a well-established use in

ambient calculi, we do not distinguish between the two kinds of variables, but use the same letters x, y, . . . for

both (which amounts to having a single syntactic category for all variables).
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Fig. 5. Typing rules.

have permission to stay where N stays (that is, the condition S (G1) ⊆ S (G2)). The

analogous side condition in the rule (In), which ensures that the moving g2-ambient has

the permission to stay inside the g1-ambient N (g1 ∈ S (G2)), is subsumed by the condition

C (G) ⊆ S (G) on group types.

The rules (Path) and (Prefix-Cap) are, as expected from the informal definitions of

process and capability types, sorts of function composition and function application,

respectively.

The other rules are standard: in the group restriction, the set of group names g1, . . . , gk
that are abstracted from the environment (that is, moved from the left-hand side to the

right-hand side of the turnstile) cannot contain the group g of the restricted term.

Note that our system has an implicit notion of subtyping since, for example, we can

derive Γ, g :G; ∆ � P :g with T (G) 	= shh also for a silent process P (that is, for a process
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offering no communication), and this allows us to send silent processes to ambients where

the topic of conversation is different from shh.

The type assignment system is clearly syntax-directed, so a Generation Lemma holds

trivially.

Lemma 3.1 (Generation Lemma).

1 If Ξ � ξ :W , then ξ :W ∈ Ξ.

2 If Ξ � in N : g2 → g2, then g2 :G2 ∈ Ξ, and N : g1 ∈ Ξ, and g1 ∈ C (G2) for unique

g1, G2.

3 If Ξ � out N : g2 → g2, then g1 : G1 ∈ Ξ, and g2 : G2 ∈ Ξ, and N : g1 ∈ Ξ, and

g1 ∈ C (G2), and S (G1) ⊆ S (G2) for unique g1, G1, G2.

4 If Ξ � to N :g1 → g2, then g2 :G2 ∈ Ξ, and N :g1 ∈ Ξ, and g1 ∈ E (G2) for a unique G2.

5 If Ξ � C.C ′ :g1 → g2, then Ξ � C :g3 → g2, and Ξ � C ′ :g1 → g3 for a unique g3.

6 If Ξ � C.P :g2, then Ξ � C :g1 → g2, and Ξ � P :g1 for a unique g1.

7 If Γ; ∆ � (x :W )P : g, then Γ; ∆, x :W � P : g and g :gr(S ,C ,E ,W ) ∈ Γ for unique

S ,C ,E .

8 If Ξ � 〈M〉P : g, then Ξ � P : g, and Ξ � M : W , and g : gr(S ,C ,E ,W ) ∈ Ξ for a

unique gr(S ,C ,E ,W ).

9 If Ξ � N[P ] : g, then Ξ � P : g′, and N : g′ ∈ Ξ, and g′ : G ∈ Ξ, and g ∈ S (G) for

unique g′, G.

10 If Ξ � P |Q :g, then Ξ � P :g, and Ξ � Q :g.

11 If Ξ � ! π . P :g, then Ξ � π . P :g.

12 If Γ; ∆ � (νm :g′)P :g, then Γ; ∆, m :g′ � P :g.

13 If Γ,∆ � (ν{g1 : G1, . . . , gk : Gk})P : g, then Γ, g1 :G1, . . . , gk :Gk; ∆ � P : g, and gi /∈
GN(Γ; ∆) and gi 	= g (1 � i � k).

Note that this lemma implies that every typing judgement has a unique derivation.

It is easy to verify by induction on derivations that the type assignment system enjoys

the weakening and substitution properties.

Lemma 3.2 (Weakening and substitution Lemma). Let Π denote a process P or a message

M, and τ a process type g or a message type W . Then we have:

1 If Γ; ∆ � Π : τ, the environments Γ′; ∆′ are well formed and Γ ⊆ Γ′, ∆ ⊆ ∆′, then

Γ′; ∆′ � Π:τ.

2 If Γ; ∆, x :W � Π:τ and Γ; ∆ � M :W , then Γ; ∆ � Π{x := M} :τ.

The usual property of subject reduction holds, which guarantees the soundness of the

system by ensuring that typing is preserved by computation and structural equivalence.

Note that we do not need to expand environments as in Cardelli et al. (2002) since we

allow a type in a variable environment to contain a group name even though such a

group is not assigned a group type by the associated group environment (provided this

is compatible with the assignment rules), that is, we allow Γ; ∆ with ξ : g ∈ ∆ even if

g 	∈ Dom(Γ).
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Theorem 3.3 (Subject reduction). Let Ξ � P :g . Then:

1 P ≡ Q implies Ξ � Q :g.

2 P → Q implies Ξ � Q :g.

Proof. The proof by induction on the derivations of P ≡ Q and P → Q using the

Weakening, Substitution and Generation Lemmas is standard. We will only consider rule

(R-to):

n[to m . P |Q] |m[R] → n[Q] |m[P |R] .

If Ξ � n[to m . P |Q] |m[R] :g, then, by Lemma 3.1(10), we have Ξ � n[to m . P |Q] :g and

Ξ � m[R] :g. By Lemma 3.1(9) we must have

Ξ � to m . P |Q :gn

n :gn ∈ Ξ

gn :Gn ∈ Ξ

g ∈ S (Gn)

Ξ � R :gm

m :gm ∈ Ξ

gm :Gm ∈ Ξ

g ∈ S (Gm)

for some gn, Gn, gm, Gm.

From Ξ � to m . P |Q : gn, by Lemma 3.1(10), we have Ξ � Q : gn and Ξ � to m . P : gn,

which by Lemma 3.1(6 and 4) implies Ξ � P :gm.

Rule (Amb) applied to Ξ � Q :gn gives Ξ � n[Q] :g being n :gn ∈ Ξ, and gn :Gn ∈ Ξ, and

g ∈ S (Gn). Rule (Par) applied to Ξ � P :gm, and Ξ � R :gm gives Ξ � P |R :gm. Since

m :gm ∈ Ξ

gm :Gm ∈ Ξ

g ∈ S (Gm) ,

we can deduce Ξ � m[P |R] :g using rule (Amb). We conclude Ξ � n[Q] |m[P |R] :g from

Ξ � n[Q] :g and Ξ � m[P |R] :g by rule (Par).

A process containing variables represents a set of closed processes, which can be

obtained by replacing the variables by ambient names or closed capabilities, depending

on their types. In an untyped setting, the set of possible replacements is in general infinite

and never empty. On the other hand, group environments can prevent the replacement of

capability variables. Processes containing variables that cannot be replaced are ‘dead’ in

the sense we will discuss in Section 4.
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We conclude this section with some definitions that formalise this notion of non-

replaceable variable and the related notion of a closing substitution.

Definition 3.4 (Ξ-ghost variables and processes).

1 Let Γ be a group environment. A capability type V is Γ-ghost if there is no well-formed

environment Γ′; ∆, with Γ′ ⊇ Γ, such that the typing Γ′; ∆ � C :V holds for some closed

capability C .

2 A variable x is Γ; ∆-ghost if x :V ∈ ∆ where V is Γ-ghost.

3 A process is Ξ-ghost if Ξ � P :g for some g and P contains a Ξ-ghost variable.

For example, if Ξ0 = { g :gr(�,�,�, shh)}; {x :g → g}, the variable x is Ξ0-ghost since

the typing rules prevent the possibility of defining a closed capability of type g → g (an

ambient n having group type g can neither move nor send processes) from gr(�,�,�, shh).

An effective characterisation of the Ξ-ghost variables for a fixed environment Ξ can be

given, but this is not relevant here.

Intuitively, a ghost type with respect to an environment is a type that cannot have

(closed) inhabitants with respect to that environment, not even by extending it. The

definition only mentions capability types because, for an arbitrary ambient type g, we can

always add a fresh ambient name with type g to the environment.

If P is Ξ-ghost and P ≡ Q holds, then Q is Ξ-ghost also (the property of being Ξ-ghost

is preserved by structural equivalence).

Let Γ be a group environment occurring in a statement of a typing derivation and Γ′

be the group environment used in the conclusion of the same derivation. If the type V is

Γ-ghost, then V is also Γ′-ghost. More precisely, we have the following proposition.

Proposition 3.5. Let Γ; ∆ � P : g be a statement occurring in a derivation ending with

Γ′; ∆′ � Q : g′. If the type V is Γ-ghost, then V is also Γ′-ghost.

Proof. We prove that there exists no closed capability C such that Γe; ∆′ � C : V for

some Γe extending Γ′. The proof is by induction on the deduction of Γ′; ∆′ � Q : g′.

The base step is when Q coincides with P . In this case the proof follows immediately

from the definition of ghost type.

The only non-trivial case for the induction step is for rule (GrpRes). In this case, let

Q = (ν{−−→
g :G}(k))Q

′. Then we have

Γ′,
−−→
g :G(k); ∆′ � Q′ :g gi /∈ GN(Γ′; ∆′) gi 	= g (1 � i � k)

Γ′; ∆′ � (ν{−−→
g :G}(k))Q

′ :g
.

Assume, in order to show a contradiction, that Γe is an extension of Γ′ such that we have

Γe; ∆′ � C : V for some closed capability C . Since the group names −→g (k) are bound in

Q, we can assume without loss of generality that they do not occur in the domain of Γe.

This implies that Γe,
−−→
g :G(k) is well formed. By the Weakening Lemma (Lemma 3.2(1)), we

get Γe,
−−→
g :G(k); ∆′ � C :V , and this contradicts the induction hypothesis, since Γe,

−−→
g :G(k) is

an extension of Γ′,
−−→
g :G(k).
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The next definition is useful for singling out the environments that allow all non-ghost

variables to be replaced by closed messages.

Definition 3.6 (Complete environments). An environment Ξ is complete if:

1 for all x :g ∈ Ξ there is n :g ∈ Ξ for some n;

2 for all x : g → g′ ∈ Ξ either there exists a closed capability C such that Ξ � C : g → g′

or x is Ξ-ghost.

Definition 3.7 (Ξ-closing substitutions). Let Ξ be a complete environment. A Ξ-closing

substitution s is a partial mapping from variables to ambient names and closed capabilities

such that Ξ � s(x) :W whenever x :W ∈ Ξ and x is not Ξ-ghost.

It is easy to verify that a Ξ-closing substitution is undefined for all and only the Ξ-ghost

variables. Also, if s is a Ξ-closing substitution and we assume s(x) = x for the Ξ-ghost

variables x, then Ξ � s(P ) : g whenever Ξ � P : g. Finally, s(P ) is a closed process if and

only if P is not Ξ-ghost.

4. Behavioural semantics

In order to develop a theory of equivalence for M3, we start, as usual, with a notion

of observability predicate (Milner and Sangiorgi 1992), which denotes the fact that a

process can interact with the environment. A standard notion of observable for ambient

calculi (Cardelli and Gordon 1999) is the exhibition of an ambient at the top level.

Other choices of observables could be considered, such as the possibility of performing an

in action. The relations between these different choices have been investigated in Merro

and Hennessy (2002) for another variant of the ambient calculus: all the different notions

of observable are shown to lead to the same observational equality. The same property

holds for our calculus with a similar proof.

As M3 is a typed calculus, we take the following definition of observability of an ambient

name n with respect to an environment Ξ and a group g.

Definition 4.1 (Observability). Let P be a closed process. We say that P exhibits the

ambient name n with respect to an environment Ξ and a group g (notation P ↓Ξ,g
n ) if

P ≡ (νg̃′ :G)(νp̃ :g)(n[P ′] |Q) ,

where n /∈ p̃ and Ξ � P :g.

We will use P ⇓Ξ,g
n as an abbreviation for P →∗ P ′ with P ′ ↓Ξ,g

n .

Note that group restrictions cannot in any way affect the computational properties

of processes. As remarked in Cardelli et al. (2002), group restrictions are mainly a tool

for preventing restricted groups from ever being known in the outside environment, thus

increasing security against external malicious agents. But note that a group name g can

only be restricted if there are neither variables nor ambient names whose types mention

g in the variable environment: all the variables and names of this kind must have already

been abstracted or restricted so that they are no longer visible.
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To formalise the above argument, we define P to be the process obtained from P by

pushing outwards all group restrictions. It is easy to check that

P ↓Ξ,g
n if and only if P ↓Ξ,g

n .

Furthermore, if P →∗ P ′ holds, P →∗ P ′ holds also, and if P →∗ Q holds, then

P →∗ P ′ holds for some P ′ such that P ′ = Q. Therefore, group restrictions cannot change

the observability of ambient names, so in this section we are allowed, without loss of

generality, to consider only those processes that have no occurrences of group restrictions.

This leads to a simplified formulation of the labelled transition system. Note, in fact, that

none of the labelled transition in Figures 8, 9 or 10 contains any group names: transitions

are transparent to group restrictions.

Since observability is relative to environments and groups, both barbed bisimulation

and reduction barbed congruence (Sangiorgi and Milner 1992; Levi and Sangiorgi 2003;

Sangiorgi and Walker 2001) are also defined with respect to environments and groups.

More precisely, environments and groups are used both to test observability and to type

the processes that are to be compared with the enclosing contexts.

Let RΞ,g denote a relation between processes such that P RΞ,g Q implies that Ξ � P :g

and Ξ � Q :g. We call it a (Ξ, g)-relation. In the following we will often consider a family

of relations with disjoint domains indexed by the pair (Ξ, g), rather than a single relation.

With some abuse of terminology, we will just call them ‘relations’ rather than ‘families of

relations’.

Definition 4.2.

1 A (Ξ, g)-relation is reduction-closed if P RΞ,g Q and P → P ′ imply the existence of some

Q′ such that Q →∗ Q′ and P ′ RΞ,g Q′.

2 A (Ξ, g)-relation is barb-preserving if P RΞ,g Q and P ↓Ξ,g
n imply Q⇓Ξ,g

n .

In order to introduce reduction barbed congruence, we need the notion of a context

C[ ], which is defined in the usual way as a process with a hole in it. As remarked above,

behavioural properties are transparent to group restrictions, so, in the following, we will

only consider contexts that have no occurrences of group restrictions.

Following Sangiorgi and Walker (2001), we say that a context is agreeing with an

environment Ξ and a group g, and denote it by C[ ]Ξ,g , if the judgment Ξ′ � C[ ] :g′, for

some environment Ξ′ and some group g′, can be derived using the following typing rule

for the hole:

Ξ ⊆ Ξ′′

Ξ′′ � [ ] :g
.

In this case we say that Ξ′ and g′ are compatible with C[ ]Ξ,g . Notice that this implies

Ξ′ ⊆ Ξ′′.

To simplify the notation, we will sometimes omit the superscript decoration of contexts

agreeing with (Ξ, g) when it is obvious from the surrounding text.
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Definition 4.3 (Reduction barbed congruence).

1 We say that a relation RΞ,g is contextual if P RΞ,g Q implies that for all contexts C[ ]Ξ,g

the relation C[P ]RΞ′ ,g′ C[Q] holds for any (Ξ′, g′) compatible with C[ ]Ξ,g .

2 Reduction barbed congruence ∼=Ξ,g is the maximal contextual (Ξ, g)-equivalence relation

that, when restricted to closed processes, is reduction-closed and barb-preserving.

It is worth noting that type constraints affect congruence. Similar phenomena occur

for the π-calculus, see Sangiorgi and Walker (2001). For example, assume Ξ � P :g and

n:g, g:G ∈ Ξ for some n, g, G such that E (G) = � and C (G) = �. Assume also that

n /∈ AN(P ). Then (νn :g)n[P ] ∼=Ξ,g′
0 because:

— n is unknown to the external world;

— no ambient occurring in P can cross n because n /∈ AN(P );

— n cannot move since C (G) = �;

— n cannot send processes because E (G) = �.

So no interaction is possible between P and the external world (this property will be

formalised by Theorem 4.23(6) below). As another example, take

Ξ = {g :gr({g′},�,�, shh)}; {n :g, x :g → g} .

Now x is Ξ-ghost since in any extension of Ξ there can be no closed message of type

g → g (see the remark after Definition 3.4). All contexts that agree with Ξ, g′ and close

n[x] must be of the form C1[(x : g → g)C2[ ]Ξ,g
′
]Ξ

′ ,g′′
. Since there is no closed message

of type g → g, no reduction inside C2[n[x]]Ξ,g
′
will ever be possible. So any subterm of

C2[n[x]]Ξ,g
′
can be equivalently replaced by 0.

A general result is that all Ξ-ghost processes are ‘dead’, in the sense that they are

(Ξ, g)-reduction barbed congruent to the process 0.

Lemma 4.4. If Ξ � P :g and P is a Ξ-ghost process, then P ∼=Ξ,g 0.

Proof. Note first that the property of being Ξ-ghost is invariant under structural

equivalence. Take the relation RΞ,g defined by

P RΞ,g 0 if P is Ξ-ghost ,

and let �Ξ,g denote the least equivalence relation induced by the closure of RΞ,g under

context formation and structural equivalence. We will show that �Ξ,g when restricted to

closed processes is barb-preserving and reduction-closed.

By definition, a Ξ-ghost process P contains at least one Ξ-ghost variable – let it be x,

and let x :W ∈ Ξ where x is Ξ-ghost. Hence all contexts that agree with Ξ and g and

close P must be of the form

C1[(x :W )C2[ ]Ξ,g]Ξ
′ ,g′
.

If C1[(x :W )C2[P ]Ξ,g]Ξ
′ ,g′ ↓Ξ′′ ,g′′

n holds, then C1[(x :W )C2[0]Ξ,g]Ξ
′ ,g′ ↓Ξ′′ ,g′′

n also holds, and vice

versa, as can be verified immediately.

To prove reduction closure, assume Ξ0 � C1[(x :W )C2[P ]Ξ,g]Ξ
′ ,g′

: g0. We prove that

if C1[(x :W )C2[P ]Ξ,g]Ξ
′ ,g′ → R, then C1[(x :W )C2[0]Ξ,g]Ξ

′ ,g′ → R′ for some R′ such that

R �Ξ0 ,g0 R′.
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First note that since �Ξ,g is closed under structural equivalence, we can ignore the rule

(R-≡) and can assume that the → reduction step has been obtained by one of the basic

reduction rules (R-in), (R-out), (R-to) or (R-comm) combined with the structural rules

other than (R-≡). Note also that (x :W )C2[P ]Ξ,g is either disjoint from the reduced redex

or is a proper subterm of it.

Now there are only two possible cases:

1 The reduction has been obtained by (R-in), (R-out), (R-to) or (R-comm) without

affecting C2[P ]Ξ,g . In this case we have R = C ′
1[(x :W )C2[P ]Ξ,g]Ξ

′ ,g′
. Hence

C1[(x :W ) C2[0]Ξ,g]Ξ
′ ,g′ → C ′

1[(x :W ) C2[0]Ξ,g]Ξ
′ ,g′ �Ξ0 ,g0R ,

and we are done.

2 The reduction is obtained by an application of rule (R-comm) involving an input

variable that occurs in C2[P ]Ξ,g . Note that it is not possible that the communication

is performed using x, since we should have

C1[(x :W ) C2[P ]Ξ,g]Ξ
′ ,g′

= C3[(x :W ) C2[P ]Ξ,g | < C > S]Ξ
′ ,g′

,

and this would imply Ξ′ � C :W for some closed capability C . But this is impossible

since W is Γ-ghost (where Ξ = Γ; ∆) by hypothesis, so it is Γ′-ghost (where Ξ′ =

Γ′; ∆′) by Proposition 3.5. So we have R = C ′
1[(x : W ) C ′

2[P {y := M}]Ξ,g]Ξ′ ,g′
where

y 	= x and C ′
2[ ]Ξ,g = C2[ ]Ξ,g{y := M}. Obviously, P {y := M} is Ξ-ghost also. On the

other hand, with the null process we have

C1[(x :W )C2[0]Ξ,g]Ξ
′ ,g′ → C ′

1[(x :W )C ′
2[0]Ξ,g]Ξ

′ ,g′
,

and we are done.

As usual, in order to study reduction barbed congruences, we introduce a labelled

transition system (LTS). Our labelled transitions have the form

P
α

−−→ Ξ,g O

where:

— P is a closed process;

— the judgment Ξ � P :g holds;

— the label α encodes the transition of the process;

— the outcome O can be either a concretion, that is, a partial derivative, which needs a

contribution from the surrounding context to be completed, or a process.

Figure 6 defines labels and concretions. In (νp̃ :g)〈〈P 〉〉Q the process P represents the

moving part and the process Q represents the rest of the system not affected by the

movement. In (νp̃ :g)〈〈M〉〉P , the message M represents the information transmitted and

the process P represents the remaining system not affected by the output. In both cases

p̃ :g is the set of the shared private names.
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Fig. 6. Labels, concretions and outcomes.

Fig. 7. Structural congruence for concretions.

Fig. 8. Commitments: visible transitions.

Figures 8, 9 and 10 define the LTS, where AN(α) (AN(P )) is the set of free ambient names

that occur in α (P ). Following a common practice, we omit the symmetric counterparts

of the rules dealing with the parallel operator.

To avoid having to write tedious side conditions in transition rules, we decree that a

transition P
α

−−→ Ξ,g O is defined only for processes P such that Ξ � P :g.

We will also use the following standard conventions:

— If O is the concretion (νp̃ :g)〈〈P 〉〉Q and AN(R) ∩ p̃ = �, then

O |R = (νp̃ :g)〈〈P 〉〉(Q |R).
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Fig. 9. Commitments: τ transitions.

Fig. 10. Commitments: structural transitions.

— If O is the concretion (νp̃ :g)〈〈M〉〉P and AN(R) ∩ p̃ = �, then

O |R = (νp̃ :g)〈〈M〉〉(P |R).

All rules are quite standard – see Levi and Sangiorgi (2003), Merro and Hennessy (2002)

and Bugliesi et al. (2005). Note that rule (τ-Exchange) allows the communication of bound

names. Note also that the assumption that processes are well typed in Ξ has implicit effects

on the possible transitions. For instance, in the rule (In-Out), the fact that P has type g′

with respect to Ξ implies that n :g′′, g′ :G ∈ Ξ for some g′′, G such that g′′ ∈ C (G), since

otherwise P could not be typed, and then the transition would not be possible either.

Figure 7 extends the structural congruence to concretions in the standard way. We

identify concretions up to α-renaming of bound variables and bound names.

We start with a lemma that relates the structure of processes to the labels of visible

transitions.
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Lemma 4.5.

1 If P
C

−−→ Ξ,g P
′ with C ∈ {in n, out n}, then we have P ≡ (νp̃ :g)(C.Q |R) and P ′ ≡

(νp̃ :g)(Q |R) for some p̃, g̃, Q and R such that n 	∈ p̃.

2 If P
to n

−−→ Ξ,g O, then we have P ≡ (νp̃ :g)(to n.Q |R) and O ≡ (νp̃ :g)〈〈Q〉〉R for some p̃,

g̃, Q and R such that n 	∈ p̃.

3 If P
[C]

−−→ Ξ,g O with C ∈ {in n, out n}, then we have P ≡ (νp̃ :g)(m[C.Q |R] | S) and

O ≡ (νp̃ :g)〈〈m[Q |R]〉〉S for some p̃, g̃, m, Q, R and S such that n 	∈ p̃.

4 If P
[to n]

−−−→ Ξ,g O, then P ≡ (νp̃ :g)(m[to n.Q |R] | S) and O ≡ (νp̃ :g)〈〈Q〉〉(m[R] | S) for

some p̃, g̃, m, Q, R and S such that n 	∈ p̃.

5 If P
C

−−→ Ξ,g O with C ∈ {in n, to n}, then we have P ≡ (νp̃ :g)(n[Q] |R) and O ≡
(νp̃ :g)〈〈Q〉〉R for some p̃, g̃, Q, and R such that n 	∈ p̃.

6 If P
〈M〉

−−→ Ξ,g P
′, then we have

Ξ � M :W

P ≡ (νp̃ :g)((x :W )Q |R)

P ′ ≡ (νp̃ :g)(Q{x := M} |R)

for some p̃, g̃, x, W , Q and R such that p̃ ∩ AN(M) = �.

7 If P
〈−〉

−−→ Ξ,g O, then P ≡ (νp̃ :g)(〈M〉Q |R) and O ≡ (νp̃ :g)〈〈M〉〉(Q |R) for some p̃, g̃,

M, Q and R.

Proof. The proof by induction on the transition rules is quite standard. We only note

that if P
α

−−→ Ξ,g O by rule (Repl), we have

P ≡ ! π . Q ≡ π . Q |P
O ≡ O′ |P

π .Q
α

−−→ Ξ,g O
′

for some π, Q, and O′. Note that this implies that α has one of the following forms: in n,

out n, to n, 〈M〉, 〈−〉.

The next lemma shows that structurally congruent processes have the same labelled

transitions.

Lemma 4.6. If P
α

−−→ Ξ,g O and P ≡ Q, there exists an O′ such that Q
α

−−→ Ξ,g O′ and

O ≡ O′.

Proof. We prove the two statements simultaneously by induction on the derivation of

P ≡ Q:

1 If P
α

−−→ Ξ,g O and P ≡ Q, there exists an O′ such that Q
α

−−→ Ξ,g O
′ and O ≡ O′.

2 If P
α

−−→ Ξ,g O and Q ≡ P , there exists an O′ such that Q
α

−−→ Ξ,g O
′ and O ≡ O′.

In this way we automatically prove the base case of the symmetry law. The proofs of

the many other base cases are all standard, so we just consider one subcase of point

(1), the other cases being analogous. Let P be (νn :g)(R | S), and Q be (νn :g)R | S , and
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n 	∈ AN(S). Then the labelled transition must have been derived using rule (res). Let us

further consider the subcase in which α = τ and Ξ′ = Ξ, n :g and

R | S
τ

−−→ Ξ′ ,g (νp̃ :g, q̃ :g′)(m[R1 | S1] |R2 | S2)

follows from an application of rule (τ-To) to

R
[to m]

−−−→ Ξ′ ,g (νp̃ :g)〈〈R1〉〉R2

and

S
to m

−−→ Ξ′ ,g (νq̃ :g′)〈〈S1〉〉S2

where

p̃ ∩ q̃ =AN(R) ∩ {q̃} = AN(S) ∩ {p̃} = � .

Note that S
to m

−−→ Ξ′ ,g implies m ∈ AN(S) by Lemma 4.5(5), so m 	= n. By applying the

rule (res) to R
[to m]

−−−→ Ξ′ ,g (νp̃ :g)〈〈R1〉〉R2, we get

(νn :g)R
[to m]

−−−→ Ξ,g (νn :g)(νp̃ :g)〈〈R1〉〉R2 .

Hence, as n 	∈ AN(S), we can conclude by rule (τ-To) that

(νn :g)R | S
τ

−−→ Ξ,g (νn :g)(νp̃ :g, q̃ :g′)(m[R1 | S1] |R2 | S2) ,

where the term on the right-hand side of the arrow is, with reference to 1 and 2, an O′

coinciding with O.

The induction step is trivial.

Using the previous lemmas, we can check that labelled transitions agree with reductions

when restricted to well-typed processes in the current environment.

Theorem 4.7.

1 If P
τ

−−→ Ξ,g Q, then P → Q.

2 If P → Q and Ξ � P :g for some g, then P
τ

−−→ Ξ,g Q
′ for some Q′ ≡ Q.

Proof.

(1) We use induction on
τ

−−→ Ξ,g . The basic cases are the τ transitions in Figure 9.

We consider the rule (τ-To). In this case P is R | S , and

R
[to n]

−−−→ Ξ,g (νp̃ :g)〈〈R1〉〉R2

and

S
to n

−−→ Ξ,g (νq̃ :g′)〈〈S1〉〉S2

where

p̃ ∩ q̃ =AN(R) ∩ {q̃} = AN(S) ∩ {p̃} = �

and Q is

(νp̃ :g, q̃ :g′)(n[R1 | S1] |R2 | S2) .
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By Lemma 4.5(4 and 5), we have, for some m, T and U, that

R ≡ (νp̃ :g)(m[to n.R1 |T ] |U) ,

so R2 ≡ m[T ] |U and S ≡ (νq̃ :g′)(n[S1] | S2).

By rule (R-to), we get

P → (νp̃ :g, q̃ :g′)(n[R1 | S1] |m[T ] |U | S2) .

The induction case is trivial.

(2) We use induction on → . The only interesting case is rule (R-≡):

P ≡ P ′, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ .

By induction, P → Q implies P
τ

−−→ Ξ,g Q
′′ for some Q′′ ≡ Q. By Lemma 4.6, there

is Q′′′ such that P ′ τ
−−→ Ξ,g Q

′′′ and Q′′′ ≡ Q′′≡ Q≡ Q′, and this concludes the proof.

By comparing the definition of observability with rule (Co-In-To) one can easily conclude

that a name n is observable if and only if at least one of the two actions in n or to n can

be performed.

Proposition 4.8. P ↓Ξ,g
n if and only if P

α
−−→ Ξ,g (νm̃ :g)〈〈Q〉〉R where α ∈ {in n, to n} for

some Q,R.

In order to get a labelled transition comparable with our reduction barbed congruence,

we follow Merro and Hennessy (2002) and Bugliesi et al. (2005) in defining higher-order

transitions that allow us to get rid of the transitions whose outcome is a concretion rather

than a process (see Figure 11). In these transitions we use labels of the form α;Q or

α;Q;R, and thus transitions of the form

P
α;Q

−−→ Ξ,g P
′ or P

α;Q;R
−−−→ Ξ,g P

′

where the processes Q, R (which are required to be well typed from Ξ with the proper

group type) represent the contribution needed from the context in order to build from P

a well-formed term in which action α can fire.

We decree that a transition P
α;Q

−−→ Ξ,g P
′ or P

α;Q;R
−−−→ Ξ,g P

′ is defined only for pro-

cesses P such that Ξ � P :g. It is easy to see that this implies Ξ � P ′ :g′, where g′ = g for

all rules but (HO To) and (HO Out), while g′ is in general different from g in the case of

these two rules.

We use Λ to denote the set of all the first-order labels occurring in the rules shown in

Figure 8 and whose outcome is a process, plus τ, plus the higher-order labels occurring

in the transitions in Figure 11. Therefore, when we write

P
λ

−−→ Ξ,g Q ,

we mean that this is either a first-order transition in Figure 8 whose outcome is a process,

or a τ-transition in Figure 9, or a structural transition in Figure 10 applied to a first-order

transition, or a higher-order transition in Figure 11.
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Fig. 11. Commitments: higher-order transitions.

With λ ∈ Λ we decree that:

(i) =⇒Ξ,g denotes
τ

−−→ ∗
Ξ,g;

(ii)
λ

=⇒Ξ,g denotes =⇒Ξ,g

λ
−−→ Ξ,g =⇒Ξ,g′ for some g′;

(iii)
λ̂

=⇒Ξ,g denotes =⇒Ξ,g if λ = τ and
λ

=⇒Ξ,g otherwise.

Note that in point (ii), g differs from g′ only when λ is of the form to n;Q1;m[Q2] or

[out n];Q.

Limiting labelled transitions to be from processes to processes means the standard

definition of labelled bisimulation adapts smoothly to our calculus.

Definition 4.9 (Labelled bisimilarity with respect to environments).

1 A symmetric (Ξ, g)-relation RΞ,g over closed processes is a (Ξ, g)-labelled bisimulation

if P RΞ,g Q and P
λ−→Ξ′ ,g P

′, for some Ξ′ ⊇ Ξ and some P ′ such that Ξ′ � P ′ :g′, imply

that there exists Q′ such that Q
λ̂

=⇒Ξ′ ,g Q
′ and Ξ′ � Q′ :g′ and P ′ RΞ,g′

Q′.

2 Two closed processes P and Q are (Ξ, g)-labelled bisimilar, written P ≈Ξ,g Q, if P RΞ,g Q

for some (Ξ, g)-labelled bisimulation.

Note that the possibility of extending the environments is crucial in the previous definition

since otherwise we would get, for example, (x :g) ≈�;�,g 0.
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It is easy to verify that ≡ is a (Ξ, g)-labelled bisimulation on closed processes typable

with g from Ξ.

Lemma 4.10.

1 If P ≡ Q and P
λ−→Ξ,g P

′, then Q
λ−→Ξ,g Q

′ for some Q′ ≡ P ′.

2 Ξ � P :g and P ≡ Q imply P ≈Ξ,g Q.

Proof.

(1) When λ is first order, this is Lemma 4.6. If λ is higher order, all the proofs are similar.

Take, for example, λ = to n;R1;m[R2]. In this case, P
λ−→Ξ,g P

′ implies

P
to n

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2

and

P ′ ≡ (νp̃ :g)(n[P1 |R1] |m[P2 |R2]) .

By Lemmas 4.5(2) and 4.6, we get

Q
to n

−−→ Ξ,g (νq̃ :g′)〈〈Q1〉〉Q2

and

(νp̃ :g)〈〈P1〉〉P2 ≡ (νq̃ :g′)〈〈Q1〉〉Q2 .

Then by rule (HO To), we get

Q
λ−→Ξ,g (νq̃ :g′)(n[Q1 |R1] |m[Q2 |R2]) .

(2) This part follows from (1).

In order to extend bisimilarity to open processes, we need to consider Ξ-ghost variables.

Lemma 4.4 proves that all Ξ-ghost processes are (Ξ, g)-reduction barbed congruent (for a

suitable g) to the 0 process. This is also substantiated by the absence of transitions from

processes that are abstractions with respect to ghost variables, as proved in the following

lemma.

Lemma 4.11. If x is Ξ-ghost, Ξ = Ξ′, x :W , and Ξ � P :g with FV (P ) ⊆ {x}, then there

is no λ such that (x :W )P
λ−→Ξ,g .

Proof. By inspection of the transition rules of Figures 8, 9, 10 and 11, the only possible

transitions would have label 〈C〉 for some closed capability C such that Ξ′ � C :W . But,

by the definition of a Ξ-ghost variable, no such C can exist.

Definition 4.12 (Full bisimilarity with respect to environments and groups). Two processes

P and Q such that Ξ � P : g and Ξ � Q : g are fully (Ξ, g)-bisimilar, written P ≈Ξ,g
c Q, if

one of the following conditions holds:

1 Both P and Q are Ξ-ghost.

2 Both P and Q are not Ξ-ghost and s(P ) ≈Ξ′ ,g s(Q) for every complete environment Ξ′

such that Ξ′ ⊇ Ξ and every Ξ′-closing substitution s.
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3 P is Ξ-ghost, Q is not Ξ-ghost and s(Q) ≈Ξ,g 0 for every complete environment Ξ′ such

that Ξ′ ⊇ Ξ and every Ξ′-closing substitution s.

4 Q is Ξ-ghost, P is not Ξ-ghost and s(P ) ≈Ξ,g 0 for every complete environment Ξ′ such

that Ξ′ ⊇ Ξ and every Ξ′-closing substitution s.

Since Ξ′ ⊇ Ξ implies that more variables can be ghost and that we quantify over fewer

substitutions, we have the following proposition.

Proposition 4.13. If P ≈Ξ,g
c Q and Ξ′ ⊇ Ξ, then P ≈Ξ′ ,g

c Q.

The converse is false. For example, take Ξ = �; ∆ and Ξ′ = {g :gr({g′},�,�, shh)}; ∆,

where ∆ = {x : g → g, n : g}. Then n[x] 	≈Ξ,g′

c 0 but n[x] ≈Ξ′ ,g′

c 0, as x is not Ξ-ghost but

Ξ′-ghost.

As an immediate consequence of Lemma 4.11, we have that if x is Ξ, x :W -ghost, then

(x :W )P is fully bisimilar to 0 for all P such that (x :W )P is a well-formed process.

Corollary 4.14. If x is Ξ, x :W -ghost and Ξ, x :W � P :g, then (x :W )P ≈Ξ,g
c 0.

It is easy to verify that full bisimilarity includes structural equivalence.

Lemma 4.15. Ξ � P :g and P ≡ Q imply P ≈Ξ,g
c Q.

Proof. The statement follows by Lemma 4.10(2), Definition 4.12 and the fact that the

property of being Ξ-ghost is preserved by ≡.

The following lemma will be used to prove that ≈Ξ,g
c is closed under contexts.

Lemma 4.16.

1 If P
λ−→Ξ,g P

′ and λ 	∈ {to n;Q1;m[Q2], [out n];Q}, then P |R λ−→Ξ,g P
′ |R for all

processes R such that Ξ � R :g.

2 If P
λ̂

=⇒Ξ,g P
′ and λ 	∈ {to n;Q1;m[Q2], [out n];Q}, then P |R λ̂

=⇒Ξ,g P
′ |R for all pro-

cesses R such that Ξ � R :g.

3 If P
to n;Q1;m[R |Q2]

−−−−−−−−−−→ Ξ,g P
′, then P |R

to n;Q1;m[Q2]−−−−−−−−→ Ξ,g P
′ for all processes R such that

Ξ � R :g.

4 If P
[out n];Q |R

−−−−−−−→ Ξ,g P
′, then P |R

[out n];Q
−−−−−−→ Ξ,g P

′ for all processes R such that Ξ � R :g.

5 If P
〈−〉;Q

−−−→ Ξ,g P
′ and R

〈M〉
−→Ξ,g (νr̃ :g)(Q{x := M} |R′), then P |R

τ
−−→ Ξ,g Q

′ for some

Q′ ≡ (νr̃ :g)(P ′ |R′).

6 If we have P
[C];Q

−−−→ Ξ,g P
′ and R

C−→Ξ,g (νr̃ :g)〈〈Q〉〉R′, and C ∈ {in n, to n}, then we have

P |R
τ

−−→ Ξ,g Q
′ for some Q′ ≡ (νr̃ :g)(P ′ |R′).

7 If we have P
C;Q

−−→ Ξ,g P
′ and R

[C]
−−→ Ξ,g (νr̃ :g)〈〈Q〉〉R′, and C ∈ {in n, to n}, then we

have P |R
τ

−−→ Ξ,g Q
′ for some Q′ ≡ (νr̃ :g)(P ′ |R′).

8 If P
λ−→Ξ,g Q and n 	∈ AN(λ), then (νn :g′)P

λ−→Ξ′ ,g (νn :g′)Q, where Ξ = Ξ′ ∪ {n :g′}.

Proof. In all cases, when the labels are higher order we derive the transitions of

processes and their forms by inspection of the transition rules.
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(1) If λ is a first-order label, the statement follows from rule (Par). Otherwise, λ = α;Q

and either

P
α−→Ξ,g (νp̃ :g)〈〈M〉〉P2 and P ′ ≡ (νp̃ :g)(P2 |Q{x := M})

or

P
α−→Ξ,g (νp̃ :g)〈〈P1〉〉P2 and P ′ ≡ (νp̃ :g)(n[P1 |Q] |P2).

In the first case we have P |R α−→Ξ,g (νp̃ :g)〈〈M〉〉P2 |R by rule (Par), so we conclude

P |R λ−→Ξ,g (νp̃ :g)(P2 |Q{x := M}) |R by rule (HO Output). And similarly in the

second case.

(2) We have that P
λ̂

=⇒Ξ,g P
′ means either

P=⇒Ξ,g P
′ if λ = τ

or

P=⇒Ξ,g Q
λ−→Ξ,g Q

′=⇒Ξ,g′ P ′ for some g′, Q, Q′.

In the first case, (2) follows from rule (Par); and in the second case, it follows from

rule (Par) and (1).

(3) We have P
to n

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2 and P ′ ≡ (νp̃ :g)(n[P1 |Q1] |m[P2 |R |Q2]). By rule

(Par), we have P |R
to n

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2 |R, so we conclude

P |R
to n;Q1;m[Q2]−−−−−−−−→ Ξ,g (νp̃ :g)(n[P1 |Q1] |m[P2 |R |Q2])

by rule (HO To).

(4) The proof of this is similar to the proof of (3).

(5) The proof of this is similar to the proof of (6).

(6) We have P
[C]

−→Ξ,g (νp̃ :g′)〈〈P1〉〉P2 and P ′ ≡ (νp̃ :g′)(n[P1 |Q] |P2), so

P |R τ−→Ξ,g (νp̃ :g, r̃ :g′)(n[P1 |Q] |P2 |R′)

by rule (τ-Enter) or (τ-To).

(7) The proof of this is similar to the proof of (6).

(8) The case of λ first-order is immediate by rule (Res). For higher-order labels we

consider the case λ = to q;Q1;m[Q2], since the other cases are similar. In this case

P
to q

−−→ Ξ,g (νp̃ :g′)〈〈P1〉〉P2

and

Q ≡ (νp̃ :g′)(q[P1 |Q1] |m[P2 |Q2]).

By rule (Res), we get

(νn :g)P
to q

−−→ Ξ′ ,g (νn :g)(νp̃ :g′)〈〈P1〉〉P2 ,

so we conclude

(νn :g)P
to q;Q1;m[Q2]−−−−−−−−→ Ξ′ ,g (νn :g)(νp̃ :g′)(q[P1 |Q1] |m[P2 |Q2])

by rule (HO To).
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Following Merro and Hennessy (2002) and Bugliesi et al. (2005), we can show the

closure under contexts of ≈Ξ,g
c .

Theorem 4.17. Full bisimilarity is contextual.

Proof. The proof is organised in the following three steps:

Step A Full bisimilarity is preserved by input prefixes.

Step B Full bisimilarity is preserved by capability and output prefixes and by parallel

composition, ambient construction and restriction.

Step C Full bisimilarity is preserved by replication.

A For input prefixes, we show that if P ≈Ξ,g
c Q and either Ξ = Ξ′, x :W or x 	∈ Ξ = Ξ′,

then (x :W )P ≈Ξ′ ,g
c (x :W )Q. We distinguish two cases depending on whether P and

Q are Ξ-ghost or not.

If P and Q are both non-Ξ-ghost and we assume P ≈Ξ,g
c Q, then, by definition,

s(P ) ≈Ξ′′ ,g s(Q) for any Ξ′′ ⊇ Ξ and any complete Ξ′′-closing substitution s. This

implies s(P {x := M}) ≈Ξ′′ ,g s(Q{x := M}) for any complete Ξ′′ ⊇ Ξ and any Ξ′′-

closing substitution s and any x,M such that either x :W ∈ Ξ or x 	∈ Ξ, and in both

cases Ξ′′ � M :W for some W . We conclude that (x :W )P ≈Ξ′ ,g
c (x :W )Q.

Note that if a process R is Ξ-ghost and Ξ � R : g, then either (x :W )R is Ξ-ghost or

x is a Ξ-ghost variable, so, by Corollary 4.14, we have (x :W )R ≈Ξ′ ,g 0. We conclude

that if one between P and Q is Ξ-ghost and P ≈Ξ,g
c Q, then (x :W )P ≈Ξ′ ,g

c (x :W )Q.

B Since we know that ≈Ξ,g
c is preserved by input prefixes, we can consider ≈Ξ,g . We

define �	Ξ,g as the contextual closure of ≈Ξ,g with respect to capability and output

prefixes and by parallel composition, ambient construction and restriction, that is, as

the least symmetric relation such that:

1 ≈Ξ,g ⊆�	Ξ,g .

2 P �	Ξ,g Q and Ξ � C :g→ g′ imply C . P �	Ξ,g′
C .Q.

3 P �	Ξ,g Q and Ξ � M :W and Ξ � g :gr(S ,C ,E ,W ) imply 〈M〉P �	Ξ,g 〈M〉Q.

4 P �	Ξ,g Q and Ξ � R :g imply P |R �	Ξ,g Q |R and R |P �	Ξ,g R |Q.

5 P �	Ξ,g Q and n :g ∈ Ξ and g :G ∈ Ξ and g′ ∈ S (G) imply n[P ] �	Ξ,g′
n[Q].

6 P �	Ξ,g Q and Ξ = Γ; ∆, n :g′ imply (νn :g′)P �	Γ;∆,g (νn :g′)Q.

Adapting the definition in Sangiorgi and Milner (1992), we say that �	Ξ,g is a (Ξ, g)-

labelled bisimulation up to ≡ if it is symmetric and P �	Ξ,g Q and P
λ−→Ξ′ ,g P

′, for some

Ξ′ ⊇ Ξ and some P ′, g′ such that Ξ′ � P ′ :g′, imply that there exist P ′′, Q′, Q′′ such that

Q
λ̂

=⇒Ξ′ ,g Q
′ and Ξ′ � Q′ : g′ and P ′ ≡ P ′′ �	Ξ′ ,g′

Q′′ ≡ Q′. It is clearly enough to show

that �	Ξ,g is a (Ξ, g)-labelled bisimulation up to ≡, since this implies �	Ξ,g⊆≈Ξ,g , and

we conclude �	Ξ,g=≈Ξ,g , which proves that ≈Ξ,g (and thus ≈Ξ,g
c ) is preserved by the

listed process constructors. The proof is by induction on the definition of �	Ξ,g using

Lemma 4.16.

(1) This case follows by definition.
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(2) Note that if C . P
λ−→Ξ,g′ P ′, then either

λ ∈ {in n, out n} and P ′ ≡ P

or

λ = to n;R1;m[R2] and P ′ ≡ n[P |R1] |m[R2] .

Since we also have C .Q
C−→Ξ,g′ Q for C ∈ {in n, out n} and

to n . Q
to n;R1;m[R2]−−−−−−−−→ Ξ,g n[Q |R1] |m[R2] ,

we are done using the contextuality of �	.

(3) This proof is similar to and simpler than the proof of (2).

(4) For this proof we need to consider many different subcases:

– If P |R λ−→Ξ,g P |R′ because R
λ−→Ξ,g R

′ and λ 	∈ {to n; S1;m[S2], [out n]; S} the

proof follows trivially by Lemma 4.16(1) and the contextuality of �	.

– Let P |R λ−→Ξ,g P
′ |R because P

λ−→Ξ,g P
′ and

λ 	∈ {to n; S1;m[S2], [out n]; S} .

Then, by induction, we have Q
λ̂

=⇒Ξ,g Q
′ for some Q′ such that P ′ �	Ξ,g Q′. By

Lemma 4.16(2), we get Q |R λ̂
=⇒Ξ,g Q

′ |R, and thus P ′ |R �	Ξ,g Q′ |R.

– Let P |R
to n;S1;m[S2]−−−−−−−−→ Ξ,g R

′ because R
to n

−−→ Ξ,g (νp̃ :g)〈〈R1〉〉R2. Then

Ξ � P :g

Ξ = Γ; ∆, m :g, n :g′

Ξ � S1 :g′

Ξ � S2 :g

R′ ≡ (νp̃ :g)(n[R1 | S1] |m[P |R2 | S2]) .

By rule (Par), we have Q |R to n
=⇒Ξ,g (νp̃ :g)〈〈R1〉〉Q |R2, so by rule (HO To), we

get

Q |R
to n;S1;m[S2]

=⇒ Ξ,g (νp̃ :g)(n[R1 | S1] |m[Q |R2 | S2]) ,

and, by the contextuality of �	, we are done.

The proof for P |R
[out n];S

−−−−−→ Ξ,g R
′ because R

[out n]
−−−−→ Ξ,g (νp̃ :g)〈〈R1〉〉R2 is

similar.

– Let P |R
to n;S1;m[S2]−−−−−−−−→ Ξ,g P

′ because P
to n

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2. Then

Ξ � R :g

Ξ = Γ; ∆, m :g, n :g′

Ξ � S1 :g′

Ξ � S2 :g

P ′ ≡ (νp̃ :g)(n[P1 | S1] |m[P2 |R | S2]) .
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By rule (HO To), we get P
to n;S1;m[R | S2]

−−−−−−−−−−→ Ξ,g P
′. Then, by induction,

Q
to n;S1;m[R | S2]

=⇒ Ξ,g Q
′

for some Q′ such that P ′ �	Ξ,g′′
Q′ for some g′′. By Lemma 4.16(3), we have

Q |R
to n;S1;m[S2]

=⇒ Ξ,g Q
′, so we are done.

The proof for P |R
[out n];S

−−−−−→ Ξ,g P
′ because P

[out n]
−−−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2 is

similar.

– Let P |R τ−→Ξ,g P
′ because

P
[C]

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2

and

R
C

−−→ Ξ,g (νr̃ :g′)〈〈R1〉〉R2

and C ∈ {in n, to n}. Then P ′ ≡ (νp̃ :g, r̃ :g′)(n[P1 |R1] |P2 |R2).

By rule (HO [In]) or (HO [To]), we get P
[C];R1−−−−→ Ξ,g (νp̃ :g)(n[P1 |R1] |P2).

Then, by induction, Q
[C];R1
=⇒ Ξ,g Q

′ for some Q′ such that

(νp̃ :g)(n[P1 |R1] |P2) �	
Ξ,g Q′ .

By Lemma 4.16(6), we have Q |R=⇒Ξ,g Q
′′ for some Q′′ ≡ (νr̃ :g′)(Q′ |R2), and

this, by the contextuality of �	, concludes the proof.

The proof for P |R τ−→Ξ,g P
′ because

P
〈M〉

−−→ Ξ,g P1

and

R
〈−〉

−−→ Ξ,g (ν q̃ :g′)〈〈M〉〉R1

is similar.

– Let P |R τ−→Ξ,g P
′ because

P
C

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2

and

R
[C]

−−→ Ξ,g (νr̃ :g′)〈〈R1〉〉R2

and C ∈ {in n, to n}. Then P ′ ≡ (νp̃ :g, r̃ :g′)(n[P1 |R1] |P2 |R2).

By rule (HO Co-In) or (HO Co-To), we get

P
C;R1−−−→ Ξ,g (νp̃ :g)(n[P1 |R1] |P2) .

Then, by induction, Q
C;R1
=⇒Ξ,g Q

′ for some Q′ such that

(νp̃ :g)(n[P1 |R1] |P2) �	
Ξ,g Q′ .

By Lemma 4.16(7), we have Q |R=⇒Ξ,g (νr̃ :g′)(Q′ |R2) and this, by the contex-

tuality of �	, concludes the proof.
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The proof for P |R τ−→Ξ,g P
′ because

P
〈−〉

−−→ Ξ,g ;P1 and R
〈M〉

−−→ Ξ,g (ν q̃ :g′)〈〈M〉〉R1

is similar.

(5) This proof also requires us to examine different cases:

– The case m[P ]
τ−→Ξ,g m[P ′] because P

τ−→Ξ,g′ P ′ is trivial.

– Let m[P ]
[in n];R

−−−−−→ Ξ,g P
′ because P

in n−→Ξ,g′ P1, Ξ = Γ; ∆, n :g′ and Ξ � R :g′.

Then P ′ ≡ n[m[P1] |R]. By induction,

Q=⇒Ξ,g′ S
in n−→Ξ,g′ V=⇒Ξ,g′ Q1

and P1 �	Ξ,g′
Q1 for some S, V , Q1. Now, m[Q]=⇒Ξ,g m[S] by rule (τ-Amb).

By rules (In) and (HO [In]), we have m[S]
[in n];R

−−−−−→ Ξ,g n[m[V ] |R]. Then, by

rules (τ-Amb) and (Par), we have n[m[V ] |R]=⇒Ξ,g n[m[Q1] |R]. This concludes

the proof, owing to the contextuality of �	.

– Let m[P ]
[to n];R

−−−−→ Ξ,g P
′ because

P
to n−→Ξ,g′ (νp̃ :g)〈〈P1〉〉P2

and Ξ = Γ; ∆, n :g′ and Ξ � R :g′. Then P ′ ≡ (νp̃ :g)(n[P1 |R] |m[P2]). By rule

(HO To),

P
to n;R;m[0]

−→ Ξ,g′ (νp̃ :g)(n[P1 |R] |m[P2 | 0]) ≡ P ′ .

By induction,

Q=⇒Ξ,g′ S
to n;R;m[0]

−→ Ξ,g′ V=⇒Ξ,g′′ Q′

and P ′ �	Ξ,g′′
Q′ for some g′′, S , V , Q′. Now, we have m[Q]=⇒Ξ,g m[S] by rule (τ-

Amb). If S
to n;R;m[0]

−→ Ξ,g′ V , then

S
to n−→Ξ,g′ (νs̃ :g′′)〈〈S1〉〉S2

and

V ≡ (νs̃ :g′′)(n[S1 |R] |m[S2]) .

By rule (To), we have m[S]
[to n]
−→Ξ,g (νs̃ :g′′)〈〈S1〉〉m[S2] and by rule (HO [To]), we

have m[S]
[to n];R
−→ Ξ,g V , and this concludes the proof.

– Let m[P ]
α;R

−−→ Ξ,g P
′ because

P
α−→Ξ,g′ O1

α ∈ {in m, to m}

Ξ = Γ, g′′ :G; ∆, m :g′, n :g′′

g ∈ S (G)
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and

g′ ∈ C (G) if α = in m

g′ ∈ E (G) if α = to m

and Ξ � R :g′.

Then O1 ≡ 〈〈m[P ]〉〉0 and P ′ ≡ m[P |R]. By rule (Co-In-To), we get

m[Q]
α−→Ξ,g 〈〈m[Q]〉〉0 .

Then, using either (HO Co-In) or (HO Co-To), we get

m[Q]
α;R

−−→ Ξ,g m[Q |R] .

This concludes the proof by the contextuality of �	.

– Let m[P ]
τ−→Ξ,g P

′ because P
[out m]
−→ Ξ,g′ (νp̃ :g)〈〈P1〉〉P2.

Then P ′ ≡ (νp̃ :g)(P1 |m[P2]) and m 	∈ p̃. By rule (HO Out), we have

P
[out m];0

−→ Ξ,g′ (νp̃ :g)(P1 |m[P2 | 0]) ≡ P ′ .

By induction,

Q=⇒Ξ,g′ S
[out m];0

−→ Ξ,g′ V=⇒Ξ,g′′ Q′

and P ′ �	Ξ,g′′
Q′ for some g′′, S , V , Q′. Now, by rule (τ-Amb), we have that

m[Q]=⇒Ξ,g m[S]. If S
[out m];0

−→ Ξ,g′ V , then

S
[out m]
−→ Ξ,g′ (νs̃ :g′′)〈〈S1〉〉S2

and

V ≡ (νs̃ :g′′)(S1 |m[S2]).

By rule (τ-Exit), we have m[S]
τ−→Ξ,g V , and this concludes the proof.

(6) Again, we need to examine several cases.

Let

(νn :g′)P
to m;R1;q[R2]−−−−−−−−→ Ξ,g P

′

because

P
to m

−−→ Ξ′ ,g (νp̃ :g′′)〈〈P1〉〉P2

where Ξ′ = Ξ, n :g′.

Then P ′ ≡ (νn :g′)P ′′ and P
to m;R1;q[R2]−−−−−−−−→ Ξ′ ,g P

′′ where

P ′′ ≡ (νp̃ :g′′)(m[P1 |R1]|q[P2 |R2]) .

By induction,

Q=⇒Ξ′ ,g S
to m;R1;q[R2]−−−−−−−−→ Ξ′ ,g V=⇒Ξ′ ,g′′ Q′′

and P ′′ �	Ξ′ ,g′′
Q′′ for some g′′, S , V , Q′′.
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As n is bound, we can assume n 	∈ AN(to m;R1; q[R2]). By Lemma 4.16(8), we have

(νn :g)Q=⇒Ξ,g (νn :g)S
to m;R1;q[R2]−−−−−−−−→ Ξ,g (νn :g)V=⇒Ξ,g′′ (νn :g)Q′′ ,

and

(νn :g)Q′′ �	Ξ,g′′
(νn :g)P ′′ ≡ P ′

by the contextuality of �	.

The proof in the other cases is similar and simpler.

C Note first that the operator ! can only be applied to guarded processes. So we can

assume that both P and Q are guarded, and hence that they cannot do τ-transitions.

We consider the relation �̂	
Ξ,g

defined as �	Ξ,g plus a rule for replication.

1 ≈Ξ,g ⊆ �̂	
Ξ,g

.

2 P �̂	
Ξ,g

Q and Ξ � C :g→ g′ imply C . P �̂	
Ξ,g′

C .Q.

3 P �̂	
Ξ,g

Q, and Ξ � M :W and Ξ � g :gr(S ,C ,E ,W ) imply 〈M〉P �̂	
Ξ,g〈M〉Q.

4 P �̂	
Ξ,g

Q and Ξ � R :g imply P |R�̂	Ξ,g
Q |R and R |P �̂	

Ξ,g
R |P .

5 P �̂	
Ξ,g

Q, and n :g ∈ Ξ and g :G ∈ Ξ, and g′ ∈ S (G) imply n[P ]�̂	
Ξ,g′

n[Q].

6 P �̂	
Ξ,g

Q and Ξ = Γ; ∆, n :g′ imply (νn :g′)P �̂	
Γ;∆,g

(νn :g′)Q.

7 P ≈Ξ,g Q implies !P �̂	
Ξ,g

!Q, where P ,Q are prefixed processes.

We prove that

– If P
λ−→Ξ,g P

′ where λ 	= τ, then Q
λ

=⇒Ξ,g Q
′ and P ′ ≈Ξ,g �̂	

Ξ,g ≈Ξ,g Q′.

– If P
τ−→Ξ,g P

′, then Q=⇒Ξ,g Q
′ and P ′ ≡ �̂	

Ξ,g ≡ Q′.

– If Q
λ−→Ξ,g Q

′ where λ 	= τ, then P
λ

=⇒Ξ,g P
′ and Q′ ≈Ξ,g �̂	

Ξ,g ≈Ξ,g P ′.

– If Q
τ−→Ξ,g Q

′, then P=⇒Ξ,g P
′ and Q′ ≡ �̂	

Ξ,g ≡ P ′.

From the above and using Sangiorgi and Walker (2001, Exercise 2.4.64), we can

conclude that �̂	
Ξ,g

is a bisimilarity, and hence, �̂	
Ξ,g

=≈Ξ,g .

(1–6) The proofs for the first six parts of the definition, for both
λ−→Ξ,g and

τ−→Ξ,g ,

are exactly as in Step B, taking into account the fact that ≡ is included in ≈Ξ,g

for suitable Ξ, g by Lemma 4.10.

(7) Let !P
α−→Ξ,g P

′ because P
α−→Ξ,g P1 where α 	= τ is a first-order label.

Then P ′ ≡!P |P1. By definition, Q
α−→Ξ,g S=⇒Ξ,g Q1 and P1 ≈Ξ,g Q1 for some

S, Q1. By rules (Repl) and (Par), we have !Q
α−→Ξ,g !Q | S=⇒Ξ,g !Q |Q1. Finally,

note that !P |P1 ≈Ξ,g !P |Q1�̂	
Ξ,g

!Q |Q1 since in Step B we proved that ≈Ξ,g is

preserved by parallel composition. Indeed, this was the reason for separating

Steps B and C.

Otherwise, let !P
λ−→Ξ,g P

′ where λ is a higher-order label. We will only give the

proof for λ = to n;R1;m[R2], since the other cases are similar and simpler.

Let !P
to n;R1;m[R2]−−−−−−−−→ Ξ,g P

′ because P
to n

−−→ Ξ,g (νp̃ :g)〈〈P1〉〉P2.

Then P ′ = (νp̃ :g)(n[P1 |R1]|m[P2 | !P |R2]). By rule (HO To), we have

P
to n;R1;m[!Q |R2]

−−−−−−−−−−−→ Ξ,g P
′′
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where

P ′′ = (νp̃ :g)(n[P1 |R1]|m[P2 | !Q |R2]) .

Note that P ′�̂	
Ξ,g

P ′′ by the definition of �̂	
Ξ,g

. Since Q cannot do silent actions,

by induction,

Q
to n;R1;m[!Q |R2]

−−−−−−−−−−−→ Ξ,g Q
′=⇒Ξ,g′′ Q′′

for some g′′, Q′, Q′′ such that P ′′ ≈Ξ,g′′
Q′′. If Q

to n;R1;m[!Q |R2]−→ Ξ,g Q
′, then by

Lemma 4.16(3), we have

Q | !Q
to n;R1;m[R2]−−−−−−−−→ Ξ,g Q

′

and by Lemma 4.10(1), we have

!Q
to n;R1;m[R2]−−−−−−−−→ Ξ,g S

′

for some S ′ ≡ Q′, and S ′=⇒Ξ,g′′ T for some T ≡ Q′′, and we are done.

Full bisimilarity is sound but not complete with respect to the reduction barbed

congruence.

Theorem 4.18 (Soundness of full bisimilarity). If P ≈Ξ,g
c Q, then P ∼=Ξ,g Q.

Proof. By Theorem 4.17, it is enough to show that ≈Ξ,g
c is reduction-closed and barb-

preserving when restricted to closed processes. Take P , Q closed and assume P ≈Ξ,g Q.

If P → P ′, by Theorem 4.7(2), we have P
τ−→Ξ,g P

′′ for some P ′′ ≡ P ′. Since P ≈Ξ,g Q,

there exists Q′ such that Q=⇒Ξ,g Q
′ and P ′′ ≈Ξ,g Q′. Thus P ′ ≈Ξ,g Q′, since clearly ≈Ξ,g

up to ≡ coincides with ≈Ξ,g .

If P ↓n, then, using Proposition 4.8, and the rules (HO Co-In) and (HO Co-To), we

have P
C;R

−−→ Ξ,g S , where C ∈ {in n, to n}, for some R, S . Then, since P ≈Ξ,g Q, we know

that Q
C;R

==⇒ S ′ for some S ′ ≈Ξ,g S , from which Q⇓n, as desired.

The failure of completeness is due to the fact that contexts are insensitive to movements

of restricted ambients and to sending dead processes. For example, no context can

distinguish between the processes

(νn :g)(n[in m]) (νn :g)(n[out m]) (νn :g)(n[to m]) 0 ,

which are not fully bisimilar. We conjecture that we could obtain a complete labelled

transition system by refining the notion of bisimilarity so that it distinguishes be-

tween visible and invisible transitions along the lines of Merro and Zappa Nardelli

(2005).

We conclude this section by discussing some properties of processes and ambients in a

fixed environment; they will allow us to prove a few interesting algebraic laws.

In fact, we can use higher-order transitions to define some useful notions for ambients

and processes that have natural sufficient conditions in terms of type information. We

write P=⇒Ξ,g
in n−→Ξ,g O as an abbreviation for P=⇒Ξ,g Q

in n−→Ξ,g O for some Q.
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Definition 4.19. Let Ξ � P :g. We say that:

1 A process P is a (Ξ, g)-mover if P=⇒Ξ,g
in n−→Ξ,g P

′ or P=⇒Ξ,g
out n−→Ξ,g P

′ for some n, P ′.

2 A process P is a (Ξ, g)-sender if P=⇒Ξ,g
to n−→Ξ,g O for some n, O.

3 A process P is a (Ξ, g)-communicator if P=⇒Ξ,g

〈M〉
−→Ξ,g P

′ or P=⇒Ξ,g

〈−〉
−→Ξ,g O for some

M,P ′, O.

4 An ambient n is (Ξ, g)-mobile if n[P ]
[in m]
−→Ξ′ ,g O for some P , m, O and well-formed

Ξ′ ⊇ Ξ.

In point (4) we have chosen the action
[in m]
−→Ξ,g to characterise the mobility of ambients,

since one can easily see that if n[P ]
[out m]
−→ Ξ,g O for some process P and concretion O, then

n[P ′]
[in m]
−→Ξ,g O

′ for some process P ′ and concretion O′. The converse is not true, since

the conditions of the typing rule (Out) are more restrictive than those of the typing rule

(In). In point 4 we take Ξ′ ⊇ Ξ since we want ambient properties to be preserved when

ambients are included in contexts. Without that condition, an ambient could be moved,

for instance, by a parallel process. In fact, assume that Ξ contains n : g′, g′ : G with

C (G) = {g′′}, but no ambient of type g′′. Then there is no m such that n[P ]
[in m]
−→Ξ,g O; but

if we take n[ ] | (νm :g′′)m[to n . in m], we see that n[ ] can be moved inside m.

Types give necessary conditions for the process properties, as stated in the following

Lemma.

Lemma 4.20. Let Ξ � P :g and Ξ = Γ, g :G; ∆.

1 If P is a (Ξ, g)-mover, then C (G) 	= �.

2 If P is a (Ξ, g)-sender, then E (G) 	= �.

3 If P is a (Ξ, g)-communicator, then T (G) 	= shh.

Ambient mobility can be fully characterised by types.

Lemma 4.21. Let Ξ = Γ, g :G; ∆, n : g and g′ ∈ S (G). An ambient n is (Ξ, g′)-mobile if

and only if C (G) 	=�.

Proof. Assume n[P ]
[in m]
−→Ξ′ ,g′ O for some Ξ′ ⊇ Ξ. This implies P ≡ (νp̃ :g′′)(in m.Q |R)

for some p̃, g̃′′, Q, R by Lemma 4.5(3). By definition, Ξ′ � n[P ] :g′, so by Theorem 3.3(1)

and Lemma 3.1(9), we get Ξ′ � (νp̃ :g′′)(in m.Q |R) :g and g′ ∈ S (G).

We get Ξ′, p̃ :g′′ � in m.Q : g by Lemma 3.1(12 and 10), and this implies

Ξ′, p̃ :g′′ � in m :g→ g ,

and m : gm ∈ Ξ′ and gm ∈ C (G) by Lemma 3.1(6 and 2).

For the converse, take gm such that gm ∈ C (G) and define ∆′ = ∆ if m : gm ∈ ∆ for

some ambient m and ∆′ = ∆, m : gm otherwise, where m is fresh for ∆. We then get

n[in m.0]
[in m]
−→Ξ′ ,g′ 〈〈n[0]〉〉0, where Ξ′ = Γ, g :G; ∆′, n :g.
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Using the previous definitions, we can formulate a number of algebraic laws about

processes. Some of them will be used in the following section. A preliminary lemma will

be used in their proofs.

Lemma 4.22.

1 If P
α−→Ξ,g P

′, then P ≡ (νp̃ :g)(πS |R), and P ′ ≡ (νp̃ :g)(S |R) for some p̃, g̃, π, S , R, and,

for all R′ such that Ξ � (νp̃ :g)(πS |R′) :g, we get

(νp̃ :g)(πS |R′)
α−→Ξ,g (νp̃ :g)(πS |R′) .

2 If P
〈−〉;Q
−→Ξ,g P

′, then P ≡ (νp̃ :g)(〈M〉S |R), and P ′ ≡ (νp̃ :g)(S |Q{x := M} |R) for some

p̃, g̃,M, S, R, and, for all R′ such that Ξ � (νp̃ :g)(〈M〉S |R′) :g, we get

(νp̃ :g)(〈M〉S |R′)
〈−〉;Q
−→Ξ,g (νp̃ :g)(S |Q{x := M} |R′) .

3 If P
to n;Q1;m[Q2]−→ Ξ,g P

′, then P ≡ (νp̃ :g)(to n.S |R), and

P ′ ≡ (νp̃ :g)(n[S |Q1] |m[R |Q2])

for some p̃, g̃, S , R, and, for all R′ such that Ξ � (νp̃ :g)(to n.S |R′) :g, we get

(νp̃ :g)(to n.S |R′)
to n;Q1;m[Q2]−→ Ξ,g (νp̃ :g)(n[S |Q1] |m[R′ |Q2]) .

4 If P
[in n];Q
−→ Ξ,g P

′, then P ≡ (νp̃ :g)(m[in n.S1 | S2] |R), and

P ′ ≡ (νp̃ :g)(n[m[S1 | S2] |Q] |R)

for some p̃, g̃, m, S1, S2, R, and, for all S ′
2, R

′ such that

Ξ � (νp̃ :g)(m[in n.S1 | S ′
2] |R′) :g ,

we get

(νp̃ :g)(m[in n.S1 | S ′
2] |R′)

[in n];Q
−→ Ξ,g (νp̃ :g)(n[m[S1 | S ′

2] |Q] |R′) .

5 If P
[to n];Q
−→ Ξ,g P

′, then P ≡ (νp̃ :g)(m[to n.S1 | S2] |R), and

P ′ ≡ (νp̃ :g)(n[S1 |Q] |m[S2] |R)

for some p̃, g̃, m, S1, S2, R, and, for all S ′
2, R

′ such that

Ξ � (νp̃ :g)(m[to n.S1 | S ′
2] |R′) :g ,

we get

(νp̃ :g)(m[to n.S1 | S ′
2] |R′)

[to n];Q
−→ Ξ,g (νp̃ :g)(n[S1 |Q] |m[S ′

2] |R′) .

6 If P
α;Q

−→Ξ,g P
′ with α ∈ {in n, to n}, then P ≡ (νp̃ :g)(n[S] |R), and

P ′ ≡ (νp̃ :g)(n[S |Q] |R)
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for some p̃, g̃, S , R, and for all S ′, R′ such that Ξ � (νp̃ :g)(n[S ′] |R′) :g, we get

(νp̃ :g)(n[S ′] |R′)
α;Q

−→Ξ,g (νp̃ :g)(n[S ′ |Q] |R′) .

7 If P
[out n];Q

−→ Ξ,g P
′, then P ≡ (νp̃ :g)(m[out n.S1 | S2] |R), and

P ′ ≡ (νp̃ :g)(m[S1 | S2] | n[R |Q])

for some p̃, g̃, m, S1, S2, R, and, for all S ′
2, R

′ such that

Ξ � (νp̃ :g)(m[out n.S1 | S ′
2] |R′) :g ,

we get

(νp̃ :g)(m[out n.S1 | S ′
2] |R′)

[out n];Q
−→ Ξ,g (νp̃ :g)(m[S1 | S ′

2] | n[R′ |Q]) .

Proof. We show (7), the other proofs being similar.

If P
[out n];Q

−→ Ξ,g P
′, then by rule (HO Out) and Lemma 4.5(3), we get

P ≡ (νp̃ :g)(m[out n.S1 | S2] |R) ,

and

P ′ ≡ (νp̃ :g)(m[S1 | S2] | n[R |Q])

for some p̃, g̃, m, S1, S2, R. Moreover, if

Ξ � (νp̃ :g)(m[out n.S1 | S ′
2] |R′) :g ,

we get

(νp̃ :g)(m[out n.S1 | S ′
2] |R′)

[out n]
−→ Ξ,g (νp̃ :g)〈〈(m[S1 | S ′

2]〉〉R′

by rules (Cap-Out), (Out), (Par) and (Res), and hence by rule (HO Out), we conclude

(νp̃ :g)(m[out n.S1 | S ′
2] |R′)

[out n];Q
−→ Ξ,g (νp̃ :g)(m[S1 | S ′

2] | n[R′ |Q]) .

In points (1), (3) and (4) of the following theorem we need to put some restrictions

on the possible occurrences of the ambient named m. This is accomplished by different

conditions on m, which will be required when we use point (3) in the firewall example

(Subsection 5.1) and point (4) in the encoding of the π-calculus (Subsection 5.2).

Theorem 4.23. Let both sides of the following equalities be well-typed closed processes

with type g from Ξ. Then we have:

(1) Let Ξ′ = Ξ, m : g′. If Q has only τ transitions, m is not (Ξ′, g)-mobile and R contains

occurrences of m only in capabilities, then

(νm :g′)((νn :g′′)(n[in m . P |Q]) |m[R]) ∼=Ξ,g (νm :g′)(m[(νn :g′′)(n[P |Q]) |R]) .

(2) If Q has only τ transitions and m is not (Ξ, g)-mobile, then

m[(νn :g′)(n[out m . P |Q]) |R] ∼=Ξ,g (νn :g′)(n[P |Q]) |m[R] .
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(3) Let Ξ′ = Ξ, m :g′. If m, n are not (Ξ′, g)-mobile and Q,R contain occurrences of m only

in capabilities, then

(νm :g′)(n[to m . P |Q] |m[R]) ∼=Ξ,g (νm :g′)(n[Q] |m[P |R]) .

(4) Let Ξ′ = Ξ, m :g′, n :g′′. If m is not (Ξ′, g)-mobile and the ambient names in Q,R are

neither m nor variables, then

(νm :g′)((νn :g′′)(n[to m . P ]) |m[R] |Q) ∼=Ξ,g (νm :g′)((νn :g′′)(n[ ] |m[P |R]) |Q) .

(5) Let Ξ′ = Ξ, n :g′. If n 	∈ AN(R) and R is not a (Ξ′, g′)-communicator, then

(νn :g′)(n[(x :W )P | 〈M〉Q |R]) ∼=Ξ,g (νn :g′)(n[P {x := M} |Q |R]) .

(6) Let Ξ′ = Ξ, n :g′. If n 	∈ AN(P ) and P is neither a (Ξ′, g′)-sender nor a (Ξ′, g′)-mover,

then

(νn :g′)(n[P ]) ∼=Ξ,g 0 .

Proof. Let IΞ,g denote the identity relation on processes typable by g in the environment

Ξ.

(1) Take

BΞ,g = IΞ,g ∪ {(νm :g′)C[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0 ,

(νm :g′)C[(m[(νn :g′′) n[P |Q]) |R]]Ξ0 ,g0} ,

where n, m, Q, R satisfy the hypotheses of (1) with Ξ′, g replaced by Ξ0, g0, and

C[ ]Ξ0 ,g0 is a closed context built only by name restrictions, ambient formation and

parallel composition, which contains occurrences of m only in capabilities, and such

that

Ξ � C[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0 :g .

We will show that BΞ,g is a bisimulation, and hence that it is included in ≈c .

For BΞ,g to be a bisimulation, it must satisfy:

T
λ−→Ξ,g T

′ and TBΞ,gU imply U
λ̂

=⇒Ξ,g U
′ for some T ′BΞ,gU ′ . (4.1)

U
λ−→Ξ,g U

′ and TBΞ,gU imply T
λ̂

=⇒Ξ,g T
′ for some T ′BΞ,gU ′ . (4.2)

If (T ,U) ∈ IΞ,g , the property is immediate. Otherwise, the proof of (4.2) is trivial as

T
τ−→Ξ,g U. For (4.1), let T

λ−→Ξ,g T
′. The proof is by cases on λ. We will only consider

the following cases:

(i) λ = to q;V1; r[V2]. This case is paradigmatic for higher-order transitions involving

the context only.

(ii) λ = [to q];V . This is the only higher-order transition involving m[R].

(iii) λ = τ.

However, before we consider these cases, first note that by looking at the transition

rules, one can easily see that:
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— Since Q has only τ-transitions, the only transitions of (νn :g′′)(n[in m . P |Q]) are

(νn :g′′)(n[in m . P |Q])
[in m];V

−→ Ξ0 ,g0
m[(νn :g′′)(n[P |Q]) |V ]

(νn :g′′)(n[in m . P |Q])
τ−→Ξ0 ,g0

(νn :g′′)(n[in m . P |Q′]) .

— Since m is not (Ξ0, g0)-mobile, the only transitions of m[R] are

m[R]
[out m];0

−→ Ξ0 ,g0
m[R1] | p[R2]

m[R]
[to q];V
−→ Ξ0 ,g0

q[R1 |V ] |m[R2]

m[R]
C;V
−→Ξ0 ,g0

m[R |V ]

m[R]
τ−→Ξ0 ,g0

m[R′] ,

where C ∈ {in m, to m}, for some p 	= m (since R only contains m within

capabilities), q, R1, R2, R
′.

We now consider the three cases listed above:

(i) T
to q;V1;r[V2]−→ Ξ,g T

′.

By Lemma 4.22(3), we have

T ≡ (νm :g′)(νp̃ :g)(to q.S |Z)

and

T ′ ≡ (νm :g′)(νp̃ :g)(q[S |V1] | r[Z |V2])

for some r, S , Z . This implies

C[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0 ≡ (νp̃ :g)(to q.S |Z)

and

Z ≡ C1[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0

for some context C1[ ]. By Lemma 4.22(3), we have

(νm :g′)(νp̃ :g)(to q.S | C1[m[(νn :g′′)(n[P |Q]) |R]]Ξ0 ,g0 )
to q;V1;r[V2]−→ Ξ,g

(νm :g′)(νp̃ :g)(q[S |V1] | r[C1[m[(νn :g′′)(n[P |Q]) |R]]Ξ0 ,g0 |V2]) ≡ U ′

and T ′BΞ,gU ′ through the context (νp̃ :g)(q[S |V1] | r[C1[ ]Ξ0 ,g0 |V2]).

(ii) T
[to q];V
−→ Ξ,g T

′.

By Lemma 4.22(5), we have

T ≡ (νm :g′)(νp̃ :g)(r[to q.S1 | S2] |Z)

and

T ′ ≡ (νm :g′)(νp̃ :g)(r[S1] | q[S2 |V ] |Z)

for some r, S1, S2, Z . Hence, either

(a) C[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0 ≡ (νp̃ :g)(r[to q.S1 | S2] |Z)

and

Z ≡ C1[(νn :g′′)(n[in m . P |Q]) |m[R]]Ξ0 ,g0

for some context C1[ ]; or

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129508006658
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129508006658
https:/www.cambridge.org/core


M. Coppo, M. Dezani-Ciancaglini and E. Giovannetti 260

(b) r = m and R ≡ to q.S1 | S2 and Z ≡ (νn :g′′)(n[in m . P |Q]) |Z ′ for some Z ′.

In the first case the proof is similar to that of case (i).

In the second case,

U ≡ (νm :g′)(νp̃ :g)(m[to q.S1 | S2 | (νn :g′′)(n[P |Q])] |Z ′) ,

so, by Lemma 4.22(5), we have

U
[to q];V
−→ Ξ,g (νm :g′)(νp̃ :g)(m[S1 | (νn :g′′)(n[P |Q])] | q[S2 |V ] |Z ′) ≡ U ′

and T ′BΞ,gU ′ through the context (νp̃ :g)([ ]Ξ0 ,g0 | q[S2 |V ] |Z ′).

(iii) T
τ−→Ξ,g T

′.

The only interesting sub-cases are those in which the transition involves both the

context and the process m[R], that is, when

T ≡ C ′[(νn :g′′)(n[in m . P |Q]) |m[R] |Z]Ξ0 ,g0

and:

(a) R ≡ to q . R1 |R2,

Z ≡ q[Z ′],

T ′ ≡ C ′[(νn :g′′)(n[in m . P |Q]) |m[R2] | q[R1 |Z ′]]Ξ0 ,g0 ;

or

(b) Z ≡ q[in m .Z1 |Z2],

T ′ ≡ C ′[(νn :g′′)(n[in m . P |Q]) |m[R | q[Z1 |Z2]]]
Ξ0 ,g0 ;

or

(c) Z ≡ q[to m .Z1 |Z2],

T ′ ≡ C ′[(νn :g′′)(n[in m . P |Q]) |m[R |Z1] | q[Z2]]
Ξ0 ,g0 ;

or

(d) R ≡ q[out m .R1 |R2] |R3,

Z ≡ 0,

T ′ ≡ C ′[(νn :g′′)(n[in m . P |Q]) |m[R3] | q[R1 |R2]]
Ξ0 ,g0 .

Note that in all cases q 	= m since both R and C[ ] only contain m within

capabilities. In case (a),

U ≡ C ′[m[to q . R1 |R2 | (νn :g′′)(n[P |Q])] | q[Z ′]]Ξ0 ,g0 ,

so, by rules (Cap-To), (To), (Par), (Res), (τ-To) and (Amb), we get

U
τ−→Ξ,g C ′[m[R2 | (νn :g′′)(n[P |Q])] | q[R1 |Z ′]]Ξ0 ,g0 .

Hence, T ′BΞ,gU ′ through the context C ′[[ ]Ξ0 ,g0 | q[R1 |Z ′]]Ξ0 ,g0 . The context C ′[ ]

again satisfies the condition that m occurs only within capabilities.

The proofs of the other cases are similar.

(2) The proof of (2) is similar to but simpler than the proof of (1).
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(3) Assume g :G, g′ :G′ ∈ Ξ and take

BΞ,g = IΞ,g ∪ {(νm :g′)C[n[to m . P |Q] |m[R]]Ξ0 ,g0 ,

(νm :g′)C[n[Q] |m[P |R]]Ξ0 ,g0} ,

where n, m, Q, R satisfy the hypothesis of (3) with Ξ′, g replaced by Ξ0, g0, and C[ ]Ξ0 ,g0

is a closed context built only by name restrictions, ambient formation and parallel

composition, and such that any occurrences of m are contained within capabilities,

and such that Ξ � C[n[to m . P |Q] |m[R]]Ξ0 ,g0 :g.

By looking at the transition rules, one can easily see that:

— The only transitions of n[to m . P |Q] are:

n[to m . P |Q]
[to m];V
−→ Ξ0 ,g0

m[P |V ] | n[Q]

n[to m . P |Q]
[out n];0

−→ Ξ0 ,g0
n[to m . P |Q1] | p[Q2]

n[to m . P |Q]
[to q];V
−→ Ξ0 ,g0

q[Q1 |V ] | n[to m . P |Q2]

n[to m . P |Q]
C;V
−→Ξ0 ,g0

n[to m . P |Q |V ]

n[to m . P |Q]
τ−→Ξ0 ,g0

n[to m . P |Q′] ,

where C ∈ {in n, to n}, for some p 	= m (since Q only contains m within capabilities),

q, Q1, Q2, Q
′, since n is not (Ξ0, g0)-mobile.

— The only transitions of m[R] are:

m[R]
[out m];0

−→ Ξ0 ,g0
m[R1] | p[R2]

m[R]
[to q];V
−→ Ξ0 ,g0

q[R1 |V ] |m[R2]

m[R]
C;V
−→Ξ0 ,g0

m[R |V ]

m[R]
τ−→Ξ0 ,g0

m[R′] ,

where C ∈ {in m, to m}, for some p 	= m (since R only contains m within

capabilities), q, R1, R2, R
′, since m is not (Ξ0, g0)-mobile.

We only consider the case T
to n;V
−→Ξ,g T

′ when

T ≡ (νm :g′)(νp̃ :g)(n[to m . P |Q] |m[R] |Z)

and

T ′ ≡ (νm :g′)(νp̃ :g)(n[to m . P |Q |V ] |m[R] |Z) .

In this case

U ≡ (νm :g′)(νp̃ :g)(n[Q] |m[P |R] |Z)

and

U ′ ≡ (νm :g′)(νp̃ :g)(n[Q |V ] |m[P |R] |Z) ,

so T ′BΞ,gU ′ through the context (νp̃ :g)([ ]Ξ0 ,g0 |Z).
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(4) This proof is similar to that of (3).

(5) The key observation is that no process can enter n as n is private and n does not occur

in R. Also, R cannot offer communications since it is not a (Ξ′, g′)-communicator.

(6) Take

BΞ,g = IΞ,g ∪ {(νn :g′)(n[P ]), 0)} ,
where n and P satisfy the hypothesis of (6).

We need to prove that, if (νn :g′)(n[P ])
λ−→Ξ,g P

′, then λ = τ. The transitions mentioning

n are blocked by name restriction. No ambient can go out of (νn :g′)(n[P ]), since

n 	∈ AN(P ). No process can go out of (νn :g′)(n[P ]) since P is not a (Ξ′, g′)-sender.

Finally, n[P ] cannot move, since P is not a (Ξ′, g′)-mover.

5. Examples

In this section we test the expressiveness of M3 by showing first how to model some

common protocols considered in the literature (such as a firewall, and a defence against

Trojan-horse attacks), and then how to encode two well-known calculi for modelling

concurrent (π-calculus) and distributed (Dπ-calculus) systems.

5.1. Protocols

Firewall

A system protected by a firewall can be viewed as an ambient fw that supplies the

incoming agent with a ‘password’ (represented by its actual name) that allows the process

P to enter it.

We give two encodings: in the first the processes inside the firewall can also perform

computations before the process P has entered the firewall; while in the second they are

blocked until the process P has entered the firewall. In both cases we assume that the

name agent occurs only once.

The first encoding is

agent = agent[(x :gfw → gagent)x.P ]

fw = (ν fw :gfw)fw[to agent.〈to fw〉 |Q] ,

where we assume P and Q do not contain occurrences of agent, Q only contains

occurrences of fw within capabilities and x does not occur in P .

In this encoding the system agent-plus-firewall is represented by the top-level process

(ν agent :gagent)(agent | fw). It can be typed with the group g0 by assuming agent : gagent

and fw :gfw, where the groups are typed as follows:

gagent : gr({g0},�, {gfw}, gfw → gagent))

gfw : gr({g0},�, {gagent}, shh).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129508006658
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129508006658
https:/www.cambridge.org/core


Types for ambient and process mobility 263

shh can be replaced by a suitable type if we allow communication within the ambient fw .

Let Ξ contain the assumptions above, so the typing Ξ � (ν agent :gagent)(agent | fw) : g0

holds. Note that the ambients fw and agent are not (Ξ, g0)-mobile.

So we have

(ν agent :gagent)(agent | fw)

≡ (ν agent :gagent)(ν fw :ggw)

(agent[(x :gfw → gagent)x.P ] | fw[to agent.〈to fw〉 |Q])

∼=Ξ,g0 (ν agent :gagent)(ν fw :ggw)

(agent[(x :gfw → gagent)x.P | 〈to fw〉] | fw[Q]) by Theorem 4.23(3)

∼=Ξ,g0 (ν agent :gagent)(ν fw :ggw)(agent[to fw.P ] | fw[Q]) by Theorem 4.23(5)

∼=Ξ,g0 (ν agent :gagent)(ν fw :ggw)(agent[] | fw[P |Q]) by Theorem 4.23(3)

≡ (ν agent :gagent)(agent[]) | (ν fw :ggw)(fw[P |Q]) since agent does not

occur in P or Q

∼=Ξ,g0 (ν fw :ggw)fw[P |Q] by Theorem 4.23(6).

In the second encoding we block, by means of a communication, the process Q until

process P has entered the firewall:

agent = agent[(x :gfw → gagent)x.〈M〉P ]

fw = (ν fw :gfw)fw[to agent.〈to fw〉 | (y :W )Q] ,

where W is the type of messages being exchanged within fw, M has type W , x does

not occur in P and y does not occur in Q; if no communication takes place within the

firewall, W is an arbitrary message type.

In this encoding the system agent-plus-firewall is again represented by the top-level

process (ν agent :gagent)(agent | fw). The types are as before, except for the type of gfw,

which must allow the communication, that is,

gfw :gr({g0},�, {gagent},W ) .

As in the previous case, one can show that

(ν agent :gagent)(agent | fw) ∼=Ξ,g0 (ν fw :gfw)(fw[〈M〉P | (y :W )Q]) ,

and hence conclude by Theorem 4.23(5) that

(ν agent :gagent)(agent | fw) ∼=Ξ,g0 (ν fw :gfw)(fw[P |Q]) .

Types play a crucial role in showing the correctness of this encoding, since, for example,

we could not apply Theorem 4.23(3) if the C components of the gagent and gfw group

types were not empty.

This example shows in a simple way how the to capability allows processes to cross

firewalls.
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The Trojan horse attack

In this example we will show how our type system can detect a Trojan horse attack.

Ulysses is naturally encoded as a mobile ambient that enters a horse ambient containing

an in troy action, and then goes out of it into Troy to destroy Priam’s palace. The initial

situation is represented by the process myth defined as:

ulysses[in horse.out horse.to palace.destroy] | horse[in troy] | troy[palace[P]] .

If ambients ulysses , horse, . . . belong to groups gulysses, ghorse, . . ., respectively, the whole

mythic process can be typed by a group gmyth with respect to an environment Ξ that

contains the following assumptions:

gulysses : gr({gmyth, gtroy, ghorse}, {ghorse}, {gpalace}, shh)

ghorse : gr({gmyth, gtroy}, {gtroy},�, shh)

gtroy : gr({gmyth},�,�, shh)

gpalace : gr({gtroy},�,�, shh) .

It is clear from this that ambients of group gulysses must have permission to stay within

ambients of group gtroy and to send processes to ambients of group gpalace in order to

make the myth well typed.

Observe that without the S component the Trojans would have no way of knowing

that Ulysses might enter Troy, since he enters hidden within the horse.

5.2. Encoding process calculi

Encoding the π-calculus

A standard expressiveness test for the Ambient Calculus and its variants is the encoding of

communication on named channels via local anonymous communication within ambients.

We consider a core fragment of the typed monadic asynchronous π-calculus given by the

following grammar (we use letters a–d for channel names and x–z for variables):

P ::= 0 | ξ(x :T )P | ξ〈ξ′〉 | (νc :T )P | P |Q | !ξ(x :T )P | !ξ〈ξ′〉 ,

where ξ, ξ′ are either a variable or a channel name and T ranges over a type hierarchy:

T ::= Ch() | Ch(T ) .

The reduction relation, which will be denoted →π , is defined by the basic rule

c(x :T )P | c〈a〉 →π P {x := a} ,

and structural equivalence and other reduction rules similar to those of M3.

The type system, defined by the typing rules in Figure 12, derives judgements of the

form Θ � P , where Θ is a set of assumptions of the form c :Ch(T ). The informal meaning

of Θ � P is that P is a well-typed π-process with respect to the environment Θ, that is,

communication is well typed in P with respect to assumptions Θ. Note that the typing

rules only guarantee the safeness of communication. We will use the labelled transition
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Fig. 12. Type system for π-calculus.

system of Section 4, based on our richer type system, to discuss the correctness of our

translation.

As usual, the basic idea of the encoding is to represent each channel as an ambient:

in particular, we will associate with each public π-calculus channel c, a private ambient c

and a public ambient č; and when the channel c is private, both ambients c and č will be

private. The whole encoding of processes is placed within a private ambient l. A process

prefixed with an input on a channel c is encoded as a mobile process that immediately

goes (in)to the ambient c where communication will take place. Asynchronous outputs

on channel c also go into ambient c. After the input is performed, the encoding creates

a process that goes to the ambient č, moves č out of ambient l and then moves it into l

again, where it finally deposits the encoding of the continuation of the input action. The

only reason for this movement of č is to make the communication on public channels

visible. The public ambients č have all the same group gcom, while the private channel-

ambients are typed by the encodings of the types of the corresponding channels. The

movements of processes are encoded by means of auxiliary private ambients of group

gaux. The channel-ambients and the encoding proper [[P ]] of the top-level π-calculus term

P run within the ambient l of group gl .

We choose a configuration like this, that is, with the ambient l containing both the

encoding of the process and the ambient-channels, as this paves the way for the encoding

of Dπ in the next subsection, even though ambient-channels in parallel with l would make

the encoding of the π-calculus slightly simpler.

The encoding is defined in a polyadic version of M3, where tuples of values, instead

of single values, are exchanged in communication. So a process offering an input has the

form (x1 :W1, ..., xn :Wn)P , and communication types are of the form W1 × ...×Wn or shh.

All the notions introduced for the monadic calculus can be standardly generalised to the

polyadic version. Of course, our encoding technique also works perfectly for the polyadic

π-calculus, but, for simplicity, we will only describe the encoding of the monadic version.

The infinite sequence of π-calculus types Ch(),Ch(Ch()), . . . ,Chn(), . . . is encoded as

an infinite sequence of group names g0, g1, . . . , gn−1, . . . along with the sequence of their

respective group types G0, G1, . . . , Gn−1, . . . defined by

g0 : G0 with G0 = gr({gl},�, {gcom}, shh)

gj+1 : Gj+1 with Gj+1 = gr({gl},�, {gcom}, gj × gcom) ,

where gcom is the group of all the public ambients.
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Fig. 13. Encoding of π-calculus.

The encoding of π-calculus types is then defined by

[[Ch()]] = g0 [[Ch(T )]] = gj+1 if [[T ]] = gj .

In the following, Ψk denotes the group environment

{g0 :G0, . . . , gk :Gk, gl :Gl, gaux :G(k)
aux, gcom :Gcom},

where gaux is the group of the auxiliary private ambients, and

Gl = gr({g∗},�,�, shh)

G(k)
aux = gr({g∗, gl}, {gl}, {g1, . . . , gk, gl}, shh)

Gcom = gr({g∗, gl}, {gl}, {gaux}, shh) ,

and g∗ is the group of the top-level M3 processes (in our case, ambient-processes), that is,

the type of what can be called the top anonymous ambient, where the ambient l[ ] stays. Note

that, instead of the unique group gaux, we could have two different groups for the private

ambients used in the encodings of inputs and outputs, respectively, and the group type

for the output-encoding ambients could be the less permissive gr({gl}, {}, {g1, . . . , gk}, shh).

This more refined typing, however, would be useless here.

If Θ is a π-calculus environment, its encoding [[Θ]] is the variable environment that

contains the assumptions for all the public ambient names and all the private and

public ambient variables corresponding to the channel names and to the variables of Θ,

respectively, that is,

[[Θ]] = {č :gcom | c :T ∈ Θ} ∪ {x : [[T ]], x̌ :gcom | x :T ∈ Θ} .

Let {c1 :T1, ..., ch :Th} (denoted c̃ :T
(h)

) contain the (finite) set of free channel names

occurring in P . The global encoding of P , denoted C(P , c̃ :T
(h)

), is then the process of

group g∗ given by

C(P , c̃ :T
(h)

) = (νl :gl)(ν ˜c : [[T ]]
(h)

)l[[[P ]] | c1[ ] | . . . | ch[ ] | č1[ ] | . . . | čh[ ]] ,

where [[P ]] is defined in Figure 13. Note that each variable x of the π-calculus is

encoded using two variables x, x̌: the former corresponds to the private channel in which

communications take place; while the latter corresponds to the associated public ambient.

Theorem 5.1 states that the translation respects types. Also, the translation is correct

in the sense expressed by Theorem 5.2. Obviously, one reduction step in π-calculus is

simulated by many reduction steps in M3. Point 2 of Theorem 5.2 guarantees that any

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129508006658
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129508006658
https:/www.cambridge.org/core


Types for ambient and process mobility 267

M3 reduction starting from the translation of a π-calculus term P must eventually end in

an M3 term Q′ that is reduction barbed congruent to a π-calculus reduct of P .

Theorem 5.1. Let the judgment Θ � P hold, let c̃ :T
(h)

contain the set of free channel

names occurring in P , and let k be greater than or equal to the maximum nesting of Ch()

in types occurring in P and Θ. Then, we have

Ψk; [[Θ]] � C(P , c̃ :T
(h)

) :g∗ .

Proof. Let

C(P , c̃ :T
(h)

) = (νl :gl)(ν ˜c : [[T ]]
(h)

)(l[[[P ]] | c1[ ] | . . . | ch[ ] | č1[ ] | . . . | čh[ ]]) .

We prove by induction on the derivation of Θ � P that

Ψk; [[Θ]],∆ � [[P ]] :gl ,

where ∆ = l : gl , c1 : [[T1]], ..., ch : [[Th]]. As a typical example, let us consider the rule for

input:

ξ :Ch(T ) ∈ Θ Θ, x :T � P ′

Θ � ξ(x :T )P ′
.

We get by induction that Ψk; [[Θ, x :T ]],∆ � [[P ′]] :gl . By definition, [[Θ, x :T ]] = [[Θ]], x :
[[T ]], x̌ :gcom. Let gξ = [[Ch(T )]]. Hence, ξ :gξ ∈ [[Θ]], and gξ :Gξ ∈ Ψk for some Gξ , such
that T (Gξ) = [[T ]] × gcom. We have the following typing derivation for [[P ]]:

Ξ′ � to ξ :gξ → gaux

D
Ξ′′ � to ξ̌.out l.in l.to n.out l.to l :gl → gξ Ξ′′ � [[P ]] :gl

Ξ′′ � to ξ̌.out l.in l.to n.out l.to l.[[P ]] :gξ

Ξ′ � (x : [[T ]], x̌ :gcom)to ξ̌.out l.in l.to n.out l.to l.[[P ′]] :gξ

Ξ′ � to ξ.(x : [[T ]], x̌ :gcom) to ξ̌.out l.in l.to n.out l.to l.[[P ′]] :gaux

Ξ′ � n[to ξ.(x : [[T ]], x̌ :gcom) to ξ̌.out l.in l.to n.out l.to l.[[P ′]]] :gl

Ξ � (νn :gaux)n[to ξ.(x : [[T ]], x̌ :gcom) to ξ̌.out l.in l.to n.out l.to l.[[P ′]]] :gl

where

Ξ = Ψk; [[Θ]],∆

Ξ′ = Ξ, n :gaux

Ξ′′ = Ξ′, x : [[T ]], x̌ :gcom ,

and D is a (standard) derivation of

Ξ′′ � to ξ̌.out l.in l.to n.out l.to l :gl → gξ .

The theorem then follows easily by first deriving the typing judgements Ξ � ci[ ] : gl ,

Ξ � či[ ] :gl for 1 � i � h, and then by using the rules (Par), (Amb), and (AmbRes).
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Theorem 5.2. Let P be a term of the π-calculus such that the judgment Θ � P holds, let

c̃ :T
(h)

contain the set of free channel names occurring in P , and let k be greater than or

equal to the maximum nesting of Ch() in types occurring in P and Θ. Then, we have

1 If P →π Q, then C(P , c̃ :T
(h)

) →∗ C(Q, c̃ :T
(h)

).

2 If C(P , c̃ :T
(h)

) →∗ Q, then Q →∗ Q′ where Q′ ∼=Ψk;[[Θ]],g∗ C(R, c̃ :T
(h)

), for some π-calculus

process R such that P →∗
π R.

Proof.

1 Consider, as an interesting case, the case where P is of the form c(x :T )P ′ | c〈a〉 | S ,

which reduces to Q = P ′{x := a} | S by performing a communication on the public

channel c. By the definition of [[·]], we have

[[P ]] = (νn :gaux)n[to c.(x : [[T ]], x̌ :gcom) to č.out l.in l.to n.out l.to l.[[P ′]]] |
(νn′ :gaux)n

′[to c.〈a, ǎ〉] | [[S]] .

Of course, c is a free variable of P , and in the term C(P , c̃ :T
(h)

) there are, by hypothesis,

the ambients c (restricted) and č (public) that run in parallel with the process [[P ]]. We

therefore have the following reduction (we only show the relevant subprocesses):

l[(νn :gaux)n[to c.(x : [[T ]], x̌ :gcom) to č.out l.in l.to n.out l.to l.[[P ′]]] |
(νn′ :gaux)n

′[to c.〈a, ǎ〉] | c[ ] | č[ ] | . . .]
→∗ l[(νn :gaux)n[ ] | (νn′ :gaux)n

′[ ] | č[ ] |
c[(x : [[T ]], x̌ :gcom) to č.out l.in l.to n.out l.to l.[[P ′]] | 〈a, ǎ〉] | . . .]

→ l[(νn :gaux)n[ ] | č[ ] |
c[to č.out l.in l.to n.out l.to l.[[P ′]]{x, x̌ := a, ǎ}] | . . .]

→ l[(νn :gaux)n[ ] | č[out l.in l.to n.out l.to l.[[P ′]]{x, x̌ := a, ǎ}] | c[ ] | . . .]
→∗ l[(νn :gaux)n[ ] | č[to n.out l.to l.[[P ′]]{x, x̌ := a, ǎ}] | c[ ] | . . .]
→∗ l[(νn :gaux)n[out l.to l.[[P ′]]{x, x̌ := a, ǎ}] | č[ ] | c[ ] | . . .]
→∗ l[[[P ′]]{x, x̌ := a, ǎ} | c[ ] | č[ ] | . . .] ,

whereas [[Q]] is [[P ′{x := a}]] | [[S]].

An easy induction on the definition of the translation concludes the proof by showing

that [[P ′{x := a}]] = [[P ′]]{x, x̌ := a, ǎ}.
2 Let →− denote the reduction relation defined in the same way as → but without the

communication rule (R-comm). Define E(P , c̃ :T
(h)

) as the set of all the processes Q

such that C(P , c̃ :T
(h)

) →∗
− Q. Note that this is the set of all the processes that can be

obtained from C(P , c̃ :T
(h)

) by performing ‘to’ actions of the form

(νn :gaux)n[to c.(x : [[T ]], x̌ : [[T ]]) to ξ̌.out l.in l.to n.out l.to l.[[P ′]]] | c[Q′] →
(νn :gaux)n[ ] | c[(x : [[T ]], x̌ : [[T ]]) to ξ̌.out l.in l.to n.out l.to l.[[P ′]] |Q′] .

Processes that encode output actions can be treated similarly. By Theorem 4.23(4), all

the processes in E(P , c̃ :T
(h)

) are reduction barbed congruent to C(P , c̃ :T
(h)

).

We will prove the following property by induction on n:
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(
) Let C(P , c̃ :T
(h)

) →n Q. Then all the →−-reduction sequences starting from Q must

eventually reach an element of E(R, c̃ :T
(h)

) for some π-calculus process R such

that P →∗
π R.

The statement of the theorem will then follow immediately.

If n = 1 the proof is trivial, since in one step C(P , c̃ :T
(h)

) can only move into an element

of E(P , c̃ :T
(h)

).

For the induction step, assume that C(P , c̃ :T
(h)

) →n Q0 → Q, and let (ν̃) stand for

(νl :gl)(ν ˜c : [[T ]]
(h)

). If the n+1-th reduction step is not a communication step, the proof

is trivial by the induction hypothesis. Otherwise, note that communications can only

take place in (restricted) ambients representing channels. So let

Q0 = (ν̃) (l[S1 | c[U |V | S2]] | S3) ,

where U = (x : [[T ]], x̌ : gcom) to č.out l.in l.to n.out l.to l.[[P ′]] and V = 〈a, ǎ〉. Note that,

by construction, c 	= x. By the induction hypothesis, any →−-reduction sequence starting

from Q0 must eventually reach a term of the form

Q1 = (ν̃) (l[S ′
1 | c[U |V | S ′

2]] | S ′
3)

belonging to E(R, c̃ :T
(h)

) for some R such that P →∗
π R. Note that U and V cannot

interfere with this reduction since they are blocked by their input and output actions,

respectively.

This implies that R = c(x :T )P ′ | c〈a〉 | S for some π-calculus process S where

(ν̃) (l[S ′
1 | c[S ′

2]] | S ′
3) ∈ E(S, c̃ :T

(h)
) . (5.1)

Now the n + 1-th step is a communication of the form

U |V → U ′ ,

where U ′ = to č.out l.in l.to n.out l.to l.[[P ′]]{x, x̌ := a, ǎ}. Hence,

Q = (ν̃) (l[S1 | c[U ′ | S2]] | S3) .

Now note that U ′ can only perform a fixed sequence of moves and that, as n is a

private ambient, it can only interact with the reduction Q0 →∗
− Q1 through the moves

involving the ambient č. In particular, in some step of the reduction, U ′ may not be

able to perform the to action of entering č because the ambient č has been driven

out of l by some other process. Note, however, that each process entering č[ ] is of the

shape out l.in l.to n′′.Z , where n′′ is some private auxiliary ambient and Z is a process.

So when č is out of the ambient l, it can only perform an in l action and thus go back

into l. Hence, before reaching a configuration in which no →−-reduction is possible, U ′

must eventually be able to enter č to drive it out of l, and then back into l again, and

to leave it without affecting the moves of the other processes involved in the reduction.

Thus in the end we have

Q →∗
− Q′ = (ν̃) (l[[[P ′]]{x, x̌ := a, ǎ} | S ′

1 | c[S ′
2]] | S ′

3) ,
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Fig. 14. Syntax of Dπ-calculus.

and from (5.1), we immediately have Q′ ∈ E(P ′{x := a} | S, c̃ :T
(h)

). Finally, note that

c(x :T )P ′ | c〈a〉 | S →π P ′{x := a} | S.

Encoding the Dπ-calculus

We refer, essentially, to the version of Dπ presented in Hennessy and Riely (2002), with

some simplifications (for instance the output is asynchronous) and a much easier type

system. We also use a slightly different notation to provide uniformity with our treatment

of the π-calculus. The basic syntactic categories are shown in Figure 14, where l, k range

over locations, c over channels, u, v over channel names and variables, w over location

names and variables, x over location and channel variables, and ξ over channel and

location names or variables.

In this presentation we assume a very basic type system, which is similar to that of π and

is aimed purely at preventing communication errors. The type syntax is

T ::= loc | ch(T ) .

The reduction semantics of the Dπ-calculus, denoted →D, has, basically, the following

reduction rules:

l[c(x :T )p] | l[c〈ξ〉] →D l[p{x := ξ}]
l[go l′.p] →D l′[p] .

As usual, the operational semantics is given together with rules that define the structural

equivalence. In addition to the standard rules, it is worth mentioning the following rules,

which are peculiar to Dπ and state that two locations with the same name are the same

location (unlike M3), and that we can extend the scope of a channel restriction outside a

location, provided we keep the information about the location itself:

l[p | q] ≡ l[p] | l[q] (5.2)

l[(νc :ch(T )) p] ≡ (νl c :ch(T )) l[p] . (5.3)

The only function of the type system is to ensure the consistency of the values passed

in channels. The typing rules we consider are given in Figure 15. In our version of

Dπ, both channel and location names or variables can be communicated, but channels
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Fig. 15. Type system for Dπ-calculus.

must always be located, that is, they must be explicitly assigned to locations. In type

environments, denoted by Ω, types are assigned to channels by statements like u@w :T ,

where u represents the name of the channel and w the name of the location in which u

is located. Note that in a type environment we can have u@w :T and u@w′ :T ′ with

w 	= w′. The type of locations is simply loc, and is assigned to names in statements of the

form w : loc.

The typing judgments are of two kinds:

— �w to represent assignments for threads relative to the location w (note that w can

also be a variable); and

— � to represent assignments for systems.

This allows us to type those systems where the same channel name has different types

in different locations.

Note that if a subexpression of a thread is typed with a statement of the form

Ω, u@x : Ch(T ) �x p, then either u is a variable or a channel name that will eventually

be restricted in �x. In fact, since x is a variable, p must occur in the final system in

the scope of an input (x : loc) (there are no location variables at the system level). But

this can be done only if the statement u@x :Ch(T ) is eventually removed from the type

environment (by the condition x 	∈ Ω in the rule for abstraction of locations), and this can

happen only if u is a variable (input), or u is restricted. This observation will be useful for

understanding our translation.

As in the encoding of the π-calculus, each channel is represented by two ambients:

one private and the other public if the channel is public; both private otherwise. For

uniformity, to allow the same public channel names at different locations, we need to

choose the names of the representing ambients carefully. If a channel is declared as

c@l : Ch(T ) in the environment or in a restriction, we represent it with the ambients cl
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and čl . If a channel is declared as c@x :Ch(T ), we represent it with the ambients c and č.

Note that in this last case, c must be restricted, as observed above. In order that we can

always communicate two values, we also associate two ambient names l and ľ with each

location name l.

We define the following group and group types:

g0 = gloc :Gloc = gr({gD},�, {gloc}, shh)

g1 :G1 = gr({gloc},�, {gaux , gcom}, gloc × gloc)

gi+2 :Gi+2 = gr({gloc},�, {gaux , gcom}, gi+1 × gcom)

gaux :G(k)
aux = gr({gloc, gD}, {g1, . . . , gk, gloc}, {gloc}, shh)

gcom :Gcom = gr({gloc, gD}, {gloc}, {gaux }, shh),

where gloc is the group of locations, gD is the group of the whole system, g1 is the group

of ambients representing channels that send locations, gi+2 is the group of ambients

representing channels that send channels of group gi+1, and gaux, gcom are as in the

translation of the π-calculus.

The Dπ types are encoded by

[[loc]] = gloc [[ch(T )]] = gi+1 if [[T ]] = gi .

We can assume, without loss of generality, that, in typing judgements for systems, the

type environments do not contain variables (variables can only occur in threads). The

translation [[Ω]] of such an environment Ω is defined as the minimal set such that:

— for each statement c@l :Ch(T ) ∈ Ω, there is one statement čl :gcom ∈ [[Ω]];

— for each statement l : loc ∈ Ω, there are two statements l :gloc ∈ [[Ω]] and ľ :gloc ∈ [[Ω]].

Similarly, we define the translation [[Ω]]wrelative to a location w as the minimal set such

that:

— for each statement u@w′ : Ch(T ) ∈ Ω, there is one statement φ : gcom ∈ [[Ω]]w , where

φ = ǔw′ if u is a channel name and w′ is a location name, and φ = ǔ otherwise;

— for each statement w′ : loc ∈ Ω, there are the two statements w′ :gloc ∈ [[Ω]]w and

w̌′ :gloc ∈ [[Ω]]w .

The basic ideas behind the translation are as follows. As anticipated above, each public

channel is encoded by two ambients, one public and the other private, exactly as in

the π-calculus translation. Communication takes place in private channels only; public

channels are just used to make the communication events observable. The migration of

processes into private channels is observationally invisible, as stated by Theorem 4.23(3).

Each location l is represented by an ambient l that contains as subambients the encodings

of channels used in communications local to l.

We only consider systems P of the form

l1[p1] | ... | ln[pn] , (5.4)

where li 	= lj for all 1 � i, j � n. This is not restrictive, since every system can be

transformed into this form by applying the structural rules (5.2) and (5.3).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129508006658
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129508006658
https:/www.cambridge.org/core


Types for ambient and process mobility 273

Fig. 16. Encoding of Dπ-calculus.

Let P be a system of the form (5.4) such that Ω � P . Assume that location l1
has free channels c1@l1, . . . , cj1@l1, j1 � 0, . . . , and location ln has free channels

c1@ln, . . . , cjn@ln, jn � 0. Also, let m1, . . . , mr be all the location names occurring in P

that are distinct from l1, . . . , ln (that is, they occur only as outputs and/or as arguments

of the go action) and such that mi 	= mj for all 1 � i, j � r. In Ω there must be a typing

statement for each of these locations and channels, so we can assume that Ω characterises

the locations and free channels of the system. We then define

D(P ,Ω) = (νc1
l1
: [[T 1

1 ]]) . . . (νcj1l1 : [[TJ1

1 ]]) . . . (νc1
ln
: [[T 1

n ]]) . . . (νcjnln : [[Tjn
n ]])

(l1[[[p1]]
l1 | c1

l1
[ ] | . . . | cj1l1 [ ] | č1

l1
[ ] | . . . | čj1l1 [ ]] | . . .

| ln[[[pn]]ln | c1
ln
[ ] | . . . | cjnln [ ] | č1

ln
[ ] | . . . | čjnln [ ]]) |

m1[ ] | . . . mr[ ] ,

where [[ ]]w is defined in Figure 16.

For example, let

p = c(x : loc)p0

p0 = go x.(νc1@x :Ch(loc))(p1 | p2)

p1 = c1〈l〉
p2 = c1(y : loc)

q = c〈m〉
Ω0 = l : loc, m : loc, c@l :Ch(loc).

†Recall that if w is a variable, u is either a variable or a name that will eventually be restricted.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129508006658
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129508006658
https:/www.cambridge.org/core


M. Coppo, M. Dezani-Ciancaglini and E. Giovannetti 274

The encoding of P = l[p | q] in the environment Ω0 is defined through the following steps:

[[c1〈l〉]]x = (νn1 :gaux)(n1[to c1.〈l, ľ〉]) = P1

[[c1(y :gloc)]]
x = (νn2 :gaux)(n2[to c1.(y :gloc, y̌ :gloc)

{to č1.out x.in x.to n2.out x.to x]) = P2

[[(νc1@x :Ch(loc))(p1 | p2)]]
x = (νc1 :g1)(νč1 :gcom)(P1 |P2 | c1[ ] | č1[ ])

[[go x.(νc1@x :Ch(loc))(p1 | p2)]]
l = to x.(νc1 :g1)(νč1 :gcom)(P1 |P2 | c1[ ] | č1[ ]) = P0

[[c(x :gloc) . p0]]
l = (νn3 :gaux)(n3[to cl .(x :gloc, x̌ :gloc)

to čl .out l.in l.to n3.out l.to l . P0]) = P3

[[c〈m〉]]l = (νn4 :gaux)(n4[to cl .〈m, m̌〉]) = P4

which leads to

D(P ,Ω0) = (νcl :Ch(loc)) (l[P3 |P4]) |m[ ] .

The correctness of the translation, in the same sense as for the encoding of the π-calculus,

is ensured by analogous theorems.

Let ΨD
k be the group environment

{gloc :Gloc, g1 :G1, . . . , gk :Gk, gaux :G(k)
aux , gcom :Gcom} .

Lemma 5.3. Let Ω �w p. Then we have ΨD
k ;[[Ω]]w � [[p]]w :gloc, where k is greater than or

equal to the maximum nesting of Ch() in types occurring in p, Ω.

Proof. The proof is a standard induction on the proof of Ω �w p similar to the proof

of Theorem 5.1.

From Lemma 5.3 and the definition of [[Ω]], we immediately get the type correctness of

our translation.

Theorem 5.4. Let P be a Dπ system such that Ω � P and let k be greater than or equal

to the maximum nesting of Ch() in types occurring in P , Ω. Then we have

ΨD
k ;[[Ω]] � D(P ,Ω):gD.

Theorem 5.5. Let P be a Dπ system such that Ω � P and let k be equal to the maximum

nesting of Ch() in types occurring in P , Ω. Then we have:

1 If P →D Q, then D(P ,Ω) →∗ D(Q,Ω).

2 If D(P ,Ω) →∗ Q, then Q →∗ Q′ and P →∗
D R with Q′ ∼=ΨD

k ;[[Ω]],gD D(R,Ω), for some

M3 process Q′ and Dπ system R.

Proof.

1 The proof is just an exercise in reduction similar to that in the proof of Theorem 5.2(1).

2 Again, the proof is similar to the proof of Theorem 5.2(2). Let →= denote the reduction

relation defined in the same way as →−, but without reduction of actions of the form

‘to l’ with l a location name. Let ED(P ,Ω) be the set of all M3 processes Q such that

D(P ,Ω) →∗
= Q. In this case we also prove by induction on n that if D(P ,Ω) →n Q holds,

then all the →=-reduction sequences starting from Q must eventually reach an element

of ED(R,Ω) for some Dπ system R such that P →∗
D R. The proof is similar to that of

property (
) in the proof of Theorem 5.2(2).
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6. Type inference

Although M3 is a typed language, for its use in the design of a computational system it

would be helpful, following the consolidated approach of functional languages like ML,

to be able to define a first draft of the system by focusing purely on the computational

behaviours of processes, without bothering about types. It is then crucial to be able to

check whether this draft can be completed with type information so as to become a

well-formed system, and whether the inserted type constraints are consistent with the

intended behaviours.

In this section we present a type inference algorithm for M3: the algorithm builds

a typing whenever possible, and fails otherwise. Type inference allows us to complete

the definition of a process when type annotations are incomplete or even missing.

From another point of view, type inference can be seen as an analysis tool that

provides information about the mobility properties of raw processes (represented by

the S , C ,E components of group types), and checks the consistency of values exchanged

in communications.

Given a raw term R, that is, a pre-term in which all type annotations have been erased,

our algorithm either fails or computes an environment scheme (defined below) Ξ and a

well-typed version P of R (obtained by assigning type schemes – as defined in Figure 17

– to the bound names occurring in R) such that Ξ � P :g for some group g. Note that the

algorithm succeeds whenever R can be obtained from a well-formed process by erasing

the type information. This is formalised in Theorem 6.17. Furthermore, Ξ, P , g are ‘most

general’, in the sense that all other typings Ξ′, P ′, g′ (that can be given to processes

P ′ obtained from R by adding type annotations) can be derived from Ξ, P , g using

substitution, weakening and a kind of subtyping.

Note that our notion of most general typing, although in some sense classical (see, for

instance, Hindley (1969)), is formally different from that of Wells (2002), where ‘principal’

typing is defined using a partial order between typings, independently of terms. The

reason is that Wells (2002) deals with inference systems where types are assigned to

initially untyped terms. This means that no type commitment is written within terms, and

all typing information is contained in the environment scheme and final type scheme, so it

is sensible to consider the intended typings as pairs of an environment scheme and a type

scheme, without reference to the terms to which they are assigned. In our system, however,

types are also written within terms, and this information cannot, in general, be retrieved

from the environment scheme and the final type scheme: the complete type information

about a raw term can only be obtained by taking the term itself into consideration as

well. Apart from these technicalities, however, the two definitions represent essentially the

same concept.

Type variables, substitutions and environment operations

We first introduce some technical tools, which will be useful in defining the inference pro-

cedure and its properties. The inference algorithm deals with type variables, substitutions,

unifiers and the merging of type environment schemes; moreover, a partial order relation
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Fig. 17. Type schemes.

on group type schemes and type environment schemes is needed for the derivation of a

principal typing property.

A raw term R is a pre-term in which all type annotations have been erased: in particular,

group restrictions are missing, name restrictions are of the form (νn)R and inputs are of

the form (x)R. If P is a process, its raw form is the raw term |P | obtained from P by

erasing all group restrictions and all type annotations.

In order to describe and prove properties of the inference algorithm, the original M3

syntax of communication types has to be extended by a set VT of type variables (denoted

by t). The resulting set is, in the standard nomenclature (Hindley 1969), a set of type

schemes.

The new syntax of type schemes, where most of the syntactic sugar has been eliminated,

is shown in Figure 17, starting from the definitions in Figure 4.

The inference algorithm only builds environment schemes, which are environments

with type schemes instead of types. More precisely, an environment scheme consists of a

group environment scheme, containing group type schemes instead of types, and a variable

environment scheme, which, in addition to message types, may also include type variables.

As usual, in computing type schemes and type environment schemes, the algorithm is

driven by the syntax of the raw term. It has, therefore, to put together distinct environment

schemes whenever the term has more than one subterm. A fresh group name is assigned

to each name, but when different environment schemes are put together, groups must

be equated. This is achieved by means of substitutions. In the context of this paper, a

substitution maps group names to group names, and type variables to communication

type schemes. Let T be the set of communication type schemes as defined in Figure 17.

Definition 6.1. An inference substitution (substitution for short) is a finite mapping in

(� → �) ∪ (VT → T). Let ϕi range over � ∪ VT and Ai over � ∪ T. A substitution σ can

be represented as an expression {ϕ1 := A1, . . . , ϕn := An}, where i 	= j implies ϕi 	= ϕj . As

usual, we assume

σ(ϕ) =

{
Aj if ϕ = ϕj for some 1 � j � n

ϕ otherwise .

The application of a substitution σ to a variable environment scheme ∆ (denoted σ(∆)) is

defined in the standard way. Well-formed variable environment schemes are closed under
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substitution. In applying substitutions to group environment schemes, we must take into

account the fact that in a statement g : G, group names also occur in the subjects (left-

hand sides) of the statements. Taking a well-formed group environment scheme Γ and an

arbitrary substitution σ, the group environment scheme σ(Γ) may not be well formed. For

instance, if g1 :G1, g2 :G2 ∈ Γ, we could have σ(g1) = σ(g2) but σ(G1) 	= σ(G2). Consequently,

type inference is not, in general, closed under substitution. However, one can easily see

that if Γ; ∆ � P :g and σ(Γ), σ(∆) are well formed, then σ(Γ); σ(∆) � σ(P ) :σ(g) holds.

When two different environment schemes are put together, it may be necessary to unify

different communication type schemes and group names. This is impossible if they are

an ambient type and a capability type: in which case we get a failure. Therefore, in the

definitions below, operations on type schemes and environment schemes may yield an

undefined result denoting failure. A failure occurs when none of the cases considered in

definitions can be applied. Failure propagates: an operation produces an undefined result

whenever some step in its evaluation gives rise to undefined. To simplify the notation,

we assume that failure propagation is implicit, and will not be shown explicitly in the

definitions.

Definition 6.2. We use φ({(Ai, A
′
i)|1 � i � n}) to denote the two-sorted most general unifier

of the set of equations {Ai = A′
i | 1 � i � n}, if it exists, which is a substitution according to

Definition 6.1. We will simply call φ({(Ai, A
′
i)|1 � i � n}) the unifier of {(Ai, A

′
i)|1 � i � n}.

Let ∆, ∆′ be two variable environment schemes. We use (∆,∆′) to denote the set

{(W, W′) | x :W ∈ ∆ and x :W′ ∈ ∆′} .

We will write φ(∆,∆′) as a shortened form of φ((∆,∆′)). Note that φ(∆,∆′) is the most

general substitution σ (if it exists) such that σ(∆,∆′) is well formed.

As already observed, the application of a substitution σ to a group environment scheme

Γ gives an environment scheme that is not, in general, well formed, because σ can map

two distinct group names of Dom(Γ) to the same group name. In the following, we will

show how to recover a well-formed group environment scheme after the application of

substitutions. This task is performed in two steps:

1 by unifying the communication type schemes in different type assumptions for the same

group name (completion-unification, Definition 6.3);

2 by merging (through componentwise set union) group type schemes having the same

communication type scheme (compression, Definition 6.5).

Completion-unification and compression are also useful for recovering a well-formed

environment scheme when the algorithm needs to merge two environment schemes, for

example, in typing a parallel composition.

We say that a group environment scheme Γ is consistent if for all g :G1, g :G2 ∈Γ, we have

T (G1) = T (G2). This condition does not imply G1 = G2, so consistent environment schemes

are in general not well formed.
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Definition 6.3. Let Γ be an arbitrary group environment scheme. The completion-unifier

of Γ, denoted Σ[Γ], is the substitution defined inductively as follows:

1 If Γ is consistent, then Σ[Γ] is the empty substitution.

2 Otherwise, Σ[Γ] is the substitution Σ[σ(Γ)] ◦ σ, where

σ = φ{(T (G), T (G′)) | ∃g . g :G, g :G′ ∈Γ such that T (G) 	= T (G′)} .

The environment scheme Σ[Γ](Γ) is called the completion-unification of Γ.

The completion-unification procedure always terminates: either with a failure, or with a

finite result consisting of a substitution Σ[Γ]. This is obvious, since the number of distinct

group names decreases at each iteration and the number of group names in Γ is finite.

The environment scheme Σ[Γ](Γ) is consistent, but not, in general, well formed. The

basic properties of completion-unification are formalised by the following lemma.

Lemma 6.4. Let Γ be an arbitrary group environment scheme. If Σ[Γ] is defined, then:

1 Σ[Γ](Γ) is consistent.

2 For all σ such that σ(Γ) is consistent, there is a substitution σ′ such that σ = σ′ ◦ Σ[Γ].

Otherwise, there is no substitution σ such that σ(Γ) is consistent.

Proof.

1 This part of the lemma follows by definition.

2 Assume that Σ[Γ] is obtained by applying step 2 of Definition 6.3 n times. The proof

is by induction on n.

For n = 0, the lemma is trivially true.

For n > 0, let

S = {(T, T′) | ∃g . g :gr(S ,C ,E , T), g :gr(S ′,C ′,E ′, T′)∈Γ such that T 	= T′} .

Note that since σ(Γ) is consistent, we must have σ(T) = σ(T′) for all pairs (T, T′) ∈ S .

If σ0 is the most general unifier of S , we must have σ = σ′ ◦ σ0 for some substitution

σ′. So we have that σ(Γ) = σ′(σ0(Γ)). Now observe that Σ[σ0(Γ)] is defined in n − 1

steps. By the induction hypothesis, there is a σ′′ such that σ′ = σ′′ ◦ Σ[σ0(Γ)]. Since

Σ[Γ] = Σ[σ0(Γ)] ◦ σ0 by definition, the result is proved.

The final (non-recursive) step required to transform a consistent environment scheme into

a well-formed one is simply to put together, by set union, the group type schemes of all

the different assumptions for the same group name.

Let G1 = gr(S1,C1,E1, T) and G2 = gr(S2,C2,E2, T). Let the union between group type

schemes be defined by

G1 ∪ G2 = gr(S1 ∪ S2,C1 ∪ C2,E1 ∪ E2, T).

It is easy to see that this is associative and commutative.

Definition 6.5. The compression �(Γ) of a consistent group environment scheme Γ is the

group environment scheme defined by

�(Γ) = {g :
⋃
i∈Ig

Gi | g ∈ Dom(Γ), Ig = {i | g :Gi ∈ Γ}}.

One can easily check the following lemma.
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Lemma 6.6. If Γ is consistent, then �(Γ) is well formed.

In order to discuss the properties of completion-unification and compression (and of

the algorithm), we introduce a partial order on type schemes and environment schemes.

Definition 6.7. The relation � on group type schemes is defined by

gr(S,C,E, T) � gr(S ′,C ′,E ′, T′)

if S ⊆ S ′, C ⊆ C ′, E ⊆ E ′ and T = T′ .

This partial order is extended monotonically to arbitrary environment schemes by

adding set inclusion:

Γ � Γ′ if ∀ (g :G) ∈ Γ . ∃ (g :G′) ∈ Γ′ . G � G′

Γ; ∆ � Γ′; ∆′ if Γ � Γ′ and ∆ ⊆ ∆′.

∆ ⊆ ∆′ reflects the absence of subtyping between communication type schemes.

The meaning of the relation Γ � Γ′ is that Γ′ is more permissive than Γ on Dom(Γ),

but it can contain statements that are not present in Γ. However, a process P that is

well typed with respect to Γ is not necessarily well typed with respect to Γ′, owing to the

condition in rule (Out), which forces some inclusion conditions on the S components of

groups.

The following properties of � are useful.

Lemma 6.8.

1 If Ξ is well formed and Ξ′ � Ξ, then Ξ′ is consistent.

2 Let Γ be a consistent group environment scheme such that σ(Γ) � Γ′, where Γ′ is well

formed. Then σ(�(Γ)) � Γ′ also.

Proof.

1 This part of the lemma is trivial since � on group type schemes implies identity of

communication type schemes.

2 If Ig = {i | g :Gi ∈ Γ}, then
⋃

i∈Ig Gi is the group type scheme assigned to g in �(Γ). Now

let σ(g) :G′ ∈ Γ′. By hypothesis, we have that σ(Gi) � G′ for all i ∈ Ig , so σ(
⋃

i∈Ig Gi) � G′

also.

Type inference algorithm

We now give an algorithm for reconstructing the type information from a raw process in

the most general way. The inference algorithm can infer type schemes and annotate terms

with them: the result is thus a process scheme, which is defined as follows.

Definition 6.9. A process scheme is defined by the same syntax as given for processes in

Figure 1, except that inputs are decorated by message type schemes instead of message

types.

The algorithm is defined through a set of ‘natural semantics’ rules (Kahn 1987). A

reasonable judgement produced by these rules would be of the form

R ⇒ Ξ, P , g
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where R is a raw term, P is a process scheme that is a typed version of R (that is, |P | = R),

and Ξ is an environment scheme. Furthermore, Ξ and g are such that Ξ � P : g is the

‘most general’ typing judgement for R, in the sense that any other typing Ξ′ � Q :g′ for a

process Q such that |Q| = R can be obtained from it by substitution and �. To make the

algorithm more readable, however, we will use a judgement of the form

Ξ �I P :g ,

which is intended to represent the most general typing for the raw term |P |. Note that

this could be expressed in the previous form by writing |P | ⇒ Ξ, P , g. Similarly, we will

use a judgement of the form

Ξ �I C :g → g′

to represent the (most general) typing for a raw capability C .

As a preliminary remark, note that raw terms do not contain any indications of possible

occurrences of group restrictions. Moreover, typings of groups given by group restrictions

may always be shifted, with no change, from the process to its environment. This can be

formalised as follows.

Lemma 6.10. If {−−→
g :G}(k) are all the group restrictions occurring in P , and P is obtained

from P by removing them, then

Ξ � P :g implies Ξ, {−−→
g :G}(k) � P :g .

Proof. Let C[ ] be a context not containing group restrictions. Using Lemma 3.1 it is

easy to show by induction on C[ ] that

Ξ � C[(ν{−−→
g :G}(k))P ] :g implies Ξ, {−−→

g :G}(k) � C[P ] :g .

The base step is Lemma 3.1(13).

For the induction step, consider the case C[ ] = N[C ′[ ]]. By Lemma 3.1(9), we have

that Ξ � N[C ′[(ν{−−→
g :G}(k))P ]] :g implies Ξ � C ′[(ν{−−→

g :G}(k))P ] :g′ and Ξ � N :g′, Ξ � g′ :G,

and g ∈ S (G) for unique g′, G. By induction, Ξ, {−−→
g :G}(k) � C ′[P ] :g′, and by rule (Amb),

we have Ξ, {−−→
g :G}(k) � C[P ] :g′.

This Lemma means that the type inference algorithm can ignore group restrictions as

they can always be introduced without affecting typings (while satisfying the relative side

conditions).

The inference procedure is defined in a natural semantics style. Figures 18 and 19 give

the inference rules for messages and processes, respectively. In all the type inference rules,

group names and type variables that appear in the conclusion and do not appear in the

premises are fresh. Rule (I-out) in Figure 18 distinguishes some occurrences of group

names in the generated environment by marking them with a star (�) for later use. The

marked occurrences are preserved by substitution: if an occurrence g� is in the domain
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Fig. 18. Type reconstruction for capabilities/messages.

Fig. 19. Type reconstruction for raw terms.
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of a substitution replacing g by g′, then the occurrence is changed into g′�†. Marking is

completely transparent to all operations introduced in this section.

In all the rules with two premises (that is, (I-Path), (I-Prefix-Cap), (I-Output) and

(I-Par)), the algorithm merges the two environment schemes of the premises by using

completion-unification and compression. In rules (I-Path), (I-Prefix-Cap) and (I-Par) two

groups are identified. More precisely:

— in (I-Path), the output group of C ′ is identified with the input group of C;

— in (I-Prefix-Cap), the input group of C is identified with the group of the process

scheme P ;

— in (I-Par), the groups of the process schemes P and Q are identified.

In the rule (I-Output), the algorithm identifies the communication type schemes of P

and M by means of the unifier defined in Definition 6.2. The same kind of unification is

performed by the rule (I-Input). In the rule (I-Amb), the ambient name N must be typed

with the group g of process scheme P . The type of the resulting process scheme is a fresh

group name g′. The group g′ is added to the set of the ambient groups where g-ambients

can stay.

Soundness and completeness

In this subsection, we give soundness and completeness proofs for the inference algorithm.

To this end, we introduce restricted versions of our type assignment system.

Let �-νg denote the type assignment system for the variant of our language in which

there are no group restrictions (that is, rule (GrpRes)).

Also, let �-νg+V denote the type assignment for the variant of �-νg in which type variables

are also allowed to occur in communication type schemes. The typing rules in Figure 5

are not affected by the presence of variables. Obviously, �-νg+V is an extension of �-νg in

the sense that every statement valid in �-νg is also valid in �-νg+V .

Finally, let �-νg+V
−S denote the type inference system obtained from �-νg+V by ignoring the

condition on inclusion of S components in rule (Out).

It is easy to see that the generation Lemma 3.1 also holds for deductions in �-νg+V
−S .

This implies that there is a unique deduction for each valid statement. One can show by

induction on derivations that �-νg+V
−S is closed under substitutions respecting consistency

and under applications of �, and is preserved when the current environment scheme is

replaced by a well-formed and greater (with respect to � as defined in Definition 6.7)

environment scheme.

Notational convention. In the following, Π generically denotes a well-formed process

scheme P or a message M, and τ denotes either a process type g or a capability type

g1 → g2. In both cases the meaning will be clear from the context.

Lemma 6.11.

1 If the judgment Γ; ∆ �-νg+V
−S Π:τ holds, its derivation is unique.

† Note that in inference substitutions a group name can only be replaced by another group name.
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2 Let Γ; ∆ �-νg+V
−S Π : τ, and let σ be a substitution such that σ(Γ) is consistent. Then

�(σ(Γ)); σ(∆) �-νg+V
−S σ(Π):σ(τ).

3 Let Ξ �-νg+V
−S Π : τ, and let Ξ′ be a well-formed environment scheme such that Ξ � Ξ′.

Then Ξ′ �-νg+V
−S Π:τ.

The following lemma is the main lemma for the soundness proof.

Lemma 6.12. If Ξ �I Π:τ, then Ξ �-νg+V
−S Π:τ.

Proof. The proof is by induction on the type inference derivation (system �I). Note that

the environment schemes in the conclusions of all rules are well formed by Lemmas 6.4(1)

and 6.6. Lemma 6.11(2 and 3) ensure that we can also apply the substitutions and the

compression in the conclusions to the corresponding premises, and that we can weaken

the environment schemes in the premises.

As an example, we will show the case of rule (I-Prefix-Cap). We have

Γ1; ∆1 �I C :W Γ2; ∆2 �I P :g1

�(σ′(Γ1,Γ2)); σ
′(∆1,∆2) �I C. σ′(P ) :σ′(g2)

where σ′ = Σ[σ(Γ1,Γ2)]◦ σ and σ = φ((∆1,∆2) ∪ ({W, g1 → g2)}).
By induction, we have that Γ1; ∆1 �-νg+V

−SC :W and Γ2; ∆2 �-νg+V
−SP :g1.

By construction, we have that σ′(∆1,∆2) is consistent and σ′(∆i) � σ′(∆1,∆2) for i = 1, 2.

By Lemma 6.4(1), we have that σ′(Γ1,Γ2) is consistent, so �(σ′(Γ1,Γ2)) is well formed by

Lemma 6.6. Hence, �(σ′(Γi)), for i = 1, 2, are also well formed and such that �(σ′(Γi)) �
�(σ′(Γ1,Γ2)).

We must also have σ′(W) = g → g′ and σ′(g1) = g, σ′(g2) = g′ for some groups g, g′.

By Lemma 6.11(2 and 3), we have

�(σ′(Γ1,Γ2)); σ
′(∆1,∆2) �-νg+V

−SC :g → g′

and

�(σ′(Γ1,Γ2)); σ
′(∆1,∆2) �-νg+V

−S σ′(P ) :g ,

and the proof then follows by rule (Prefix-Cap).

Note that, by Lemmas 6.12 and 6.11(1), if Ξ �I Π:τ holds, there is a unique deduction

of Ξ �-νg+V
−S Π : τ. This can indeed be obtained by applying backwards in the deduction

tree of Ξ �I Π : τ the substitutions generated in �I, and by matching the environment

schemes with respect to �. In doing this, we can keep track of the starred group names:

in particular (using the notation of Definition 6.5), a group name is starred in the union

of S fields during the compression if it is starred in at least one of the Si.

We can eliminate the stars using the following closure operation.

Definition 6.13. The closure of a group environment scheme Γ (written Υ(Γ)), where Γ

may contain occurrences of the star �, is the environment scheme computed as sketched

in the following algorithm:

repeat

if for some g� ∈ S (G) we have g : G′ ∈ Γ and S (G′) 	⊆ S (G), then replace S (G) by

S (G) ∪ S (G′)
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until there are no more g� satisfying the above condition

Then erase all �.

Note that if Γ is well formed, then Υ(Γ) is well formed also, and Γ � Υ(Γ), since the only

effect of closure is to increase the S components of group type schemes.

Lemma 6.14. Let Γ; ∆ �I Π:τ. Then we have:

1 Υ(Γ); ∆ �-νg+VΠ:τ.

2 Moreover if Γ′; ∆ �-νg+VΠ:τ for some well-formed Γ′ such that Γ � Γ′, then Υ(Γ) � Γ′.

Proof.

1 By Lemmas 6.12 and 6.11(3), there is a deduction of Υ(Γ); ∆ �-νg+V
−SP : g that, by

Lemma 6.11(1), is unique. Now the only reason a deduction in �-νg+V
−S can fail to be a

deduction in �-νg+V is that the condition on rule (Out) is not satisfied somewhere, that

is, that for some action out N occurring in P we have that out N is assigned a type

g2 → g2, and ξ :g1 ∈ ∆, and g1 :G1, g2 :G2 ∈ Γ and S (G1) 	⊆ S (G2). This is impossible,

since in this case we have g�1 ∈ S (G2) inside Γ, and at the end of the closure, that is, in

Υ(Γ), all starred groups g1 :G1 occurring in S (G2) are such that S (G1) ⊆ S (G2).

2 We show by induction on the number of steps of the algorithm of Definition 6.13 that

the environment scheme Γn resulting at the n-th step must be such that Γn � Γ′.

For n = 0, this is trivial.

Let the (n + 1)-th step replace S (G) by S (G) ∪ S (G′), since g� ∈ S (G), g :G′ ∈ Γ, and

S (G′) 	⊆ S (G). An inspection of the type scheme reconstruction rules shows that the

only rule introducing starred groups is (I-out), so Π must contain the capability out N,

and N :g ∈ ∆ and g′ :G ∈ Γ for some g′. Therefore, in the deduction of Γ′; ∆ �-νg+VΠ:τ,

there will be an application of rule (Out) for typing out N with premises Ξ � g : G1,

Ξ � g′ : G2 and S (G1) ⊆ S (G2) for some G1, G2. By induction, S (G′) ⊆ S (G1) and

S (G) ⊆ S (G2), so we conclude S (G) ∪ S (G′) ⊆ S (G2).

Definition 6.15. The finishing substitution σf for a judgement Γ; ∆ �I Π:τ is a substitution

that:

1 replaces with shh all the type variables t that occur only once in the fourth components

of group type schemes in Γ;

2 replaces with arbitrary group names the type variables t that occur more than once,

that is, once in the fourth components of group type schemes in Γ and at least once in

Π as input type schemes.

Note that finishing substitutions are not inference substitutions in the sense of Defi-

nition 6.1.

By inspection of the inference rules, it is easy to see that the variables mentioned in Point

(1) of Definition 6.15 can only occur in one group type scheme and never as components

of a capability type scheme. So they characterise the groups in which no communication

is done, and can therefore be replaced by shh. In the resulting term, there can still be

some type variables left, such as those mentioned in Point (2) of Definition 6.15, which
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can be replaced by arbitrary group names. Note that, by construction, a variable cannot

occur in both Γ and ∆.

The soundness result is then a consequence of Lemma 6.14(1), since the finishing

substitution eliminates all variables while preserving the well-formedness of environment

schemes.

Theorem 6.16 (Soundness). If Γ; ∆ �I Π : τ and σf is a finishing substitution for it, then

σf(Υ(Γ); ∆) �-νgσf(Π):σf(τ).

Completeness of the type inference procedure can be proved by induction on derivations

by means of Lemmas 6.4 and 6.8.

Theorem 6.17 (Completeness). If Ξ �-νgΠ :τ, then Ξ′ �I Π′ :τ′ and there is a substitution σ

such that:

(1) σ(Π′) = Π.

(2) σ(τ′) = τ.

(3) σ(Ξ′) � Ξ.

Proof. The proof is by induction on deductions in �-νg. We will only show the case of

rule (Amb); the other cases are similar. Hence, we assume

Ξ � P :g Ξ � N :g Ξ � g :G g′ ∈ S (G)

Ξ � N[P ] :g′

where Ξ = Γ; ∆, and N is either a variable or an ambient name. In both cases, we must

have N :g ∈ ∆. Moreover, g :G ∈ Γ.

By the induction hypothesis on Γ; ∆ �-νgP : g, we have that Γ1; ∆1 �I P1 : g1 holds, and

there is a substitution σ1 such that:

(1′) σ1(P1) = P .

(2′) σ1(g1) = g.

(3′) σ1(Γ1; ∆1) � Γ; ∆.

Applying rule (I-Amb) to Γ1; ∆1 �I P1 :g1, we have

�(σ′
0(Γ1, g1 :G1)); σ

′
0(∆1, N :g1) �I N[σ′

0(P1)] :g
′
1 ,

where σ′
0 = Σ[σ0(Γ1, g1 :G1)]◦ σ0, σ0 = φ(∆1, {N :g1}) and G1 = g1 :gr({g′

1},�,�, t).

As g′
1, t are fresh, we can define σ2 = σ1 ◦ {g′

1 := g′} ◦ {t := T (G)}. Clearly, σ2 satisfies:

(1′′) σ2(P1) = P (by (1′) since g′
1, t do not occur in P ).

(2′′) σ2(g1) = g (by (2′)).

(2′′′) σ2(g
′
1) = g′.

(3′′) σ2(Γ1, g1 : G1; ∆1, N : g1) � Γ; ∆ (by (3′), (2′′) and (2′′′) since N : g ∈ ∆, g : G ∈ Γ,

g′ ∈ S (G) and σ2(t) = T (G)).

Lemma 6.8(1) and Point (3′′) imply that σ2(∆1, N : g1) is well formed. Hence, by the

definition of most general unifier, we must have σ2 = σ3◦ σ0 for some substitution σ3.
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Lemma 6.8(1) and Point (3′′) also imply that σ3(σ0(G1, g1 :G1)) � Γ is consistent. Hence,

by Lemma 6.4(2), there must be a substitution σ such that σ3 = σ◦ Σ[σ0(Γ1, g1 :G1)]. So

σ2 = σ◦ Σ[σ0(Γ1, g1 :G1)]◦ σ0 = σ◦ σ′
0. Now σ is the desired substitution, since:

(1) σ(σ′
0(N[P1])) = N[P ] (by (1′′) )

(2) σ(g′
1) = g′ (by (2′′))

(3) σ(�(σ′
0(Γ1, g1 :G1)); σ

′
0(∆1, N :g1)) � Γ; ∆

where σ(�(σ′
0(Γ1, g1 :G1)) � Γ follows from Point (3′′) using Lemma 6.8(2).

7. Related papers

In the original Mobile Ambients (Cardelli and Gordon 2000), as well as the subjective

moving capabilities in and out, there is also the open capability. This capability, which

allows the dissolving of boundaries, has been criticised for both bringing about serious

security concerns (Bugliesi et al. 2004) and for being difficult to implement (Sangiorgi and

Valente 2001).

The proposal of Boxed Ambients (Bugliesi et al. 2004) drops the open capability but

allows communications across ambient boundaries between parents and children.

In M3, however, the open is replaced by the to capability.

The communication of Boxed Ambients can be mimicked in M3 by simply moving one

of the two processes willing to communicate. Consider the example of a parent willing to

send a message M to a child ambient n waiting for it, that is, using the syntax of Boxed

Ambients,

〈M〉n | n[(x :W )↑P ] .

In M3, a process with a similar behaviour is

(νm :g)(m[to n.〈M〉] | n[(x :W )P ] .

We conjecture that the to capability is more expressive than the communication

mechanisms of Boxed Ambients, since we do not know how this capability or the

Dπ calculus might be encoded in Boxed Ambients. Of course, this deserves further

investigation.

On the other hand, the to capability seems to be less powerful (and less dangerous!)

than the open capability, which we do not know how to fully encode in M3. We are only

able to encode an open contained in an ambient, that is, a process of Mobile Ambients

of the form

n[m[P ] | open m |Q] .

The corresponding M3 process is

n[Q] |m[to n.P ] .

Conversely, the effect of to,

m[to n.P |Q] | n[R] ,

can be mimicked in Mobile Ambients as

(νp)(m[p[out m.in n.P ]) |Q] | n[open p |R]) .
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In M3, as in Mobile and Boxed Ambients, the ambients do not control when other

ambients traverse them. Levi and Sangiorgi have proposed adding co-capabilities to

Mobile Ambients in such a way that each action needs the agreement of both the active

and passive ambient involved (Levi and Sangiorgi 2003). One could clearly devise a

version of M3 with co-capabilities, but we have not done so as M3 types ensure that

active ambients have the ‘right’ to traverse or send processes to passive ambients.

The type system of M3 is inspired by Cardelli et al. (2002): similarities and differences

were pointed out in Section 3. The type inference algorithm of Section 6 could be easily

modified to deal with group types for Mobile Ambients. In the literature there are only

a few type inference algorithms for ambient calculi: see Zimmer (2000), Barbanera et

al. (2002), Amtoft et al. (2004), Cozzi (2004) and Coppo et al. (2005) – only the last

two deal with group types. So the design of the present algorithm involved a number of

non-trivial choices.

There are many labelled transition systems for ambient calculi in the literature. The

labelled transition system of M3 is similar to those of Merro and Hennessy (2002) and

Bugliesi et al. (2005): the novelty is the pervasive use of types and environments. We

claim that type information is crucial in the design of labelled transition systems for typed

calculi, especially when types enforce security policies, as in M3. The influence of types on

the behaviour of π-calculus processes was first observed by Pierce and Sangiorgi (Pierce

and Sangiorgi 2000). The labelled transition system we have presented here is sound but

not complete with respect to reduction barbed congruence: we conjecture that a complete

system could be obtained by distinguishing between visible and invisible transitions, as

Merro and Zappa Nardelli do for Mobile Ambients (Merro and Zappa Nardelli 2005).

The price would be an increase in the complexity of transition labels, thus making the

use of type information less clear, which is why we did not pursue this approach.

Coppo et al. (2004) and Coppo et al. (2005) present a typed ambient calculus based on

M3 where global type assumptions on ambient names are eliminated: this is realistic in

a scenario where interaction may take place between parties whose respective properties

are unknown or only partially known to each other. Cozzi (2004) gives a type inference

algorithm equipped with a Prolog implementation for the calculus of Coppo et al. (2004).

8. Implementation

As shown in Giovannetti (2004), the type inference rules may be almost directly translated

into logic programming clauses so that the explicit unification is automatically performed

by Prolog; with the addition of functional or imperative Prolog procedures for comput-

ing completion and compression, one obtains a program that implements, with slight

modifications, the type reconstruction algorithm specified in Section 6.

For example, the rule for parallel composition may be written as

Γ1; ∆1 � P : pr(g) Γ2; ∆2 � Q : pr(g)

Γ1 � Γ2; ∆1 ∪ ∆2 � P |Q : pr(g)
(Par)

where the condition that the two environments in the two premises are compatible is
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Fig. 20. Example session.

omitted. The corresponding Prolog clause is

typing(GEnv, Env, P1 par P2, pr(G)):-

typing(GEnv1, Env1, P1, pr(G)),

typing(GEnv2, Env, P2, pr(G)),

sumunion(Env1,Env,GEnv1,GEnv2,GEnv).

The procedure sumunion is the ‘impure’ logic programming procedure that performs

completion and compression.

The type reconstruction algorithm is embodied in a web-based prototype tool, which can

be found at http://lambda.di.unito.it/m3; the SWI-Prolog source code is available

at http://www.di.unito.it/ elio/dart/m3.pl.

Figure 20 is the listing of the session for the Trojan horse example, which can only be

well typed if the assumptions allow Ulysses’ group to send lightweight (possibly harmful)

processes into Priam’s palace.

9. Conclusion

We have presented a simple calculus that combines ambient mobility with general process

mobility, putting together the standard in and out Mobile Ambients actions with the to

primitive of the Distributed π-calculus (Hennessy and Riely 2002).

As a final remark, we observe that the very simplicity of our type system, which

grants it an easy readability and usability, does not allow the control of finer prop-

erties, which are expressible through much more sophisticated types such as those of

Pierce and Sangiorgi for the π-calculus (Pierce and Sangiorgi 1996). Even the basic

type system for Dπ (Hennessy and Riely 2002) is only incompletely rendered, since

our system cannot encode the assignment of different types to homonymous channels

belonging to different locations. This is made possible in Dπ by the presence of local

typing judgments, which cannot be simulated by our purely global judgments. We

plan, therefore, to enrich the type system of M3 with security controls and local type

information.
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