24 research outputs found

    Flexible Receivers in CMOS for Wireless Communication

    Get PDF
    Consumers are pushing for higher data rates to support more services that are introduced in mobile applications. As an example, a few years ago video-on-demand was only accessed through landlines, but today wireless devices are frequently used to stream video. To support this, more flexible network solutions have merged in 4G, introducing new technical problems to the mobile terminal. New techniques are thus needed, and this dissertation explores five different ideas for receiver front-ends, that are cost-efficient and flexible both in performance and operating frequency. All ideas have been implemented in chips fabricated in 65 nm CMOS technology and verified by measurements. Paper I explores a voltage-mode receiver front-end where sub-threshold positive feedback transistors are introduced to increase the linearity in combination with a bootstrapped passive mixer. Paper II builds on the idea of 8-phase harmonic rejection, but simplifies it to a 6-phase solution that can reject noise and interferers at the 3rd order harmonic of the local oscillator frequency. This provides a good trade-off between the traditional quadrature mixer and the 8- phase harmonic rejection mixer. Furthermore, a very compact inductor-less low noise amplifier is introduced. Paper III investigates the use of global negative feedback in a receiver front-end, and also introduces an auxiliary path that can cancel noise from the main path. In paper IV, another global feedback based receiver front-end is designed, but with positive feedback instead of negative. By introducing global positive feedback, the resistance of the transistors in a passive mixer-first receiver front-end can be reduced to achieve a lower noise figure, while still maintaining input matching. Finally, paper V introduces a full receiver chain with a single-ended to differential LNA, current-mode downconversion mixers, and a baseband circuity that merges the functionalities of the transimpedance amplifier, channel-select filter, and analog-to-digital converter into one single power-efficient block

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Integrated Management of Interface Power (IMIP) Framework

    Full text link
    La prĂ©sence importante de plusieurs rĂ©seaux sans-fils de diffĂ©rentes portĂ©es a encouragĂ©e le dĂ©veloppement d’une nouvelle gĂ©nĂ©ration d’équipements portables sans-fils avec plusieurs interfaces radio. Ainsi, les utilisateurs peuvent bĂ©nĂ©ficier d’une large possibilitĂ© de connectivitĂ© aux rĂ©seaux sans-fils (e.g. Wi-Fi [1], WiMAX [2], 3G [3]) disponibles autour. Cependant, la batterie d’un nƓud mobile Ă  plusieurs interfaces sera rapidement Ă©puisĂ©e et le temps d’utilisation de l’équipement sera rĂ©duit aussi. Pour prolonger l’utilisation du mobile les standards, des rĂ©seaux sans-fils, on dĂ©finie (individuellement) plusieurs Ă©tats (Ă©mission, rĂ©ception, sleep, idle, etc.); quand une interface radio n’est pas en mode Ă©mission/rĂ©ception il est en mode sleep/idle oĂč la consommation est trĂšs faible, comparĂ©e aux modes Ă©mission/rĂ©ception. Pourtant, en cas d’équipement portable Ă  multi-interfaces radio, l’énergie totale consommĂ©e par les interfaces en mode idle est trĂšs importante. Autrement, un Ă©quipement portable Ă©quipĂ© de plusieurs interfaces radio augmente sa capacitĂ© de connectivitĂ© mais rĂ©duit sa longĂ©vitĂ© d’utilisation. Pour surpasser cet inconvĂ©nient on propose une plate-forme, qu'on appelle IMIP (Integrated Management of Interface Power), basĂ©e sur l’extension du standard MIH (Media Independent Handover) IEEE 802.21 [4]. IMIP permet une meilleure gestion d’énergie des interfaces radio, d’un Ă©quipement mobile Ă  multi-radio, lorsque celles-ci entrent en mode idle. Les expĂ©rimentations que nous avons exĂ©cutĂ©es montrent que l’utilisation de IMIP permet d'Ă©conomiser jusqu'a 80% de l'Ă©nergie consommĂ©e en comparaison avec les standards existants. En effet, IMIP permet de prolonger la durĂ©e d'utilisation d'Ă©quipements Ă  plusieurs interfaces grĂące Ă  sa gestion efficace de l'Ă©nergie.The large availability of wireless networks of different ranges, has contributed to the development of new generation of handheld devices with multi-radio interfaces. Thus, the end-users are able to achieve ubiquitous and seamless connectivity across heterogeneous wireless networks (e.g., Wi-Fi [1], WiMAX [2] and 3G_LTE [3]). However, a mobile node with multi-radio interfaces has its battery energy consumed rapidly, which reduces the operation/usage time of the device. To improve battery usage, wireless network standards have defined (individually) different interface states (transmit, receive, idle, sleep, etc.); when an interface is not transmitting or receiving, it goes to sleep/idle state where energy consumption is very low compared to transmit and receive states. However, in the case of multi-radio handheld devices, the total energy consumed by the interfaces in sleep/idle state is significant. Thus, equipping a mobile device with multiple interfaces increases its seamless connectivity but reduces its operation/usage longevity. To overcome this inconvenient, we proposed a framework, called IMIP (Integrated Management of Interface Power) that consists of an extension of MIH (Media Independent Handover) IEEE 802.21 standard [4]. IMIP allows a better power management of radio interfaces of a multi-radio mobile node; indeed, it reduces considerably energy consumption. The basic idea behind IMIP is to shut down any interface in idle mode and use a proxy that emulates the interface; the proxy wakes up the interface when it receives a connection request directed to this interface. IMIP requires at least one interface in active mode. Experiments show that using IMIP enables a saving of up to 80% of power consumption compared with existing power management standards. Thus, IMIP allows longer usage of multiple interface devices thanks to its effective energy management

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system

    Physical Layer Techniques for Indoor Wireless Visible Light Communications

    Get PDF
    The growing demand for bandwidth-hungry applications and increasing number of smart interconnected devices has increased the data traffic on radio access networks. Subsequently, the saturating spectral efficiencies in crowded radio frequency spectrum has impelled the researchers to exploit the optical spectrum for communications. In particular, many developments in the visible light communication (VLC) as a combined lighting and communications system have taken place. Despite abundant optical bandwidth, the data transmission rates and power efficiencies in VLC are partly limited by the electrical channel bandwidth and the type of signalling sets which can be used in this intensity modulated, direct detected system. In order to improve the power and spectral efficiencies, this thesis focuses on physical layer (PHY) techniques. The state-of-the-art single channel modulations (SCM) based on M-PAM, multi-channel modulations (MCM) based on OFDM, and IEEE standardised multi-colour modulations are investigated comprehensively through simulations and theoretical analysis, over representative VLC channels considering the optical properties of front-end devices. The bit error performances and spectral efficiencies of DC-biased and non DC-biased MCM systems are compared. A new vector coding based MCM is proposed to optimally utilise the channel state information at the transmitter as an alternative to optical OFDM. The throughputs, peak-to-average power ratios and DC-bias requirements of SCM and MCM systems are investigated which show that the lower DC-bias requirements reduce power consumed for the same throughput in SCM systems when compared to MCM systems. A new quad-chromatic colour shift keying (CSK) system is proposed which reduces power requirements and complexity, enhances throughput and realises a four-dimensional signalling to outperform the IEEE standardised tri-chromatic CSK system. For improved power efficiency and throughput of VLC PHY, use of rate-adaptive binary convolutional coding and Viterbi decoding is proposed along with frequency domain channel equalisation to mitigate temporal dispersion over representative VLC channels

    Dynamic capacity enhancement using a smart antenna in mobile telecommunications networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    SMARAD - Centre of Excellence in Smart Radios and Wireless Research - Activity Report 2008 - 2010

    Get PDF
    Centre of Excellence in Smart Radios and Wireless Research (SMARAD), originally established with the name Smart and Novel Radios Research Unit, is aiming at world-class research and education in Future radio and antenna systems, Cognitive radio, Millimetre wave and THz techniques, Sensors, and Materials and energy, using its expertise in RF, microwave and millimetre wave engineering, in integrated circuit design for multi-standard radios as well as in wireless communications. SMARAD has the Centre of Excellence in Research status from the Academy of Finland since 2002 (2002-2007 and 2008-2013). Currently SMARAD consists of five research groups from three departments, namely the Department of Radio Science and Engineering, Department of Micro and Nanosciences, and Department of Signal Processing and Acoustics, all within the Aalto University School of Electrical Engineering. The total number of employees within the research unit is about 100 including 8 professors, about 30 senior scientists and about 40 graduate students and several undergraduate students working on their Master thesis. The relevance of SMARAD to the Finnish society is very high considering the high national income from exports of telecommunications and electronics products. The unit conducts basic research but at the same time maintains close co-operation with industry. Novel ideas are applied in design of new communication circuits and platforms, transmission techniques and antenna structures. SMARAD has a well-established network of co-operating partners in industry, research institutes and academia worldwide. It coordinates a few EU projects. The funding sources of SMARAD are diverse including the Academy of Finland, EU, ESA, Tekes, and Finnish and foreign telecommunications and semiconductor industry. As a byproduct of this research SMARAD provides highest-level education and supervision to graduate students in the areas of radio engineering, circuit design and communications through Aalto University and Finnish graduate schools such as Graduate School in Electronics, Telecommunications and Automation (GETA). During years 2008 – 2010, 21 doctor degrees were awarded to the students of SMARAD. In the same period, the SMARAD researchers published 141 refereed journal articles and 333 conference papers

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Wireless multi-carrier communication system design and implementation using a custom hardware and software FPGA platform

    Get PDF
    Field Programmable Gate Array (FPGA) devices and high-level hardware development languages represent a new and exciting addition to traditional research tools, where simulation models can be evaluated by the direct implementation of complex algorithms and processes. Signal processing functions that are based on well known and standardised mathematical operations, such as Fast Fourier Transforms (FFTs), are well suited for FPGA implementation. At UCL, research is on-going on the design, modelling and simulation of Frequency Division Multiplexing (FDM) techniques such as Spectrally E - cient Frequency Division Multiplexing (SEFDM) which, for a given data rate, require less bandwidth relative to equivalent Orthogonal Frequency Division Multiplexing (OFDM). SEFDM is based around standard mathematical functions and is an ideal candidate for FPGA implementation. The aim of the research and engineering work reported in this thesis is to design and implement a system that generates SEFDM signals for the purposes of testing and veri cation, in real communication environments. The aim is to use FPGA hardware and Digital to Analogue Converters (DACs) to generate such signals and allow recon gurability using standard interfaces and user friendly software. The thesis details the conceptualisation, design and build of an FPGA-based wireless signal generation platform. The characterisation applied to the system, using the FPGA to drive stimulus signals is reported and the thesis will include details of the FPGA encapsulation of the minimum protocol elements required for communication (of control signals) over Ethernet. Detailed testing of the hardware is reported, together with a newly designed in the loop testing methodology. Veri ed test results are also reported with full details of time and frequency results as well as full FPGA design assessment. Altogether, the thesis describes the engineering design, construction and testing of a new FPGA hardware and software system for use in communication test scenarios, controlled over Ethernet
    corecore