43 research outputs found

    Pitch-scaled estimation of simultaneous voiced and turbulence-noise components in speech

    Full text link

    A novel framework for high-quality voice source analysis and synthesis

    Get PDF
    The analysis, parameterization and modeling of voice source estimates obtained via inverse filtering of recorded speech are some of the most challenging areas of speech processing owing to the fact humans produce a wide range of voice source realizations and that the voice source estimates commonly contain artifacts due to the non-linear time-varying source-filter coupling. Currently, the most widely adopted representation of voice source signal is Liljencrants-Fant's (LF) model which was developed in late 1985. Due to the overly simplistic interpretation of voice source dynamics, LF model can not represent the fine temporal structure of glottal flow derivative realizations nor can it carry the sufficient spectral richness to facilitate a truly natural sounding speech synthesis. In this thesis we have introduced Characteristic Glottal Pulse Waveform Parameterization and Modeling (CGPWPM) which constitutes an entirely novel framework for voice source analysis, parameterization and reconstruction. In comparative evaluation of CGPWPM and LF model we have demonstrated that the proposed method is able to preserve higher levels of speaker dependant information from the voice source estimates and realize a more natural sounding speech synthesis. In general, we have shown that CGPWPM-based speech synthesis rates highly on the scale of absolute perceptual acceptability and that speech signals are faithfully reconstructed on consistent basis, across speakers, gender. We have applied CGPWPM to voice quality profiling and text-independent voice quality conversion method. The proposed voice conversion method is able to achieve the desired perceptual effects and the modified speech remained as natural sounding and intelligible as natural speech. In this thesis, we have also developed an optimal wavelet thresholding strategy for voice source signals which is able to suppress aspiration noise and still retain both the slow and the rapid variations in the voice source estimate.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Voice source characterization for prosodic and spectral manipulation

    Get PDF
    The objective of this dissertation is to study and develop techniques to decompose the speech signal into its two main components: voice source and vocal tract. Our main efforts are on the glottal pulse analysis and characterization. We want to explore the utility of this model in different areas of speech processing: speech synthesis, voice conversion or emotion detection among others. Thus, we will study different techniques for prosodic and spectral manipulation. One of our requirements is that the methods should be robust enough to work with the large databases typical of speech synthesis. We use a speech production model in which the glottal flow produced by the vibrating vocal folds goes through the vocal (and nasal) tract cavities and its radiated by the lips. Removing the effect of the vocal tract from the speech signal to obtain the glottal pulse is known as inverse filtering. We use a parametric model fo the glottal pulse directly in the source-filter decomposition phase. In order to validate the accuracy of the parametrization algorithm, we designed a synthetic corpus using LF glottal parameters reported in the literature, complemented with our own results from the vowel database. The results show that our method gives satisfactory results in a wide range of glottal configurations and at different levels of SNR. Our method using the whitened residual compared favorably to this reference, achieving high quality ratings (Good-Excellent). Our full parametrized system scored lower than the other two ranking in third place, but still higher than the acceptance threshold (Fair-Good). Next we proposed two methods for prosody modification, one for each of the residual representations explained above. The first method used our full parametrization system and frame interpolation to perform the desired changes in pitch and duration. The second method used resampling on the residual waveform and a frame selection technique to generate a new sequence of frames to be synthesized. The results showed that both methods are rated similarly (Fair-Good) and that more work is needed in order to achieve quality levels similar to the reference methods. As part of this dissertation, we have studied the application of our models in three different areas: voice conversion, voice quality analysis and emotion recognition. We have included our speech production model in a reference voice conversion system, to evaluate the impact of our parametrization in this task. The results showed that the evaluators preferred our method over the original one, rating it with a higher score in the MOS scale. To study the voice quality, we recorded a small database consisting of isolated, sustained Spanish vowels in four different phonations (modal, rough, creaky and falsetto) and were later also used in our study of voice quality. Comparing the results with those reported in the literature, we found them to generally agree with previous findings. Some differences existed, but they could be attributed to the difficulties in comparing voice qualities produced by different speakers. At the same time we conducted experiments in the field of voice quality identification, with very good results. We have also evaluated the performance of an automatic emotion classifier based on GMM using glottal measures. For each emotion, we have trained an specific model using different features, comparing our parametrization to a baseline system using spectral and prosodic characteristics. The results of the test were very satisfactory, showing a relative error reduction of more than 20% with respect to the baseline system. The accuracy of the different emotions detection was also high, improving the results of previously reported works using the same database. Overall, we can conclude that the glottal source parameters extracted using our algorithm have a positive impact in the field of automatic emotion classification

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 4th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2005, held 29-31 October 2005, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    corecore