-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

When Ambients Cannot be Opened

Iovka Boneva, Jean-Marc Talbot

» To cite this version:

Iovka Boneva, Jean-Marc Talbot. When Ambients Cannot be Opened. Proceedings of Sixth Inter-
national Conference on Foundations of Software Science and Computation Structures, 2003, Warsaw,
Poland. pp.169 — 184. inria-00536732

HAL Id: inria-00536732
https://hal.inria.fr /inria-00536732
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50039855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00536732
https://hal.archives-ouvertes.fr

When Ambients Cannot be Opened *

lovka Boneva and Jean-Marc Talbot
{boneva, tal bot}@ifl.fr

Laboratoire d’Informatique Fondamentale de Lille, France.

Abstract. We investigate expressiveness of a fragment of the ambient calculus,
a formalism for describing distributed and mobile computations. More precisely,
we study expressiveness of the pure and public ambient calculus from which the
capability open has been removed, in terms of the reachability problem of the
reduction relation. Surprisingly, we show that even for this very restricted frag-
ment, the reachability problem is not decidable. At a second step, for a slightly
weaker reduction relation, we prove that reachability can be decided by reducing
this problem to markings reachability for Petri nets. Finally, we show that the
name-convergence problem as well as the model-checking problem turn out to be
undecidable for both the original and the weaker reduction relation.

1 Introduction

The ambient calculus [5] is a formalism for describing distributed and mobile compu-
tation in terms of ambients, named collections of running processes and nested sub-
ambients. A state of computation has a tree structure induced by ambient nesting. Mo-
bility is represented by re-arrangement of this tree (an ambient may move inside or
outside other ambients) or by deletion of a part of this tree (a process may dissolve the
boundary of some ambient, revealing its contents). Mobility is ruled by the capabilities
in, out, open owned by the ambients. The ambient calculus also inherits replication,
name restriction and asynchronous communication from the w-calculus [16].

The ambient calculus is a very expressive formalism. It has been proved Turing-
complete in [5] by encoding Turing-machine computations. This encoding uses both
mobility features from the calculus as well as name restriction. However, several vari-
ants of the ambient calculus have been proposed so far [14,2,19] by adding and/or
retracting features from the original calculus. In [14], the safe ambient calculus intro-
duces some co-capabilities. They are used as an agreement on mobility between the
moving ambient (executing a capability) and the ambient where it will move to (exe-
cuting the corresponding co-capability). The boxed ambient calculus is another variant
[2]; in this calculus, the possibility to dissolve boundary of ambients has disappeared
and is replaced by a more sophisticated communication mechanism.

Studying precise expressiveness of these different variants of the ambient calculus
is crucial as it may separate necessary features from redundant ones and it may also
help to design or improve algorithms to verify [18,7,6] or analyze [11, 9] programs
written in these ambient formalisms.

* The authors are grateful to S. Tison and Y. Roos for fruitful discussions and thank the anony-
mous referees for valuable comments. This work is supported by an ATIP grant from CNRS.

Some works aimed already to study expressiveness of ambient calculus: in [20], it
is shown that the r-calculus, a formalism based only on name communication, can be
simulated in the communication-free safe ambient calculus. In [7], the pure and public
ambient calculus (an ambient calculus in which communication and name restriction
are omitted) is considered and proved to be still very powerful: for this restricted frag-
ment, the reachability problem (i.e. given two processes P and @, can the process P
evolve into the process @ ?) can not be decided. Recently, in two different works [13]
and [3], it has been established that this fragment is actually Turing-complete. In [3],
the authors also showed that the ambient calculus limited to open capabilities and name
restriction is Turing-complete as it can simulate counters machines computations [17].
The name restriction is needed there as if omitted, divergence for reductions of pro-
cesses can be decided. In this latter paper, the following question is raised: what is the
expressiveness power of the “dual” calculus, a calculus in which the open capability is
dropped whereas the in, out capabilities are preserved ?

In this paper, we investigate expressiveness of pure and public mobile ambients
without the open capability. Hence, the reduction of a process is limited to the rear-
rangement of its tree structure. To be more precise, we study the reachability problem
for such ambient processes. We show that for this calculus reachability for the reduction
relation between two processes can not be decided. To prove this result, we use a non-
trivial reduction to the acceptance problem of two-counters machines [17]. We figured
out that the major source of undecidability for this fragment comes from the defini-
tion of replication as part of the structural congruence relation (the structural congru-
ence aims to identify equivalent processes having different syntactic representations).
Indeed, we show that if this definition of replication is presented as an (oriented) reduc-
tion rule then the reachability for the reduction relation between two processes becomes
decidable. We prove this statement by reducing this problem to the reachability problem
of markings in Petri nets [15]. Finally, we investigate two problems related to reacha-
bility. The first problem is the name-convergence problem [10]: a process converges to
some name n if this process can be reduced to some process having an ambient named
n at its top-level. We show that this problem is undecidable however the definition of
replication is presented. The second problem is the model-checking problem against the
ambient logic [4]. It is easy to show that the name-convergence problem can be reduced
to an instance of the model-checking problem. Thus, this latter is undecidable as well.

The paper is organized as follows: in Section 2, we give definitions for the ambient
calculus we consider here. Section 3 is devoted to the reachability problem for this
fragment. We give there a negative result: this problem is undecidable. In Section 4, we
consider a weak calculus based on a different reduction relation; we show that for this
particular case the reachability problem becomes decidable. Finally, in Section 5, we
consider other problems such as model-checking and name-convergence. We show that
for the two kinds of reduction we considered those problems are not decidable.

2 Definitions

We present in this section the fragment of the ambient calculus we consider all along
this paper. This fragment corresponds to the ambient calculus defined in [5] for which

both name restriction, communication and the open capability have been dropped. We
call this fragment in/out ambient calculus.

We assume countably many names ranging over by n, m, a, b, c, For any name
n, we consider capabilities « of the form in n and out n. The following table defines
the syntax of processes of our calculus.

Processes:
I 1
P,Q,R:= processes

0 inactivity P|Q composition

n[P] ambient a.P action prefix

\P replication

The semantics of our calculus is given by two relations. The reduction relation P —
(describes the evolution of processes over time. We write —* for the reflexive and
transitive closure of —. The structural congruence relation P = () relates different
syntactic representations of the same process; it is used to define the reduction relation.

The structural congruence is defined as the least relation over processes satisfying
the axioms from the table below:

Structural Congruence P = Q:

P=P (StrRefl) P|O=P (Str Par Zero)

P=Q=Q=P (Strsymm) P|Q=Q|P (Str Par Comm)
P=Q,Q=R=P=R (StrTrans) (P|Q)|R=P|(Q|R) (Str Par Assoc)
P=Q=P|R=Q|R (StrPar) \P=P|P (Str Repl Copy)
P=Q=n[P]=n[Q] (StrAmb) 10=0 (Str Repl Zero)
P=Q = a.P=a@ (Str Action) '"P =P (Str Repl Repl)
P=Q='P=!Q (StrRepl) Y(P|@Q)='P|!Q (Str Repl Par)

The first column specifies that = is a congruence relation over processes. The second
one specifies properties of the replication and parallel operators: in particular, it states
that the parallel operator is associative-commutative and has 0 as neutral element.

The reduction relation is defined as the least relation over processes satisfying the
following set of axioms:

Reduction: P — Q

n[inm.P | Q] | m[R] = m[n[P | Q] | R] (Red In)
m[nfout m.P | Q] | R] = n[P | Q] | m[R] (Red Out)
P-Q=P|R—>Q|R (Red Par)
P — @ = n[P] = n[Q)] (Red Amb)
P=PP—-Q,Q=Q"=>P —=Q (Red =)

When writing processes, we may omit irrelevant occurrences of the inactive process
0. For instance, we may write n[] for n[0] and in a.out b for in a.out b.0.

3 The reachability problem for in/out ambient calculus

In this section we investigate the reachability problem for in/out ambient calculus:
”Given two processes P, @, does P —* () hold ?”. We show that, despite the small

fragment of the ambient calculus we consider, this problem is undecidable by defining
a reduction to the acceptance problem of two-counters machine [17].

A two-counters machine M is given by a four tuple (Q, g;,qf, A) where Q is a
finite set of states, ¢; € Q is the initial state, g € Q is the final state; A is a finite
subset of (Q x {+, —, =} x {0, 1} x Q) called the transition relation. A configuration
of the machine M is given by a triple (g, co, ¢1) belonging to the set (Q, N, N) (where
N is the set of natural numbers); ¢, ¢; are the two counters. The transition relation A
defines a step relation -, over configurations as follows: (g, co,c1) Fa (¢, ¢, ¢t)
iff one of the three statements is true for i,j € {0,1} and i # j: (i) (¢,=,4,¢") in 4,
¢; =c;=0andc; = ¢}, (ii) (¢, +,4,¢") in A, ¢} = c;+1and ¢; = ¢}, (iii) (¢, -4, ¢")
inA, ¢;>0,¢;=c;i—1landc; =cj.

Let 3, be the reflexive and transitive closure of .. A two-counters machine
accepts a natural v if (g;,v,0) Fy, (gf,0,0).

Theorem 1. [17] For an arbitrary two-counters machine M and an arbitrary natural
v, it is undecidable to test whether M accepts v.

We express the acceptance problem of a natural v by a machine M in terms of
an instance of the reachability problem in the in/out ambient calculus. We encode
within a process [(g, vo,v1)] the configuration of the machine (g, vo,v1) (the current
state and the values for the two counters) and the transition relation A of the machine.
The step relation of the machine is then simulated by the reduction of this process. It
should be noticed that not all the different reductions that could be performed by the
process indeed participate to the step relation; the process may engage some wrong
reduction steps. However, we show that in this case, the process either goes stuck in a
form that does not correspond to some valid representation of the machine or carries
on some reduction steps but without any possibility to resume into an encoding of the
two-counters machine. Let us now describe the process [(g,vo, v1)]: we assume for
any state ¢ occurring in A, two ambient names g and g;: g represents the state of the
machine and ¢, is used to denote a possible transition of the machine being in the state
g. The process [(g, vo,v1)] is defined as

qling] | co[V(vo) | 'k[out co]] | e1[V (01) | !k[out e]] [[A] | P

The ambient g[in g;] represents the current state of the machine; the ambients ¢y and ¢,
represent the counters with their respective values V' (v¢) and V' (vy). The parametrized
process V' (v) encodes the value v recursively as: (¢) V(0) = n[!l | D | in k | a[0]]
and (it) V(v + 1) = [l | ID | ink | b[0] | V(v)]. Intuitively, the value v of the
counter is given by the number of ambients n in the process V (v) minus 1. The two
processes I and D are definedas I = in.inn.0, D = in z.in z’.out z’.out n.0: the
process I is used to increment the counter and D to decrement it.

The process [A] represents the transition rules of the machine and is defined as
the parallel composition of the replicated processes encoding each transition rule. For-
mally, we have inductively [@] = 0 and [A U {(g,s,7,¢")}] = [A ~ {(¢,5,5,4)}] |
(g, s, j,q")]- For each kind of transition rules:

- [(¢,=,4,4)] = @[d'[8]-(in n.in a.out a.out n.out ¢;.in ;]|

- [(g, +,4,4")] = @[i[8; Ny | in ¢'.out ¢'.out ¢;]] with Ny =

nlouti.(!I | !D | ink | b[0] | ¢'[d4 -ing;])] and 0, = inn.outn.outn.ini.outs.
- [[(q, —5,4d)] = qt[d[ﬁg.in n.in b.out b.Z;]]

with Zy = z[out d.z'[out 2.¢'[out 2'.out n.out k.in ¢{]]]

where Bj is defined as the sequence of capabilities in g.out g.out g¢.in ¢;.
Finally, the process Pg plays the role of some garbage collector (using that !P | P is

structurally congruent to ! P): assuming that ¢*, . . ., ¢* are the states of the two-counters
machine, the process Pg is defined as
k[0] | %[0] | k[n[!] | D | d[0] | z[0] | 2'[0] | b[O]]] | ta;[q'[0]] | ... | 'a;[a'[O]]

Note that at any step of the computation, because of the two subprocesses !k[out ¢g]
and !k[out ¢;] contained respectively in the ambients ¢o and ¢;, the process can always
perform a reduction step: a copy of k[out ¢;] can ”jump” outside of the counter c;.
However, the resulting process k[0] is simply garbage-collected by the process Pg.
Hence, the process would simply reduce into itself; therefore, we will not take any
longer into account these irrelevant reduction steps.

Let us now describe how the process (g, vo,v1)] may evolve into another process
[(¢',vg, v1)] according to the transition rules of the two-counters machine. First, the
ambient g[in ¢;] reduces with a sibling ambient ¢;. Note that a misleading reduction
with an ambient ¢;[¢[0]] from the process P may happen. If so, the computation is
stuck. If there exists a transition from the state ¢ in the two-counter machine, then an
alternative reduction could occur with an ambient g; provided by A leading to

@[q[0] | n[B]---- |- T col-- Il eal-- J[TA]| Pe withn € {i,d,q'}

The sequence of capabilities 37 allows the transition which has the “control” (i.e. ¢,
contains ¢[0]) to provide "material” (represented as the ambient #) to treat the counter
addressed by this transition. Once, 37 is executed we obtain (assuming the transition
addresses the counter ¢g) co[n[...] | ...] | e1[...] | [4] | Pe withny € {i,d,q'}.

Note that ¢:[¢[0]] remaining at the top-level is garbage collected by Pg. Now, the
reductions differ according to the kind of transition that was chosen (assuming the tran-
sition addresses the counter cg, things being similar for ¢;):

o for (q,=,0,q’): the ambient 7[. . .] is ¢'[in n.in a.out a.out n.out ¢o.in ¢j]. If the
value of ¢y is 0 then ¢q contains an ambient n[a[0] | ...]. The sequence of capabilities
inn.ina.outa.outn.outcy can be executed and so, the next configuration is obtained.
Note that if V(vo) is not 0, then the process remains stuck as ¢ can not execute its
capability in a.

e for (q,+,0,q’): the ambient n[...] is [N, | in ¢'.out ¢'.out ¢o]] and the value
V' (vo) of the form n[!I | ...] is one if its siblings. Reminding that Ny = n[out i.(!I |
!D | ink | b[0] | ¢'[04.ing;])], we can see that N, contains roughly an ambient n used
for incrementing and the successor state ¢’ that will try to check that the incrementing
has been done properly.

V (vo) executes the sequence I = in4.inn leading to an ambient ¢

o [Z [n[out .(T D | ink | b[0] | ¢'[64-ingl]) | V(vo)]

| in ¢'.out ¢'.out ¢g

] | Ik[out co]]

By executing out ¢ from the top ambient n, one obtains
co[i[in ¢'.out ¢'.out co] | n[V (vo) |1 |!D | ink | b[0] | ¢'[d4-in q}]] | 1k[out co]]

At that point, we have almost V' (vg + 1) except the presence of ¢’ in the top ambient
n. Then, by using 6, = inn.out n.out n.in i.out ¢, ¢’ notices that it has V' (vo) as a
sibling (by executing in n.out n) and goes outside of n.

co[i[in ¢'.out ¢'.out o] | ¢'[ini.out i.ingq;] | V(vo + 1) | lk[out co]]

The ambient ¢ detects it has a sibling ¢’ (by executing in ¢'.out ¢') and the ambient ¢’
enters ¢ yielding co[i[out ¢o | ¢'[out i.in ¢;]] | V(vo + 1) | !k[out co]]. Then ¢ goes
outside of ¢g. So, the process is

i[¢'[out i.ing]] | co[V(vo + 1) | ...] | eca[V(v1) | --]| [A] | Pa

The ambient ¢’ exits 4, producing the process :[0] | ¢'[ing}]. The process ¢[0] is garbage-
collected by Pg, and the result indeed corresponds to the process [(¢', vo + 1,v1)].
e for (q, —,0,q’): the ambient 5[. . .] is d[inn.inb.out b.Z,]. If the value of V (vy) is
strictly positive then it is of the form n[b[0] | .. .]. Then d executes inn.in b.out b; the
contents of ¢y isthen co[n[d[Zy] | V(vo — 1) | 1 | !D | ink | b[0]] | !k[out co]].
Note that if V(v) is 0, then the process remains stuck as d can not execute its
capability in b. The role of Z, is interact with V(vg — 1) in order to trigger for this
latter the possibility to go outside of its surrounding ambient n. We recall that Z,, =
z[out d.z'[out z.¢'[out z'.out n.out k.in ¢;]]] and that V' (vg — 1) contains at its top-
level D = inz.inz'.out z’.out n.0. The ambient z from Z exits d; then, the ambient
V(v — 1) executes the capabilities in z.in 2’ from D and finally, 2’ leaves z. We reach
the following situation for the ambient z':

2'[¢'[out 2'.out n.out k.in ¢;] | n[out 2’.outn | ink | ...]]

The ambient n executes the remaining capabilities from D, that is out z'.out n; con-
currently, the ambient ¢’ exits z’. The contents of ¢g is then

Ikfout co] | V(vo — 1) | n[ink | 1T [1D | 5] | d[] | 2[] | #']] | ¢'[out n.out k.in g]]

At that point, the value of the counter has been decremented; the rest of the computation
aims to "clean up” the process allowing the computation to carry on. The ambient n
moves inside an ambient k[out ¢q]. So, we have in ¢g

k[out co] | V(vo—1) | k[outco | n[lI | !D | b]] | d[] | 2]] | 2'[] | ¢'[outn.outk.ing;]]]
In some arbitrary order, the ambient & (containing n) leaves the counter ¢q and ¢’ leaves
the ambient n.

k| 'D | o] | d] | 2] | 2'[]] | ¢'[out k.ing]] [co[V(vo — 1) |]| e[V (v1) | -]

| [A] | Ps

Finally, the ambient ¢’ exits k by executing its capability out & and the subprocess
k[n['I | 'D | b[0] | d[0] | 2[0] | 2'[0]]] is garbage-collected by the process Pg. The
result indeed corresponds to the expected process [(¢',vo — 1,v1)].

We described above how the step relation of the two-counters machine can be sim-
ulated by some reductions of a process encoding some configuration. The sequences of
reductions we described for each kind of transition relations are not the only possible
ones for the process we considered. However, following some different sequences of
reduction would either lead to a stuck process or would produce only processes that do
not correspond to an encoding of the two-counters machine®. Our encoding is correct
in the following sense:

Proposition 1. For any two-counters machine M = (Q, g;, qf, A) and any arbitrary
natural v, M accepts v iff [(¢;,v,0)] =* [(g¢,0,0)].

Hence, as an immediate consequence using Theorem 1:

Theorem 2. For any two arbitrary processes P,) from the in/out ambient calculus,
it is undecidable to test whether P —* Q.

We believe that our encoding can easily be adapted to safe mobile ambients [14] from
which name restriction, communication, the capability open and the co-capability open
have been removed.

We claim that one of the sources of undecidability of the reachability problem is
the rule (Str Repl Copy) from the structural congruence. On one hand, this rule can be
used to exhibit a new process P from ! P; this creates new possible interactions through
reduction for this occurrence of P. On the other hand, it can be used to transform
IP | P into !P; we used this feature in our encoding to provide a garbage-collecting
mechanism. Supporting our claim, we will see in the next section that if we drop this
second possibility, then the reachability problem becomes decidable.

4 The reachability problem for a weaker reduction relation

In this section, we study the reachability problem for the in/out ambient calculus
equipped with a weaker reduction relation. We show that for this new reduction relation,
the reachability problem becomes decidable.

4.1 Definitions

The weaker reduction relation we consider here has been introduced in [1] 2. Its main
feature is to turn the axiom defining replication, that is |P = !P | P (Str Repl Copy),
into an (oriented) reduction rule |P — P | | P (wRed Repl).

We consider the weak structural congruence 22 defined as the least congruence re-
lation over processes satisfying all the axioms defining = except (Str Repl Copy). We
called this structural congruence weak as obviously P = @ implies P =) whereas
the converse does not hold. Based on this weak structural congruence, we define a weak
reduction relation as the least relation satisfying the following axioms:

1 We prove this fact by defining a general shape matching all reachable processes and by apply-
ing an exhaustive inspection of all possibles reductions.

2 In [19], the iteration is also defined by means of a reduction rule, but for explicit recursion
instead of replication.

Weak Reduction: P —, Q

n[inm.P | Q] | m[R] —w m[n[P | Q] | R] (wRed In)
m[nfout m.P | Q] | R] »w n[P | Q] | m[R] (wRed Out)
P —»w P |'P (wRed Repl)
P5ywQ=P|R—-wQ|R (wRed Par)
P =y Q = n[P] —w n[Q] (wRed Amb)
PP2PP—,Q,Q=2Q =P —,Q (WRed =)

This new reduction relation is strictly weaker than the one presented in Section 2:

Proposition 2. For all processes P, @ if P —% @ then P —* (). Moreover, there exist
two processes P’ and Q' such that P! —* Q' and P! A% Q'.

Let us point out that if we consider additionally open capabilities and enrich the defini-
tion of —, with the rule openn.P | n[Q] —w P | @ (Red Open) then the reachability
problem for this weak reduction relation is undecidable: the encoding of the Post Cor-
respondence Problem given in [7] provides a proof for this statement.

4.2 The reachability problem
We will show that the reachability problem is decidable for the weak reduction relation.
Theorem 3. For all processes S and 7', it is decidable to test whether S —, T'.

The rest of this section is devoted to the proof of Theorem 3. The main guidelines of
this proof are as follows: first, we introduce a notion of normal form for processes for
which we specialize the weak reduction relation; secondly, we show that the reachability
problem for two arbitrary processes can be expressed as the reachability problem on
their respective normal forms. Finally, we show how to reduce reachability problem for
normal forms into markings reachability in Petri nets, a problem known to be decidable.

e From weak reduction to weak reduction over normal forms: As done in [12, 8],
we consider the axioms P | 0 = P, 10 = 0,!!P = !Pand !(P | Q) = !P | !Q from the
definition of 2. We turn those axioms into a rewrite system W by orienting them from
left to right and we denote ~»y, the AC-rewrite relation induced by W (taking into
account associativity and commutativity for the parallel operator |). It can be shown
that the AC-rewrite relation ~»y, is terminating and confluent. Hence, for any process
P, there exists a unique (modulo associativity and commutativity for |) normal form P
of P wrt ~»y,. This implies also that 2 is decidable.

In the sequel we denote =, the equality relation over processes modulo associa-
tivity and commutativity for the parallel operator |.

We introduce a new reduction relation for normal forms. In particular, we require
that any process in normal form is reduced to some normalized process. This reduction
relation is denoted — and is given in the table below:

Normal Weak Reduction: P —» Q
I

n[in m.P] | m[0] - m[n[P]] (wRed In 1) I
n[in m.P] | m[R] - m[n[P] | R] ifR#0 (WRed In 2)
n[in m.0 | Q] | m[0] - m[n[Q]] (wRed In 3)

n[in m.0 | Q] | m[R] - m[n[Q] | R] ifR#0
[inm.P | Q] | m[0] » m[n[P | Q] ifP#0
[inm.P | Q] | m[R] » m[n[P | Q] | R] ifP#0and R#0
m[n[out m.P]] - n[P] | m[0]
m[n[out m.P] | R] - n[P] | m[R)
m{"[ou‘ﬁ m.0 | Q)] - n[Q] | m[0]
[

S 3

m[n[out m.0 | Q] | R] —» n[Q] | m[R]

m[n[out m.P | Q]] - n[P | Q] | m[0] ifP#£0
m[nfout m.P | Q] | R] - n[P | Q] | m[R] ifP#0
P P|!P

P »P|IP

P»Q=P|R-»>Q|R

P - Q = n[P) » n[Q]
IPIZACP,P—»Q,QZACQ'?P’—»Q'

(WRed In 4)
(WRed In 5)
(wRed In 6)
(wRed Out 1)
(WRed Out 2)
(wRed Out 3)
(wRed Out 4)
(wRed Out 5)
(wRed Out 6)
(wRed Repl 1)
(wRed Repl 2)
(wRed Par)
(wRed Amb)
(WRed =xc)

]

Due to required normalization in presence of 0, several rules have been introduced for
reductions of the in and out capabilities; moreover, one rule has been added for the
reduction of replication; it aims to simulate the weak reduction |P = IP —,, !IP |
IP = 1P | |P. Itis easy to see that if P is in normal form and P — @ then @ is in
normal form as well. Moreover, we have the following property:

Proposition 3. For all processes P, @, let P, Q) be their respective normal forms. Then
P =X QIiff P—»* Q.

Proposition 3 states that the reachability problem for the weak reduction relation can
be reduced to a similar problem but restricted to normalized processes. This implies in

particular that the use of weak structural congruence has been replaced by the simpler 3
relation of equality modulo associativity and commutativity.

e From normal processes to Petri nets: We first show here how to build up a Petri
net from a normalized process: roughly speaking, this Petri net aims to encode all the
possible reductions over this process. We will show later how to use this Petri net to
solve the reachability problem for processes.

Note that applying a reduction over a process either increases the number of ambi-
ents in the process or leaves it unchanged: more precisely, when the rule (wRed Repl 1)
or (wRed Repl 2) is applied on some process R at some subprocess P containing an
ambient then the rule lets the number of ambients increased in the resulting process;
other kinds of reduction steps leave the number of ambients unchanged. As we want
to decide for two given normalized processes P and @) whether P —»* (), the target
process @ is fixed and the number of its ambients is known. Therefore, this can be
used to provide an upper-bound on the maximal number of applications of the rules
(wRed Repl 1) and (wRed Repl 2) when applied to some subprocess containing an am-
bient. A similar argument doesn’t hold for capabilities as they can be consumed by the
reduction rules for the in and out capabilities.

This remark leads us to split a process into several parts; intuitively, one of those
parts will be a context containing ambients whereas the other ones will be subprocesses
without ambients. An ambient context C' is a process in which may occur some holes,

3 For equality modulo associativity and commutativity, every congruence class is finite.

noted as 0. Moreover, we require that in any subcontext !C" of C, C' contains some am-
bient. Together with ambient contexts, we consider substitutions mapping occurrences
of holes to ambient-free processes. Hence, the application of one of these substitutions
to an ambient context yields a process.

We will need to refer to a precise occurrence of replication, ambient, capability or
hole O within an ambient context or a process. Therefore, we are going to introduce
a labeling for those objects to be able to distinguish any two of them. We assume for
that a countable set of labels. We say that a process P or an ambient context C' is well-
labeled if any label occurs at most once in P or C'. For an ambient context C, we define
Amb(C) as the multiset of ambients in C.

A labeled transition system: for the reachability problem S —* T', we consider Cs a
well-labeled ambient context as well as a mapping 65 from the set of holes in Cs to
labeled ambient-free processes of the form ! P such that 65(Cs) is well-labeled and
0s(Cs) = S ignoring labels. We are going to describe as a labeled transition system
L 7 all possible reductions for the context C's: this includes reductions of replications
and capabilities contained in C's as well as capabilities and replications from processes
associated with the holes of the context.

We consider here a labeled transition system L g 7 whose states are AC-equivalent
classes of ambient contexts (for simplicity, we often identify a state as one of the rep-
resentants of its class). We also define a mapping 6y, . extending fs. Initially, Ls
contains (the equivalence class of) C's as a unique state and 6z, , = 6s. We iterate
the following construction steps until Lg 7 is unchanged (we assume that any reduction
through (wRed In ¢), (wRed Out ¢), (wRed Repl 1) and (wRed Repl 2) uses implicitly
(wRed Amb), (wRed Par) and (WRed =xc)):

1. for any ambient context C' from Lg 7, for any labeled capability cap”n (cap €
{in, out}) in C if this capability can be executed using one of the rules (wRed In %)
or (wRed Out 7) leading to some ambient context C", then the state C’ and a tran-
sition from C to C’ labeled by cap*n are added to Lg 7.

2. for any ambient context C from Lg 7, for any labeled replication ! in C such that
this replication can be reduced using the rule (wRed Repl 1) (resp. (wRed Repl 2)),
we define the ambient context C” as follows: C” is identical to C' except that the
subcontext 1“C, in C'is replaced by !“C,, | v(C,) (resp. 1 C, | v(I*C,)) in C”;
the mapping ~ relabels C, (resp. !“C,) with fresh labels, that is labels occurring
neither in some other state of the currently built transition system L g 7 nor in the
currently built 6z, .; moreover, we require that C” is well-labeled. If Amb(C’)
Amb(T) then the state C’ and a transition from C to C’ labeled by Y (resp. !3)
are added to Lg 7. Additionally, we define 6’ Ls.r aSan extension of GLS,T such that

forall 0% in Cy, (i) 67, (v(O")) and 6, (O"") are identical ignoring labels,
(i4) labels in 67, ('y(EI“’I)) are fresh in the currently built transition system Lg
andinfrg , and (m) 01 . (C") is well-labeled. Finally, we set 6, . t0 07, _ ..

3. for any amblent context C from Lg r, for any labeled hole O% in C' and for any
capability cap”’ n (with cap € {in, out}) in the process 0rs (O"), we consider

the ambient context C'),, identical to C' except that 0% in C' has been replaced by
O% | cap® n.0 in Cy,. If this capability cap® n can be executed in C,,, using one

Fig. 1. A labeled transition system for the process n[!' in m.!*out m.0] | m[0]

of the rules (wRed In) or (wRed Out ¢) leading to some ambient context C’, then
the state C’ and a transition from C to C’ labeled by cap® n are added to Lg, 7.

4. for any ambient context C' from Lg 7, for any labeled hole O% in C associated
by 0 with a process of the form 1%’ P, if the replication " can be reduced in
the process 0y, . (C') using the rule (wRed Repl 1), then for any replication " in
frs(O"), two transitions from C' to itself, the first one labeled by !ﬁ’” and the

second one by !g’” are added to Lg 7.

It should be noticed that in step 2 the reduction of a replication contained in the am-
bient context by means of the rule (wRed Repl 1) or (wRed Repl 2) is done only when
the number of ambients in the resulting process is smaller than the number of ambi-
ents in the target process T'. This requirement is crucial as it implies that the transition
system Lg 7 has only finitely many states.

As an example, we give in Figure 1 the labeled transition system associated with
the process n[!'in m.!2out m.0] | m[0] (we omit in this process unnecessary labels).

One can also notice that the labeled transitions in Lg 7 for replications and ca-
pabilities from the ambient context correspond effectively to reductions performed on
processes. Things are different for transitions corresponding to replications and capa-
bilities contained in processes associated with holes, as shown in steps 3 and 4: these
transitions are applied for any kind of those capabilities or replications independently
of the fact that they are effectively at this point available to perform a transition.

We will solve this first by giving a model of processes corresponding to holes as
Petri nets and then by synchronizing our two models: the Petri nets and the labeled
transition system Lg .

From ambient-free processes to Petri nets: we show here how to build a Petri net from
a labeled ambient-free process different from 0. For a set E, we denote £(E) the set of
all multisets that can be built with elements from E. We recall that a Petri net is given
by a 5-tuple (P, P;, T, Pre, Post) such that P is a finite set of places, P; C P is a set
of initial places, 7 is a finite set of transitions and Pre, Post : T — £(P) are mappings
from transitions to multisets of places. We say that an ambient-free process is rooted if
it is of the form cap® n.P for cap € {in, out} or of the form !’ P. We define PN p
the Petri net associated with some rooted process P as follows: places for PN p are
precisely rooted subprocesses of P, and P itself is the unique initial place. Transitions
are defined as the set of all capabilities in * n, out " n occurring in P and of all 1%, 1%
for replications ! occurring in P. Finally, Preand Post are defined for all transitions as

follows (for cap € {in, out}):

— Pre(cap”n) = {cap¥n.0} and Post(cap” n) = & if cap®” n.0 is a place in PN p.

Fig. 2. A Petri net for the process ! in m.!?out m.0

— Pre(cap¥ n) = {cap¥ n.(P; | ... | Py)} and Post(cap¥ n) = {Py,..., P} if
cap? n.(Py | ... | P) isaplacein PNp (P, ..., Py being rooted processes).

- Pre(l) = Pre(!ly) = {1¥ P}, Post(1®) = {!* P, P} and Post(!j) = {!¥P,!* P} if
WP isaplacein PNp.

For !'in m.!2out m.0, we obtain the Petri net given in Figure 2.

We will denote PN . the Petri net PN (6. ,.(O")), that is the Petri net corre-
sponding to the rooted ambient-free process associated with O by 6 ...

We will show now how to combine the transition system Lg 7 and the Petri nets
PN gw into one single Petri net.

Combining the transition system and Petri nets: We first turn the labeled transition
system Lg 7 into a Petri net PN, = (P, Pi,Tr, Prer, Postr). Py, is the set of states
of Lsr. Pt is a singleton set containing the state corresponding to C's, the ambient
context of S. The set of transitions 7, is the set of triples (s, 1, s") where s, s’ are states
from Lgr with a transition labeled with I from s to s’ in Lg . For all transitions
t = (s,l,s"), Pre(t) = {s} and Post(t) = {s'}.

We define the Petri net PNsr = (Ps,r, P§ 1, Ts,T, Presr, Posts r) as follows:
places (resp. initial places) from PN g1 are the union of places (resp. initial places)
of PNy, and of each of the Petri nets PN g (for O% occurring in one of the states of
Lg T). Transitions of PN g 7 are precisely transitions from PN ;,. The mappings Pres r
and Posts r are defined as follows: for all transitions ¢ (¢ being of the form (a, f, b)),
(i) PresT(t) = {a} and Posts r(t) = {b} if f doesn’t occur as a transition in any
of the PN.’s (for O% occurring in one of the states of Lg 1) and (i¢) Presr(t) =
{a}UPregw(f) and Posts r(t) = {b} U Postow (f) if f is a transition of PNgw (Pregw
(resp. Postow) being the mapping Pre(resp. Post) of PN gw).

We depict in Figure 3 the combination of the labeled transition system from Figure
1 and the Petri net from Figure 2.

Deciding reachability: We recall that for a Petri net PN = (P,P;, T, Pre Post), a
marking m is multiset from £(P). We say that a transition ¢ is enabled by a marking m
if Pre(t) C m. Firing the enabled transition ¢ for the marking m gives the marking m/'
defined as m' = (m ~\ Pre(t)) U Post(t) (where \ stands for the multiset difference).
A marking m' is reachable from m if there exists a sequence my, ..., my of markings
such that mo = m, my = m' and for each m;, m; 1, there exists an enabled transition
for m; whose firing gives m;1.

Theorem 4. [15] For all Petri nets P, for all markings m,m' for P, one can decide
whether m/ is reachable from m.

Fig. 3. The Petri net for the labeled process n[!' in m.!>out m.0] | m[0]

For the reachability problem S —* T', we consider the Petri net PN g 7 and the initial
marking mg defined as mg = PgﬂT. In Figure 3 is depicted the initial marking for the
process n[!'in m.1?out m.0] | m[0].

It should be noticed that for any marking m reachable from mg, m contains ex-
actly one occurrence of a place from Pr,. Roughly speaking, to any reachable marking
corresponds exactly one ambient context. Moreover, the firing of one transition in the
Petri net PN g simulates a reduction from —. Thus, markings reachable from
correspond to normalized processes reachable from S.

We define now M, the set of markings of PN g 7 corresponding to T'. Intuitively,
a marking m belongs to M if m contains exactly one occurrence C' of a place from
‘P (that is, representing some ambient context) and in the context C, the holes can be
replaced with ambient-free processes to obtain 7. Moreover, each of those replication-
free processes must correspond to a marking of the sub-Petri net associated with the
hole it fills up. Formally, M is the set of markings m for PN g r satisfying: (i) there
exists exactly one ambient context C,,, in m, (i7) ignoring labels, o, (Cy,) is equal to
T modulo AC, for the substitution ¢, from holes O% occurring in C,,, to ambient-
free processes defined as: 0,,,(0%) = P, | ... | Py for {Py,..., P} the multiset
corresponding to the restriction of m to the places of PN g and (é4¢) for all holes O%
occurring in some state of the transition system Lg 7 but not in Cyy,, the restriction of
m to places of PN gw is precisely the set of initial places from PN gw.

Proposition 4. For the Petri net PN g built from a problem S —* T, there are
only finitely many markings corresponding to 7', and their set M can be computed.

The correctness of our reduction is stated in the following proposition which together
with Theorem 4 implies Theorem 3:

Proposition 5. For all normalized processes S,T, S —»* T iff there exists a marking
my from M such that my is reachable from mg in PN g 7.

5 On decision problems of name-convergence and model-checking

In this section, we investigate two problems closely related to reachability : the name-
convergence problem and the model-checking problem.

5.1 The name-convergence problem

A process P converges to a name n if there exists a process P’ such that P reduces
to P’ and P’ is structurally congruent to n[Q] | R (for some processes @, R) [10].
The name-convergence problem is, given some process P and some name n, to decide
whether P converges to the name n. We are going to show that this problem is not
decidable for the two versions of the calculus we have considered so far.

In Section 3, we define the acceptance of an integer v by a two-counters machine
M when (g;,v,0) 3, (gr,0,0) where g;, gy are respectively the initial and the final
states of the machine M and 7, is the reflexive-transitive closure of the step rela-
tion defined by the machine M. This acceptance condition can be weakened as fol-
lows: we say that M accepts v if there exists two natural numbers vy, v such that
(gi,v,0) Fiy (gf,v1,v2). It is well-known that those two acceptance conditions lead
to equally expressive two-counters machines [17].

Reconsidering the encoding given in Section 3, it can be proved that

Proposition 6. For any two-counters machine M = (Q, ¢;, ¢, A) and any natural v,
the process [(gi, v, 0)] converges to the name ¢ iff there exist two natural numbers
v1, Vg, such that [(g;, v, 0)] =* [(gf,v1,v2)].

Now, for the weak calculus, it can be shown that

Proposition 7. For all naturals v, vi,va, if [(g;,v,0)] =* [(gs,v1,v2)] then there
exists a process R such that [(g;, v, 0)] — [(gf,v1,v2)] | R.

Thus, using the fact that the acceptance of a natural number by an arbitrary two-
counters machine is undecidable and Propositions 6 and 7, it holds that

Theorem 5. The name-convergence problem is undecidable both for the in/out am-
bient calculus and for the weak in/out ambient calculus.

5.2 The model-checking problem

The model-checking problem is to decide whether an ambient process satisfies (that is,
is a model of) a given formula. Formulas that we consider here are the ones from the
ambient logic [4]. The ambient logic is a modal logic used to specify properties of an
ambient process; those modalities allow to speak both about time (that is, how a process
can evolve by reduction) and space (that is, what is the shape of the tree description of
a process). We will not describe the full logic, but focus on features of our interest.
Any process P satisfies the formula T. A process P satisfies the formula ¢y if P
can be reduced to some process @ (P —* @ or P — @, depending on the considered
calculus) such that () satisfies the formula ¢. A process P satisfies the formula n[y] if
P is structurally congruent to some process n[Q] (P = n[Q] or P = n[Q)], depending
on the considered calculus) and @ satisfies . Finally, a process P satisfies the formula
@ | ¢ if P is congruent to some process @) | R and @, R satisfy respectively ¢ and 1.

Proposition 8. A process P converges to the name n, iff P satisfies ¢(n[T] | T).

Using Theorem 5 and Proposition 8, we have

Theorem 6. The model-checking problem for the in/out ambient calculus and for the
weak in/out ambient calculus against the ambient logic is undecidable.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Amtoft, A. J. Kfoury, and S. M. Pericas-Geertsen. What are polymorphically-typed am-
bients? In 10th European Symposium on Programming (ESOP 2001), LNCS 2028, pages
206-220. Springer, 2001.

M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Theoretical Aspects of Computer
Software (TACS 2001), LNCS 2215. Springer, 2001.

N. Busi and G. Zavattaro. On the expressiveness of movement in pure mobile ambients. In
Foundations of Wide Area Network Computing, ENTCS 66(3). Elsevier, 2002.

L. Cardelli and A.D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In
27th Symp. on Principles of Programming Languages (POPL’00), pages 365-377, 2000.

L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240:177—
213, 2000.

W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile ambients. In European
Symposium on Programming (ESOP’02), LNCS 2305, pages 295-313. Springer, 2002.

W. Charatonik and J.-M. Talbot. The decidability of model checking mobile ambients. In
Computer Science Logic (CSL’01), LNCS 2142, pages 339-354. Springer, 2001.

S. Dal Zilio. Spatial congruence for ambients is decidable. In 6th Asian Computing Science
Conference (ASIAN’00), volume 1961 of LNCS, pages 88-103. Springer, 2000.

J. Feret. Abstract interpretation-based static analysis of mobile ambients. In Eighth Interna-
tional Static Analysis Symposium (SAS’01), LNCS 2126. Springer, 2001.

A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. Mathematical
Structures in Computer Science, 12:1-38, 2002.

R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstract interpretation of mobile
ambients. In Static Analysis (SAS’99), LNCS 1694, pages 134-148. Springer, 1999.

D. Hirschkoff. Mise en ceuvre de preuves de bisimulation. PhD thesis, Ecole Nationale des
Ponts et Chaussées, 1999.

D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, expressiveness, and decidability in
the ambient logic. In Logic in Computer Science (LICS’02), pages 423-432. IEEE, 2002.

F. Levi and D. Sangiorgi. Controlling interference in ambients. In 27th Symp. on Principles
of Programming Languages (POPL’00), pages 352-364, 2000.

E.W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM Journal of
Computing, 13(3):441-460, 1984.

R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, | and Il. Information
and Computation, 100(1):1-40,41-77, 1992.

M. Minsky. Recursive Unsolvability of Post’s Problem of ”Tag” and others Topics in the
Theory of Turing Machines. Annals of Math., 74:437-455, 1961.

F. Nielson, H. Riis Nielson, R.R. Hansen, and J.G. Jensen. Validating firewalls in mobile
ambients. In Concurrency Theory (Concur’99), LNCS 1664, pages 463-477. Springer, 1999.
D. Teller, P. Zimmer, and D. Hirschkoff. Using ambients to control resources. In CONCUR
2002—Concurrency Theory, LNCS 2421, pages 288-303. Springer, 2002.

P. Zimmer. On the Expressiveness of Pure Safe Ambients. Mathematical Structures of
Computer Science, 2002. To appear.

