
USING IMPRECISE COMPUTING FOR IMPROVED REAL-TIME SCHEDULING

A Dissertation

by

LIN HUANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jiang Hu
Committee Members, Weiping Shi

Riccardo Bettati
Le Xie

Head of Department, Miroslav M. Begovic

December 2019

Major Subject: Computer Engineering

Copyright 2019 Lin Huang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/333656634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Conventional hard real-time scheduling is often overly pessimistic due to the worst case ex-

ecution time estimation. The pessimism can be mitigated by exploiting imprecise computing in

applications where occasional small errors are acceptable. This leverage is investigated in a few

previous works, which are restricted to preemptive cases. We study how to make use of impre-

cise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more

difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic

tasks with independent or cumulative errors due to imprecision. Simulation results show that the

proposed techniques can significantly improve task schedulability and achieve desired accuracy–

schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a

prototyping implementation in Linux system.

Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling

while providing guarantee for critical tasks in presence of unexpected overrun. However, it is

controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality

mode, although they are still needed. Second, a single high-criticality job overrun leads to the

pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization

becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality sys-

tem simultaneously in multiprocessor scheduling, while those two issues are mostly focused on

uniprocessor scheduling in several recent works. We study how to achieve graceful degradation

of low-criticality tasks by continuing their executions with imprecise computing or even precise

computing if there is sufficient utilization slack. Schedulability conditions under this Variable-

Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and

global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance

of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision

optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knap-

sack formulation. Experiments are performed through both software simulations and Linux proto-

ii

typing with consideration of overhead. Schedulability of the proposed methods is studied so that

the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline

constraints. The proposed precision optimization can largely reduce computing errors compared

to constantly executing low-criticality tasks with imprecise computing in high-criticality mode.

iii

DEDICATION

To my mother, my father, my grandfather, and my grandmother.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Jiang Hu, for his guidance and advice during my

PHD program. He shows me how to be an independent researcher, and I have learned a lot from his

attitude toward work and research. I’m lucky to have him as my advisor, and it’s almost impossible

for me to finish the PHD program withouth his guidance.

I would like to thank my committee members, Professor Weiping Shi, Professor Riccardo

Bettati, Professor Le Xie of Texas A&M University, for their helpful suggestions on my research.

I would like to thank Professor Sachin S. Sapatnekar of University of Minnesota, Professor

I-Hong Hou of Texas A&M University, Professor Youmeng Li of Tianjin University for their help

and advice on my research. I have learned a lot from discussion with them.

Thanks to my mates in Texas AM University, Wenbin Xu, Jiafan Wang, Hao He, He Zhou,

Chaofan Li, Justin Sun, Yanxiang Yang, Lang Feng, Hongxin Kong, Rongjian Liang, and Yaguang

Li.

Finally, I would like to thank my parents and my wife for their support during my PHD pro-

gram.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Jiang Hu, advisor,

and Professor Weiping Shi, Professor Le Xie of the Department of Electrical and Computer Engi-

neering, and Professor Riccardo Bettati of the Department of Computer Science and Engineering.

Some test cases for Chapter 4 were prepared by Professor Youmeng Li of Tianjin University.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by National Science Foundation (NSF) under Grant CCF-1525925

and CCF-1525749, and Office of Naval Research (N00014-18-1-2048).

vi

NOMENCLATURE

WCET Worst Case Execution Time

QoS Quality of Service

DVFS . Dynamic Voltage and Frequency Scaling

NP Non-deterministic Polynomial-time

EDF Earliest Deadline First

EDF-VD Earliest Deadline First with Virtual Deadlines

ILP Integer Linear Programming

fpEDF-VD fixed-priority Earliest Deadline First with Virtual Deadlines

MC Mixed-Criticality

IMC Imprecise Mixed-Criticality

VPMC Variable-Precision Mixed-Criticality

MC-DP-Fair Mixed-Criticality Deadline Partition Fair

MCFQ Mixed-Criticality Fluid scheduling with Quality of Service

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Non-preemptive Real-time Scheduling . 2
1.2 Mixed-criticality (MC) Scheduling . 3
1.3 Contributions . 6

2. BACKGROUND . 7

2.1 Overview of Real-time Scheduling. 7
2.2 Imprecise Computing/Approximate Computing. 8
2.3 Non-preemptive Real-time Scheduling . 8

2.3.1 Non-preemptive Real-Time Scheduling System Model . 8
2.3.2 Schedulability of Non-Preemptive Real-Time Scheduling . 9
2.3.3 Imprecise Computing in Non-Preemptive Scheduling. 10

2.4 Mixed-criticality (MC) Scheduling . 11
2.4.1 Imprecise MC and Variable-Precision MC System Model . 11
2.4.2 IMC System Scheduling on Uniprocessor . 12
2.4.3 Partitioned Scheduling on Multiprocessors . 13
2.4.4 Global fpEDF Scheduling on Multiprocessors. 14
2.4.5 Global Scheduling by fpEDF-VD on Multiprocessors . 14
2.4.6 MC-DP-Fair Scheduling on Multiprocessors . 15

3. RELATED WORK . 17

viii

3.1 Preemptive Real-time Scheduling Considering Imprecise Computing 17
3.2 Non-Preemptive Hard Real-Time Scheduling . 17
3.3 Real-Time Scheduling and Dynamic Voltage and Frequency Scaling (DVFS) 18
3.4 Mixed-criticality (MC) Scheduling . 18

4. NON-PREEMPTIVE REAL-TIME SCHEDULING . 21

4.1 Motivation Example . 21
4.2 Online Scheduling of Tasks with Independent Errors . 22
4.3 Collaborative Scheduling of Periodic Tasks with Independent Errors 25

4.3.1 Offline ILP and Online Adjustment . 25
4.3.2 ILP with Post-Processing and Online Adjustment . 26
4.3.3 Flipped EDF and Online Adjustment. 28

4.4 Scheduling Periodic Tasks with Cumulative Errors in Imprecision . 29
4.4.1 Online Heuristic . 30
4.4.2 Offline Dynamic Programming . 31

4.5 Experiment Results . 32
4.5.1 Simulation Results. 33
4.5.2 Linux Prototyping Results . 37

4.6 Conclusion. 37

5. MIXED-CRITICALITY SCHEDUING . 39

5.1 VPMC System Scheduling on Multiprocessors . 39
5.1.1 Partitioned Scheduling . 40

5.1.1.1 VPMC Partitioning with EDF-VD Scheduling . 40
5.1.1.2 Enhanced VPMC Partitioning . 42

5.1.2 Global Scheduling by fpEDF-VD . 43
5.1.2.1 Extension of fpEDF-VD for IMC and VPMC . 43
5.1.2.2 Dual Virtual-Deadlines for fpEDF (fpEDF-DVD). 46
5.1.2.3 Service Preserving Method . 46
5.1.2.4 Deferred Switching Scheme . 54
5.1.2.5 Unified Deferred Switching and Service Preserving 58

5.1.3 Extension of MC-DP-Fair Scheduling for IMC and VPMC Systems 59
5.2 Precision Optimization for VPMC Systems . 61

5.2.1 Optimization Kernel . 61
5.2.2 Utilization Slack Estimation and Customization for Different Scheduling

Methods . 62
5.2.2.1 Slack Estimation and Precision Optimization for Partitioned Schedul-

ing . 62
5.2.2.2 Slack Estimation and Precision Optimization for fpEDF-VD Based

Global Scheduling . 63
5.2.2.3 Utilization Slack Estimation for VPMC-DP-Fair Scheduling. 64

5.3 Experimental Results . 64
5.3.1 Evaluation of VPMC system scheduling methods . 64

5.3.1.1 Simulation Setup and Results . 65

ix

5.3.1.2 Prototyping in Linux User Space . 70
5.3.2 Evaluation of Service Preserving and Deferred Switching Techniques 75

5.3.2.1 Testcase Generation . 76
5.3.2.2 Evaluation of Service Preserving . 76
5.3.2.3 Evaluation of Deferred Switching and Unified Method 76

5.4 Conclusion. 81

6. SUMMARY AND CONCLUSIONS. 83

REFERENCES . 84

x

LIST OF FIGURES

FIGURE Page

4.1 An example that is actually schedulable in accurate mode but fails schedulability
check according to the WCET model. 22

4.2 If job 1 actually finishes at f ′1, which is earlier than its nominal finish time f1, and
job 2 is to be executed next, job 1 provides inter-job slack to job 2 as in the green
region. The release times for job 2 is r2. 24

4.3 (a) ILP scheduling; (b) swapping imprecise job τ1,4 to be executed later in post-
processing. 27

4.4 Mean error versus utilization. 34

4.5 The number of candidate partial solutions with and without pruning.. 36

4.6 Mean error versus utilization from Linux prototyping. 38

5.1 Case 1: service preserving interval for an overrun job.. 49

5.2 Case 2: service preserving interval for an active high-criticality job without overrun. 50

5.3 Case 3: service preserving interval for an immediate newly coming high-criticality
job. 50

5.4 Active low-criticality job with deadline after t∗ + P . 51

5.5 Active low criticality job with deadline before t∗ + P . 52

5.6 Illustration of checkpoint.. 56

5.7 Acceptance ratio vs. normalized utilization of 4 processors (Klo = 0.1, Khi = 5). . . . 66

5.8 Acceptance ratio vs. normalized utilization of 8 processors (Klo = 0.1, Khi = 5). . . . 67

5.9 Acceptance ratio versus normalized utilization of 4 processors with consideration
of overhead. 68

5.10 Mean error (with standard derivation) vs. normalized utilization of 4 processors
(Klo = 0.1, Khi = 5). 69

5.11 Mean error (with standard derivation) vs. normalized utilization of 8 processors
(Klo = 0.1, Khi = 5). 69

xi

5.12 The effect of Khi on errors for Partition-VPMC-E on 8 processors. 70

5.13 The effect of Klo on errors for Partition-VPMC-E on 8 processors.. 71

5.14 Overhead ratio vs. utilization (overhead includes the time on context switching,
job migration among processors, execution monitoring, scheduling computing, etc.) 73

5.15 Number of context switchings vs. utilization. 73

5.16 Mean error (with standard derivation) versus utilization from Linux prototyping. 74

5.17 Acceptance ratio vs normalized utilization of 4 processors. 77

5.18 Acceptance ratio vs normalized utilization of 8 processors. 77

5.19 Number completed low-criticality jobs before mode switching vs normalized uti-
lization of 4 processors, with overrun rate 0.2. 78

5.20 Number of completed low-criticality jobs before mode switching vs normalized
utilization of 4 processors, overrun rate 0.5. 79

5.21 Number of completed low-criticality jobs before mode switching vs normalized
utilization of 8 processors with overrun rate 0.2. 80

5.22 Number of completed low-criticality jobs before mode switching vs normalized
utilization of 8 processors, with overrun rate 0.5. 80

5.23 Mode switching time vs normalized utilization of 4 processors. 81

5.24 Mode switching time vs normalized utilization of 8 processors. 82

xii

LIST OF TABLES

TABLE Page

4.1 An example of non-preemptive real-time scheduling.. 21

4.2 Testcase characteristics and schedulability. 32

4.3 Simulation results for periodic tasks with independent errors (error standard devi-
ation is σ). 32

4.4 Online runtime of EDF+ESR and ILP. 35

4.5 Stress test results for periodic tasks with cumulative errors. 36

4.6 Tasks in Linux system prototyping. 37

5.1 Scheduling on 2 unit-speed processors. 42

5.2 Testcase characteristics for the Linux prototyping (the unit of execution time is
second). 72

xiii

1. INTRODUCTION 1

Real-time system is widely used in applications such as flight control, medical equipment and

automobiles, real-time monitors, etc. It requires both logical and temporal correctness. Logical

correctness means the computing result needs to be correct, and temporal correctness means the

task execution needs to be finished before required time (deadline). In our research, we work

on hard real-time system, where missing deadline can lead to catastrophic result. Therefore the

designers usually make the most conservative estimation of task execution time, which is called

Worst Case Execution Time (WCET), in order to guarantee temporal correctness. Conventional

hard real-time scheduling is often overly pessimistic due to the WCET estimation. In our research

we explore imprecise computing to mitigate the pessimism of real-time scheduling, and thereby

improve Quality of Service (QoS) for real-time system.

Imprecise computing, which is sometimes called approximate computing [1], is an unconven-

tional approach to low power systems. The concept of imprecise computing appeared more than

two decades ago [2]. Recently, its realization has made a lot of progress [1] and therefore its appli-

cation in real-time system becomes more practical. It is based on the observation that occasional

small computing errors are acceptable for applications like video/audio processing, recognition

and mining, which are of growing interest. By intentionally allowing such errors in design, a

computing system can operate with reduced power or improved speed. Imprecise computing can

benefit real-time systems as well. In a virtual reality tracking system, for instance, deadline viola-

tions cause video discontinuity, which may hamper mission success. By contrast, errors at a few

pixels of a small number of frames are usually indiscernible to human eyes and have much less

1Reprinted with permission from “Using imprecise computing for improved non-preemptive real-time scheduling
” by Lin Huang, Youmeng Li, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of Design Automation Confer-
ence (DAC), Page 1-6 , c©2018 IEEE, “Graceful degradation of low-criticality tasks in multiprocessor dual-criticality
systems ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of the International Con-
ference on Real-Time Networks and Systems (RTNS), Page 159-169 , c©2018 ACM and “Improving QoS for global
dual-criticality scheduling on multiprocessors ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2019.
Proceedings of the International Conference on Real-Time Computing Systems and Applications (RTCSA), Page 1-11,
c©2019 IEEE.

1

serious consequence than deadline violations. As imprecise computing permits relatively short

execution time, it can be adopted to avoid deadline violations when computing resource is under

stress. In general, it offers an opportunity for improving schedulability and reducing the pessimism

in real-time scheduling.

1.1 Non-preemptive Real-time Scheduling

The early works of considering imprecise computing in real-time scheduling [3, 2, 4] are re-

stricted to preemptive cases. Meanwhile, imprecision must be applied prudently so that errors are

well controlled in all conditions. In our research, we investigate how to use imprecise computing

for improving non-preemptive real-time scheduling of independent tasks on uniprocessor. Com-

pared to preemptive cases, non-preemptive scheduling implies less context switching overhead and

has more predictable characteristics [5, 6]. In some scenarios, task preemption is even impossible

or formidably expensive [5]. On the other hand, it is proved [5] that non-preemptive scheduling

for periodic tasks with specific release times is NP-hard and its schedulability test is also NP-

hard. Considering imprecise computing greatly escalates scheduling complexity and makes some

preemptive problems NP-hard [2].

We propose several heuristic algorithms for scheduling periodic tasks considering imprecise

computing with independent or cumulative errors. It is not trivial to extend preemptive tech-

niques [3, 2] to our non-preemptive case. For tasks satisfying schedulability conditions in im-

precise mode, our heuristics can guarantee that there is no deadline violation. In these algorithms,

errors due to imprecise computing are controlled either offline with guarantee or online in the best

effort. Simulation results from random and realistic cases indicate that our scheduling methods can

indeed improve schedulability and significantly mitigate the pessimism of the worst case execu-

tion time model. The advantage is further demonstrated by a prototyping implementation in Linux

system.

2

1.2 Mixed-criticality (MC) Scheduling

The drawback of pessimistic WCET estimation in conventional real-time scheduling can be

partially addressed in mixed-criticality (MC) system scheduling, which has attracted a great deal of

research attention in the past 10 years [7, 8, 9, 10, 11, 12]. Mixed-criticality scheduling categorizes

tasks into different criticality levels and asymmetrically emphasizes high-criticality tasks. Its key

elements can be described through a dual-criticality system, which starts with low-criticality mode.

Once a high-criticality job executes longer than its worst case execution time (WCET), the system

is switched to high-criticality mode, where very pessimistic WCET is applied for all high-criticality

tasks. As such, high-criticality tasks still have guarantee for meeting their deadlines. However,

such appealing advantage of MC systems comes with expensive price [12].

1. All low-criticality tasks are dropped in high-criticality mode to facilitate the guarantee for

high-criticality tasks. Despite their low-criticality, these tasks are still very much needed and

completely abandoning them is a heavy loss of Quality of Service (QoS).

2. The overrun of a single high-criticality job can force all the other high-criticality jobs (even

without overrun) into high-criticality mode with the very pessimistic WCET, which under-

mines efficiency of resource utilization.

Both of the limitations recently received research attention. New techniques have been pro-

posed [13, 14, 15, 16, 17, 18, 19, 20] to continue executing low-criticality tasks in high-criticality

mode with graceful degradation. Other approaches [21, 22] define new protocols to prevent all

high-criticality tasks from simultaneously entering high-criticality mode. Most of these works are

geared toward uniprocessor scheduling. In reality, multiprocessor is a growing trend due to its

performance advantage.

There are three main approaches to MC multiprocessor scheduling: (1) partitioning-based [10,

23, 24], (2) fluid-based [25, 26, 20] and (3) global scheduling [9, 10]. Each of them has its strength

and weakness, and no one is absolutely superior to the others. Partitioning-based scheduling is ap-

pealing for its simplicity. On the other hand, it lacks flexibility and tends to cause under-utilization

3

of resources. Fluid-based scheduling can reach the theoretically optimal solution, but may incur

frequent job preemptions and context switchings, which incur non-negligible overhead. Global

scheduling can have both its performance and practicality between partitioning and fluid-based

scheduling.

One approach to addressing the controversy of dropping low-criticality tasks is an elastic

scheme [13, 17], where low-criticality tasks are continued with extended period in high-criticality

mode. Another method is to reduce the priorities of low-criticality tasks [17]. However, it is no-

ticed [27] that task period and priority are usually functional requirements and cannot be easily

changed. A more viable approach to avoiding complete loss of low-criticality tasks is making

use of imprecise computing [17, 18, 19, 20]. Each low-criticality task can alternatively be exe-

cuted with imprecise computing, which causes inaccuracy in computing results but costs relatively

short execution time. When a system is in high-criticality mode, low-criticality tasks can con-

tinue to execute with imprecise computing instead of being dropped. Such approach allows grace-

ful degradation of low-criticality tasks in high-criticality mode. This model is called Imprecise

Mixed-Criticality (IMC) system [19].

The schedulability conditions for several uniprocessor scheduling algorithms in IMC are estab-

lished [17, 18, 19]. When deadline constraints are not tight, there is usually processor utilization

slack for low-criticality tasks to continue with even precise computing. Based on this observation,

the work of [20] extends the fluid-based multiprocessor scheduling [25, 26] to maximize pre-

cise computing of low-criticality tasks in high-criticality mode. A mixed-criticality system with

such treatment of low-criticality tasks can be called Variable-Precision Mixed-Criticality (VPMC)

system. This is perhaps the only published literature on VPMC and the only published work con-

sidering graceful degradation of low-criticality tasks for multiprocessor scheduling. Although the

fluid-based scheduling [25, 26] is optimal in theory, it cannot be implemented with its original

form on hardware as it depends on an unrealistic assumption that each processor can be partitioned

into arbitrary fractions. MC-DP-Fair [25] is a practically implementable scheduling algorithm with

schedulability equivalent to the fluid-based scheduling. However, the work of [20] has little dis-

4

cussion on MC-DP-Fair or the implementation issue, and MC-DP-Fair can result in an excessive

amount of context switchings and hence a considerable overhead.

In our research, we study VPMC systems for some well-known multiprocessor scheduling

methods that have not been well considered for the graceful degradation option yet. These include

partitioned scheduling, fpEDF-VD based global scheduling [10] and MC-DP-Fair scheduling. The

schedulability conditions of these methods are extended for considering low-criticality task exe-

cutions in high-criticality mode. We found that the speedup factors of partitioned scheduling and

fpEDF-VD are the same as before when they are applied in VPMC. We develop a precision op-

timization technique that maximizes precise computing of low-criticality tasks in high-criticality

mode. This optimization is through formulation of 0-1 knapsack problem, which is optimally

solved by dynamic programming.

Moreover, we focus on how to address the two limitations of dual-criticality system, the basic

version of MC system, in global scheduling. First, a service preserving technique is developed

to let all low-criticality tasks execute in high-criticality mode with imprecise computing, while all

deadline constraints are satisfied. This is to improve QoS for high-criticality mode. Second, a

deferred switching scheme is proposed to prevent high-criticality tasks from simultaneously enter-

ing high-criticality mode while all deadlines are still guaranteed to be enforced. This is to extend

the low-criticality mode, which has better QoS than high-criticality mode. Further, these two

techniques are combined into a unified framework such that the two limitations are concurrently

mitigated.

The proposed techniques for VPMC are evaluated with both software simulation and Linux

prototyping with consideration of overhead on context switching, execution monitoring and mode

changes. Since continuing low-criticality tasks stresses processors more than dropping them, it is

important to validate in a realistic setup [28]. The results show that the schedulability degrada-

tion due to continuing low-criticality tasks is often very small. In addition, VPMC systems with

our precision optimization lead to significantly smaller errors than IMC systems. Although the

fluid-based VPMC system [20] has the best schedulability in theory, it is outperformed by parti-

5

tioned scheduling when the overhead is considered. Additionally our service preserving technique

alone outperforms the approach of DVD (Dual Virtual Deadline) in term of schedulability, and the

effectiveness of our deferred switching technique is confirmed through simulations.

1.3 Contributions

The contributions of our research include:

• To the best of our knowledge, this is the first work on using imprecise computing for non-

preemptive real-time scheduling.

• To the best of our knowledge, this is the first extensive study of IMC and VPMC systems

on multiprocessors for several well-known scheduling approaches including partitioned,

fpEDF-VD and MC-DP-Fair scheduling. The study covers schedulability analysis for these

methods. We also show that the speedup factors of partitioned scheduling and fpEDF-VD

scheduling are not changed in the VPMC model.

• An offline precision optimization technique is proposed to minimize errors from using im-

precise computing by low-criticality tasks subject to schedulability constraints. This opti-

mization can be optimally solved by dynamic programming.

• To the best of our knowledge, this is the first study of IMC, VPMC and their computing errors

with consideration of overhead. Our work includes the first prototyping implementation of

VPMC in contrast to only software simulations in the related previous works [18, 19, 20].

• To the best of our knowledge, this is the first work that simultaneously addresses both of the

limitations for mixed-criticality scheduling on multiprocessors.

6

2. BACKGROUND 1

2.1 Overview of Real-time Scheduling

In this section, we introduce some notations of real-time scheduling that are used in our re-

search.

We work on hard real-time system, where deadlines can not be missed. Scheduling policies

are studied to guarantee the completion of workload before deadlines.

• Scheduling policy: a scheduling policy (algorithm) is designed to decide which task to be

allocated with computing resource (processor) at specific time on a platform. And schedu-

lability conditions of a scheduling policy are used to check whether all the deadlines are

guaranteed to be met before runtime. Speedup factor is a useful metric to verify the effec-

tiveness of a scheduling policy, it is the minimum processor speed increasing factor (≥ 1) so

that any task system that can be scheduled correctly by an optimal clairvoyant policy can be

scheduled correctly by this scheduling policy [10].

• Workload model: we work on sporadic task model, which is a common recurrent task model

in real-time scheduling. A sporadic task can generate infinite number of jobs, and a new job

is released when it is available for execution, but the release times of two consecutive jobs

are separated by a minimum time interval. A sporadic task is called periodic task when the

release times of two consecutive jobs are separated by a constant time interval. In conven-

tional real-time scheduling, one task has one Worst Case Execution Time (WCET), which is

the execution time upper-bound for any job of this task, while one task can have more than

1Reprinted with permission from “Using imprecise computing for improved non-preemptive real-time scheduling
” by Lin Huang, Youmeng Li, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of Design Automation Confer-
ence (DAC), Page 1-6 , c©2018 IEEE, “Graceful degradation of low-criticality tasks in multiprocessor dual-criticality
systems ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of the International Con-
ference on Real-Time Networks and Systems (RTNS), Page 159-169 , c©2018 ACM and “Improving QoS for global
dual-criticality scheduling on multiprocessors ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2019.
Proceedings of the International Conference on Real-Time Computing Systems and Applications (RTCSA), Page 1-11
, c©2019 IEEE.

7

one WCETs in mixed-criticality scheduling, and detailed introduction will be given in the

following sections of this chapter.

In our research, we work on both preemptive and non-preemptive systems, preemptive means

current executing job can be suspended and another job can be chosen for execution, while for

non-preemptive scheduling, a job needs to execute continuously till completion once it starts.

2.2 Imprecise Computing/Approximate Computing

Imprecise computing can be carried out at circuit, architecture and algorithm levels for datap-

ath or numerical computations. Circuit level imprecision is mostly focused on imprecise arithmetic

circuit designs [29, 1] or voltage overscaling [30]. The overscaling [30] and some dedicated de-

signs [31] make computing accuracy runtime configurable. Architectural imprecision techniques

include dedicated instructions [32] and imprecise accelerator based on neural network [33]. Differ-

ent from circuit and architecture level imprecision, algorithm level imprecise computing is not an

explicitly named discipline although imprecision widely exists in algorithm designs2. As an exam-

ple, algorithmic imprecision can be realized by relaxing the convergence criterion in iterative algo-

rithms. In the work of dynamic effort scaling [34], all of algorithm, architecture and circuit level

imprecision are jointly explored. Overall, the substantial progress [1] on imprecise/approximate

computing has made runtime computing precision reconfiguration feasible.

2.3 Non-preemptive Real-time Scheduling

2.3.1 Non-preemptive Real-Time Scheduling System Model

We consider to schedule a set of independent tasks T = {τ1, τ2, ..., τn} onto a single processor.

Each task τi, i = 1, 2, ..., n, is a 3-tuple (ri, Ci, di) representing task release time, worst case

execution time and deadline. A periodic task τi is composed by multiple jobs {τi,1, τi,2, ...}, where

τi,j is the jth occurrence of task τi. The jobs of τi are released with period pi, i.e., their release times

and deadlines satisfy di,j = ri,j +pi = ri,j+1, j = 1, 2, In a hard real-time system, the execution

of every task must be completed before its deadline. In practice, an execution time qi may vary in a

2Approximate algorithm is a rigorous term with its dedicated meaning in computer science theory.

8

wide range. In order to ensure that no deadline violation is incurred by this uncertainty, the Worst

Case Execution Time (WCET) Ci > qi is conventionally used in scheduling.

In non-preemptive systems, once a job starts, it must execute continuously on the processor till

its completion. Please note a job in this case cannot be partitioned into mandatory and optional

part and it must be executed as a whole. Thus, it does not have the convenience of preemptive

scheduling that a task can be divided into small pieces to fill in processor idle time.

2.3.2 Schedulability of Non-Preemptive Real-Time Scheduling

The schedulability conditions for non-preemptive scheduling on uniprocessor are derived in [5]

and shown as follows.

Theorem 1. Let T = {τ1, τ2, ..., τn}, where τi = (pi, Ci), be a set of periodic tasks sorted in

non-decreasing order of period, i.e., if i < j, then pi ≤ pj . If the following two conditions are

satisfied, then T is schedulable.
n∑
i=1

Ci
pi
≤ 1 (2.1)

Ci +
i−1∑
j=1

⌊
L− 1

pj

⌋
· Cj ≤ L, ∀i, 1 < i ≤ n, ∀L, p1 < L < pi. (2.2)

For jobs of a periodic task τi, their release time ri,j and deadline di,j can be uniquely decided

by the initial job release time ri,1 and period pi. Theorem 1 is necessary and sufficient for arbitrary

initial release time, and thus only pi needs to be considered here. Hence, a task is characterized

by (pi, Ci) instead of (ri, Ci, di). In the sequel, release time ri is still needed for considering

specific tasks. For a specific set of release times, the theorem is sufficient but no longer necessary.

Moreover, finding necessary and sufficient conditions for specific release times is an NP-hard

problem. It is proved in [5] that if a set of tasks are schedulable according to Theorem 1, then

non-preemptive Earliest Deadline First (EDF) scheduling [35] can always find a feasible schedule.

Condition (2.1) is to ensure the overall processor utilization does not exceed 1. This condition

alone is the necessary and sufficient condition for a preemptive system to be schedulable, and the

complexity of verifying this condition is constant. Condition (2.2) is to ensure that the workload

9

for any time interval of any task period is no greater than the length of the interval. The com-

plexity of evaluating this condition is O(pn), where pn is the largest task period, and therefore

is pseudo-polynomial. Evidently, there is significant complexity escalation from preemptive to

non-preemptive scheduling.

2.3.3 Imprecise Computing in Non-Preemptive Scheduling

Imprecise computing can be realized by either accuracy configurable circuits [30, 31] or al-

gorithmic imprecision. Please note the imprecise computing is for only datapath or numerical

computations, and not applicable to control flow or state computations. In a non-preemptive sys-

tem, different task executions can be performed with different accuracy levels but the accuracy of

one execution cannot be changed in the middle. We consider only one imprecision level in this

work. Since our approaches are fundamentally enumerating discrete solution options, additional

imprecision levels would not entail significant algorithm change.

The WCET bi of task τi in imprecision mode must satisfy bi < Ci, where Ci is the WCET for

accurate mode. Meanwhile, an execution of job τi,j in imprecision mode produces a computing

error εi,j . Please note the error is single valued and would require composition of multiple errors

from a multi-output system. By statistical analysis and pre-characterization, the mean error ei for

task τi can be obtained prior to scheduling. In independent error model, an error of job τi,j does

not carry over to its subsequent job τi,j+1 even if τi,j+1 is in imprecision mode. In video rendering,

for example, image processing error of one non-reference frame does not affect the next frame. In

this scenario, one wishes to minimize the average error of a task. In the cumulative error model,

an error of job τi,j propagates to its subsequent job. For example, in a target tracking computation,

an error at one moment j is inherited in the computation of the next moment j + 1 and can be

eliminated only when the computation at moment j + 1 is in accurate mode. To restrain such

cumulative error, the number of consecutive jobs in imprecision mode must be limited.

10

2.4 Mixed-criticality (MC) Scheduling

2.4.1 Imprecise MC and Variable-Precision MC System Model

The system contains a set of independent sporadic tasks T = {τ1, τ2, ...} with implicit dead-

lines. Each task τi is composed by an infinite sequence of jobs {τi,1, τi,2, ...}, and is characterized

by (Ti, χi, C
LO
i , CHI

i) where Ti is the minimal inter-arrival time that is the minimal time interval

between two consecutive jobs of task τi, χi is the criticality level and Ci is the execution time. If

job τi,j is released at time ri,j , its deadline is ri,j + Ti. In our work, we consider dual-criticality

system model, which is justified in [11]. Then, the task set T is composed by two disjoint subsets

of low-criticality tasks Tlo and high-criticality tasks Thi, and χi ∈ {lo, hi} indicates if task τi has

low or high-criticality. Also, CLO
i and CHI

i indicate the execution time at low and high system

criticality mode, respectively, and are based on the Worst Case Execution Time (WCET).

A such system starts with low-criticality mode. Once the execution time of a high criticality

job τi,j exceeds its CLO
i , the system is switched to high-criticality mode. If χi = hi, CHI

i > CLO
i .

In other words, high-criticality tasks are budgeted with more execution time in high-criticality

mode. So far, the model has no fundamental difference from the conventional one [7, 12]. The

key difference lies in the treatment of low-criticality tasks in high-criticality mode. We list related

schemes below.

1. Conventional MC system [7, 8, 9, 10, 11, 12]: all low-criticality tasks are discarded in high-

criticality mode. As such, CHI
i for a low-criticality task is equivalent to zero.

2. Imprecise MC (IMC) system [18, 19]: a low-criticality task τi has a precise computing

realization with execution time Ĉi and an imprecise implementation with execution time

C̃i < Ĉi. The works of [18, 19] let CLO
i = Ĉi and CHI

i = C̃i, which is a non-zero constant.

3. Variable-Precision MC (VPMC) system [20]: for a low-criticality task τi, CLO
i = Ĉi and

CHI
i ∈ {Ĉi, C̃i} corresponds to a decision variable. Since imprecise computing leads to

errors, the objective of VPMC is to minimize computing errors, or maximize precise com-

puting, for low-criticality tasks in high-criticality mode.

11

Please note VPMC and IMC follow the same schedulability condition for a scheduling method.

When a schedulability condition is satisfied, there may be some processor utilization slack in high-

criticality mode. IMC ignores the slack and applies imprecise computing for all low-criticality

tasks. In contrast, VPMC attempts to utilize the slack in exchange for reducing imprecise comput-

ing and associated errors.

For each task τi, its utilizations in low and high-criticality mode are defined as

ULO
i =

CLO
i

Ti
, and UHI

i =
CHI
i

Ti
,

respectively. The total utilizations of all low-criticality tasks are

ULO
lo =

∑
χi=lo

ULO
i and UHI

lo =
∑
χi=lo

UHI
i .

Similarly, the total utilizations for high-criticality tasks are defined as

ULO
hi =

∑
χi=hi

ULO
i and UHI

hi =
∑
χi=hi

UHI
i .

Given m identical processors, a conventional scheduling is to decide when to execute each job on

which processor. In our work, we consider preemptive scheduling, where a low-priority job can be

preempted by a high-priority job during its execution.

2.4.2 IMC System Scheduling on Uniprocessor

The imprecise mixed-criticality (IMC) scheduling on uniprocessor [19] is based on EDF-VD

(Earliest Deadline First with Virtual Deadlines) [8]. In EDF-VD, the implicit deadlines of all high-

criticality tasks are scaled by a factor x. That is, for each high-criticality task τi, its virtual implicit

deadline is T̂i = x · Ti. The sufficient schedulability condition in low-criticality mode is given by

the following theorem.

Theorem 2. (Theorem 1 in [8]) If the following condition is satisfied, sporadic task set T is

12

schedulable with EDF-VD method on uniprocessor in low-criticality mode.

ULOlo +
ULOhi
x
≤ 1 (2.3)

This condition also tells that the scaling factor x can be decided by

x =
ULO
hi

1− ULO
lo

(2.4)

In high-criticality mode, the method of [19] continues to execute low-criticality tasks with

imprecise computing, and derives the following sufficient schedulability condition.

Theorem 3. (Theorem 2 in [19]) If the following condition is satisfied, sporadic task set T is

schedulable with EDF-VD method on uniprocessor in high-criticality mode.

xULOlo + (1− x)UHIlo + UHIhi ≤ 1 (2.5)

Theorem 4. (Theorem 3 in [19]) Given a task set, if ULO
hi

1−ULO
lo
≤ 1−(UHI

hi +UHI
lo)

ULO
lo −U

HI
lo

, where UHI
hi +UHI

lo < 1

and ULO
lo < 1 and ULO

lo > UHI
lo , then this task set can be scheduled by EDF-VD with a deadline

scaling factor x chosen in the following range

x ∈ [
ULO
hi

1− ULO
lo

,
1− (UHI

hi + UHI
lo)

ULO
lo − UHI

lo

] (2.6)

2.4.3 Partitioned Scheduling on Multiprocessors

In this approach [10], n = |T | tasks are partitioned onto m unit-speed processors. After the

partitioning, each task is never changed to another processor. As such, there is a fixed subset of

tasks on each processor. Then, uniprocessor scheduling methods can be applied to each processor

individually. In [10], a 2-phase task partitioning algorithm is described. In phase 1, high-criticality

tasks are assigned to each processor one by one as long as the high-criticality utilization UHI
hi

for each processor does not exceed 3
4
. In phase 2, low-criticality tasks are further assigned to

processors one by one following the condition that the low-criticality utilization ULO
lo + ULO

hi is

no greater than 3
4
. Alternatively, one can follow a different order of task assignment, which is

13

applied with the same schedulability check. This order is obtained by sorting with non-increasing

utilization (ULO
i for low-critical tasks and UHI

i for high-critical tasks) regardless task criticality.

It is shown in [36] that this alternative order never sacrifices overall schedulability and sometimes

improves schedulability.

2.4.4 Global fpEDF Scheduling on Multiprocessors

The method of fpEDF (fixed-priority EDF) [37] is a state-of-art global scheduling approach for

multiprocessor in conventional real-time systems without mixed-criticality. Fixed-priority means

the priority of one job can not be changed during execution. For a task set
⋃
τi∈T (Ti, Ci) to be

scheduled on m identical processors, fpEDF first chooses a subset Thp ⊂ T of at most m−1 tasks,

each with utilization greater than 1
2
, and assigns them on mhp processors with the highest priority.

The priorities of remaining tasks TEDF ⊂ T are lower and scheduled according to EDF (Earliest

Deadline First) principle on the other mEDF = m−mhp processors. The schedulability condition

for fpEDF is given in Lemma 1([37]).

Lemma 1. Consider a task set
⋃
τi∈T (Ti, Ci) to be scheduled on m identical processors. Let

U total
EDF be the total utilization of the tasks in TEDF , and Umax

EDF be the maximum utilization of tasks

in TEDF . If U total
EDF ≤ mEDF − (mEDF − 1) · Umax

EDF is satisfied, this task set T is schedulable by

fpEDF method.

2.4.5 Global Scheduling by fpEDF-VD on Multiprocessors

fpEDF-Virtual Deadline (fpEDF-VD) [9] is an extension of fpEDF to mixed-criticality sys-

tems. Virtual deadlines are enforced for high-criticality tasks. Each high-criticality task τj is

mapped to (T̂j, C
LO
j) in low-criticality mode, where T̂j = x · Tj(0 < x < 1) is the virtual deadline

that is enforced in both offline schedulability test and online execution. Each low-criticality task

τi is mapped to a regular implicit deadline task (Ti, C
LO
i) in low criticality mode, and all low-

criticality tasks are dropped in high-criticality mode. The schedulability conditions for fpEDF-VD

are as follows.

• Task set (
⋃
τi∈Tlo (Ti, C

LO
i))

⋃
(
⋃
τj∈Thi (x · Tj, CLO

j)) is schedulable onm processors in low-

14

criticality mode according to Lemma 1.

• Task set
⋃
τj∈Thi ((1− x) · Tj, CHI

j) is schedulable on m processors in high-criticality mode

according to Lemma 1.

For a high-criticality task τj ∈ Thi in high-criticality mode, its implicit deadline (1−x) ·Tj is used

in the offline schedulability check. However, only its original deadline Tj needs to be enforced

during online execution. By default, virtual deadline of a high-criticality task τj ∈ Thi refers to

x · Tj .

The schedulability condition in high-criticality mode leads to the following important conclu-

sion, which is heavily used in our work.

Lemma 2. ([9]) If a mixed-criticality task set T is schedulable by fpEDF-VD, each of its high-

criticality job τj,k in high-criticality mode can start from its virtual deadline d̂j,k and guarantee to

finish by actual deadline dj,k with execution time CHI
j following fpEDF-VD scheduling.

2.4.6 MC-DP-Fair Scheduling on Multiprocessors

DP (Deadline Partition) Fair [38] is a scheduling method for multiprocessor real-time system

without mixed-criticality. Each task τi is defined with a density δi = Ci

Ti
, where Ci is its WCET and

Ti is its minimal inter-arrival time. Time is divided into slices by deadline partitions, each of which

is a distinct job release time or deadline. A time slice is a time interval between two consecutive

partitions. If the length of a time slice is l, DP-Fair executes δi · l amount of task τi in this slice.

The schedulability condition of DP-Fair is specified as follows.

Theorem 5. (Lemma 14 in [25]) A non-MC task set T is schedulable under DP-Fair iff
∑

τi∈T δi ≤

m, where m is the number of processors.

MC-DP-Fair [25] is an extension of DP-Fair for mixed-criticality systems. A main change is

that each task τi is assigned a virtual deadline 0 < Vi ≤ Ti. Let Γ be the earliest deadline partition

after a system is switched to high-criticality mode. The virtual deadlines and the original deadlines

are enforced before and after Γ, respectively. By carefully choosing the values of virtual deadlines,

15

MC-DP-Fair has schedulability equivalent to MC-Fluid [25], which is the theoretically optimal

approach [25].

16

3. RELATED WORK 1

3.1 Preemptive Real-time Scheduling Considering Imprecise Computing

There are some related works of preemptive real-time scheduling considering imprecise com-

puting [3, 39, 40, 41, 2, 42, 4, 43] 2. In these works, a task is partitioned into a mandatory part and

an optional part. Only completing the mandatory part implies imprecision. For the computation

to be accurate, the optional part must be completed after the mandatory part. Since preemption is

allowed, the mandatory and optional parts can be executed separately with a precedence constraint.

The optional part can be treated as a stand-alone task with soft deadline constraint. Please note a

mandatory (or optional) part can be further divided due to preemption in these works. These tech-

niques are not applicable to non-preemptive systems, where a task cannot be divided and executed

disjointly.

In [44], soft real-time scheduling for multiprocessor system is studied with consideration of

imprecise computing. It handles dynamic voltage and frequency scaling (DVFS) and thermal con-

straint at the same time. The work of [45] schedules tasks for parallel computing considering

imprecise computing and DVFS. Every imprecise computing result is evaluated and the corre-

sponding task is re-executed in accurate mode if the imprecision errors are too large. Evidently,

such re-execution is not friendly to real-time systems.

3.2 Non-Preemptive Hard Real-Time Scheduling

The prior research on non-preemptive real-time scheduling is limited, at least partly due to

its hardness. One classic work is [5], where the schedulability conditions are derived for unipro-

1Reprinted with permission from “Using imprecise computing for improved non-preemptive real-time scheduling
” by Lin Huang, Youmeng Li, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of Design Automation Confer-
ence (DAC), Page 1-6 , c©2018 IEEE, “Graceful degradation of low-criticality tasks in multiprocessor dual-criticality
systems ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of the International Con-
ference on Real-Time Networks and Systems (RTNS), Page 159-169 , c©2018 ACM and “Improving QoS for global
dual-criticality scheduling on multiprocessors ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2019.
Proceedings of the International Conference on Real-Time Computing Systems and Applications (RTCSA), Page 1-11,
c©2019 IEEE.

2In some literature, imprecise computing is referred to as approximate computing or inexact computing.

17

cessors. In addition, it proves NP-hardness of several related problems. Its schedulability result

is a critical foundation for our work. Non-preemptive scheduling for multiprocessors is studied

in [46, 47]. In [48], the gap between preemptive and non-preemptive scheduling, in term of the

processor speedup for a non-preemptive system to achieve the same schedulability as preemptive

system, is studied.

3.3 Real-Time Scheduling and Dynamic Voltage and Frequency Scaling (DVFS)

There is one category of previous works that are seemingly different from ours but actually re-

lated. That is simultaneous real-time scheduling and DVFS [49, 50, 6, 51]. The voltage/frequency

scaling in these works is limited to a range where no timing or computing error occurs. If the

default computing is at low voltage/frequency or accurate mode, then both high voltage/frequency

and imprecise computing provide another option for fast task execution, which facilitates improved

schedulability. A pioneer work on simultaneous real-time scheduling and DVFS is [49], which is

restricted to preemptive cases. Non-preemptive scheduling with DVFS is addressed in [50, 6, 51].

The works of [50, 6] study how to switch among different V/F levels in the middle of task ex-

ecution. By contrast, accuracy change in imprecise computing is allowed only among different

task executions, not during the execution of a task. In [51], it is assumed that task execution order

is given and voltage/frequency is continuously tunable. Such assumptions are restrictive and not

very practical. Despite the relations, these previous works cannot be easily extended to solve our

problem.

3.4 Mixed-criticality (MC) Scheduling

The MC model was first described in [7]. Early works on MC scheduling are mostly for unipro-

cessors. One such work is EDF-VD [8], which extends the Earliest Deadline First scheduling with

Virtual Deadlines such that time resource is reserved for meeting deadlines during low-criticality

mode, high-criticality mode and the transition time at the beginning of high-criticality mode. This

method is designed for the classic MC model [7] where all low-criticality tasks are dropped in

high-criticality mode. There are only a few studies on imprecise computing of low-criticality

18

tasks in mixed-criticality systems. Most of them are built upon scheduling methods derived for

the conventional MC model. One early work is [17], which is an extension of adaptive mixed-

criticality scheduling [52]. Since this work also covers the other two approaches, reducing the

priorities or increasing the periods of low-criticality tasks, its discussion on imprecise comput-

ing is restricted to response time analysis. Later, a mixed-criticality scheduling work dedicated

to the imprecise computing model is introduced in [18]. This is a uniprocessor scheduling based

on the fluid model [25, 26] and the algorithm is proved to have speedup factor of 4
3
. Another

uniprocessor scheduling considering imprecise computing for low criticality tasks is [19], which

is an extension to EDF-VD (Virtual Deadline) scheduling [8]. It derives a sufficient condition

and speedup factor for allowing imprecise computing of low-criticality tasks under EDF-VD. All

these works [17, 18, 19] execute low-criticality tasks with imprecise computing in high-criticality

mode. By contrast, the latest work [20] allows some low-criticality tasks to be executed with full

precision in high-criticality mode. It formulates an integer linear programming to decide which

low-criticality tasks can continue with precise computing. Like [18], this work is also based on

the fluid model and is applied with multiprocessors. The goal of [20] is very close to our work -

maximizing precise computing of low-criticality tasks on multiprocessors. The key difference is

that [20] is more focused on theoretical conditions while our work emphasizes more on practical

realizations. Moreover, we study IMC and VPMC for other well-known multiprocessor scheduling

techniques that have not been investigated before. Although fluid-based scheduling is theoretically

very competitive, it cannot be directly implemented on hardware due to its restrictive assump-

tion. Compared to [20], whose validation is by only software simulation, our work contains Linux

prototyping validation that considers various overheads.

The limitations of the classic MC model have been identified [12] and several recent works

are developed for corresponding mitigation. An online adjustment technique [21] is developed to

reduce the number of low-criticality tasks that are dropped in high-criticality mode. In [22], multi-

ple intermediate-criticality levels are introduced between low-criticality mode and high-criticality

mode such that there is no need to simultaneously switch all high-criticality tasks to high-criticality

19

mode. The work of [53] enables return to low-criticality mode from high-criticality mode. An-

other approach is to continue low-criticality tasks in high-criticality mode with graceful degrada-

tion, such as imprecise computing [19]. All these techniques are developed for uniprocessors. For

multiprocessors, an EDF-VD-based global scheduling method is proposed in [9] using the clas-

sic MC model. There are very few previous works on multiprocessor scheduling for addressing

the limitations of the classic MC model. The work of [24] is a partitioning-based scheduling that

aims to alleviate some limitations of the classic MC model. It first partitions tasks to processors

in an effort for load balancing. Then, uniprocessor scheduling is performed for tasks assigned to

the same processor. Tasks of the same processor are further divided into multiple groups, each

of which contains only one high-criticality task so as to achieve isolation among high-criticality

tasks. Processor time is allocated to different groups, where scheduling is performed separately.

In high-criticality mode, low-criticality jobs are executed opportunistically without guarantee. As

such, the limitation of dropping all low-criticality tasks is not well solved. It has an intermediate

mode before entering high-criticality mode. However, all low-criticality tasks are suspended in

this mode. In [54], new protocols are proposed for systems to return from high-criticality mode

to low-criticality mode. A fluid-based scheduling [20] is introduced to allow execution of low-

criticality tasks in high-criticality mode for multiprocessors. However, it follows the conservative

model where all high-criticality tasks simultaneously enter high-criticality mode.

20

4. NON-PREEMPTIVE REAL-TIME SCHEDULING 1

We work on using imprecise computing for non-preemptive real-time scheduling, and propose

several heuristic algorithms for scheduling periodic tasks and considering imprecision with inde-

pendent or cumulative errors.

4.1 Motivation Example

Table 4.1: An example of non-preemptive real-time scheduling.

Task Period p Accurate WCET C Apprx WCET b Actual ET q
τ1 12 6 4 4, 5, 5
τ2 18 7 4 6, 5
τ3 36 10 6 8

A small example is described here to show the motivation of considering imprecise computing

in real-time scheduling. The details of this example are listed in Table 4.1. If only accurate

computing is considered, the schedulability check fails as

3∑
i=1

Ci
pi

=
6

12
+

7

18
+

10

36
=

42

36
> 1.

However, the check can pass if one uses the WCET of imprecise mode as

3∑
i=1

bi
pi

=
4

12
+

4

18
+

6

36
=

26

36
≤ 1.

The same observation can be obtained for condition (2.2). Thus, imprecise computing allows

aggressive scheduling without worrying deadline violation. By using our proposed techniques,

1Reprinted with permission from “Using imprecise computing for improved non-preemptive real-time scheduling
” by Lin Huang, Youmeng Li, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of Design Automation Conference
(DAC), Page 1-6 , c©2018 IEEE.

21

where a task execution can select accurate mode even though the schedulability check is based on

imprecision mode, one can reach a feasible scheduling with all jobs in accurate mode as shown

in Figure 4.1. This example indicates that imprecise computing can reduce the pessimism of

the conventional WCET model. At the same time, errors from imprecision can be controlled if

imprecision mode is applied in a prudent manner.

Figure 4.1: An example that is actually schedulable in accurate mode but fails schedulability check
according to the WCET model.

4.2 Online Scheduling of Tasks with Independent Errors

In this section, an online algorithm is introduced for solving periodic tasks where imprecision

errors are independent. The problem formulation is given below.

Problem 1. Given a set of periodic tasks T = {τ1, τ2, ..., τn}, decide if each job τi,j is executed in

accurate or imprecise mode, and its start time si,j such that ri,j ≤ si,j , si,j + qi,j ≤ ri,j + pi and

the total error among all jobs in a hyper-period
∑
∀i,j∈P εi,j is minimized.

Please note hyper-period P is the least common multiple of all task periods. qi,j is the actual

execution time regardless the accuracy level of job τi,j execution, and εi,j is the actual error when

τi,j is executed in imprecision mode. Our algorithm designed for this formulation of periodic tasks

can be easily adapted to sporadic tasks, because the online nature of this algorithm does not assume

the prior knowledge of task release time and deadline, and the schedulability conditions employed

in this algorithm are applicable for sporadic tasks.

22

If a given set of tasks passes its schedulability check using Theorem 1 based on imprecision

mode WCET, our algorithm can guarantee that there is no deadline violation. A main effort of

the algorithm is to increase the use of accurate mode in order to minimize imprecision errors.

Our algorithm is EDF with Explicit Slack Reclamation, where the accuracy selection is based on

explicit slack reclamation with constant complexity. When a job is to start, the algorithm checks if

there is enough slack available for this job to be executed in accurate mode. There are three kinds

of slacks: (1) individual slack; (2) idle-time slack; and (3) inter-job slack.

An individual slack ψi,j is intrinsically available to every job τi,j and is estimated with the

initial schedulability check before any job is started. A scaling factor γ is associated with every

condition in Theorem 1 and their values can be found by solving the following equations:

γ
n∑
i=1

bi
pi

= 1

γLi · (bi +
i−1∑
j=1

⌊L− 1

pj

⌋
· bj) = L,∀i, 1 < i ≤ n,∀L, p1 < L < pi.

We define γmin to be the minimum γ value, i.e., γmin = min∀i,∀L(γ, γLi , ...). If the set of tasks are

schedulable when all of their jobs are in imprecision mode, then γmin ≥ 1. Hence, the individual

slack ψi,j = (γmin − 1) · bi. The individual slacks are computed only once at the beginning and

their values can be used repeatedly throughout the online scheduling.

When a job τi,j is being scheduled online, and its nominal finish time fi,j is less than the

minimum between its deadline di,j and the release time rnext of its next job, then the idle time

slack is ψidlei,j = min(di,j, rnext) − fi,j . The nominal finish time fi,j for a job τi,j is the finish time

assuming no slack reclamation is conducted and can be estimated as current_time + bi + ψk,li,j ,

where ψk,li,j is inter-job slack introduced as follows.

An inter-job slack ψk,li,j is the slack generated by job τk,l due to its early completion and passed

to its next job τi,j . This concept is elaborated through the example in Figure 4.2, where job 1

finishes at f ′1 which is earlier than its nominal finish time f1 and the next job according to EDF

(job 2 here) has release time earlier than f1. Then, the processor time from f ′1 to f1 is a slack time

23

times1 f1

r2

f1’

job 1

job 2

Figure 4.2: If job 1 actually finishes at f ′1, which is earlier than its nominal finish time f1, and job
2 is to be executed next, job 1 provides inter-job slack to job 2 as in the green region. The release
times for job 2 is r2.

that can be applied to job 2, which is the green region in Figure 4.2. In general, the inter-job slack

produced by τk,l and passed to τi,j is defined by

ψk,li,j = max(fk,l −max(ri,j, f
′
k,l), 0) (4.1)

Every job intrinsically has individual slack, which can be zero. It can be consumed by choosing

accurate mode for this job. Even if a job is executed in imprecision mode, its individual slack

expires when the job is completed. However, an individual slack can be recycled as inter-job slack.

An idle-time slack generates opportunistically, and expires if it is not consumed. An inter-job slack

ψk,li,j can be consumed by executing job τi,j in accurate mode. If it is not consumed, it can assist τi,j

to generate new inter-job slack or expires.

In the EDF with explicit slack reclamation algorithm, we use the following slack based check.

When a job τi,j is being scheduled, its total slack is evaluated by

ψtotali,j = ψi,j + ψidlei,j + ψk,li,j .

If ψtotali,j ≥ Ci − bi, this job is executed in accurate mode and otherwise in imprecision mode.

Proposition 1. If a set of tasks are schedulable according to the WCET of imprecise mode, the EDF

scheduling with explicit slack reclamation method guarantees that there is no deadline violation.

Proof. Even with the slack reclamation, a job finish-time is never greater than that when all jobs

are executed in the WCET of imprecise mode. Thus, it would not violate its deadline and this is

24

true for all jobs.

The pseudo code for this algorithm is provided in Algorithm 1.

Algorithm 1: EDF scheduling with slack reclamation.
1 Check schedulability using bi for all unexecuted jobs;
2 if schedulable then
3 while ∃ unexecuted job do
4 τk,l ← the job just completed;
5 τi,j ← the next job according to EDF;
6 fi,j ← current_time+ bi + ψk,li,j ;
7 rnext ← release time of the next job after τi,j ;
8 ψidlei,j ← min(di,j , rnext)− fi,j ;
9 ψtotali,j ← ψi,j + ψidlei,j + ψk,li,j ;

10 if ψtotali,j ≥ Ci − bi then
11 Start τi,j in accurate mode;
12 else
13 Start τi,j in imprecise mode;
14 end
15 Wait till completion of τi,j ;
16 Estimate inter-job slack from τi,j to its next job according to Equation (4.1);
17 end
18 end

4.3 Collaborative Scheduling of Periodic Tasks with Independent Errors

This section introduces three collaborative methods for solving Problem 1. Each of these meth-

ods is composed by an offline scheduling part and an online adjustment part. Since offline schedul-

ing relies more on prior knowledge of the tasks, these methods are mostly for periodic tasks, whose

release times are more predictable than sporadic tasks.

4.3.1 Offline ILP and Online Adjustment

The offline scheduling and accuracy selection is conducted for one hyper-period using integer

linear programming (ILP). During task executions, some jobs are opportunistically adjusted from

imprecise to accurate mode. The adjustment is performed with reference to the ILP result and thus

25

no schedulability check as Theorem 1 is needed. The ILP result provides an upper bound guarantee

to imprecision errors.

A decision variable yi,j is defined to be 1 if τi,j is executed in imprecision mode and 0 otherwise.

The offline scheduling finish time for job τi,j is denoted as f̂i,j . An indicator function ui,j(t) is equal

to 1 if time t is in-between the start and finish time of τi,j , and 0 otherwise. The ILP formulation is

as follows.

minimize
y

∑
∀τi,j |[ri,j ,di,j]⊆[0,P]

ei · yi,j

subject to si,j ≥ ri,j , ∀τi,j |[ri,j , di,j] ⊆ [0, P]

f̂i,j = si,j + Ci + (bi − Ci) · yi,j , ∀τi,j |[ri,j , di,j] ⊆ [0, P]

f̂i,j ≤ ri,j + pi, ∀τi,j |[ri,j , di,j] ⊆ [0, P]∑
∀τi,j |[ri,j ,di,j]⊆[0,P]

ui,j(t) ≤ 1 ∀t, 0 < t ≤ P

si,j ∈ Z≥0, yi,j ∈ {0, 1} ∀τi,j |[ri,j , di,j] ⊆ [0, P]

Where si,j is the start time for job τi,j , bi is the constant WCET for task τi in imprecision mode

and P is the hyper-period.

In the online adjustment, if a job τi,j finishes earlier than the offline finish time f̂i,j specified

by ILP, the next job can start immediately without waiting till its start time specified by ILP. The

order of job executions is fixed and conforms to the ILP result. When a job τi,j is able to start at

current time tcur and yi,j = 1, it is executed in accurate mode if and only if tcur +Ci ≤ f̂i,j , which

is the finish time by ILP. Thus, the complexity of this online adjustment is constant.

4.3.2 ILP with Post-Processing and Online Adjustment

The ILP method described in Section 4.3.1 can guarantee the optimal solution according to

the WCET estimation, but the actual execution time is usually shorter than WCET. We propose a

post-processing to the ILP such that online adjustment may have more opportunities to improve the

result. Meanwhile, the ILP constraints and optimality are not affected. The offline post-processing

is based on three observations.

26

• For a job τi,j , if the processor is idle after f̂i,j , which is obtained from ILP, we postpone

its si,j as much as possible without missing its deadline or conflicting with the execution

of its next job. This is because the online accuracy adjustment is based on the condition of

tcur + Ci ≤ f̂i,j and increased si,j as well as f̂i,j would improve the chance of changing a

job from imprecision to accurate mode. The increased offline si,j does not affect the actual

start time at runtime, when a job always starts immediately upon the availability of processor

without waiting for si,j .

• If ILP schedules job τk,l to start immediately after τi,j and assigns both the jobs with the same

accuracy level, we may swap their execution order such that the job with earlier release time

starts earlier. This is based on the observation that a job with early release time has relatively

large chance to reclaim the slack generated from prior job executions.

• If ILP schedules an accurate job to be executed right after an imprecise job, we swap the

order of the two jobs subject to release time and deadline constraints. If an imprecise job is

scheduled to be executed later, it may have more chance of reclaiming slacks from prior job

executions. For example, in Figure 4.3, the imprecise job τ1,4 may reclaim slacks from τ3,2

after the swapping.

Figure 4.3: (a) ILP scheduling; (b) swapping imprecise job τ1,4 to be executed later in post-
processing.

27

Algorithm 2: Post processing of ILP result.
Input : T ILP = {Γ1,Γ2...} set of jobs scheduled by ILP for P

1 Action← false;
2 do
3 for each job Γi ∈ T ILP do
4 Slack ← min(d(Γi), s(Γi+1))− f̂(Γi);
5 if Slack > 0 then
6 s(Γi)← s(Γi) + Slack;
7 Action← true;
8 end
9 if y(Γi) == y(Γi+1) then

10 if r(Γi+1) < r(Γi) and f̂(Γi+1) ≤ d(Γi) then
11 swap Γi and Γi+1;
12 Action← true;
13 end
14 else if y(Γi) == 1 and y(Γi+1) == 0 then
15 if r(Γi+1) ≤ s(Γi) and f̂(Γi+1) ≤ d(Γi) then
16 swap Γi and Γi+1;
17 Action← true;
18 end
19 end
20 while Action == true;

The pseudo code for the post processing is provided in Algorithm 2. For a job Γi, the super-

script i is the execution order index decided by ILP. Thus, job Γi+1 is scheduled to be executed

right after Γi. If Γi is the last job in hyper-period P , then Γi+1 can be treated as a dummy job

with execution time 0 and is executed at the last moment of P . In this pseudo code, we use

r(Γi), s(Γi), f̂(Γi), d(Γi) to denote the release time, start time, finish time and deadline for task

Γi, respectively. Notation y(Γi) is the result from ILP indicating accuracy level. If its value is 1,

imprecision mode is selected for job Γi. Since all changes in the post processing are monotone and

cannot be reversed, convergence is guaranteed. After the post-processing, the online adjustment

part is the same as Section 4.3.1.

4.3.3 Flipped EDF and Online Adjustment

We propose another offline scheduling algorithm with all jobs being in imprecision mode.

When it works together with online adjustment, this offline scheduling achieves comparable or

28

even better results compared to the ILP-based collaborative methods. For a hyper-period P , this

algorithm schedules jobs from the last moment of P and proceeds backward to time 0, the starting

point of hyper-period. Among all unscheduled jobs, it always chooses the job with the latest

release time to schedule first. It selects imprecision mode for every job and schedules a job as late

as possible without deadline violation or conflicting with jobs that have already been scheduled.

One can think of this algorithm as EDF being performed in a flipped manner, where time axis is

reversed and the release time and deadline of each job are exchanged. If the original EDF is like

as-soon-as-possible scheduling, our flipped EDF is like as-late-as-possible scheduling.

According to [5], EDF can guarantee to find a feasible solution if the schedulability test of

Theorem 1 is passed. Since the flipped EDF is fundamentally equivalent to EDF, it enjoys the

same guarantee of finding feasible solution. After the offline flipped EDF, the online adjustment is

performed in the same way as Section 4.3.1.

4.4 Scheduling Periodic Tasks with Cumulative Errors in Imprecision

When errors are cumulative, an error at one job τi,j can carry over to its next job τi,j+1 and so

on if the jobs of task τi are in imprecision mode contiguously. The errors can be cleared out only

when at least one job execution is in accurate mode. As such, users wish to avoid that the jobs

of a task continuously operate in imprecision mode. Hence, we attempt to constrain the number

of consecutive imprecise job executions for each task like [2] and the problem formulation is as

follows.

Problem 2. Given a set of periodic tasks T = {τ1, τ2, ..., τn}, decide if each job τi,j is executed in

accurate or imprecision mode, and its start time si,j such that ri,j ≤ si,j , si,j + qi,j ≤ ri,j + pi and

the number of consecutive jobs in imprecision mode for each task τi is no greater than constraint

Bi.

We propose an online heuristic and an offline dynamic programming algorithm. For a problem

with only constraints and without objective function, an offline-online collaborative approach is

not helpful. If an offline algorithm can find feasible solution, then any online adjustment would

29

not improve the feasibility according to the problem formulation.

4.4.1 Online Heuristic

This online heuristic schedules jobs using EDF. In addition, it decides if to execute a job in

accurate or imprecision mode. When a job τi,j is scheduled to start, there are four scenarios for

deciding its accuracy mode. In the first scenario, there is error constraint violation if τi,j is executed

in imprecision mode while schedulability check passes for accurate mode. Then, accurate mode is

selected for this scenario. The second scenario is mirror case to the first one, where an imprecise

execution would not violate the error constraint but accurate execution fails schedulability check.

Imprecision mode is selected for this scenario. The third scenario is a difficult one, where both

imprecision mode would violate error constraint and accurate mode does not satisfy schedulability

conditions. In this scenario, we choose imprecision mode such that the theoretical guarantee of no

deadline violation is still fulfilled.

The fourth scenario seems easy but actually can affect subsequent selections. This is when

imprecision mode would not violate the error constraint and accurate mode passes schedulability

check. We define and compare error slack and latency slack to tell if choose accurate mode for less

error or imprecision mode for less risk of deadline violation, which can eventually become error

constraint violation according to the third scenario. The error slack is defined as

ErrorSlacki =
Bi − φi
Bi

,

where φi is the number of consecutive imprecise executions of jobs of task τi immediately before

τi,j . The latency slack is defined as

LatencySlacki,j =
di,j − si,j − Ci

pi
. (4.2)

Please note the error slack is normalized within (0, 1] while the latency slack is normalized within

30

[0, 1]. Then, we check the ratio

ρ =
LatencySlacki,j
ErrorSlacki

.

If ρ < θ, where θ is a user specified threshold, job τi,j is executed in imprecision mode as the

latency slack is tighter. The schedulability check here can be realized using the explicit slack

reclamation as in Section 4.2. The implementation of slack reclamation can be integrated with the

latency slack estimation.

4.4.2 Offline Dynamic Programming

The offline dynamic programming is a traversal of all jobs in a super period following the

EDF principle. A super period is the minimum consecutive set of hyper-periods that can cover all

scenarios of errors satisfying constraint Bi for all tasks. When a job is encountered in the traversal,

both its accurate and imprecise executions are considered as two candidate solutions. Thus, the

dynamic programming is an enumeration of different precision options in a decision tree. However,

we do not need to examine the entire tree (or solution space). If a candidate solution has either

deadline or error constraint violation, it is pruned without being propagated to consider with the

next job. Please note that different precision choices may lead to different job execution orders,

although all of them follow the principle of EDF. To further improve the computing efficiency, we

propose two other solution pruning techniques.

The first pruning technique is based on solution dominance. Consider a set of candidate so-

lutions Sk = {Sk1 , Sk2 , ...} for the same k jobs that have been processed in the traversal so far. A

solution Ski ∈ Sk is characterized by n+ 1 tuple (fki , λ
k
i,1, λ

k
i,2, ..., λ

k
i,n), where fki is the finish time

of all the k jobs and λki,l is the cumulative error for task τl. If fki = fkj and λki,l ≥ λkj,l, 1 ≤ l ≤ n,

then solution Ski is dominated by Skj and can be pruned without being further propagated.

The second pruning technique is based on processor utilization. For a solution Ski , we estimate

the best case processor utilization for the unprocessed jobs in the remaining time of the super

period. By “best case", we mean the allowable error budget is maximally used by the unprocessed

jobs. If this utilization exceeds 1, the corresponding solution is pruned without further propagation.

31

4.5 Experiment Results

Table 4.2: Testcase characteristics and schedulability.

Utilization Schedulability
Tesecases #tasks Accurate #jobs/P Accurate Imprecise

Rnd1 3 1.13 9 No Yes
Rnd2 3 1.88 9 No No
Rnd3 5 1.93 15 No Yes
Rnd4 3 1.6 9 No Yes
Rnd5 3 0.45 17 No Yes
Rnd6 7 3.8 22 No Yes
Rnd7 10 4.43 38 No Yes
Rnd8 12 2.91 60 No Yes
Rnd9 15 1.93 24 No Yes

Rnd10 17 4.99 126 No Yes
Rnd11 20 3.57 105 No Yes
Rnd12 22 5.47 130 No Yes
Rnd13 25 7.12 163 No Yes
IDCT 5 1.02 35 No No

Table 4.3: Simulation results for periodic tasks with independent errors (error standard deviation
is σ).

Test cases
EDF-Accurate EDF-Imprecise EDF+ESR(I) ILP+OA ILP+post+OA Flipped EDF

Deadline violations Mean error σ Mean error σ Mean error σ Mean error σ Mean error σ
Rnd1 0 2.59 1.82 1.15 1.21 0.40 0.72 0.22 0.56 0 0
Rnd2 55% 2.16 1.64 1.51 1.39 1.19 1.19 0.67 0.86 0.72 0.93
Rnd3 29% 51.85 39.64 27.65 34.55 32.03 35.65 23.79 33.61 19.86 32.42
Rnd4 38% 3.60 3.44 2.77 3.35 1.10 1.08 0.94 0.99 2.06 3.07
Rnd5 0 0.62 0.31 0.22 0.19 0.29 0.22 0 0 0 0
Rnd6 27% 2.58 1.17 2.25 1.07 2.39 1.11 2.10 1.05 2.04 1.04
Rnd7 29% 82.03 27.25 68.87 25.01 65.26 24.25 62.78 23.49 55.83 22.13
Rnd8 43% 82.14 21.79 58.67 18.21 52.67 17.37 43.25 15.56 41.53 14.96
Rnd9 4% 2.59 1.12 1.23 0.77 0.44 0.46 0.32 0.39 0.32 0.39
Rnd10 28% 20.08 3.74 15.24 3.26 13.60 3.07 11.99 2.85 12.36 2.93
Rnd11 31% 5.09 1.03 3.93 0.90 3.09 0.83 2.51 0.74 2.40 0.71
Rnd12 24% 10.09 1.81 8.03 1.62 6.84 1.51 6.79 1.50 6.85 1.52
Rnd13 18% 87.25 27.24 70.10 24.78 42.95 19.30 41.17 18.85 44.90 19.89
IDCT 1% 2.71 1.52 0.81 0.66 0.17 0.12 0.03 0.02 0.02 0.02

Average 23% 25.38 - 18.74 - 15.89 - 14.04 - 13.49 -
Normalized - 1 - 0.74 - 0.63 - 0.55 - 0.53 -

In our experiment, we compare the following methods:

• EDF-Accurate: EDF scheduling with all jobs in accurate mode.

32

• EDF-Imprecise: EDF scheduling with all jobs in imprecision mode.

• EDF+ESR: our EDF scheduling with explicit slack reclamation for periodic tasks with inde-

pendent errors (Section 4.2).

• ILP+OA: our ILP scheduling with online adjustment for periodic tasks with independent

errors (Section 4.3.1).

• ILP+Post+OA: our ILP and post-processing scheduling with online adjustment for periodic

tasks with independent errors (Section 4.3.2).

• Flipped EDF: our flipped EDF scheduling with online adjustment for periodic tasks with

independent errors (Section 4.3.3).

• EDF+ESR(C): our EDF scheduling with explicit slack reclamation for periodic tasks with

cumulative errors (Section 4.4.1).

• DP(C): our dynamic programming based offline scheduling with accuracy selection for pe-

riodic tasks with cumulative errors (Section 4.4.2).

4.5.1 Simulation Results

Simulations are performed on 13 random testcases and 1 realistic case. In the random cases,

actual job execution times are modeled as random variables following Gaussian distribution. The

WCET is obtained by the mean value plus 6σ of the distribution, which is further augmented by

a margin. The WCET to the best case execution time ratio is around 10. Errors from impreci-

sion executions are also simulated as random variables satisfying Gaussian distribution. The error

statistics are derived based on accuracy configurable circuit design [31]. The realistic case is IDCT

computation on grayscale and RGB images of various resolution, which form 5 different tasks.

The WCET and imprecise errors of IDCT computation are obtained from actual measurement.

The testcase characteristics are summarized in column 2, 3 and 4 of Table 4.2. The third column

is processor utilization when every job is executed in accurate mode and the fourth column is the

number of jobs in hyper-period. Experimental results are based on simulating 10K hyper-periods

for each task. Schedulability check according to Theorem 1 is performed on these testcases for

33

two scenarios: (1) all jobs in accurate mode and (2) all jobs in imprecise mode. The results are

listed in the rightmost two columns of Table 4.2. None of these cases is schedulable in accurate

mode according to Theorem 1. When all the jobs are in imprecision mode, every testcase except

Rnd2 and IDCT is schedulable based on Theorem 1.

The main results are shown in Table 4.3. The EDF-accurate results do not have errors but have

many deadline violations. Please note EDF-accurate can successfully schedule Rnd1 and Rnd5,

although the cases fail the schedulability check. This discrepancy is largely due to the differ-

ence between actual execution time and WCET. All the other methods can always satisfy deadline

constraints, but usually result in errors caused by imprecise computing. Our post-processing can

reduce the normalized average error from 0.63 of the ILP to 0.55. The best result comes from

Flipped EDF, which finds all accurate executions without deadline violation for Case 1 and 5.

However, the Flipped EDF is restricted to cases with prior knowledge on task release time com-

pared to online approaches. Moreover, its offline computation does not provide guarantee on errors

like the ILP-based approach.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Processor utilization

0.5

1

1.5

2

2.5

M
ea

n
er

ro
r

EDF-Imprecise

EDF+ESR

ILP+OA

ILP+Post+OA

Flipped EDF

Figure 4.4: Mean error versus utilization.

34

We study the error versus processor utilization tradeoff and the result is depicted in Figure 4.4.

The utilization is
∑n

i=1Ci/pi based on the WCET of accurate executions. Please note utilization

is greater than 1 for all the cases and this means these tasks are not schedulable according to Theo-

rem 1 using the accurate execution WCET. However, all of these cases are successfully scheduled

without deadline violation by using imprecise computing. Except EDF-imprecise, which always

uses imprecision mode, all methods can reduce errors when utilization decreases. Among the

methods, ILP+Post+OA and Flipped EDF produce the best result.

Table 4.4: Online runtime of EDF+ESR and ILP.

Test cases EDF+ESR (ms) ILP (s)
Rnd1 0.004 < 1
Rnd2 0.005 < 1
Rnd3 0.003 < 1
Rnd4 0.004 < 1
Rnd5 0.005 < 1
Rnd6 0.005 < 1
Rnd7 0.009 < 1
Rnd8 0.007 1.6
Rnd9 0.007 1.7

Rnd10 0.012 948
Rnd11 0.011 1164
Rnd12 0.013 1643
Rnd13 0.017 1842
IDCT 0.008 6.7

Average 0.008 401

We evaluated the computation runtime of these methods. Online computing usually takes a few

µs and the ILP runtimes range from seconds to minutes. The actual online scheduling runtime of

EDF+ESR is in column 2 of Table 4.4. EDF+ESR (Section 4.2) reclaims slacks online in a judi-

cious manner such that the schedulability conditions, which are validated offline at the beginning,

are not destructed. The theoretic complexity of each slack reclamation computation is constant.

The rightmost column of Table 4.4 lists the runtime of offline ILP computation.

The simulation results for periodic tasks with cumulative errors are shown in Table 4.5. EDF+ESR(C)

can guarantee to satisfy all deadline constraints. We intentionally make the cases very tight such

35

Table 4.5: Stress test results for periodic tasks with cumulative errors.

Testcases Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7
Error Violations
(EDF+ESR(C)) 20% 26% 28% 21% 6% 53% 50%

Feasible?(DP(C)) Yes No No Yes Yes No No
Testcases Rnd8 Rnd9 Rnd10 Rnd11 Rnd12 Rnd13 IDCT

Error Violations
(EDF+ESR(C)) 40% 12% 39% 46% 58% 49% 13%

Feasible?(DP(C)) No Yes No No No No Yes

5 10 15 20 25

processed jobs

0

200

400

600

800

1000

#
 c

a
n
d
id

a
te

 s
o
lu

ti
o
n
s

Without pruning

With pruning

Figure 4.5: The number of candidate partial solutions with and without pruning.

that error constraint violations occur. The error constraint Bi for a task τi ranges from 1 to 6 in

these cases. The results of EDF-Accurate and EDF-Imprecise are not shown here as the former

one never causes errors and the later one has 100% error constraint violations. For cases Rnd1,

Rnd4, Rnd5, Rnd9 and IDCT, the DP(C) can find feasible solutions satisfying both deadline and

error constraints while EDF+ESR(C) results in violations of error constraints. Figure 4.5 shows

the effectiveness of solution pruning in the dynamic programming for case Rnd7. We observe that

the pruning can greatly reduce runtime as well.

36

4.5.2 Linux Prototyping Results

Table 4.6: Tasks in Linux system prototyping.

Task Accurate WCET(s) ε̂accurate Imprecise WCET(s) ε̂imprecise
τ1 0.96 0.00001 0.55 20
τ2 1.21 0.00001 0.27 0.5
τ3 2.01 0.00001 1.18 5

We implemented EDF-Imprecise, EDF+ESR, Flipped EDF, ILP+Post+OA in Linux 4.6 on

a 1200MHz ARM Cortex-A53 processor. The testcase is Newton-Raphson method for solving

nonlinear equations numerically. The convergence criterion is ε̂accurate (ε̂imprecise), which is tight

(loose) for accurate (imprecision) mode. The WCETs are obtained by measuring the longest run-

time among multiple random tests and augmenting with additional margin. There are three periodic

tasks for solving three different kinds of equations. The statistics of this testcase are summarized

in Table 4.6. Please note the equation for task 2 is relatively well behaved such that its execu-

tion time can reduce quickly when the convergence criterion is relaxed. The mean error results

are depicted in Figure 4.6. Our ILP+Post+OA and Flipped EDF lead to much smaller errors than

EDF-Imprecise. And the relative overhead ratio of these methods is at the level of 0.0001%.

4.6 Conclusion

Our work reports the first study result on using imprecise computing for non-preemptive real-

time scheduling, to the best of our knowledge. Several heuristic algorithms are developed for

periodic tasks with independent or cumulative errors. If a set of tasks pass an initial schedulabil-

ity check where all jobs are assumed to be executed in imprecision mode, all of our algorithms

can guarantee to find solution without deadline violation. At the same time, our algorithms ei-

ther guarantee certain imprecision error bound or minimize errors in the best effort. Experimental

results from both simulation and Linux system prototyping implementation show that using impre-

cision can greatly improve schedulability while our techniques provide desired error and deadline

37

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Processor Utilization

0

0.5

1

1.5

2

2.5

M
ea

n
er

ro
r

EDF-Imprecise
EDF+ESR
ILP+Post+OA
Flipped EDF

Figure 4.6: Mean error versus utilization from Linux prototyping.

tightness tradeoff.

38

5. MIXED-CRITICALITY SCHEDUING 1

We study VPMC (Variable-Precision Mixed-Criticality) system for some well-known multi-

processor scheduling methods to consider low-criticality task executions in high-criticality mode.

These methods include partitioned scheduling, fpEDF-VD based global scheduling and MC-DP-

Fair scheduling. We also develop a optimization technique to allow low-criticality tasks to be

executed with precise computing with schedulability guarantee. Moreover, we introduce two main

techniques to mitigate both limitations of classic MC model simultaneously and thereby improve

QoS of mixed-criticality systems. Both techniques are mostly built upon the fpEDF-VD. The first

is a service preserving technique (Section 5.1.2.3) that allows all low-criticality tasks to execute in

high-criticality mode with imprecise computing. Compared to the dual virtual deadline approach

(Section 5.1.2.2), the proposed service preserving technique is less conservative and thereby fa-

cilitates improved schedulability. The second is a deferred switching scheme (Section 5.1.2.4),

which has not been studied for multiprocessors, to the best of our knowledge. It will reduce the

chance that a system switches into the very pessimistic high-criticality mode. The two techniques

are unified into a single method, which is described in Section 5.1.2.5.

5.1 VPMC System Scheduling on Multiprocessors

Since VPMC and IMC systems follow the same schedulability conditions, we sometimes men-

tion only one of them when a description is applicable for both kinds of models. Their difference

is on how to exploit different computing precisions under the same schedulability constraints.

1Reprinted with permission from “Graceful degradation of low-criticality tasks in multiprocessor dual-criticality
systems ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of the International Con-
ference on Real-Time Networks and Systems (RTNS), Page 159-169 , c©2018 ACM and “Improving QoS for global
dual-criticality scheduling on multiprocessors ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2019.
Proceedings of the International Conference on Real-Time Computing Systems and Applications (RTCSA), Page 1-11,
c©2019 IEEE.

39

5.1.1 Partitioned Scheduling

5.1.1.1 VPMC Partitioning with EDF-VD Scheduling

For EDF-VD on uniprocessor VPMC systems, we introduce a sufficient schedulability condi-

tion that has a form similar to that in conventional MC systems.

Lemma 3. If a task set in VPMC system satisfies the conditionmax(ULO
lo +ULO

hi , U
HI
lo +UHI

hi) ≤ 3
4
,

it is schedulable by EDF-VD on uniprocessor.

Proof. According to Lemma 2 in [19], if max(b + αc, λb + c) ≤ S(α, λ), then αc
1−b ≤

1−(c+λb)
b−λb ,

where UHI
hi = c, ULO

hi = αc, ULO
lo = b, UHI

lo = λb and S(α, λ) = (1−αλ)((2−αλ−α)+(λ−1)
√
4α−3α2)

2(1−α)(αλ−αλ2−α+1)
.

Based on Theorem 4 in [19], S(α, λ) ≥ 3
4
. As such, if max(ULO

lo + ULO
hi , U

HI
lo + UHI

hi) ≤ 3
4
, then

ULO
hi

1−ULO
lo
≤ 1−(UHI

hi +UHI
lo)

ULO
lo −U

HI
lo

, which is the sufficient schedulability condition for EDF-VD according to

Theorem 4.

In this method, the given tasks are first partitioned onto m unit-speed processors in the same

order as that described in Section 2.4.3. When a task is assigned to a processor, the schedulability

check is based on Lemma 3 instead of the conventional approach [10]. This change is to accom-

modate the IMC/VPMC model. This partitioning method is called VPMC partitioning. After the

partitioning, the tasks on each processor are scheduled in the same way as EDF-VD under the IMC

model [19] (Section 2.4.2). Under the same schedulability constraints, VPMC further allows some

low-criticality task to execute with full precision in high-criticality mode.

Lemma 4. If the VPMC partitioning is successfully completed, all tasks on each processor are

schedulable using EDF-VD method.

Proof. Each time a task is assigned to a processor in the VPMC partitioning, the schedulability

condition specified by Lemma 3 is satisfied. If VPMC partitioning is successfully completed,

the tasks on each processor satisfy the schedulability condition of Lemma 3 and therefore are

schedulable by EDF-VD.

40

It is shown in [10] that the partitioned scheduling of conventional MC model can achieve

speedup factor of 8m−4
3m

for m unit-speed processors. We show that the same speedup factor can be

achieved for IMC/VPMC model through a proof similar to [10].

Theorem 6. The speedup factor for VPMC partitioning with EDF-VD scheduling onm unit-speed

processors is 8m−4
3m

.

Proof. Suppose i − 1 tasks have been successfully assigned and we are attempting to assign the

ith task τi onto a processor during the partitioning. Let τ(pk) denote the set of tasks that have been

successfully assigned to processor pk, 1 ≤ k ≤ m. If the assignment of τi fails according to the

schedulability check, then at least one of the following two inequalities must hold.

ULOi +
∑

τj∈τ(pk)

ULOj >
3

4
(5.1)

UHIi +
∑

τj∈τ(pk)

UHIj >
3

4
(5.2)

We can sum up inequality (5.1) for all the m processors to get
∑i−1

j=1 U
LO
j >

(
3
4
− ULO

i

)
m

⇔
∑i

j=1 U
LO
j > (3

4
− ULO

i)m+ ULO
i , from which we can conclude

ULO
lo + ULO

hi >

(
3

4
− ULO

i

)
m+ ULO

i (5.3)

Similarly, we can sum up inequality (5.2) for all the m processors to obtain

UHI
lo + UHI

hi >

(
3

4
− UHI

i

)
m+ UHI

i (5.4)

If this task set can be scheduled by an optimal scheduling algorithm on m processors of speed

s, we have ULO
i ≤ s, UHI

i ≤ s, ULO
lo + ULO

hi ≤ m · s and UHI
lo + UHI

hi ≤ m · s.

If inequality (5.3) holds, ULO
lo + ULO

hi > (3
4
− ULO

i)m + ULO
i ⇔ m · s > 3

4
m − (m − 1)s

⇔ s > 3m
8m−4 . Likewise we can obtain s > 3m

8m−4 if inequality (5.4) holds. If s ≤ 3m
8m−4 , this task set

can be scheduled by the partitioning followed by EDF-VD on m unit-speed processors. Therefore,

the speedup factor of the VPMC partitioning with EDF-VD is 8m−4
3m

.

41

5.1.1.2 Enhanced VPMC Partitioning

We introduce two techniques to enhance the VPMC partitioning described in Section 5.1.1.1.

The first improvement is to change the schedulability check in the partitioning from Lemma 3 to

Theorem 4. From the proof of Lemma 3, we can tell the schedulability condition in Lemma 3

is sufficient for the schedulability condition in Theorem 4. We use an example to demonstrate

that the Lemma 3 condition is not necessary for the Theorem 4 condition. The characteristics of

this example task set are shown in Table 5.1. If the partitioning is based on Lemma 3, τ1 and τ2

are first assigned to processor p1 and p2, respectively. When we try to assign τ3 to processor p1,

max(ULO
lo +ULO

hi , U
HI
lo +UHI

hi) = 0.9 > 0.75. Alternatively, when we try to assign τ3 to processor

p2, max(ULO
lo + ULO

hi , U
HI
lo + UHI

hi) = 0.8 > 0.75. Hence, the assignment for τ3 fails for both

p1 and p2 according to Lemma 3. However, the assignment of τ3 to p2 satisfies the schedulability

condition in Theorem 4 since ULO
hi

1−ULO
lo

= 3
5
≤ 1−(UHI

hi +UHI
lo)

ULO
lo −U

HI
lo

= 2
3
. Thus, the condition in Lemma 3

is more conservative than Theorem 4 and applying Theorem 4 can identify more schedulable task

sets.

Table 5.1: Scheduling on 2 unit-speed processors.

Task χi U
LO
i UHI

i

τ1 hi 0.4 0.7
τ2 hi 0.3 0.6
τ3 lo 0.5 0.2

The second enhancement technique is to balance the utilizations of each processor between

the two different criticality modes. More specifically, we attempt to make the difference between

ULO
lo + ULO

hi and UHI
lo + UHI

hi on each processor as small as possible. The intuition is that a small

difference or balanced utilization can avoid one criticality mode being a bottleneck of the whole

system. This is inspired by the work on conventional MC systems [36], but applies to IMC/VPMC

systems as well. Each time a task τi is to be assigned to a processor, all the processors are sorted

42

in non-decreasing order of UHI
lo + UHI

hi − ULO
lo − ULO

hi and indexed from 1 to m. If χi = hi, the

attempts of assigning τi to a processor are in the order from 1 to m. Otherwise, the attempts follow

the order from m to 1.

Lemma 5. If the enhanced VPMC partitioning is successfully completed, all tasks on each pro-

cessor are schedulable with EDF-VD scheduling.

Proof. A successful assignment of tasks to a processor indicates the satisfaction of the condition

in Theorem 4, which is a sufficient schedulability condition for EDF-VD.

Lemma 6. The speedup factor for the enhanced partitioning with EDF-VD scheduling is no

greater than 8m−4
3m

.

Proof. Since the condition of Lemma 3 is sufficient condition for the condition in Theorem 4,

a failure of the enhanced partitioning, which implies violation of the condition in Theorem 4,

indicates violation of the condition of Lemma 3, i.e., either inequality (5.1) or inequality (5.2)

holds. Then, one can follow the same proof as Theorem 6 to derive the speedup factor of 8m−4
3m

.

5.1.2 Global Scheduling by fpEDF-VD

5.1.2.1 Extension of fpEDF-VD for IMC and VPMC

When fpEDF-VD scheduling, which is briefly reviewed in Section 2.4.5, is applied with

IMC/VPMC, the main change is that CHI
i for each low-criticality task τi is no longer 0. This

execution time change causes utilization change in high-criticality mode. The changed utilizations

are evaluated by the same schedulability check described in Section 2.4.5 to tell if a given task set

is schedulable with fpEDF-VD.

The tricky part is the transition from low-criticality mode to high-criticality mode. Let thi be the

moment when the system enters high-criticality mode. We define dHI as the earliest deadline (vir-

tual deadline for high-criticality tasks) among all jobs that are active right after thi. We further de-

fine rHI to be the earliest release time among jobs released after thi. We call tHI = min(dHI , rHI)

the critical moment. After the critical moment, the schedulability check of high-criticality mode

43

can be applied without ambiguity. However, the transition time interval from thi to tHI needs spe-

cial consideration for IMC/VPMC systems. During the transition interval, there can exist carry-

over jobs, which are jobs that are released before thi and have not been completed at thi. By the

EDF-VD algorithm design, high-criticality carry-over jobs can be guaranteed to complete before

their deadlines if the schedulability check is passed. If a low-criticality carry-over job τi,j has al-

ready executed at least C̃i amount of time at thi, we take its imprecise computing result [2] and quit

this job. If τi,j has executed less than C̃i, we continue it till tHI and then quit. By disallowing low-

criticality carry-over jobs after tHI , the schedulability of all high-criticality jobs can be maintained.

In the worst case, a low-criticality task may lose its job once during the transition interval.

The schedulability condition for our fpEDF-VD method is that

both task systems (
⋃
χi=lo

(Ti, C
LO
i))

⋃
(
⋃
χi=hi

(x ∗ Ti, CLO
i)) and

(
⋃
χi=lo

(Ti, C
HI
i))

⋃
(
⋃
χi=hi

((1− x) ∗ Ti, CHI
i)) are each (separately) schedulable on m

processors by fpEDF (for low-criticality tasks, CHI
i = C̃i). The schedulability condition of fpEDF

is Lemma 1 in Section 2.4.4.

Lemma 7. If a task set satisfies ULO
hi

1−ULO
lo /s

+
UHI
hi

1−UHI
lo /s

≤ s, then it is schedulable using our fpEDF-VD

method on a speed s processor.

Proof. fpEDF reduces to regular EDF on single processor [37]. If a task set satisfies ULO
lo +

ULO
hi

x
≤

s, or equivalently

x ≥ ULO
hi

s− ULO
lo

(5.5)

task collection (
⋃
χi=lo

(Ti, C
LO
i))

⋃
(
⋃
χi=hi

(x ∗ Ti, CLO
i)) is schedulable using EDF on a speed s

processor.

If the task set satisfies UHI
lo +

UHI
hi

1−x ≤ s, or equivalently

x ≤ 1− UHI
hi

s− UHI
lo

(5.6)

task collection (
⋃
χi=lo

(Ti, C
HI
i))

⋃
(
⋃
χi=hi

(Ti − x ∗ Ti, CHI
i)) is schedulable using EDF on a

speed s processor.

44

We can prove this lemma when combining inequality (5.5) and inequality (5.6).

Lemma 8. If a task set satisfies max(ULO
lo +ULO

hi , U
HI
lo +UHI

hi) ≤ s, then it is schedulable by our

fpEDF-VD method on a speed ks processor , where k =
√
5+1
2

.

Proof. If a task set satisfies ULO
lo + UHI

hi ≤ ks, we know that it is schedulable on a speed ks

processor, if not we need to show that (from Lemma 7),
ULO
hi

1−ULO
lo /ks

+
UHI
hi

1−UHI
lo /ks

≤ ks, or equivalently,

ks(ULO
lo + ULO

hi) + ks(UHI
lo + UHI

hi)− ULO
lo (UHI

lo + UHI
hi)− ULO

hi U
HI
lo ≤ (ks)2

From max(ULO
lo + ULO

hi , U
HI
lo + UHI

hi) ≤ s, we have ULO
lo + ULO

hi ≤ s, UHI
lo + UHI

hi ≤ s, and

from ULO
lo + UHI

hi > ks, we have ULO
lo > ks− UHI

hi > ks− s, then

ks(ULO
lo + ULO

hi) + ks(UHI
lo + UHI

hi) − ULO
lo (UHI

lo + UHI
hi) − ULO

hi U
HI
lo < 2ks2 − (k − 1)s2 =

(k + 1)s2 = (ks)2, because k + 1 =
√
5+3
2

= k2.

Corollary 1. (Corollary 1 in [9]) If a task set cannot be scheduled by algorithm fpEDF on m unit-

speed processors, then it cannot be scheduled by preemptive uniprocessor EDF on a processor of

speed (m+1)/2.

From Lemma 8 and Corollary 1, we can have Corollary 2 as in [10],

Corollary 2. If a task set satisfies max(ULO
lo + ULO

hi , U
HI
lo + UHI

hi) ≤ m, then it is schedulable by

our fpEDF-VD method on m speed (
√

5 + 1) processors.

Corollary 3. Any task set that can be scheduled by an optimal clairvoyant scheduling algorithm

on m unit speed processors can be scheduled by our fpEDF-VD method on m speed (
√

5 + 1)

processors.

Proof. If a task set can be scheduled by an optimal clairvoyant scheduling algorithm on m unit

speed processors, it is necessary that ULO
lo + ULO

hi ≤ m and UHI
lo + UHI

hi ≤ m, then this task set is

schedulable by our fpEDF-VD method on m speed (
√

5 + 1) processors from Corollary 2.

From Corollary 3, we can show that our fpEDF-VD method for IMC/VPMC has the speedup

factor of (
√

5 + 1), which is the same as the fpEDF-VD scheduling of conventional MC systems.

45

5.1.2.2 Dual Virtual-Deadlines for fpEDF (fpEDF-DVD)

As pointed in Section 5.1.2.1, a direct extension of fpEDF-VD to IMC/VPMC model may result

in one-time job abandonment for a low-criticality task during the transition from low-criticality to

high-criticality mode. To avoid this loss, we propose to apply the virtual-deadline technique for

low-criticality tasks in addition to high-criticality tasks. More specifically, each low-criticality task

τi has deadlines y·Ti and (1−y)·Ti for low-criticality mode and high-criticality mode, respectively,

where y is a scaling factor between 0 and 1. The value of y is found by sweeping between 0 and 1

and selecting the one that satisfies schedulability conditions (Section 2.4.5). This method is called

fpEDF-DVD (fpEDF with dual virtual-deadlines).

Theorem 7. If the virtual deadline based utilization of all tasks satisfy schedulability conditions

in both low-criticality and high-criticality mode, the fpEDF-DVD scheduling guarantees all job

completions before their deadlines and no job is abandoned.

Proof. If the schedulability conditions (Section 2.4.5) are satisfied, all tasks are evidently schedula-

ble by fpEDF in low-criticality mode and high-criticality mode. Special attention needs to be paid

to carry-over jobs, which are released before the moment thi entering high-criticality mode and

have not been completed at thi. Then, the low-criticality mode virtual-deadline for each carry-over

job must be after thi. The virtual-deadlines partition a task period into low-criticality mode portion,

which are x ·Ti and y ·Ti, and high-criticality mode portion, which are (1−x) ·Ti and (1− y) ·Ti,

respectively. For the carry-over jobs, one can treat their low-criticality mode virtual-deadlines as

their high-criticality mode release times, which are after thi. As the schedulability conditions are

satisfied, even if the carry-over jobs start execution at their low-criticality virtual-deadlines, they

are all schedulable for completion by their actual deadlines.

5.1.2.3 Service Preserving Method

The goal of this service preserving technique is to reduce the pessimism of fpEDF-DVD (Sec-

tion 5.1.2.2) and thereby improve schedulability. It continues to execute low-criticality tasks in

46

high-criticality mode while all task deadlines are guaranteed to be met. All low-criticality tasks

are executed with imprecise computing in high-criticality mode. The imprecise computing costs

shorter execution time than precise computing and therefore CLO
i > CHI

i > 0,∀τi ∈ Tlo.

The key issue is how to guarantee schedulability while low-criticality tasks are continued and

consume processor time. In this technique, fpEDF-VD scheduling policy is used in low-criticality

mode and high-criticality mode, and DP-Fair scheduling policy is used during the transition. In

order to ensure schedulability for low-criticality mode, task set

(
⋃
τi∈Tlo

(Ti, C
LO
i))

⋃
(
⋃

τj∈Thi

(x · Tj, CLO
j))

must be schedulable on m processors according to Lemma 1. Please note by scaling Ti by x ∈

(0, 1), virtual deadline x · Ti is applied for all high-criticality tasks. We define the high-criticality

mode condition as that task set

(
⋃
τi∈Tlo

(Ti − P,CHI
i))

⋃
(
⋃

τj∈Thi

((1− x) · Tj, CHI
j)) (5.7)

must be schedulable on m processors according to Lemma 1, where P is a service preserving

interval we introduce and will be elaborated later.

The transition from low-criticality to high-criticality mode is subtle and deserves a lot of at-

tention [19]. The treatment of high-criticality tasks is the same as fpEDF-VD [9]. Consider a

high-criticality job τj,k that is active at moment t∗ of mode switching. Its virtual deadline satis-

fies d̂j,k = rj,k + x · Tj ≥ t∗, where rj,k is the release time of job τj,k, otherwise this job would

have finished. Right after time t∗, the system enters high-criticality mode and the actual deadline

dj,k = rj,k + Tj is enforced. According to Lemma 2, the extra time budget (1− x) · Tj is sufficient

for τj,k to finish with execution timeCHI
j . Therefore, high-criticality tasks are guaranteed to satisfy

their deadlines.

The challenging part is how to handle low criticality tasks during the transition, where they can

no longer be dropped as in the classic MC model. The non-zeroCHI
i for low-criticality tasks makes

47

the schedulability guarantee quite difficult. The first technique in section 5.1.2.1 may result in a

one-time dropping of low-criticality jobs during transition. This is against the original intention

of continuing all low-criticality tasks. Another technique in section 5.1.2.2 is dual virtual deadline

(DVD) for avoiding such job loss. Unlike the original fpEDF-VD, where virtual deadline is applied

only for high-criticality tasks, the DVD approach enforces virtual deadline for low-criticality tasks

as well. Virtual deadline is effective for providing guarantee on meeting deadlines. However, it is

basically a conservative resource reservation approach that makes schedulability condition more

strict and hence causes under-utilization of resources. Applying virtual deadlines for both low-

criticality tasks and high-criticality tasks would exacerbate the inefficiency and is an expensive

price paid for avoiding one-time loss of low-criticality jobs.

We suggest a service preserving interval [t∗, t∗ + P], when only the active (carry-over) low-

criticality jobs are executed by DP-Fair scheduling, all active high-criticality jobs are suspended

and no newly arrival jobs are started. This is to facilitate that all active low-criticality jobs can be

finished with imprecise computing during the transition. Meanwhile, the interval P is designed

in a way that the schedulability of all the other jobs are still maintained. A critical basis for the

service preserving interval is that execution time CHI
j is accommodated after virtual deadline d̂j,k

for a high-criticality job τj,k in high-criticality mode according to Lemma 2 by fpEDF-VD [9]. The

service preserving interval length is defined as

P = min
∀τj∈Thi

CLO
j (5.8)

Next, we will discuss schedulability of active jobs and those involving the service preserving in-

terval.

Lemma 9. By following fpEDF-VD, all high-criticality jobs can guarantee to meet their deadlines

in high-criticality mode even if they are not executed in [t∗, t∗ + P].

Proof. The high-criticality jobs involving the service preserving interval [t∗, t∗ + P] can be cate-

gorized into three cases, all of which will be discussed as follows.

48

Case 1: Overrun jobs. These are the high-criticality jobs that have executed CLO time but have not

finished (see Figure 5.1). At the end of the CLO time, the system enters high-criticality mode when

the moment is t∗. According to the schedulability conditions of fpEDF-VD, the virtual deadline

d̂j,o of an overrun job τj,o satisfies d̂j,o ≥ t∗. The method of fpEDF-VD (Lemma 2) also indicates

that all high-criticality jobs can execute CHI after their virtual deadlines and finish before their

actual deadlines in high-criticality mode. Since time CLO
j has already been executed for job τj,o

at t∗, deferring the rest of its execution by CLO
j maintains the schedulability. In other words, the

rest of the overrun job can start from d̂j,o + CLO
j = d̂j,o + CLO

j + t∗ − t∗ = t∗ + Pj , where

Pj = d̂j,o + CLO
j − t∗. Since d̂j,o ≥ t∗, Pj ≥ CLO

j . Therefore, postponing the execution of the rest

of τj,o by CLO
j will maintain the schedulability of overrun jobs.

Figure 5.1: Case 1: service preserving interval for an overrun job.

Case 2: Active high-criticality jobs without overrun (see Figure 5.2). A high-criticality job τj,k

has been executed qj,k < CLO
j by t∗. Then, its rest portion can start from d̂j,k + qj,k with guarantee

of meeting its deadline according to fpEDF-VD. Like Case 1, d̂j,k + qj,k = t∗ + Pj , where Pj =

d̂j,k + qj,k − t∗. By schedulability condition in low-criticality mode, qj,k + d̂j,k − t∗ ≥ CLO
j , then

Pj ≥ CLO
j . Hence, such a job can be suspended in [t∗, t∗+CLO

j] without affecting its schedulability.

Case 3: High-criticality jobs arriving during the service preserving interval (see Figure 5.3). The

release time rj,k of such a job τj,k satisfies

t∗ ≤ rj,k ≤ t∗ + P. (5.9)

49

Figure 5.2: Case 2: service preserving interval for an active high-criticality job without overrun.

The schedulability conditions in fpEDF-VD require that

rj,k + CLO
j ≤ d̂j,k. (5.10)

Combing inequality (5.9) and (5.10), we have

CLO
j ≤ d̂j,k − rj,k ≤ d̂j,k − t∗ = Pj

Since τj,k can guarantee finish before its deadline even if it starts from d̂j,k according to fpEDF-VD,

its start time can be deferred by Pj , which is lower bounded by CLO
j .

Overall, all high-criticality jobs involving the service preserving interval can be deferred by

CLO without affecting their schedulability. Hence, deferring by P = min∀τj∈Thi C
LO
j for all these

jobs can still guarantee to meet their deadlines.

Figure 5.3: Case 3: service preserving interval for an immediate newly coming high-criticality job.

50

Next, we describe schedulability conditions for active low-criticality jobs during the service

preserving interval [t∗, t∗ + P]. At t∗, if a low-criticality job τi,k has already been executed for at

least CHI
i , it is terminated with imprecise computing result. An active (carry-over) low-criticality

job τi,k means that it has been executed for qi,k < CHI
i by t∗. The active low-criticality jobs

are scheduled by the fluid-based DP-Fair method (see Section 2.4.6) in the service preserving

interval, while fpEDF-VD is employed all the other time. Although fluid scheduling tends to entail

frequent job preemptions, it is utilized only within the limited service preserving interval. The

schedulability for DP-fair method is largely decided by the job density.

Lemma 10. The density δi,k of an active low-criticality job τi,k in [t∗, t∗ + P] is no greater than

max(
CHI

i

P
,
CHI

i

CLO
i

).

Proof. This bound is derived from two cases. In one case, deadline di,k ≥ t∗ + P as shown in

Figure 5.4. In the worst case for the service preserving interval, entire job CHI
i is executed by

t∗ + P , the density of this case is upper bounded as

δi,k|di,k≥t∗+P ≤
CHI
i

P
. (5.11)

Figure 5.4: Active low-criticality job with deadline after t∗ + P .

In the other case, di,k < t∗ + P as shown in Figure 5.5. If qi,k has been executed by t∗, the

51

density is estimated by

δi,k|di,k<t∗+P =
CHI
i − qi,k
di,k − t∗

(5.12)

By the schedulability condition in low-criticality mode, CLO
i − qi,k ≤ di,k − t∗. Therefore,

δi,k|di,k<t∗+P =
CHI
i − qi,k
di,k − t∗

≤ CHI
i − qi,k

CLO
i − qi,k

(5.13)

Figure 5.5: Active low criticality job with deadline before t∗ + P .

Consider a function

f(x) =
CHI
i − x

CLO
i − x

, 0 ≤ x < CHI
i < CLO

i . (5.14)

Since derivative f ′(x) =
CHI

i −CLO
i

(CLO
i −x)2 < 0, f(x) is a monotone decreasing function and its maximum

is at x = 0. Hence,

δi,k|di,k<t∗+P ≤
CHI
i − qi,k

CLO
i − qi,k

≤ CHI
i

CLO
i

(5.15)

By combining the two cases, we have

δi,k ≤ max(
CHI
i

P
,
CHI
i

CLO
i

) (5.16)

In the worst case, every low-criticality task has an active job at t∗. According to Theorem 5

52

and Lemma 10, a sufficient condition for DP-Fair method to successfully schedule all the active

jobs on m processors in [t∗, t∗ + P] is

∑
∀τi∈Tlo

max(
CHI
i

P
,
CHI
i

CLO
i

) ≤ m (5.17)

Last, we discuss new low-criticality jobs that arrive in [t∗, t∗ + P]. Our method does not allow

such jobs to be executed until t∗+P . In other words, their execution is deferred by at most P . We

specify that task set

(
⋃
τi∈Tlo

(Ti − P,CHI
i))

⋃
(
⋃

τj∈Thi

((1− x) · Tj, CHI
j))

must be schedulable according to Lemma 1 in high-criticality mode. More specifically, a low-

criticality task τi is scheduled with period (implicit deadline) Ti − P . Thus, with deferral of P , a

low-criticality job arriving in [t∗, t∗ + P] is still schedulable.

Putting everything together, the service preserving policy is stated as follows.

Service preserving policy: From the moment t∗ switching to high-criticality mode to t∗+P , where

P = min∀τj∈Thi C
LO
j , only active low-criticality jobs are executed with DP-Fair scheduling and

all the other jobs can not be executed.

From Lemmas 9 and 10, we can reach the following conclusion.

Theorem 8. When applying the service preserving policy with fpEDF-VD scheduling, a task set

T is schedulable on m identical processors if T satisfies the following schedulability conditions.

• task set

(
⋃
τi∈Tlo

(Ti, C
LO
i))

⋃
(
⋃

τj∈Thi

(x · Tj, CLO
j))

must be schedulable on m processors according to Lemma 1.

•
∑
∀τi∈Tlo max(

CHI
i

P
,
CHI

i

CLO
i

) ≤ m during [t∗, t∗ + P], where P = min∀τj∈Thi C
LO
j .

53

• task set

(
⋃
τi∈Tlo

(Ti − P,CHI
i))

⋃
(
⋃

τj∈Thi

((1− x) · Tj, CHI
j))

must be schedulable on m processors according to Lemma 1.

5.1.2.4 Deferred Switching Scheme

Although high-criticality mode guarantees that high-criticality tasks complete before deadlines

in the worst case, it entails expensive price that the execution time estimation of all high-criticality

tasks becomes overly pessimistic even if many of them do not have overrun. Moreover, low-

criticality tasks would run in imprecise mode or are even dropped. The threshold of switching to

high-criticality mode in the conventional protocol is quite low. That is, any single high-criticality

job overrun triggers the mode switching. Generally, there are two approaches that can address

this issue. One is to allow a system to switch back to low-criticality mode like bailout mode

protocol [53, 54]. The other is to defer the switching into high-criticality mode like the work of

[22]. We take the latter approach for multiprocessors while the work of [22] is for uniprocessor

scheduling.

Our approach is built upon fpEDF-VD [9] with the observation that the conservativeness of

fpEDF-VD allows room for such deferral. In the proposed scheme, a single high-criticality job

overrun does not warrant immediate switching to high-criticality mode. Instead, the system enters

a vigilant mode, which is almost identical as low-criticality mode except that the overrun job is

monitored to decide if the system can recover back to low-criticality mode or must switch to high-

criticality mode. The online monitoring and decision can still guarantee satisfaction of all deadline

constraint even though CHI
j is applied with the overrun job, while all low-criticality tasks are

retained and all the other high-criticality tasks are scheduled with less pessimistic CLO
j .

Vigilant mode is defined by the following characteristics.

• At low-criticality mode, if any high-criticality job τj,o ∈ τj ∈ Thi does not finish after being

executed CLO
j , i.e., has overrun, then the system enters vigilant mode at this moment t′.

• Every low-criticality task τi ∈ Tlo continues to execute with precise computing with esti-

54

mated execution time CLO
i .

• Each non-overrun high-criticality job τj,k continues to execute with estimated execution time

CLO
j .

• Each overrun high-criticality job τj,o is scheduled with estimated execution time CHI
j and

priority lower than any low-criticality job and non-overrun high-criticality jobs.

• Each overrun high-criticality job τj,o is assigned a series of checkpoints ch(τj,o), h = 0, 1, 2, ...,

when some conditions are checked with constant time to decide if τj,o allows to return to low-

criticality mode, demands high-criticality mode or needs to stay at vigilant mode.

• The system switches to high-criticality mode if any overrun high-criticality job demands

high-criticality mode.

• When no overrun high-criticality job demands high-criticality mode, the system stays at

vigilant mode as long as any overrun high-criticality job needs so.

• The system returns to low-criticality mode when all overrun high-criticality jobs allow so.

The initial checkpoint for an overrun job τj,o is defined as

c1(τj,o) = d̂j,o + CLO
j (5.18)

where d̂j,o is the virtual deadline by fpEDF-VD [9] for job τj,o. An example of checkpoint is

shown in Figure 5.6. Later on, it is likely that the checkpoint is updated to c2(τj,o) > c1(τj,o) and

c3(τj,o) > c2(τj,o), and so on. For the convenience of representation, we specify c0(τj,o) = d̂j,o and

q0(τj,o) = CLO
j . When time reaches the checkpoint ch(τj,o), h = 1, 2, ..., the amount of execution

of τj,o from the previous checkpoint ch−1(τj,o) to ch(τj,o) is examined with constant time and the

result determines three different outcomes.

1. If job τj,o is completed by ch(τj,o), it allows the system to return to low-criticality mode.

55

2. Zero amount has been done, then high-criticality mode is demanded.

3. If qh(τj,o) processor time has been spent on executing τj,o yet it is not completed, the job

needs to stay at vigilant mode with the next checkpoint as ch+1(τj,o) = ch(τj,o)+qh(τj,o), h =

0, 1, 2,

Figure 5.6: Illustration of checkpoint.

By introducing the vigilant mode, our approach can defer the switching to high-criticality

mode. As the system can return to low-criticality mode from vigilant mode, the overall proba-

bility of entering high-criticality mode is also reduced. As such, low-criticality tasks are executed

with improved quality and less conservative execution time estimation is applied for high-criticality

jobs without overrun. Next, we will show that all jobs are guaranteed to satisfy their deadline con-

straints under this scheme. The key idea is to let overrun jobs have low priority in the vigilant

mode so that the schedulability of the other jobs are not affected. At the same time, an overrun

job reclaims time slack at runtime in an opportunistic manner. The online checking has constant

complexity.

Lemma 11. The deferred switching scheme guarantees that all jobs complete before their dead-

lines if they satisfy the schedulability conditions of fpEDF-VD and CHI
i = 0 for all low-criticality

tasks τi ∈ Tlo .

Proof. We prove this for three kinds of jobs - all low-criticality jobs, non-overrun high-criticality

56

jobs and overrun high-criticality jobs, in all three modes - low-criticality mode, vigilant mode and

high-criticality mode.

The low-criticality mode in this scheme is handled in the same way as fpEDF-VD for all

kinds of jobs. Hence, all tasks can guarantee to satisfy deadlines if they meet the fpEDF-VD

schedulability conditions.

The high-criticality mode in this scheme is also identical to that for fpEDF-VD. As such, all

non-overrun high-criticality jobs can finish before their deadlines. In the classic MC system model,

all low-criticality tasks are dropped in high-criticality mode. In Section 5.1.2.5, we will show

how to unify the deferred switching scheme with the service preserving technique such that low-

criticality tasks can continue to execute with imprecise computing.

In the vigilant mode, low-criticality tasks and non-overrun high-criticality jobs are treated in the

same way as in low-criticality mode, except the presence of overrun high-criticality jobs. However,

overrun high-criticality jobs have lower priority. Thus low-criticality tasks and non-overrun high-

criticality jobs are not affected by those overrun high-criticality jobs, and their deadline can still be

met with guarantee.

Last, we discuss overrun high-criticality jobs in the vigilant mode and high-criticality mode.

The worst case execution time of an overrun job τj,o is CHI
j , of which CLO

j has already been ex-

ecuted. According to fpEDF-VD [9], entire execution time CHI
j can be accommodated from its

virtual deadline d̂j,k to its actual deadline dj,k for any high-criticality job τj,k in high-criticality

mode. As the overrun job has already been executed CLO
j , time interval [d̂j,o + CLO

j , dj,o] is

sufficient to accommodate the rest execution time CHI
j − CLO

j . Please note the first checkpoint

c1(τj,o) = d̂j,o + CLO
j . Even if nothing of τj,o has been executed in [t′, c1(τj,o)] the remaining

CHI
j − CLO

j part of the overrun job can guarantee to meet its deadline if the system switches to

high-criticality mode at c1(τj,o).

When a new checkpoint is added with augmenting qh(τj,o) to the previous checkpoint, the

condition is that qh(τj,o) has been executed from the previous checkpoint. As such, the amount

of deferral of high-criticality mode start time is equal to the reduction of remaining execution

57

time of the overrun job. Therefore, switching to high-criticality mode at the new checkpoint still

guarantees the satisfaction of deadline constraint for this overrun job. Overall, if an overrun job

finishes after switching to high-criticality mode, it can guarantee to be completed before its actual

deadline.

Since each checkpoint update is extended by qh(τj,o) that has been executed, the total extension

after the virtual deadline cannot be greater than CHI
j . In other words, the maximum possible

checkpoint is d̂j,o + CHI
j . If the system has not switched to high-criticality mode at d̂j,o + CHI

j ,

job τj,o must have finished by d̂j,o + CHI
j . Since fpEDF-VD entails that d̂j,o + CHI

j ≤ dj,o, the job

must have finished before its deadline during vigilant mode.

Although we propose to perform low-criticality jobs with precise computing in vigilant mode,

sometimes, it is beneficial to execute them with imprecise computing. Since the execution time of

imprecise computing is usually shorter than precise computing, more processor time can be saved

and the chance of switching to high-criticality mode is decreased. The choice between precise

computing and imprecise computing may depend on how low-criticality tasks are treated in high-

criticality mode. If they are dropped, then even imprecise computing in vigilant mode is a QoS

improvement. If low-criticality tasks are continued with imprecise computing in high-criticality

mode, then it makes more sense to run them with precise computing in vigilant mode to have the

advantage of deferring the mode switching to high-criticality mode.

5.1.2.5 Unified Deferred Switching and Service Preserving

When unifying the deferred switching and service preserving methods, a couple of changes

need to made to the deferred switching part. Both of the techniques make use of Lemma 2 that

fpEDF-VD accommodates CHI
j after virtual deadline d̂j,o for a high-criticality job τj,o in high-

criticality mode. When both the techniques are applied at the same time, the same property cannot

be utilized twice. This is the key reason for changing the deferred switching method here. The

first change is that each overrun job can only have one checkpoint as opposed to possibly multiple

58

checkpoints described in Section 5.1.2.4. Since there is only one checkpoint, an overrun job not

finished by the checkpoint immediately demands high-criticality mode. The second change is that

the checkpoint is defined as c(τj,o) = d̂j,o in contrast to c1(τj,o) = d̂j,o +CLO
j in Section 5.1.2.4. In

the unification, the service preserving part is the same as introduced in Section 5.1.2.3.

Since the change in the unified method is restricted to the deferred switching part, which is an

online technique, the offline schedulability conditions of the unified method is the same as that for

the service preserving method, which is stated in Theorem 8.

Lemma 12. If the schedulability conditions in Theorem 8 are satisfied, the modified deferred

switching in the unified method still maintains the schedulability.

Proof. In the unified method, low-criticality mode and the high-criticality mode after the service

preserving interval are identical to each stand-alone method. The vigilant mode is the same as low-

criticality mode except the handling of overrun jobs. Overrun jobs are executed opportunistically

in vigilant mode with their deadline guarantee provided by switching to high-criticality mode in

time. The vigilant mode in the unified method is never longer than that in the stand alone deferred

switching scheme. As such, the deadline guarantee of overrun jobs still relies on the scheduling in

high-criticality mode. In the unified method, t∗ is at a checkpoint c(τj,o) = d̂j,o, which is covered

in Case 1 in the proof of Lemma 9. The other kinds of jobs and cases discussed in the proof of

Lemma 9 still hold in the unified method. The schedulability condition for the service preserving

interval in the unified method is unchanged. Therefore, the unified method can guarantee that all

tasks meet their deadlines if the schedulability conditions in Theorem 8 are satisfied.

5.1.3 Extension of MC-DP-Fair Scheduling for IMC and VPMC Systems

MC-DP-Fair is one realization of the fluid-based scheduling [25], which is not directly imple-

mentable by itself. Fluid-based scheduling associating Quality of Service for low critical tasks has

been studied for VPMC in [20] and the method is called MCFQ, however, MC-DP-Fair scheduling

for VPMC is barely discussed in [20]. Here, we show how to extend MC-DP-Fair scheduling to

59

VPMC-DP-Fair scheduling. In DP-Fair scheduling, an important concept is task density δi for task

τi, which is usually equal to Ci

Ti
with a few exceptions. Fluid-based scheduling uses another con-

cept, execution rate θi for τi, which is the fraction of a unit-speed processor allocated for executing

τi.

For a low-critical task τi in VPMC-DP-Fair, δLOi = θLOi = ULO
i and δHIi = θHIi = UHI

i ,

where the superscripts LO and HI indicate low-criticality and high-criticality mode, respectively.

Its virtual deadline Vi = Ti. Please note δHIi = 0 in MC-DP-Fair. Let wi be the length of time

interval from job release time of τi to Γ, which is the earliest deadline partition after the system

enters high-criticality mode.

Lemma 13. In VPMC-DP-Fair scheduling, a low-criticality carry-over job of τi can be executed

for at least C̃i time.

Proof. Let CTR
i denote the actual execution time of a carry-over job of τi.

CTR
i = wi · δLOi + (Ti − wi)δHIi = wi · ULO

i + (Ti − wi)UHI
i

≥ wi · UHI
i + (Ti − wi)UHI

i = Ti · UHI
i = C̃i

For a high-criticality task τi, δLOi = θLOi , which is proved to be no greater than UHI
i [20], and

virtual deadline Vi = CLO
i /θLOi . Its density in high-criticality mode is specified by [25]

δHIi =
CHI
i − δLOi · wi
Ti − wi

. (5.19)

Lemma 14. Given a task set that is deemed to be schedulable by MCFQ [20], if it is scheduled by

VPMC-DP-Fair, then δLOi ≤ θLOi and δHIi ≤ θHIi for each task τi.

Proof. For each task τi, δLOi = θLOi ≤ θLOi . For each low-criticality task τi, we have δHIi =

θHIi ≤ θHIi . For each high-criticality task τi, since δHIi is a variable depending on wi according to

60

Equation (5.19), we need to show that the maximum value of δHIi is no greater than θHIi . Consider

the derivative of δHIi with respect to wi

dδHIi
dwi

=
CHI
i − δLOi · Ti
(Ti − wi)2

=
UHI
i − δLOi

Ti · (Ti − wi)2
. (5.20)

Since δLOi = θLOi ≤ UHI
i [20], the derivative is non-negative and the function of Equation (5.19)

is monotonically increasing. By definition, we know wi ≤ Vi. Thus, δHIi has the maximum value

when wi = Vi,

δHIi,max =
UHI
i − ULO

i

1− ULO
i /θLOi

(5.21)

In MCFQ [20], θHIi =
UHI
i −ULO

i

1−ULO
i /θLO

i
, which is equal to δHIi,max, then we have δHIi ≤ θHIi for high-

criticality tasks.

Lemma 15. Given a task set that is deemed to be schedulable by MCFQ, it is schedulable by

VPMC-DP-Fair.

Proof. Given a task set that is deemed to be schedulable by MCFQ, we have
∑

τi∈T θ
LO
i ≤ m and∑

τi∈T θ
HI
i ≤ m, then we have

∑
τi∈T δ

LO
i ≤

∑
τi∈T θ

LO
i ≤ m and

∑
τi∈T δ

HI
i ≤

∑
τi∈T θ

HI
i ≤ m

from Lemma 14. Hence, low-criticality mode schedulability and high-criticality mode schedula-

bility by Theorem 5 are satisfied and the task set is schedulable by VPMC-DP-Fair.

5.2 Precision Optimization for VPMC Systems

5.2.1 Optimization Kernel

Under the VPMC model, there can be utilization slack for some processors when schedulability

conditions are satisfied. The slack allows some low-criticality tasks to be executed with precise

computing in high-criticality mode while the schedulability conditions are still satisfied. For a

low-criticality task τi, the error of its imprecise computing is denoted by ei. The error of a low-

criticality task τi execution in high-criticality mode is denoted by eHIi , which is equal to ei if it

is executed with imprecise computing and otherwise 0. If each task τi has a weighting factor ηi

indicating its importance, the precision optimization problem is stated as follows.

61

Problem 3. Given a set of independent sporadic tasks T = {τ1, τ2, ...} in VPMC model and a

scheduling method S, decide if each low-criticality task τi is executed with precise or imprecise

computing in high-criticality mode such that the total weighted error
∑

χi=lo
ηi · eHIi is minimized

while the schedulability conditions for S are maintained.

For each low-criticality task τi, let ∆Ui denote the additional processor utilization when its

execution is changed from imprecise to precise computing and thus

∆Ui =
Ĉi − C̃i
Ti

. (5.22)

Let ŪHI
lo denote the maximal possible UHI

lo under the schedulability constraint for a scheduling

method. The utilization slack Ψ for low-critical tasks in high-criticality mode is defined as

Ψ = ŪHIlo − UHIlo (5.23)

Then, Problem 3 is essentially 0-1 knapsack problem. Let zi be a binary decision variable for

each low-criticality task τi. When zi = 1, task τi is assigned to precise computing; otherwise it is

executed with imprecise computing in high-criticality mode. The knapsack problem formulation

is as follows.
maximize

∑
χi=lo

ηi · ei · zi

subject to
∑
χi=lo

∆Ui · zi ≤ Ψ

zi ∈ {0, 1}, ∀τi ∈ Tlo

(5.24)

In this formulation, the objective is to maximize the error reduction obtained from using precise

computing compared to IMC model. The 0-1 knapsack problem is a well-known NP-complete

problem. It can be optimally solved by dynamic programming with pseudo-polynomial complex-

ity.

5.2.2 Utilization Slack Estimation and Customization for Different Scheduling Methods

5.2.2.1 Slack Estimation and Precision Optimization for Partitioned Scheduling

For partitioned scheduling, if ULO
lo +UHI

hi ≤ 1, all tasks can be scheduled with EDF and all low-

criticality tasks can be executed with precise computing. Hence, the slack estimation and precision

62

optimization is necessary only when ULO
lo + UHI

hi > 1. For both of the partitioned scheduling

methods introduced in section 5.1.1, utilization slack is estimated for individual processors. On

each processor, the maximal schedulable utilization ŪHI
lo can be derived according to Theorem 2

and Theorem 3.

Theorem 9. The utilization slack of a processor after the VPMC partitioning is
1−ULO

lo −U
LO
hi ULO

lo −U
HI
hi +ULO

lo UHI
hi

1−ULO
lo −U

LO
hi

− UHI
lo .

Proof. From inequality (2.3), we can find the range of the scaling factor as

x ≥
ULOhi

1− ULOlo
(5.25)

Further, we know from inequality (2.5) that

UHIlo ≤
1− xULOlo − UHIhi

1− x
(5.26)

Taking derivative with respective to x on right-hand-side of inequality (5.26), we have

1− ULOlo − UHIhi

(1− x)2
(5.27)

Since ULO
lo +UHI

hi > 1, the right-hand-side of inequality (5.26) is a decreasing function with respect

to x. Then, ŪHI
lo can be obtained by plugging RHS of inequality (5.25) into inequality (5.26):

ŪHI
lo =

1− ULO
lo − ULO

hi U
LO
lo − UHI

hi + ULO
lo UHI

hi

1− ULO
lo − ULO

hi

(5.28)

Therefore, the utilization slack is given by:

Ψ =
1− ULO

lo − ULO
hi U

LO
lo − UHI

hi + ULO
lo UHI

hi

1− ULO
lo − ULO

hi

− UHI
lo (5.29)

5.2.2.2 Slack Estimation and Precision Optimization for fpEDF-VD Based Global Scheduling

Under fpEDF, a subset Thp ⊂ T of tasks are designated with the highest priority and mhp =

|Thp| processors are allocated for them. Please note this allocation is not static, i.e., the mhp

63

processors at one time may be different from the mhp processors at another time. The other tasks

TEDF = T − Thp follow EDF priority and are executed on mEDF = m −mhp processors. Each

low-criticality task τi ∈ Thp can always execute with precise computing in high-criticality mode,

since an entire processor is allocated to one task in Thp and this allocation is sufficient for precise

computing.

For the fpEDF-VD-VPMC method described in Section 5.1.2.1, the utilization slack of TEDF

is estimated by the following statement according to Lemma 1.

Proposition 2. The utilization slack for TEDF on the mEDF processors under fpEDF-VD-VPMC

scheduling is mEDF − (mEDF − 1) ·Umax
EDF −U total

EDF , where Umax
EDF and U total

EDF are the maximal task

utilization and total utilization for TEDF , respectively.

This estimation can be applied with fpEDF-DVD-VPMC method described in Section 5.1.2.2.

However, the partition of Thp and TEDF in Section 5.1.2.2 is different from that in Section 5.1.2.1

due to the virtual-deadlines applied to low-criticality tasks.

5.2.2.3 Utilization Slack Estimation for VPMC-DP-Fair Scheduling

The utilization slack for VPMC-DP-Fair Scheduling is estimated by Ψ = m −
∑

τi∈T θ
HI
i ,

where θHIi is the execution rate of task τi in high-criticality mode, which is computed according to

[20].

5.3 Experimental Results

5.3.1 Evaluation of VPMC system scheduling methods

In this section, we evaluate our proposed methods for VPMC system scheduling. In our ex-

periments, we evaluate the schedulability and computing errors of the following methods through

software simulations and/or Linux prototyping:

• Partition-MC: Partitioned scheduling with the conventional MC model [10]. Since this

method does not incorporate any approximations, its results are used to provide a reference

level for schedulability, but cannot be used for comparing computing errors.

64

• Partition-VPMC: The partitioned scheduling method in Section 5.1.1.1 with precision op-

timization.

• Partition-VPMC-E: Enhanced partitioned scheduling (Section 5.1.1.2) with precision opti-

mization.

• fpEDF-VD-MC: fpEDF-VD scheduling with the conventional MC model [10]. Since this

method drops all low-criticality tasks in high-criticality mode, it is not included for error

analysis.

• fpEDF-VD-VPMC: fpEDF-VD scheduling (Section 5.1.2.1) with precision optimization.

• fpEDF-DVD-VPMC: fpEDF dual virtual-deadline method (Section 5.1.2.2), with precision

optimization.

• Fluid-VPMC: The MCFQ method [20] with precision optimization replaced by the dynamic

programming technique in Section 5.2. Since the fluid-based scheduling is not directly im-

plementable, this method is only evaluated with software simulation, to conduct the schedu-

lability check and estimate error.

• VPMC-DP-Fair: The scheduling method described in Section 5.1.3 with precision opti-

mization. Since this is an implementable realization of Fluid-VPMC, it is evaluated only

through Linux prototyping.

5.3.1.1 Simulation Setup and Results

The testcases are randomly generated as follows:

• For each task set, the probability of a task being low-criticality (high-criticality) is 0.5.

• For a low-criticality (high-criticality) task τi, its utilization in low-criticality (high-criticality)

mode ULO
i (UHI

i) is randomly chosen within the interval, [0.05, 0.9], under a uniform distri-

bution.

• The minimal inter-arrival time Ti of each task is randomly chosen from a uniform distribution

in [50, 500].

65

• For a low-criticality task τi, we set CLO
i = Ĉi = Ti · ULO

i , C̃i = klo · Ĉi, where the

scaling factor klo is randomly chosen from a uniform distribution in [Klo, 0.9], where Klo is

a parameter.

• For a high-criticality task τi, we set CHI
i = Ti ·UHI

i , CHI
i = khi ·CLO

i and 1.1 ≤ khi ≤ Khi,

where Khi is a parameter.

For each low-criticality task τi, its imprecise computing error is randomly chosen from a uniform

distribution between 1 and 10. We set error weighting factors (defined in Section 5.2) ηi = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization

0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ep
ta

nc
e

ra
tio

Partition-MC
Partition-VPMC
Partition-VPMC-E
fpEDF-VD-MC
fpEDF-VD-VPMC
fpEDF-DVD-VPMC
Fluid-VPMC

Figure 5.7: Acceptance ratio vs. normalized utilization of 4 processors (Klo = 0.1, Khi = 5).

Evaluation of the acceptance ratio: We first evaluate the acceptance ratio at several values of

the utilization, Ui. For each Ui, we generate 10,000 testcases, and for each testcase, we iteratively

add new tasks till max(ULO
lo + ULO

hi , U
HI
lo + UHI

hi) reaches Ui. The acceptance ratios on 4 and 8

processors are depicted in Figures 5.7 and 5.8, respectively.

We see from these plots that Fluid-VPMC provides the best acceptance ratio (this is not sur-

prising as the fluid-based scheduling is optimal in theory), while the three variants of fpEDF-VD

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization

0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ep
ta

nc
e

ra
tio

Partition-MC
Partition-VPMC
Partition-VPMC-E
fpEDF-VD-MC
fpEDF-VD-VPMC
fpEDF-DVD-VPMC
Fluid-VPMC

Figure 5.8: Acceptance ratio vs. normalized utilization of 8 processors (Klo = 0.1, Khi = 5).

have the lowest acceptance ratio due to their very conservative schedulability conditions. The

acceptance ratio of fpEDF-VD-VPMC is very close to that of fpEDF-VD-MC, with an almost

complete overlap in Figure 5.8. This implies that continuing low-criticality tasks at high-criticality

mode hardly degrades schedulability. The dual virtual-deadline technique reduces acceptance ra-

tio, but it guarantees that no low-criticality job is dropped while the fpEDF-VD-VPMC cannot

provide such guarantees. The results also show that the enhancement techniques introduced in

Section 5.1.1.2 can indeed improve schedulability of partitioned scheduling.

The simulations for Figures 5.7 and 5.8 do not consider overhead, which is important in prac-

tice. Overhead includes the time on context switching, job migration among processors, execution

monitoring, scheduling computing, etc. For each of the VPMC methods, we estimate its overhead

according to the Linux prototyping (Section 5.3.1.2) data. Then, the overhead is added into the task

execution time for the simulation. The acceptance ratio results with consideration of overhead is

shown in Figure 5.9. One can see that Fluid-VPMC is no longer the best due to its large overhead,

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization

0

0.2

0.4

0.6

0.8

1

1.2

A
cc

ep
ta

nc
e

ra
tio

Partition-VPMC
Partition-VPMC-E
fpEDF-VD-VPMC
fpEDF-DVD-VPMC
Fluid-VPMC

Figure 5.9: Acceptance ratio versus normalized utilization of 4 processors with consideration of
overhead.

and the best results are obtained from partitioned scheduling. The gap between Fluild-VPMC and

fpEDF-VD-VPMC also becomes smaller.

Evaluation of errors: Next, we evaluate computing errors of low-criticality tasks in high-criticality

mode for different methods. Following the same testcase generation for evaluating the acceptance

ratio, 1000 schedulable testcases are obtained at each utilization value. Figures 5.10 and 5.11 show

the mean error with standard derivation among tasks as function of the normalized utilization. For

a single testcase, minimizing mean error is equivalent to minimizing the total error as the number

of tasks is a constant for the precision optimization. When evaluating multiple testcases, mean

error is more like a normalized result that can avoid the result being dominated by a few cases. In

both of the figures, errors from IMC is plotted besides those from other method. IMC is the model

where all low-criticality tasks continue with imprecise computing in high-criticality mode. Hence,

its error is the same for different scheduling methods. One can see that the VPMC model can pro-

vide large error reductions. Again, Fluid-VPMC provides the lowest error levels as its optimality

allows more utilization slack for error reduction.

68

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization

0

1

2

3

4

5

6
M

ea
n

er
ro

r

IMC
Partition-VPMC
Partition-VPMC-E
fpEDF-VD-VPMC
fpEDF-DVD-VPMC
Fluid-VPMC

Figure 5.10: Mean error (with standard derivation) vs. normalized utilization of 4 processors
(Klo = 0.1, Khi = 5).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Utilization

0

1

2

3

4

5

6

M
ea

n
er

ro
r

IMC
Partition-VPMC
Partition-VPMC-E
fpEDF-VD-VPMC
fpEDF-DVD-VPMC
Fluid-VPMC

Figure 5.11: Mean error (with standard derivation) vs. normalized utilization of 8 processors
(Klo = 0.1, Khi = 5).

69

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Normalized Utilization

0

0.5

1

1.5

2

M
ea

n
er

ro
r

Khi=2.5
Khi=5
Khi=7.5

Figure 5.12: The effect of Khi on errors for Partition-VPMC-E on 8 processors.

Figures 5.12 shows the effect of Khi on errors for Partition-VPMC-E. In general, a large Khi

tends to cause large errors. We also studied the effect of parameter Klo with result shown in Fig-

ure 5.13. Interestingly, the error grows as Klo increases. For a large Klo, the difference between

precise and imprecise computing execution times is small, i.e., the additional utilization for chang-

ing imprecise computing to precise computing is small and applying precise computing becomes

easier. On the other hand, a large Klo increases the overall utilization and degrades schedulability.

5.3.1.2 Prototyping in Linux User Space

We evaluate the proposed techniques in the VPMC model with prototyping in Linux user space.

Such prototyping can account for the overhead, which is neglected in software simulation. More-

over, the error model of the prototyping is more realistic. The prototyping is implemented in the

user space of Linux 4.10 on a 4-processor machine, where each processor is Intel Core i3 with

frequency 1.9GHz.

We create a managing thread that conducts the task scheduling at runtime. The managing thread

can generate job threads. Each job thread is either in execution mode, or waiting mode when it is

70

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Normalized Utilization

0

0.5

1

1.5

2

M
ea

n
er

ro
r

Klo=0.1
Klo=0.3
Klo=0.5

Figure 5.13: The effect of Klo on errors for Partition-VPMC-E on 8 processors.

released, not completed and not being executed. The job thread management is performed at every

time unit of 0.01 second, which allows sufficient resolution for the testcases. At each time unit,

the managing thread checks if a new job is released, a job execution is completed, a job execution

exceeds its WCET and if there is deadline violation. According to specific scheduling method,

the managing thread decides if to start a waiting job, if a low-priority job being executed needs to

be preempted, if to switch low-criticality mode to high-criticality mode, etc. Processor affinity is

employed to assign a thread to certain processor.

For partitioned scheduling, the partition is performed offline in advance and there is one manag-

ing thread for each processor. For global scheduling like fpEDF-VD-VPMC and VPMC-DP-Fair,

only one managing thread is needed for all processors. For the VPMC-DP-Fair method, the man-

aging thread needs to maintain and update the deadline partitions, which are rounded to the time

unit.

Two testcases are generated for the experiment in the Linux system. In the first case, all tasks

are solving equations by the Newton-Raphson method. The second case is composed by tasks

of both Newton-Raphson and the steepest decent method computing. For each case, tasks are

71

Table 5.2: Testcase characteristics for the Linux prototyping (the unit of execution time is second).

Case 1 Case 2
Task χi CLOi CHIi ei χi CLOi CHIi ei
τ1 lo 0.76 0.47 20 lo 0.76 0.47 20
τ2 hi 0.95 1.42 - hi 0.95 1.42 -
τ3 lo 0.67 0.21 0.5 lo 0.67 0.21 0.5
τ4 hi 2.32 5.80 - hi 2.32 5.80 -
τ5 lo 1.65 0.98 5 lo 1.65 0.98 5
τ6 hi 2.36 3.33 - hi 2.36 3.33 -
τ7 lo 1.40 0.71 8 lo 2.55 0.33 5
τ8 hi 1.89 2.63 - hi 4.10 5.10 -
τ9 lo 0.76 0.27 5 lo 1.83 0.38 3
τ10 lo 2.09 0.48 5 hi 1.07 2.31 -
τ11 hi 0.47 0.73 - lo 3.18 0.66 2
τ12 - - - - hi 1.63 3.71 -

randomly designated with low-criticality or high-criticality. We run these cases repeatedly to find

the maximum execution time of each task. The WCET is obtained by adding safety margins to the

measured maximum execution time. Since both Newton-Raphson and the steepest decent method

are iterative algorithms, their imprecise computing is realized by relaxing the termination criterion.

The precise computation, which has a tight termination criterion, also results in a small errors,

which is negligible in comparison with that of imprecise computing. The imprecise computing

errors from low-criticality tasks are obtained from the results of the prototyped implementation.

The characteristics of the two cases are summarized in Tables 5.2.

During the experiment, we vary the minimal inter-arrival time Ti of each task τi to obtain

different utilizations. For each scheduling method, its schedulability condition is checked offline.

For only the utilization conditions where the check is successfully passed, the tasks are run in

the Linux system. In the first part of the Linux experiment, we investigate overhead including

the time on context switching, job migration among processors, execution monitoring, scheduling

computing, etc. In Figure 5.14, we show the average results of overhead ratio, which is the ratio

of system time expended on the overhead to the total computation time. The VPMC-DP-Fair has

quite large overhead, as large as 16% when utilization is high. Partitioned scheduling has the lowest

overhead, and its overhead does not change much as the utilization increases. One advantage of

72

0.55 0.6 0.65 0.7 0.75 0.8 0.85

Normalized utilization

0

2

4

6

8

10

12

14

16

18

O
ve

rh
ea

d
R

at
io

(%
)

Partition-VPMC-E
fpEDF-VD-VPMC
VPMC-DP-Fair

Figure 5.14: Overhead ratio vs. utilization (overhead includes the time on context switching, job
migration among processors, execution monitoring, scheduling computing, etc.)

0.55 0.6 0.65 0.7 0.75 0.8 0.85

Normalized utilization

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

c
o

n
te

x
t

s
w

it
c
h

in
g

Partition-VPMC-E

fpEDF-VD-VPMC

VPMC-DP-Fair

Figure 5.15: Number of context switchings vs. utilization.

73

partitioned scheduling is that there is no inter-processor migration overhead. Since the fpEDF-VD-

VPMC method has relatively low schedulability, it does not produce much data for this figure. In

Figure 5.15, we compare the numbers of context switchings for different methods. A large number

implies large overhead and the results are indeed correlated with the overhead ratio in Figure 5.14.

0.55 0.6 0.65 0.7 0.75 0.8 0.85

Normalized Utilization

0

0.5

1

1.5

M
ea

n
er

ro
r

IMC-DP-Fair
Partition-VPMC-E
fpEDF-VD-VPMC
VPMC-DP-Fair

Figure 5.16: Mean error (with standard derivation) versus utilization from Linux prototyping.

We further evaluated the errors under imprecise computing for different methods on the two

cases. The average results are plotted in Figure 5.16. The largest errors correspond to IMC-

DP-Fair, where all low-criticality tasks are continued with imprecise computing in high-criticality

mode, while the smallest errors are from Partition-VPMC-E. The errors from fpEDF-VD-VPMC

are not good mostly due to its conservative schedulability, which does not allow much utilization

slack for converting imprecise computing to precise computing for low-criticality tasks. The errors

from VPMC-DP-Fair are generally small, but greater than Partition-VPMC-E. This is because its

large overhead leads to lower slack for precise computing.

74

5.3.2 Evaluation of Service Preserving and Deferred Switching Techniques

In this section, we evaluate the effectiveness of our Service Preserving and Deferred Switching

techniques. In the experiments, we evaluate and compare the following methods through software

simulations.

• Partitioning: Partitioning-based scheduling method [10], where all low-criticality tasks are

dropped in high-criticality mode.

• fpEDF-VD: fpEDF-VD scheduling [9], where all low-criticality tasks are dropped in high-

criticality mode.

• MC-DP-Fair: The fluid-based MC-DP-Fair method [25], where all low-criticality tasks are

dropped in high-criticality mode.

• Dual-VD: This is an extension to the fpEDF-VD scheduling such that virtual deadline is

applied for both low-criticality and high-criticality tasks (Section 5.1.2.2). In this method,

low-criticality tasks continue to execute with imprecise computing in high-criticality mode.

• Deferred-Switching: Our deferred switching method based on fpEDF-VD scheduling (Sec-

tion 5.1.2.4). Low-criticality tasks are dropped in high-criticality mode.

• Deferred-Switching-Apprx: This method is the same as Deferred-Switching except that all

low-critical tasks execute with imprecise computing in vigilant mode.

• Service-Preserving: Our service preserving method based on fpEDF-VD scheduling (Sec-

tion 5.1.2.3). In this method, low-criticality tasks continue to execute with imprecise com-

puting in high-criticality mode.

• Unified: The unified deferred switching and service preserving scheme based on fpEDF-VD

scheduling (Section 5.1.2.5). In this method, low-criticality tasks continue to execute with

imprecise computing in high-criticality mode.

75

5.3.2.1 Testcase Generation

The testcases in the experiments are randomly generated. For each testcase, the probability of

a task being low-criticality (high-criticality) is 0.5. For each low-criticality task, we set its low-

criticality mode utilization randomly in [0.1, 0.9] under uniform distribution. Likewise, the high-

criticality mode utilization of each high-criticality task is also randomly generated in [0.1, 0.9],

under uniform distribution. The minimal inter-arrival time Ti of each task τi is randomly chosen

in [100, 500] according to uniform distribution. For each low-criticality task τi, its execution times

are set as CLO
i = Ti ·ULO

i and CHI
i = kL ·CLO

i , where the scaling factor kL is randomly chosen in

[0.1, 0.9] following uniform distribution. For each high-criticality task τj , we set its high-criticality

mode execution timeCHI
j = Tj ·UHI

j . Its low-criticality mode execution time is obtained according

to CHI
j = kH · CLO

j , where 1.1 ≤ kH ≤ 7.5.

5.3.2.2 Evaluation of Service Preserving

We evaluated the acceptance ratio of our service preserving technique and compared with the

dual-VD method. Please note our unified scheme should have the same acceptance ratio as that

of service preserving method, as both apply the same offline schedulability test. The deferred

switching part is an online technique that does not affect the acceptance ratio. The other methods

are not compared as they all drop low-criticality tasks in high-criticality mode. Therefore, they are

not comparable with our method, which retains low-criticality tasks in high-criticality mode. The

results for 4 processors and 8 processors are shown in Figure 5.17 and Figure 5.18, respectively. At

each utilization, 10,000 testcases are randomly generated for evaluation. The difference between

the two methods mainly exhibit around utilization 0.6, where our service preserving can improve

as much as 50%.

5.3.2.3 Evaluation of Deferred Switching and Unified Method

In this part of experiment, we compare our deferred switching and the unified method with

several previous works. The comparison is performed on two metrics. One is the number of

completed low-criticality jobs before switching to high-criticality mode and the other is the mode

76

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Utilization

0

0.2

0.4

0.6

0.8

1

1.2
A

c
c
e

p
ta

n
c
e

 r
a

ti
o

Service-Preserving

Dual-VD

Figure 5.17: Acceptance ratio vs normalized utilization of 4 processors.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Utilization

0

0.2

0.4

0.6

0.8

1

1.2

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

Service-Preserving

Dual-VD

Figure 5.18: Acceptance ratio vs normalized utilization of 8 processors.

77

switching time. Compared to methods that drop low-criticality tasks in high-criticality mode,

the deferred switching or more completed low-criticality jobs improves overall QoS. For each

utilization, 1000 schedulable testcases are generated and each case is simulated 10 times to account

for the random job execution time.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Utilization

0

5

10

15

20

#
 o

f
c
o

m
p

le
te

d
 l
o

w
-c

ri
ti
c
a

lit
y
 j
o

b
s
 b

e
fo

re
 s

w
it
c
h

in
g

Deferred-Switching-Apprx

Deferred-Switching

Unified

Partitioning

MC-DP-Fair

fpEDF-VD

Figure 5.19: Number completed low-criticality jobs before mode switching vs normalized utiliza-
tion of 4 processors, with overrun rate 0.2.

Figures 5.19 and 5.20 show the number of completed low-criticality jobs before mode switch-

ing for 4 processors with overrun rate of 0.2 and 0.5, respectively. The overrun rate is the prob-

ability that a high-criticality job has overrun. Both our deferred switching and unified methods

complete significantly more low-criticality jobs than the previous works. Since the unified method

needs to continue low-criticality jobs in high-criticality mode, it is more conservative than the stand

alone deferred switching method. When the utilization is high, task minimal inter-arrival time T is

relatively short. Consequently, the number of low-criticality jobs active in vigilant mode becomes

large and the number of completed low-criticality jobs also increase accordingly. Therefore, the

78

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Utilization

0

5

10

15

20

of

 c
om

pl
et

ed
 lo

w
-c

rit
ic

al
ity

 jo
bs

 b
ef

or
e

sw
itc

hi
ng

Deferred-Switching-Apprx
Deferred-Switching
Unified
Partitioning
MC-DP-Fair
fpEDF-VD

Figure 5.20: Number of completed low-criticality jobs before mode switching vs normalized uti-
lization of 4 processors, overrun rate 0.5.

advantage of our proposed method is much more significant in heavily loaded cases. The results

for 8-processor cases are shown in Figure 5.21 and 5.22, and similar trends as 4-processor cases

can be observed, since the schedulability condition on 8-processor is relatively more conservative

and it does not produce so much data as 4-processor. These figures also indicate that performing

low-criticality tasks with imprecise computing in vigilant mode allows more low-criticality jobs

to be completed than precise computing. Hence, our framework provides options with different

tradeoff between computing precision and number of completed jobs.

In Figures 5.23 and 5.24, we compare the switching time to high-criticality mode among dif-

ferent methods. The overrun rate is 0.5 for the cases in both of the figures. Again, our methods

can delay the switching for a long time compared to the previous works. This delay reduces the

QoS loss in high-criticality mode. In choosing the value for x, which is the scaling factor for vir-

tual deadline, we sweep from a small value toward large values, and stop whenever schedulability

conditions are satisfied. When utilization is low, even small x values are sufficient for schedula-

bility. When utilization is high, x must be chosen as greater or more balanced value. Since the

79

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Utilization

0

5

10

15

20

25

of

 c
om

pl
et

ed
 lo

w
-c

rit
ic

al
ity

 jo
bs

 b
ef

or
e

sw
itc

hi
ng

Deferred-Switching-Apprx
Deferred-Switching
Unified
Partitioning
MC-DP-Fair
fpEDF-VD

Figure 5.21: Number of completed low-criticality jobs before mode switching vs normalized uti-
lization of 8 processors with overrun rate 0.2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Utilization

0

5

10

15

20

of

 c
om

pl
et

ed
 lo

w
-c

rit
ic

al
ity

 jo
bs

 b
ef

or
e

sw
itc

hi
ng

Deferred-Switching-Apprx
Deferred-Switching
Unified
Partitioning
MC-DP-Fair
fpEDF-VD

Figure 5.22: Number of completed low-criticality jobs before mode switching vs normalized uti-
lization of 8 processors, with overrun rate 0.5.

80

checkpoints in deferred switching and the unified method largely depend on virtual deadlines, a

relatively late virtual deadline contributes to greater deferral by our methods. By imprecise com-

puting for low-criticality jobs in vigilant mode, the amount of deferral is increased according to

the results shown in the figures.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Utilization

0

200

400

600

800

1000

1200

M
od

e
sw

itc
hi

ng
 ti

m
e

Deferred-Switching-Apprx
Deferred-Switching
Unified
Partitioning
MC-DP-Fair
fpEDF-VD

Figure 5.23: Mode switching time vs normalized utilization of 4 processors.

5.4 Conclusion

The conventional mixed-criticality system model, despite its popularity, is controversial as

it drops all low-criticality tasks in high-criticality mode. Moreover, a single high-criticality job

overrun causes immediate switching to high-criticality mode where all high-criticality tasks are

scheduled with overly pessimistic execution time estimate. Most of previous works address these

problems for uniprocessors while we focus on scheduling on multiprocessors. Recently, there

are a few works for overcoming the drawback of dropping low-criticality tasks by continuing

low-criticality tasks with imprecise computing or even precise computing. In our research, we

81

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Utilization

0

100

200

300

400

500

600

700

800

M
od

e
sw

itc
hi

ng
 ti

m
e

Deferred-Switching-Apprx
Deferred-Switching
Unified
Partitioning
MC-DP-Fair
fpEDF-VD

Figure 5.24: Mode switching time vs normalized utilization of 8 processors.

develop such graceful degradation techniques for partitioned scheduling and fpEDF-VD schedul-

ing on multiprocessors. The proposed techniques are evaluated with both software simulations

and Linux prototyping where overhead is considered. The results show that the graceful degrada-

tion approach can significantly improve computing quality with little sacrifice on schedulability.

When the overhead is considered, the proposed partitioned scheduling outperforms the previous

approach of fluid-based scheduling. Moreover, we developed a service preserving technique in the

fpEDF-VD framework that allows all low-criticality tasks to execute with imprecise computing

in high-criticality mode. It is less conservative and remarkably improves acceptance ratio com-

pared to the method of dual virtual deadline. And a vigilant mode and online checkpoint method

is proposed to deferred the switching to high-criticality mode. These two techniques are further

unified into a single method. These techniques significantly improve Quality of Service (QoS) for

low-criticality tasks in mixed-criticality systems.

82

6. SUMMARY AND CONCLUSIONS 1

In our research, we work on using imprecise computing to improve real-time scheduling. We

first investigate how to use imprecise computing for non-preemptive real-time scheduling, and

propose several heuristic algorithms for scheduling periodic tasks with independent errors or cu-

mulative errors. Our algorithms can guarantee that there is no deadline violation if a task set can

pass the initial schedulability check. Meanwhile, our algorithms can either guarantee certain error

bound due to imprecision offline or minimize error online in the best effort. Experiment results

from both simulation and Linux prototyping show that our algorithms can improve schedulability

and provide desired error and deadline tightness tradeoff.

Imprecise computing can provide graceful degradation for mixed-criticality system as well.

Low-criticality tasks can be executed in imprecise computing or even precise computing in high-

criticality mode rather than being dropped as in conventional mixed-criticality system model. We

develop such graceful technique for well-know multiprocessor scheduling methods such as parti-

tioned scheduling and global scheduling. These proposed algorithms are evaluated through sim-

ulation and Linux prototyping with consideration of overhead. Moreover, in the conventional

mixed-criticality model, a single high-criticality job overrun causes immediate switching to high-

criticality mode where all high-criticality tasks are scheduled with overly pessimistic WCET. We

work on addressing both limitations for global scheduling on multiprocessors. We develop two

techniques including service preserving technique and deferred switching technique to improve

the Quality of Service (QoS) for low-criticality tasks. Our techniques can improve schedulability

and allow more low-criticality tasks to be executed compared to previous works.

1Reprinted with permission from “Using imprecise computing for improved non-preemptive real-time scheduling
” by Lin Huang, Youmeng Li, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of Design Automation Confer-
ence (DAC), Page 1-6 , c©2018 IEEE, “Graceful degradation of low-criticality tasks in multiprocessor dual-criticality
systems ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2018. Proceedings of the International Con-
ference on Real-Time Networks and Systems (RTNS), Page 159-169 , c©2018 ACM and “Improving QoS for global
dual-criticality scheduling on multiprocessors ” by Lin Huang, I-Hong Hou, Sachin S.Sapatnekar, Jiang Hu, 2019.
Proceedings of the International Conference on Real-Time Computing Systems and Applications (RTCSA), Page 1-11,
c©2019 IEEE.

83

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: an emerging paradigm for energy-

efficient design,” in Proceedings of European Test Symposium (ETS), pp. 1–6, IEEE, 2013.

[2] J. W. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao, Algorithms for Schedul-

ing Imprecise Computations, pp. 203–249. Springer US, 1991.

[3] J.-Y. Chung and J. W. S. Liu, “Algorithms for scheduling periodic jobs to minimize average

error,” in Proceedings of Real-Time Systems Symposium (RTSS), pp. 142–151, IEEE, 1988.

[4] H. Aydin, R. Melhem, and D. Mosse, “Optimal scheduling of imprecise computation tasks

in the presence of multiple faults,” in Proceedings of International Conference on Real-Time

Computing Systems and Applications (RTCSA), pp. 289–296, IEEE, 2000.

[5] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling of periodic and

sporadic tasks,” in Proceedings of Real-Time Systems Symposium (RTSS), pp. 129–139, IEEE,

1991.

[6] R. Jejurikar and R. Gupta, “Energy aware non-preemptive scheduling for hard real-time sys-

tems,” in Proceedings of Euromicro Conference on Real-Time Systems (ECRTS), pp. 137–

144, IEEE, 2005.

[7] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degree of execu-

tion time assurance,” in Proceedings of Real-Time Systems Symposium (RTSS), pp. 239–243,

IEEE, 2007.

[8] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and

L. Stougie, “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline

sporadic task systems,” in Proceedings of the Euromicro Conference on Real-Time Systems

(ECRTS), pp. 145–154, IEEE, 2012.

84

[9] H. Li and S. Baruah, “Global mixed-criticality scheduling on multiprocessors,” in Proceed-

ings of the Euromicro Conference on Real-Time Systems (ECRTS), pp. 166–175, IEEE, 2012.

[10] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality scheduling on multipro-

cessors,” Real-Time Systems, vol. 50, no. 1, pp. 142–177, 2014.

[11] S. Baruah and Z. Guo, “Mixed-criticality job models: a comparison,” Workshop on Mixed-

Criticality Systems, 2015.

[12] A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,” ACM Com-

puting Surveys (CSUR), vol. 50, no. 6, p. 82, 2017.

[13] H. Su and D. Zhu, “An elastic mixed-criticality task model and its scheduling algorithm,” in

Proceedings of Design, Automation and Test in Europe Conference and Exhibition (DATE),

pp. 147–152, IEEE, 2013.

[14] H. Xu and A. Burns, “Semi-partitioned model for dual-core mixed criticality system,” in

Proceedings of the International Conference on Real Time and Networks Systems (RTNS),

pp. 257–266, ACM, 2015.

[15] S. Ramanathan and A. Easwaran, “Mixed-criticality scheduling on multiprocessors with ser-

vice guarantees,” in Proceedings of International Symposium on Real-Time Distributed Com-

puting (ISORC), pp. 17–24, IEEE, 2018.

[16] H. Su, D. Zhu, and D. Moss, “Scheduling algorithms for elastic mixed-criticality tasks in

multicore systems,” in Proceedings of International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), pp. 352–357, IEEE, 2013.

[17] A. Burns and S. Baruah, “Towards a more practical model for mixed criticality systems,”

Workshop on Mixed-Criticality Systems, 2013.

[18] S. Baruah, A. Burns, and Z. Guo, “Scheduling mixed-criticality systems to guarantee some

service under all non-erroneous behaviors,” in Proceedings of the Euromicro Conference on

Real-Time Systems (ECRTS), pp. 131–138, IEEE, 2016.

85

[19] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi, “EDF-VD scheduling

of mixed-criticality systems with degraded quality guarantees,” in Proceedings of Real-Time

Systems Symposium (RTSS), pp. 35–46, IEEE, 2016.

[20] R. M. Pathan, “Improving the quality-of-service for scheduling mixed-criticality systems on

multiprocessors,” in LIPIcs-Leibniz International Proceedings in Informatics, vol. 76, 2017.

[21] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee, “Mc-adapt: Adaptive task dropping in

mixed-criticality scheduling,” ACM Transactions on Embedded Computing Systems (TECS),

vol. 16, no. 5s, p. 163, 2017.

[22] G. Chen, N. Guan, B. Hu, and W. Yi, “EDF-VD scheduling of flexible mixed-criticality

system with multiple-shot transitions,” IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 37, no. 11, pp. 2393–2403, 2018.

[23] Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu, “Enhanced partitioned scheduling of

mixed-criticality systems on multicore platforms,” in Proceedings of Asia and South Pacific

Design Automation Conference (ASPDAC), pp. 630–635, IEEE, 2015.

[24] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multiprocessors using task group-

ing,” in Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), pp. 25–34,

IEEE, 2015.

[25] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee, “MC-Fluid: Fluid model-

based mixed-criticality scheduling on multiprocessors,” in Proceedings of Real-Time Systems

Symposium (RTSS), pp. 41–52, IEEE, 2014.

[26] S. Baruah, A. Eswaran, and Z. Guo, “MC-Fluid: simplified and optimally quantified,” in

Proceedings of Real-Time Systems Symposium (RTSS), pp. 327–337, IEEE, 2015.

[27] R. Ernst and M. Di Natale, “Mixed criticality systems a history of misconceptions?,” IEEE

Design and Test, vol. 33, no. 5, pp. 65–74, 2016.

86

[28] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele, “Mixed-criticality run-

time mechanisms and evaluation on multicores,” in Proceedings of Real-Time and Embedded

Technology and Applications Symposium (RTAS), pp. 194–206, IEEE, 2015.

[29] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal processing

using approximate adders,” IEEE Transactions on Computer-Aided Design, vol. 32, pp. 124–

137, Jan. 2013.

[30] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-scalable meta-

functions for approximate computing,” in Proceedings of Design, Automation and Test in

Europe Conference and Exhibition (DATE), pp. 1–6, IEEE, 2011.

[31] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented approxi-

mate adder design and its application,” in Proceedings of the International Conference on

Computer-Aided Design (ICCAD), pp. 48–54, IEEE, 2013.

[32] S. Venkataramani, V. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Quality pro-

grammable vector processors for approximate computing,” in Proceedings of IEEE/ACM In-

ternational Symposium on Microarchitecture, pp. 1–12, 2013.

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-

purpose approximate programs,” in Proceedings of IEEE/ACM International Symposium on

Microarchitecture, pp. 449–460, 2012.

[34] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar, “Dynamic effort scaling: Manag-

ing the quality-efficiency tradeoff,” in Design Automation Conference (DAC), pp. 603–608,

IEEE, 2011.

[35] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-

time environment,” Journal of the ACM, vol. 20, pp. 46–61, Jan. 1973.

[36] S. Ramanathan and A. Easwaran, “Utilization difference based partitioned scheduling of

mixed-criticality systems,” in Proceedings of Design, Automation and Test in Europe Confer-

ence and Exhibition (DATE), pp. 238–243, IEEE, 2017.

87

[37] S. Baruah, “Optimal utilization bounds for the fixed-priority scheduling of periodic task sys-

tems on identical multiprocessors,” IEEE Transactions on Computers, vol. 53, no. 6, pp. 781–

784, 2004.

[38] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt, “DP-Fair: a unifying theory for optimal

hard real-time multiprocessor scheduling,” Real-Time Systems, vol. 47, no. 5, pp. 389–429,

2011.

[39] W. Shih, J. S. W. Liu, J. Chung, and D. W. Gillies, “Scheduling tasks with ready times

and deadlines to minimize average error,” ACM SIGOPS Operating Systems Review, vol. 23,

pp. 14–28, July 1989.

[40] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling periodic jobs that allow imprecise

results,” IEEE Transactions on Computers, vol. 39, pp. 1156–1174, Sept. 1990.

[41] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung, “Algorithms for scheduling imprecise compu-

tations with timing constraints,” SIAM Journal on Computing, vol. 20, pp. 537–552, June

1991.

[42] C. Lee, W. Ryu, K. Song, K. Choi, G. Jung, and S. Park, “On-line scheduling algorithms for

reducing the largest weighted error incurred by imprecise tasks,” in International Conference

on Real-Time Computing Systems and Applications (RTCSA), pp. 21–30, IEEE, 1998.

[43] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal reward-based scheduling

for periodic real-time tasks,” IEEE Transactions on Computers, vol. 50, pp. 111–130, Feb.

2001.

[44] C. Tan, T. S. Muthukaruppan, T. Mitra, and L. Ju, “Approximation-aware scheduling on

heterogeneous multi-core architectures,” in Proceedings of the Asia and South Pacific Design

Automation Conference (ASP-DAC), pp. 618–623, IEEE, 2015.

[45] J. Yi, Q. Zhang, Y. Tian, T. Wang, W. Liu, E. H.-M. Sha, and Q. Xu, “ApproxMap: on task

allocation and scheduling for resilient applications,” in Proceedings of the Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 318–323, IEEE, 2015.

88

[46] S. K. Baruah, “The non-preemptive scheduling of periodic tasks upon multiprocessors,” Real-

Time Systems, vol. 32, no. 1, pp. 9–20, 2006.

[47] N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu, “New schedulability test conditions for non-

preemptive scheduling on multiprocessor platforms,” in Proceedings of Real-Time Systems

Symposium (RTSS), pp. 137–146, 2008.

[48] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Quantifying the sub-optimality of non-

preemptive real-time scheduling,” in Proceedings of the Euromicro Conference on Real-Time

Systems (ECRTS), pp. 113–122, IEEE, 2013.

[49] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded oper-

ating systems,” ACM SIGOPS Operating System Review, vol. 35, pp. 89–102, Oct. 2001.

[50] F. Zhang and S. T. Chanson, “Processor voltage scheduling for real-time tasks with non-

preemptible sections,” in Proceedings of Real-Time Systems Symposium (RTSS), pp. 235–245,

IEEE, 2002.

[51] J. Mao, C. G. Cassandras, and Q. Zhao, “Optimal dynamic voltage scaling in energy-limited

nonpreemptive systems with real-time constraints,” IEEE Transactions on Mobile Comput-

ing, vol. 6, pp. 678–688, June 2007.

[52] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed criticality systems,”

in Proceedings of Real-Time Systems Symposium (RTSS), pp. 34–43, IEEE, 2011.

[53] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality systems,” in Pro-

ceedings of the Euromicro Conference on Real-Time Systems (ECRTS), pp. 259–268, IEEE,

2015.

[54] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar, “Two proto-

cols to reduce the criticality level of multiprocessor mixed-criticality systems,” in Proceed-

ings of the International conference on Real-Time Networks and Systems (RTNS), pp. 183–

192, ACM, 2013.

89

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Non-preemptive Real-time Scheduling
	Mixed-criticality (MC) Scheduling
	Contributions

	Background
	Overview of Real-time Scheduling
	Imprecise Computing/Approximate Computing
	Non-preemptive Real-time Scheduling
	Non-preemptive Real-Time Scheduling System Model
	Schedulability of Non-Preemptive Real-Time Scheduling
	Imprecise Computing in Non-Preemptive Scheduling

	Mixed-criticality (MC) Scheduling
	Imprecise MC and Variable-Precision MC System Model
	IMC System Scheduling on Uniprocessor
	Partitioned Scheduling on Multiprocessors
	Global fpEDF Scheduling on Multiprocessors
	Global Scheduling by fpEDF-VD on Multiprocessors
	MC-DP-Fair Scheduling on Multiprocessors

	Related Work
	Preemptive Real-time Scheduling Considering Imprecise Computing
	Non-Preemptive Hard Real-Time Scheduling
	Real-Time Scheduling and Dynamic Voltage and Frequency Scaling (DVFS)
	Mixed-criticality (MC) Scheduling

	Non-Preemptive Real-Time Scheduling
	Motivation Example
	Online Scheduling of Tasks with Independent Errors
	Collaborative Scheduling of Periodic Tasks with Independent Errors
	Offline ILP and Online Adjustment
	ILP with Post-Processing and Online Adjustment
	Flipped EDF and Online Adjustment

	Scheduling Periodic Tasks with Cumulative Errors in Imprecision
	Online Heuristic
	Offline Dynamic Programming

	Experiment Results
	Simulation Results
	Linux Prototyping Results

	Conclusion

	Mixed-criticality Scheduing
	VPMC System Scheduling on Multiprocessors
	Partitioned Scheduling
	VPMC Partitioning with EDF-VD Scheduling
	Enhanced VPMC Partitioning

	Global Scheduling by fpEDF-VD
	Extension of fpEDF-VD for IMC and VPMC
	Dual Virtual-Deadlines for fpEDF (fpEDF-DVD)
	Service Preserving Method
	Deferred Switching Scheme
	Unified Deferred Switching and Service Preserving

	Extension of MC-DP-Fair Scheduling for IMC and VPMC Systems

	Precision Optimization for VPMC Systems
	Optimization Kernel
	Utilization Slack Estimation and Customization for Different Scheduling Methods
	Slack Estimation and Precision Optimization for Partitioned Scheduling
	Slack Estimation and Precision Optimization for fpEDF-VD Based Global Scheduling
	Utilization Slack Estimation for VPMC-DP-Fair Scheduling

	Experimental Results
	Evaluation of VPMC system scheduling methods
	Simulation Setup and Results
	Prototyping in Linux User Space

	Evaluation of Service Preserving and Deferred Switching Techniques
	Testcase Generation
	Evaluation of Service Preserving
	Evaluation of Deferred Switching and Unified Method

	Conclusion

	SUMMARY AND CONCLUSIONS
	REFERENCES

