12,843 research outputs found

    Systolic blood pressure reduction during the first 24 h in acute heart failure admission: friend or foe?

    Get PDF
    Aims: Changes in systolic blood pressure (SBP) during an admission for acute heart failure (AHF), especially those leading to hypotension, have been suggested to increase the risk for adverse outcomes. Methods and results: We analysed associations of SBP decrease during the first 24 h from randomization with serum creatinine changes at the last time-point available (72 h), using linear regression, and with 30- and 180-day outcomes, using Cox regression, in 1257 patients in the VERITAS study. After multivariable adjustment for baseline SBP, greater SBP decrease at 24 h from randomization was associated with greater creatinine increase at 72 h and greater risk for 30-day all-cause death, worsening heart failure (HF) or HF readmission. The hazard ratio (HR) for each 1 mmHg decrease in SBP at 24 h for 30-day death, worsening HF or HF rehospitalization was 1.01 [95% confidence interval (CI) 1.00–1.02; P = 0.021]. Similarly, the HR for each 1 mmHg decrease in SBP at 24 h for 180-day all-cause mortality was 1.01 (95% CI 1.00–1.03; P = 0.038). The associations between SBP decrease and outcomes did not differ by tezosentan treatment group, although tezosentan treatment was associated with a greater SBP decrease at 24 h. Conclusions: In the current post hoc analysis, SBP decrease during the first 24 h was associated with increased renal impairment and adverse outcomes at 30 and 180 days. Caution, with special attention to blood pressure monitoring, should be exercised when vasodilating agents are given to AHF patients

    A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68)

    Get PDF
    <i>Aims/hypothesis</i> The aim of this study was to develop a simulation model for Type 2 diabetes that can be used to estimate the likely occurrence of major diabetes-related complications over a lifetime, in order to calculate health economic outcomes such as quality-adjusted life expectancy. <i>Methods</i> Equations for forecasting the occurrence of seven diabetes-related complications and death were estimated using data on 3642 patients from the United Kingdom Prospective Diabetes Study (UKPDS). After examining the internal validity, the UKPDS Outcomes Model was used to simulate the mean difference in expected quality-adjusted life years between the UKPDS regimens of intensive and conventional blood glucose control. <i>Results</i> The models forecasts fell within the 95% confidence interval for the occurrence of observed events during the UKPDS follow-up period. When the model was used to simulate event history over patients lifetimes, those treated with a regimen of conventional glucose control could expect 16.35 undiscounted quality-adjusted life years, and those receiving treatment with intensive glucose control could expect 16.62 quality-adjusted life years, a difference of 0.27 (95% CI: –0.48 to 1.03). <i>Conclusions/interpretations</i> The UKPDS Outcomes Model is able to simulate event histories that closely match observed outcomes in the UKPDS and that can be extrapolated over patients lifetimes. Its validity in estimating outcomes in other groups of patients, however, remains to be evaluated. The model allows simulation of a range of long-term outcomes, which should assist in informing future economic evaluations of interventions in Type 2 diabetes

    Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

    Full text link
    We show that DNN accelerator micro-architectures and their program mappings represent specific choices of loop order and hardware parallelism for computing the seven nested loops of DNNs, which enables us to create a formal taxonomy of all existing dense DNN accelerators. Surprisingly, the loop transformations needed to create these hardware variants can be precisely and concisely represented by Halide's scheduling language. By modifying the Halide compiler to generate hardware, we create a system that can fairly compare these prior accelerators. As long as proper loop blocking schemes are used, and the hardware can support mapping replicated loops, many different hardware dataflows yield similar energy efficiency with good performance. This is because the loop blocking can ensure that most data references stay on-chip with good locality and the processing units have high resource utilization. How resources are allocated, especially in the memory system, has a large impact on energy and performance. By optimizing hardware resource allocation while keeping throughput constant, we achieve up to 4.2X energy improvement for Convolutional Neural Networks (CNNs), 1.6X and 1.8X improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons (MLPs), respectively.Comment: Published as a conference paper at ASPLOS 202

    A general framework for efficient FPGA implementation of matrix product

    Get PDF
    Original article can be found at: http://www.medjcn.com/ Copyright Softmotor LimitedHigh performance systems are required by the developers for fast processing of computationally intensive applications. Reconfigurable hardware devices in the form of Filed-Programmable Gate Arrays (FPGAs) have been proposed as viable system building blocks in the construction of high performance systems at an economical price. Given the importance and the use of matrix algorithms in scientific computing applications, they seem ideal candidates to harness and exploit the advantages offered by FPGAs. In this paper, a system for matrix algorithm cores generation is described. The system provides a catalog of efficient user-customizable cores, designed for FPGA implementation, ranging in three different matrix algorithm categories: (i) matrix operations, (ii) matrix transforms and (iii) matrix decomposition. The generated core can be either a general purpose or a specific application core. The methodology used in the design and implementation of two specific image processing application cores is presented. The first core is a fully pipelined matrix multiplier for colour space conversion based on distributed arithmetic principles while the second one is a parallel floating-point matrix multiplier designed for 3D affine transformations.Peer reviewe

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume
    • …
    corecore