29 research outputs found

    Nondestructive Testing in Composite Materials

    Get PDF
    In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Overview of potential methods for corrosion monitoring

    Get PDF

    Application of quantum magnetometers to security and defence screening

    Get PDF
    Over recent years the sensitivity of alkali-metal vapour magnetometers has been demonstrated to surpass that of even Superconducting Quantum Interference Devices (SQUIDs), the current commercial gold standard in laboratory weak- field magnetometry sensing. Here we present a proof-of-principle approach to building an RF atomic magnetometer which is robust, portable, tunable, non-invasive and operable at room temperature in an unshielded environment. In view of these characteristics, we discuss the potential application of alkali-metal magnetometry in imaging concealed objects, non-destructive evaluation of the structural integrity of metallic objects (e.g. pipelines and aircraft), and detection of rotating motors. We present a cost-effective approach to operating an atomic magnetometer in a Magnetic Induction Tomography (MIT) modality, to non-invasively map the conductivity of conductive objects concealed by conductive materials remotely and in real time. This is achieved by measuring the secondary eld in the subject due to eddy currents circulating as a result of application of a tunable radio-frequency oscillating eld, which overcomes the bandwidth and sensitivity limitations of using coils for sensing as in conventional MIT. In addition, we demonstrate the use of the atomic magnetometer for the remote detection of DC and AC electric motors with an improved response compared with a commercial fluxgate magnetometer in the sub 50 Hz regime (particularly detection down to 15 Hz). Its capability for non-invasive measurement through concrete walls is established, with potential for use in industrial monitoring and detection of illicit activity. Finally, the possibility of detection of submerged targets or for the atomic magnetometer to be mounted on submarine vehicles was explored. Promising results were obtained, but further investigation is required in this environment to establish this as a viable marine detector

    Contribuciones en el 谩rea de sondas y algoritmos aplicadas a la detecci贸n de discontinuidades, metrolog铆a de distancia y clasificaci贸n de materiales con t茅cnicas no destructivas basadas en corrientes inducidas

    Get PDF
    Se presenta esta tesis doctoral sobre sondas y algoritmos de procesado de datos de t茅cnicas de ensayos no destructivas basadas en corrientes inducidas. El objetivo ha sido proponer (i) sondas para la detecci贸n de discontinuidades, y la metrolog铆a de espesor de recubrimiento no conductor, y (ii) redes neuronales para tratar los datos base mono y multifrecuencia para la clasificaci贸n de piezas con diferente temple. Del Ensayo 1, la Sonda 1 inductiva ha proporcionado mejores resultados que la Sonda 2 con sensor Hall en (i) respuesta frecuencial, (ii) detecci贸n de agujeros y (iii) predicci贸n de espesor. Del Ensayo 2, la Sonda 3 inductiva y las redes neuronales han proporcionado mejores resultados con el procesado multifrecuencia en cuanto a (iv) tasa de acierto, (v) carga computacional; y (vi) tiempo de ejecuci贸n. Los resultados sugieren utilizar las sondas inductivas puras y redes con procesado multifrecuencia para la resoluci贸n de los problemas inversos presentados.Departamento de Teor铆a de la Se帽al, Comunicaciones e Ingenier铆a Telem谩ticaDoctorado en Tecnolog铆as de la Informaci贸n y las Telecomunicacione

    The 29th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft

    Technology for large space systems: A bibliography with indexes (supplement 19)

    Get PDF
    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore