254 research outputs found

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP{\cal NP}-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP{\cal P}={\cal NP} when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task.Comment: Accepted and to appear in ISAAC 2018, Yi-Lan, Taiwa

    Fast and Effective Multiframe-Task Parameter Assignment Via Concave Approximations of Demand

    Get PDF
    Task parameters in traditional models, e.g., the generalized multiframe (GMF) model, are fixed after task specification time. When tasks whose parameters can be assigned within a range, such as the frame parameters in self-suspending tasks and end-to-end tasks, the optimal offline assignment towards schedulability of such parameters becomes important. The GMF-PA (GMF with parameter adaptation) model proposed in recent work allows frame parameters to be flexibly chosen (offline) in arbitrary-deadline systems. Based on the GMF-PA model, a mixed-integer linear programming (MILP)-based schedulability test was previously given under EDF scheduling for a given assignment of frame parameters in uniprocessor systems. Due to the NP-hardness of the MILP, we present a pseudo-polynomial linear programming (LP)-based heuristic algorithm guided by a concave approximation algorithm to achieve a feasible parameter assignment at a fraction of the time overhead of the MILP-based approach. The concave programming approximation algorithm closely approximates the MILP algorithm, and we prove its speed-up factor is (1+delta)^2 where delta > 0 can be arbitrarily small, with respect to the exact schedulability test of GMF-PA tasks under EDF. Extensive experiments involving self-suspending tasks (an application of the GMF-PA model) reveal that the schedulability ratio is significantly improved compared to other previously proposed polynomial-time approaches in medium and moderately highly loaded systems

    Packing sporadic real-time tasks on identical multiprocessor systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP-complet

    10071 Abstracts Collection -- Scheduling

    Get PDF
    From 14.02. to 19.02.2010, the Dagstuhl Seminar 10071 ``Scheduling \u27\u27 was held in Schloss Dagstuhl-Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task

    Real-time scheduling with resource sharing on heterogeneous multiprocessors

    Get PDF
    Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors

    Parallel Real-Time Scheduling for Latency-Critical Applications

    Get PDF
    In order to provide safety guarantees or quality of service guarantees, many of today\u27s systems consist of latency-critical applications, e.g. applications with timing constraints. The problem of scheduling multiple latency-critical jobs on a multiprocessor or multicore machine has been extensively studied for sequential (non-parallizable) jobs and different system models and different objectives have been considered. However, the computational requirement of a single job is still limited by the capacity of a single core. To provide increasingly complex functionalities of applications and to complete their higher computational demands within the same or even more stringent timing constraints, we must exploit the internal parallelism of jobs, where individual jobs are parallel programs and can potentially utilize more than one core in parallel. However, there is little work considering scheduling multiple parallel jobs that are latency-critical. This dissertation focuses on developing new scheduling strategies, analysis tools, and practical platform design techniques to enable efficient and scalable parallel real-time scheduling for latency-critical applications on multicore systems. In particular, the research is focused on two types of systems: (1) static real-time systems for tasks with deadlines where the temporal properties of the tasks that need to execute is known a priori and the goal is to guarantee the temporal correctness of the tasks prior to their executions; and (2) online systems for latency-critical jobs where multiple jobs arrive over time and the goal to optimize for a performance objective of jobs during the execution. For static real-time systems for parallel tasks, several scheduling strategies, including global earliest deadline first, global rate monotonic and a novel federated scheduling, are proposed, analyzed and implemented. These scheduling strategies have the best known theoretical performance for parallel real-time tasks under any global strategy, any fixed priority scheduling and any scheduling strategy, respectively. In addition, federated scheduling is generalized to systems with multiple criticality levels and systems with stochastic tasks. Both numerical and empirical experiments show that federated scheduling and its variations have good schedulability performance and are efficient in practice. For online systems with multiple latency-critical jobs, different online scheduling strategies are proposed and analyzed for different objectives, including maximizing the number of jobs meeting a target latency, maximizing the profit of jobs, minimizing the maximum latency and minimizing the average latency. For example, a simple First-In-First-Out scheduler is proven to be scalable for minimizing the maximum latency. Based on this theoretical intuition, a more practical work-stealing scheduler is developed, analyzed and implemented. Empirical evaluations indicate that, on both real world and synthetic workloads, this work-stealing implementation performs almost as well as an optimal scheduler

    Efficient and Effective Multi-Objective Optimization for Real-Time Multi-Task Systems

    Get PDF
    Embedded real-time multi-task systems must often not only comply with timing constraints but also need to meet energy requirements. However, optimizing energy consumption might lead to higher Worst-Case Execution Time (WCET), leading to an un-schedulable system, as frequently executed code can easily differ from timing-critical code. To handle such an impasse in this paper, we formulate a Metaheuristic Algorithm-based Multi-objective Optimization (MAMO) for multi-task real-time systems. But, performing multiple WCET, energy, and schedulability analyses to solve a MAMO poses a bottleneck concerning compilation times. Therefore, we propose two novel approaches - Path-based Constraint Approach (PCA) and Impact-based Constraint Approach (ICA) - to reduce the solution search space size and to cope with this problem. Evaluations showed that PCA and ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO. For all the task sets, out of all solutions found by ICA-FPA, on average, 88.89% were on the final Pareto front

    Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks

    Get PDF
    With the emergence of industrial standards such as WirelessHART, process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable sensors and actuators to communicate through low-power wireless mesh networks. Industrial monitoring and control applications require real-time communication among sensors, controllers and actuators within end-to-end deadlines. Deadline misses may lead to production inefficiency, equipment destruction to irreparable financial and environmental impacts. Moreover, due to the large geographic area and harsh conditions of many industrial plants, it is labor-intensive or dan- gerous to change batteries of field devices. It is therefore important to achieve long network lifetime with battery-powered devices. This dissertation tackles these challenges and make a series of contributions. (1) We present a new end-to-end delay analysis for feedback control loops whose transmissions are scheduled based on the Earliest Deadline First policy. (2) We propose a new real-time routing algorithm that increases the real-time capacity of WSANs by exploiting the insights of the delay analysis. (3) We develop an energy-efficient routing algorithm to improve the network lifetime while maintaining path diversity for reliable communication. (4) Finally, we design a distributed game-theoretic algorithm to allocate sensing applications with near-optimal quality of sensing

    Using Imprecise Computing for Improved Real-Time Scheduling

    Get PDF
    Conventional hard real-time scheduling is often overly pessimistic due to the worst case execution time estimation. The pessimism can be mitigated by exploiting imprecise computing in applications where occasional small errors are acceptable. This leverage is investigated in a few previous works, which are restricted to preemptive cases. We study how to make use of imprecise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic tasks with independent or cumulative errors due to imprecision. Simulation results show that the proposed techniques can significantly improve task schedulability and achieve desired accuracy– schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a prototyping implementation in Linux system. Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling while providing guarantee for critical tasks in presence of unexpected overrun. However, it is controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality mode, although they are still needed. Second, a single high-criticality job overrun leads to the pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality system simultaneously in multiprocessor scheduling, while those two issues are mostly focused on uniprocessor scheduling in several recent works. We study how to achieve graceful degradation of low-criticality tasks by continuing their executions with imprecise computing or even precise computing if there is sufficient utilization slack. Schedulability conditions under this Variable-Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knapsack formulation. Experiments are performed through both software simulations and Linux proto- typing with consideration of overhead. Schedulability of the proposed methods is studied so that the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline constraints. The proposed precision optimization can largely reduce computing errors compared to constantly executing low-criticality tasks with imprecise computing in high-criticality mode
    • …
    corecore