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Abstract 
The analysis, parameterization and modeling of voice source estimates obtained via inverse 
filtering of recorded speech are some of the most challenging areas of speech processing 
owing to the fact humans produce a wide range of voice source realizations and that the voice 
source estimates commonly contain artifacts due to the non-linear time-varying source-filter 
coupling. Currently, the most widely adopted representation of voice source signal is 
Liljencrants-Fant's (LF) model which was developed in late 1985. Due to the overly 
simplistic interpretation of voice source dynamics, LF model can not represent the fine 
temporal structure of glottal flow derivative realizations nor can it carry the sufficient spectral 
richness to facilitate a truly natural sounding speech synthesis. In this thesis we have 
introduced Characteristic Glottal Pulse Waveform Parameterization and Modeling 
(CGPWPM) which constitutes an entirely novel framework for voice source analysis, 
parameterization and reconstruction. In comparative evaluation of CGPWPM and LF model 
we have demonstrated that the proposed method is able to preserve higher levels of speaker- 
dependant information from the voice source estimates and realize a more natural sounding 
speech synthesis. In general, we have shown that CGPWPM-based speech synthesis rates 
highly on the scale of absolute perceptual acceptability and that speech signals are faithfully 

reconstructed on consistent basis, across speakers, gender. We have applied CGPWPM to 
voice quality profiling and text-independent voice quality conversion method. The proposed 
voice conversion method is able to achieve the desired perceptual effects and the modified 
speech remained as natural sounding and intelligible as natural speech. In this thesis, we 
have also developed an optimal wavelet thresholding strategy for voice source signals which 
is able to suppress aspiration noise and still retain both the slow and the rapid variations in 
the voice source estimate. 
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Chapter 1 

Introduction 



Introduction 2 

Although, a range of techniques have been developed to enable the study of laryngeal 

dynamics, e. g. electroglottography, electromagnetic glottography, transillumination and high- 

speed imaging, in this thesis we have opted for the closed-phase pitch synchronous inverse 

filtering of recorded speech as it is a non-invasive, does not cause any discomfort to the 

speaker and it does not require bulky or expensive equipment. However the analysis, 

parameterization and modeling of inverse filtering results are some of the most challenging 

areas of speech processing owing to the fact humans produce a wide range of voice source 

realizations and that the voice source estimates commonly contain artifacts due to the 

nonlinear time varying source filter coupling. Some examples of these distortions include 

first fonmant ripple that describes a sinusoidal like perturbation that overlays the glottal flow 

derivative waveform, the skewness to the right due to the inertive loading of subglottal and 

supraglottal systems and the nonlinear increase in glottal excitation strength when the first 

formant frequency appears near the multiple of pitch frequency. Over the years, two distinct 

approaches to voice source signal modeling have emerged, physical and analytical modeling. 

Physical models attempt to describe the laryngeal level of speech production system in terms 

of physiological quantities, whereby the glottal airflow is viewed as a product of viscoelastic- 

aerodynamic interactions in the glottis. While being a valuable tool for understanding the 

physiology of voice production, physically informed models have a very limited range of 

applications as they tend to have a large number of parameters and a high computational cost. 

On the other hand, the analytical approach to voice source modeling is less concerned with 

the underlying physical processes behind the vocal fold oscillations, but rather attempts to 

directly describe the glottal airflow waveforms with an opportune combination of 

mathematical functions. As a result they benefit from a reduced number of control parameters 

and improved computational efficiency. 

Current glottal pulse models, including the popular Liljencrants-Fant's model have adopted 

overly simplistic interpretations of voice source dynamics, and yet, they do not offer the 

desired levels of modeling accuracy and parameterization robustness. Liljencrants-Fant's 

model does not have enough degrees of freedom to represent the fine temporal structure of 

glottal flow derivative realizations and in the best of circumstance it can only model their 

general shape. The deficiencies of the current analytical voice source models are perhaps the 
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best revealed in the quality of synthetic speech where inadequate voice source modeling 

would produce distinct perceptual effects. We have to stress that analytical representation of 

voice source signal does not carry the sufficient spectral richness to facilitate a truly natural 

sounding speech synthesis. Clearly, there is a need for a more sophisticated voice source 

model that can enable a high quality voice source analysis and source-filter-based speech 

synthesis. With these motivations, we have developed Characteristic Glottal Pulse 

Waveform Parameterization and Modeling (CGPWPM) which is an entirely novel framework 

for voice source analysis, parameterization and reconstruction and a more accurate alternative 

to Liljencrants-Fant's model. CGPWPM is, to our knowledge, the only method that 

facilitates adaptive voice source modeling, where the form and structure of the model is 

directly dependant on the observed voice source signal. It is a fully automatic method, but 

we have described how CGPWPM can be employed very effectively semi-automatic manner 

as well. Another important feature of CGPWPM framework is that it provides the means to 

accurately estimate the statistical properties of non-stationary turbulent components related to 

aspiration noise. Unlike the vast majority of voice source parameterization techniques 

CGPWPM is able to produce accurate parameterization results over entire natural read speech 

sentences, and not just on sustained vowels and constrained segments of well behaved voice 

source signal. In comparison to Liljencrants-Fant's model, CGPWPM enables by far superior 

source filter based speech synthesis. The quality of CGPWPM-based synthetic speech is 

often perceptually indistinguishable from natural speech. However, the quality of the 

proposed method is best demonstrated by the fact that it is able to accurately parameterize 

and synthesize pathological voices where the corresponding voice source waveforms exhibit 

a range of complex and multidimensional dysphonic manifestations. 

The above mentioned characteristics of CGPWPM, enable the proposed method to be applied 

to almost all areas of speech processing, but in particular to speech synthesis, speech coding, 

clinical research, voice quality profiling, voice and voice quality conversion, speaker 

identification and verification, speech enhancement. 

We have to say that the proposed method has some small resemblance to Waveform 

Interpolative (WI) coding which is currently a state of the art speech synthesis and coding 
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technique. However, the similarities only lie in the fact that both techniques make use of 

some type of characteristic waveform to perform reconstruction of acoustic signals. It is 

important to stress that that Waveform Interpolative coding is performed on either linear 

predictive coding (LPC) residue or speech waveform and not on any credible estimates of 

voice source signal. In WI coding the reconstruction process is based on simple linear 

interpolation of consecutive characteristic waveforms that were periodically estimated from 

the observed waveform. On the other hand, CGPWPM uses closed-phased pitch- 

synchronous closed phase inverse filtering to obtain high-quality voice source estimates. 

Voice source reconstruction is based on a single characteristic waveform and more 

importantly, the proposed method is able to parametrically represent the non-linear evolution 

of characteristic waveform in time. In this thesis, we have also attempted to develop the 

optimal wavelet thresholding strategy for voice source signals. Our principal aim was to 

preserve the shape of a non-stationary signal that is observed in additive noise for further 

glottal excitation analysis, e. g. voice source parameterization. We were in particular 

concerned with preserving the glottal pulse shape in the regions of glottal closure instants as 

we were aware that even a small degree of over-smoothing could considerably compromise 

the authenticity of parametric voice quality description. Having considered voice source 

analysis, parameterization, reconstruction and voice source denoising together with voice 

quality profiling and voice quality conversion, we can say that this thesis deals with all 

important aspects of voice source processing. The thesis is organized as follows: 

In Chapter 1, an overview of speech production mechanisms is presented in order to provide 

background knowledge for Chapter 2 where we examine the principal approaches to speech 

modeling within the framework of source-filter theory. A discussion on the anatomy and 

physiology of the organ groups involved in speech production is provided. We also examine 

various phonation types and relate the temporal characteristics of the glottal airflow to the 

Laver's framework of voice quality. Furthermore, we describe the most common laryngeal 

disorders and their effect on voice quality. We present an overview of turbulence noise 

theory and describe the relationship between the voice quality and the aspiration noise levels 

along the auditory continuum. 
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In Chapter 2, we examine the principal approaches to speech modeling within the source- 
filter framework. The main focus is placed on voice source modeling. Physically informed 

models of voice source such as the one-mass, two-mass, body cover, and mucosal wave 

models are discussed in order to provide a platform for understanding the underlying 

principles behind the vocal fold dynamics. A review of the analytical voice source models its 

also presented. A simplified source-filter model, Childers' aspiration noise model, and 
Liljencrants-Fant model of glottal airflow are described in detail as they are used to 

synthesize tests signals throughout the thesis. We gain intuition for sound in the vocal tract 
by using a concatenated acoustic tube model and the traveling wave equations. Under the 

assumption of linearity and time-invariance, a transfer function of air flow velocity from the 

glottis to the lips is developed. 

In Chapter 3, we present a group delay approach to glottal closure instant (GCI) estimation. 
Specifically, average group delay and energy weighted group delay measures are discussed 

in detail. Their properties are studied on synthetic and natural speech datasets. We have 

proposed a GCI estimation method that is based on a group delay algorithm and a translation- 

invariant hard-thresholding of the linear predictive coding residue. The performances of the 

two group delay measures and the proposed method are evaluated for a range of fixed and 

pitch-synchronous analysis window lengths. The optimal GCI estimation strategy is 

reported. In this thesis, we have adopted the closed-phase pitch synchronous inverse filtering 

of recorded speech as the means for obtaining the estimates of the glottal flow derivative 

waveforms. Nevertheless, we have also presented a brief overview of other approaches and 

methods that enable the examination of laryngeal dynamics during voiced phonation- 

Subsequently, we have described a formant modulation analysis technique that can be used to 

ascertain the extent of non-linear source-filter coupling. Both, the inverse filtering method 

and the formant modulation analysis are employed on a range of voice qualities to enable a 

qualitative evaluation of the temporal glottal excitation structure. 

In Chapter 4, an overview of wavelet thresholding is presented including a range of 

commonly used thresholding methods such as Universal thresholding, SureShrink 

thresholding, Hybrid-Sure thresholding, Transl ation- Invari ant thresholding, Hypothesis- 
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Testing-based thresholding, Block thresholding, and Bayesian Adaptive Multi-resolution 

Smoother. We have introduced a set of experiments designed to obtain the optimal denoising 

strategy for voice source signals. Note that the optimal denoising strategy for voice source 

signals is first developed on simulated signals and is eventually evaluated on the natural 

acoustic data 

In Chapter 5 and Chapter 6, a novel framework for voice source analysis, parameterization 

and reconstruction is described. The framework is denoted as Characteristic Glottal Pulse 

Waveform Parameterization and Modeling. The novelty of this approach requires an 

extensive elaboration on a range of issues. As such, the problems of voice source 

parameterization and voice source reconstruction are treated separately. Chapter 5 describes 

the CGPWMP approach to voice source parameterization. The parameterization performance 
is evaluated on synthetic and natural speech datasets. The CGPWPM is applied to voice 

quality profiling where we aim to develop a parametric voice quality description for a range 

of voice quality types. 

In Chapter 6, we will describe the voice source reconstruction aspect of the Characteristic 

Glottal Pulse Waveform Parameterization and Modeling (CGPWPM) system. Subsequently, 

CGPWPM is applied under the source-filter model of speech production to develop a speed 

synthesis and a voice conversion method. A comparative assessment between the 

Characteristic Glottal Pulse Waveform model and the Liljencrants-Fant model of the glottal 

flow derivative waveform is presented. Subjective A/B listening test are used to establish 

which of the two models provides a perceptually more acceptable synthetic speech. These 

two models are also evaluated in the context of speaker identification. The aim of the 

speaker identification experiment is to determine whether the fine structural elements of the 

glottal flow derivative waveform (which can be modeled by CGPWPM system) contain 

speaker identity related information. The quality of CGPWPM-based speech synthesis is 

formally evaluated via Mean Opinion Scores and Degradation Mean Opinion Scores. 

CGPWPM-based voice quality conversion is evaluated via subjective triadic comparison 

listening tests. 



Chapter 2 

The Human Voice Production System 

ABSTRACT 

In this chapter, we present an overview of speech production mechanisms. A 
discussion on the anatomy and physiology. of the organ groups involved in 
speech production is provided. We examine the principal approaches to speech 
modeling within the source-filter framework. The main focus is placed on voice 
source modeling. Physically informed models of voice source such as the one- 
mass, two-mass, body cover, and mucosal wave models are discussed in order to 
provide a platform for understanding the underlying principles behind the 
vocal fold dynamics. A review of the analytical voice source models is also 
presented. We examine various phonation types and relate the temporal 
characteristics of the glottal airflow to the Laver's framework of voice quality. 
Furthermore, we describe the most common laryngeal disorders and their effect 
on voice quality. A simplified source-filter model, Childers' aspiration noise 
model, and Liljencrants-Fant model of glottal airflow are described in detail as 
they are used to synthesize tests signals throughout the thesis. 

2.1 Source filter theory of human speech production 
2.2 Voice source 

2.2.1 Anatomy and physiology of larynx 
2.2.2 Phonation 
2.2.3 Dysphonia 
2.2.4 Voice Source Modeling 

2.2.4.1 Physically informed models 
2.2.4.2 Analytical models 

2.3 Vocal tract 
2.3.1 Anatomy and physiology of vocal tract 
2.3.2 Vocal tract modeling 

2.4 Aspiration noise 
2.4.1 Overview of aspiration noise production theory 
2.4.2 Aspiration noise modeling 
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2.1 Source-filter theory of human speech production 

From the physiological point of view, the voice production consists of three sub-components: 

the larynx, the subglottal area and the supraglottal area. The subglottal area consists of 
diaphragm, lungs and trachea. The supraglottal area refers to the speech production organs 

above the larynx; namely, vocal tract and lips. Figure 2.1 shows a cross-section of laryngeal 

and supralaryngeal area of speech production system 

Thyroid 
cartilage 
Cricvld 
cartilage 

Figure 2.1: A cross-section of laryngeal and supralaryngeal area of speech 
production system. The image is obtained from [145]. 

The lungs act as a power supply and provide airflow to the laryngeal stage of speech 

production mechanism. The expending and contracting of lungs is referred to as inspiration 

and expiration, respectively. During inspiration, the air flows in the lungs through a 

relatively open glottis with an average area of 3-4 cm2. The direction of the airflow is 

reversed during the expiration. The area of glottis depends on the type of expiration. During 

breathing, the glottal area is around 1 cm2, while during phonation it varies around 0.05 to 0.1 

cm2. The glottal valve serves to control the airflow and the extent of utilized lung capacity. 
For the short utterances at normal loudness, only 25% of lung capacity is exploited. The 

louder and longer speech requires a greater use of the lung capacity. 
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In the larynx, the airflow from the lungs is modulated by the action of the vocal folds, to yield 

a periodic and a turbulent airflow source. The production of sound is characterized by the 

vibratory pattern of vocal folds and the configuration of laryngeal muscles and cartilages. 
The vocal tract spectrally shapes the voice source and gives the sound information related to 

the linguistic layer of speech communication. The vocal tract comprises of larynx tube, 

pharyngeal cavity, oral and nasal cavity. The position of velum controls the degree of 

coupling to the nasal tract. When velum closes, only oral sound is produced. The 

configuration of the articulators, i. e. jaw, tongue, lips and velum controls the vocal tract 

geometry and the spectral shape of the sound. The resonant frequencies of the vocal tract are 

called formant frequencies and they appear in spectrum as regions of concentrated acoustic 

energy. Following the sound initiation and the vocal tract spectral shaping, the variation of 

air pressure at the lips gives rise to a propagating sound wave that listeners perceive as speech. 

In 1960, Fant [42] introduced the source-filter theory of human speech production. The 

theory postulates that the speech production can be viewed as a two stage process, where the 

first stage corresponds to the initiation of sound, and the second stage is responsible for the 

acoustic filtering. The voice source and the acoustic filter are considered independent of each 

other. The primary sources of voicing are attributed to the vibration of vocal folds and 

aspiration noise. The linear filter describes the spectral characteristics of the acoustic tube 

formed by the pharynx, oral cavity, and lips. 

The source-filter model is an over-simplification of the speech production process. Fricative 

sounds which are created at the front of the oral cavity are not modulated by the resonances 

of the vocal tract to the same extent as the voiced and aspirated sounds. As such, the source 

filter model is not very accurate for fricative sounds. Under the source-filter speech 

production model, it is assumed that the glottal impedance is infinite and that the glottal 

airflow source is not affected by the vocal tract. In reality, the pressure in the vocal tract 

cavity just above the glottis "backs up" against the glottal flow and interacts non-linearly with 

the flow [45], [44], [118]. A range of manifestations of source-filter coupling have been 

identified. First formant ripple is often observed in the glottal flow derivative signal obtained 

via inverse filtering [21 ]. The glottal flow derivative waveforms may be skewed to the right 
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Figure 2.2: Source-filter model of the speech production system. 
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Figure 2.3: Simplified speech production model. 

due to the inertive loading by the subglottal and supraglottal acoustic systems [119]. A 

nonlinear increase in the voice source strength can occur when the frequency of the first 

vocal tract resonance is near an integral multiple of glottal cycle frequency [4]. The 

temporally variant glottal impedance can also affect the vocal tract frequency response, 

especially in the region of first formant [4]. 

Nevertheless, due to the simplifications in speech analysis and processing, the source-filter 

theory is a widely adopted framework for speech modeling. For a wide range of speech 

realizations, especially for voiced speech, these secondary effects are negligible and the 

source filter model is perfectly adequate. Figure 2.2 shows the speech production system as a 

connection of three separate and independent processes: voice source, vocal tract and lip 

r- 
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radiation. The voice source is spectrally shaped by the vocal tract and is thereafter radiated 
by the lips. The lip radiation is thought to have spectral properties similar to a differencing 

filter [49], [78]. If the two are equated, the lip radiation block can be replaced with the 

filterR(z) =1- z-'. Linearity and short term time-invariance of the source-filter model allow 

the vocal tract and the lip radiation to be interchanged. Thus the speech production model 

can be simplified as shown in the Figure 2.3. The simplified speech production describes 

glottal excitation being filtered by the vocal tract to produce speech. The transfer function for 

the source-filter model of speech production is developed in Chapter 3, Subsection 3.3.1. 

This chapter is organized as follows. In Section 2.2, we describe the anatomy and physiology 
of larynx. We also examine various phonation types and relate the temporal characteristics of 
glottal airflow to the Laver's framework of voice quality. We describe the most common 
laryngeal disorders and their effect on voice quality. Furthermore, we present an overview of 

physically informed and analytical approaches to voice source modeling. In Section 2.3, we 
discuss the physiology and anatomy of vocal tract and describe the concatenated lossless tube 

vocal tract model and its digital equivalent. Section 2.4 concludes the chapter with a 
discussion on turbulence noise production theory and with a brief overview of the prominent 
aspiration noise models. 

2.2 Voice source 

2.2.1 Anatomy and physiology of larynx 

During the process of phonation, the larynx transforms the potential energy of the 

compressed air, below the larynx, into the kinetic energy of regressive airflow. If the speed 

of transformation is sufficiently high, the changes in the air pressure generate acoustic waves 

that propagate into the surrounding air. Figure 2.4 and Figure 2.5 illustrate the anatomy of 

larynx. The larynx is a musculo-cartilaginous structure supported by the muscles from the 

hyoid bone. The hyoid bone is a part of the laryngeal system but also provides a support for 
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the tongue. The cartilage framework of the larynx consists of the thyroid, circoid, epiglottis 

and three paired cartilages, arytenoid, corniculate and cuneiform cartilages. The thyroid is 

the largest laryngeal cartilage. It is attached to the hyoid bone and circoid cartilage. The 

circoid cartilage is shaped like a signet ring with the anterior arch and a narrow convex ring. 
The epiglottis is a leaf like structure that is attached via ligaments to the base of the tongue, 

thyroid cartilage and the walls of the pharyngeal cavity. The epiglottis functions as a 

protection for larynx and prevents food from entering through glottis. The arytenoid 

cartilages approximate a pyramidal shape and are situated at the superior border of the circoid 
lamina. The corniculate cartilages are positioned at the top of each arytenoid and serve as a 

protection for the two arytenoid cartilages. The cuneiform elastic cartilages provide a support 

to the membrane of the aryepiglottic folds. 
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Figure 2.4: Anatomy of larynx - posterior view. The image is obtained from [ 145]. 
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Figure 2.5: A cross- section of larynx as viewed from above. The image is obtained from [ 145]. 
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The muscular structure of larynx is divided into two groups, the extrinsic and the intrinsic 

muscles. The extrinsic muscles, commonly referred to as strap muscles, provide a support to 

the larynx and their function is to move the laryngeal system as a whole. When swallowing 
the larynx is moved upward and the epiglottis folds down over it, covering the entrance of 
trachea and preventing the food from entering into the lungs. During yawning, the larynx is 

lowered in order to widen the airway. The intrinsic muscles control the movement of 
laryngeal cartilages during phonation. The posterior cricoarytenoid muscle is responsible for 

vocal fold opening. It is positioned on the posterior surface of the circoid cartilage and 

enables lateral displacement of vocal folds through rotation of arytenoid cartilage. The 

cricothyroid muscle runs from circoid to thyroid cartilage. It causes lengthening of vocal 
folds by elevating the circoid and lowering the thyroid cartilage. The change in vocal fold 

length affects the stiffness of vocal folds, which in turn affects the duration of the vocal fold 

oscillations. The lateral cricoarytenoid muscles start at the arytenoid muscle and run to the 

sides of the circoid cartilage. Their contraction causes the posterior part of the vocal folds to 

approximate. The interarytenoid muscles run horizontally between the two arytenoids and 

support the cricoarytenoid muscle. 

The glottis is a slit-like orifice situated between the two vocal folds. The size of the glottis is 

controlled by the arytenoid cartilages and muscles within the vocal folds. The vocal folds are 

located at the narrowest portion of the airway and stretch between the front and back of the 

larynx, as illustrated in Figure 2.5. The vocal folds are made up of layered structure and they 

are approximately 17-24 mm long for male adults, and 13-17 mm long for female adults [72]. 

The outermost layer is a 0.05-0.1 mm thin skin of stratified squamous epithelium, below 

which are lamina propria and thyroarytenoid muscle. The lamina propria is itself a layered 

structure consisting of superficial, intermediate and deep layer. The superficial layer, 

approximately 0.5 mm thick, consists of loosely organized elastic elastin fibers wrapped in 

interstitial fluids. The intermediate layer is largely made up of the uniformly orientated (in 

anterior-posterior direction) elastin fibers, but it also contains some collagen fibers. On the 

other hand, the deep layer is primarily made up of collagen fibers. The collagen fibers are 

almost inextensible and serve to constrain the vocal fold elongation. The combined width of 

the intermediate and deep layer is around 1- 2 mm. The bulk of the vocal fold structure is 
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made up of the 7-8 mm thick thyroarytenoid muscle fibers running longitudinally along the 
folds and laterally to the sides of lamina propria. This specific structure enables changes in 

the shape, thickness and elasticity of the vocal folds. At the front of larynx, the vocal folds 

are fixed to the thyroid cartilage. At the back and side of the larynx, the vocal folds are 

attached to the two arytenoid cartilages that can rotate along the circoid cartilages. The vocal 
folds are also free to move at the back and side of the larynx. 

Helmholtz and Muller, and later Berg developed the myoelastic-aerodynamic theory to 

explain the dynamics of the vocal folds during phonation [11]. The theory states that the 

vibration of vocal folds is an interaction of two forces, the subglottal pressure that pushes the 

vocal folds apart, and the Bernoulli effect that causes the vocal folds to approximate each 

other and eventually close. Let us considered a case when the vocal folds are open, and the 

tension in the vocal folds is low. Let us also suppose that the lungs are contracting and 

causing an air flow through the larynx. The velocity of air will increase as it flows through 

the narrow glottis. This will result in a pressure drop along the margins of the vocal folds. 

When the pressure at the glottal margin drops below the pressure exerted by the tension of the 

vocal folds, the vocal folds will abruptly approximate each other. This phenomenon can be 

explained by Bernoulli's Principle (2.1). The principle states that as the velocity of the fluid 

increases across a plane, there is a pressure drop along the plane and consequently, less 

pressure is exerted perpendicular to the flow. In case of vocal fold oscillations, the Bernoulli 

principle predicts that continual effect of narrowing the glottis and increasing the air velocity 

will eventually force the vocal folds to close. The complete closure of glottis is only achieved 

if the surface of the vocal folds is soft and smooth. 

pý(vZp)=const (2.1) 

The parameters correspond to. p- density of the fluid, p- pressure, v- velocity of the flow. 

As the lungs continue to contract, the closure of the vocal folds causes the build-up in the 

subglottal pressure. The pressure difference across glottis causes the separation of vocal 
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folds. The folds continue to stretch outwards until the elastic forces cause it to contract back 

together for the next cycle of the vocal fold dynamics. The movement of vocal folds in the 

process of separation and closure is referred to as abduction and adduction respectively. 

This is essentially a very simple view of vocal fold vibrations. More sophisticated models, 

such as the Isaka and Flanagan's two-mass model [75] or Titze's body cover model [138] are 

taking into account the more intricate aspects of vocal fold vibrations, e. g. a delay in the non 

uniform movement between the top and bottom edge of the vocal folds and the non-uniform 

pressure distribution at the glottis. Further elaboration on these two models will be presented 
in the next chapter. 

2.2.2 Phonation 

The definition of phonation, according to Laver, is the use of the laryngeal system to produce 

an audible source of acoustic energy [93]. The laryngeal configuration and the geometry of 

the glottis control the phonation and the voice texture. The adjustments to the laryngeal 

settings are made through changes in stiffness and thickness of vocal folds, the level of 

elevation/lowering of larynx, amount of adductive and abductive tension, as well as by the 

changes in the geometry of supraglottal structures. The tension and adjustment forces acting 

on vocal folds are illustrated in Figure 2.6. 
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Figure 2.6: The tension and adjustment. forces acting on vocal folds 
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Active and passive longitudinal tension in vocal folds arises from contractions of vocalis 

muscle and cricothyroid muscle, respectively. The contraction of the lateral thyroarytenoid 

muscle causes medial tension, while the contraction of the interarytenoid and the lateral 

cricoarytenoid muscle cause adductive tension. The tension and adjustment forces acting on 

the vocal folds affect the phonation process, dynamics of glottal airflow and the perceived 

voice quality. 

The phonation can be characterized as voiced, unvoiced, or mixed depending on the extent 

vocal fold vibration. In voiced phonation, the vocal folds vibrate to produce a string of quasi- 

periodic glottal airflow waveforms. Nil phonation and aspirated sounds are examples of 

unvoiced phonation. Nil phonation is characterized by the lack of acoustic energy generated 
by the larynx, and it is associated with fricative sounds. The sound source is generated by the 

constrictions in the vocal tract In aspirated sounds, such as ̀ h' in the word `hello', the 

turbulent airflow occurs at the glottis when the vocal folds are held partially open. 

Whispered speech is principally characterized by the aspirated phonation. Mixed phonation 
is a combination of voiced and unvoiced phonation. An example of this type of phonation is 

a phoneme [z] (as in zebra), where the vocal folds vibrate and in the same time when the 

turbulent airflow is produced at the tip of the tongue near the teeth. 
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Figure 2.7: (a) Glottal volume velocity, (b) Glottal volume velocity derivative; The graphs 

are synthesized using the Li jencrants-Fant glottal flow derivative model. Note 

that in panel b) the lower case parameters indicate the significant instants in the 

glottal waveform irrespective of time origin. On the other hand the upper case 
parameters are referenced to the glottal opening instant, to. 
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Figure 2.7 shows an example of glottal volume velocity airflow and its derivative during a 

single cycle of voiced phonation. The important events in the glottal airflow dynamics are 

the instants of vocal fold abduction (to), the instants of maximum positive glottal flow 

derivative value (t�, ), the instants of maximum glottal airflow (tp), the instants of vocal fold 

closure onset (te), and the instants of complete glottal closure (ta). The two graphs in Figure 

2.7 illustrate the gradual build up of the glottal airflow during the opening phase of the glottal 

cycle and the rapid airflow decrease during the closing phase of the glottal cycle. During the 

opening phase, the vocal folds disconnect inferiorly and the opening travels upward with a 

wave-like motion in the mucous membrane. Often the opening occurs first on the superior 

surface as a small "chink" that spreads wide open in a zipper like manner [8]. The closing 

phase of the glottal cycle is initiated with the contact between the lower edges of the vocal 

folds. The closure subsequently proceeds along the length of the lower edge and eventually 

the mucosal layers of the folds come together. The highest rate of change of glottal airflow 

occurs at the glottal closure instant. Since the intensity of the produced acoustic wave is 

directly related to the intensity of glottal airflow derivative and not to the glottal airflow itself, 

the glottal closure instant corresponds to the instance of the strongest vocal tract excitation. 

The length of the glottal cycle To is determined primarily by the subglottal pressure (pressure 

exerted by the lungs), vocal fold tension, their mass, length and elasticity. 
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Figure 2.8: Glottal volume velocity graph with the stroboscopically* derived images of the 

vocal folds at regularly spaced intervals during the glottal cycle for a modal voice 
of an adult male with an average pitch of 120 Hz. The image is obtained from /501. 
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Laryngeal adjustments control the temporal characteristics of the glottal airflow and 

perceived voice quality during the voiced phonation. The voiced phonation can be broadly 

classified into five categories: modal, creaky, harsh, breathy, and falsetto phonation. These 

phonation types are not mutually exclusive and some of them combine to form compound 

phonations. When all muscular adjustments are on a moderate level and the pitch and 
loudness are at the normal conversational level, the resulting phonation is described as modal 

voiced phonation. The modal phonation is distinguished by periodic and complete closure of 
the glottis. While the vocal folds are separated, the glottis has a triangular form and it is the 

widest at the arytenoids. The vocal folds open and close with a slight vertical phase 
difference whereby the lower edges of the vocal folds move before the upper edges. The 

modal phonation occurs on average at 120 Hz for female adults and 220 Hz for male adults. 
Figure 2.8 illustrates the relationship between glottal flow and vocal fold dynamics during 

modal phonation. Note that the right arytenoid cartilage is visible in the upper left corner of 

the stroboscopically* derived images. The upper and lower sides of each frame correspond to 

the posterior and anterior side of vocal folds, respectively. 

Creaky phonation, or vocal fry, occurs for weak longitudinal and strong adductive forces. At 

such muscular adjustments, the vocal folds thicken beyond the modal level. The heavy mass 

and low tensions produce slow and irregular vibrations. The typical frequency of vibrations 

for creaky voice is in the range of 25-50 Hz. Also, the glottal airflow rate (12-20 cc/s) is 

significantly lowered from the modal phonation (100-350 cc/s). 

Harsh phonation is a result of very strong tension and adjustment forces acting on the vocal 
folds. The upper larynx is constricted and the ventricular folds are pressed against the vocal 
folds. This causes irregular amplitude and irregular frequency of vocal fold vibration. 

Breathy phonation occurs for moderate longitudinal tension, weak medial compression, and 

very weak adductive tension. The main characteristics of breathy voice are incomplete 

Stroboscopy is a widely used technique for obtaining a video sequence of the vocal fold vibration. A flashing 
light source illuminates the glottis. The frequency of flashing is adjusted slightly below the frequency of vocal 
fold oscillations; each flash occurs at a slightly later phase of glottal cycle than the previous one. 
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glottal closure and elevated aspiration noise levels. The glottal airflow is higher than for the 
modal voice, while the frequency of vocal fold vibrations is only slightly lower. 

Falsetto phonation is associated with high frequencies of vocal folds vibrations. The 

adductive tension and the medial compression are strong. The strong longitudinal forces 

cause the stretching and thinning of the vocal folds. The closure of the glottis is often 
incomplete and a certain amount of audible turbulence noise is present. Also, the vocal folds 

tend to move without the vertical phase difference. 

Although, the laryngeal settings are the most important factor affecting the voice quality 

perception, the supralaryngeal settings can also exert some influence on voice quality. 
Depending on the overall muscular tension settings, both laryngeal and supralaryngeal, the 
deviation from neural voice quality can be characterized as lax or tense. 

2.2.3 Dysphonia 

Dysphonia is defined as an abnormal voice quality. The perception of dysphonia is an 
important indicator of a wide range of structural, medical, neurological, or behavioral 

conditions. Voice pathologies are relatively common affecting about 5% of the population 

[10]. In spite of the fact that there are relatively large number of existent methods for 

laryngeal and vocal tract diagnosis (laryngoscopy, glottography electromyography, 

videostroboscopy, videokymography), the researchers are becoming increasingly interested in 

acoustic analysis of pathological voices [30], [69], [109], [101], [104]. The trend is due to 

the inherent non-invasive nature of acoustic analysis and its potential to provide quantitive 

information for objective diagnoses, with less strain on personnel resources and time. 

Parametric description of pathological voices is a challenging problem due to the high 

complexity and multidimensionality of the dysphonic manifestations in the acoustic signal. 
Most of the work has been focused on perturbation analysis measures. "Hoarseness" (in this 
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context it does not refer explicitly to the amount of noise in speech) is a loosely used term 
describing the perceived voice pathology due to the abnormality at the laryngeal level of 

voice production. "hoarseness" can be quantified in terms of breathiness (a degree of non- 

modulated turbulence noise in produced sound), hoarseness (amount of noise in produced 

sound), and roughness (extent of irregular fluctuation in the duration of vocal fold cycle) [71 ], 

[92]. In this section, we will describe some of the most common laryngeal disorders and their 

effect on voice quality. The voice disorders are grouped according their causes: 

vocal overuse and misuse, nervous system disturbance, disease or trauma. Figure 2.9 shows 

the stroboscopically derived images of the vocal folds corresponding to the considered voice 

pathologies. 
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Figure 2.9: Stroboscopically derived images of common voice pathologies (obtained from [107]). 
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Voice Disorders Related to Vocal Overuse and Misuse 

Vocal fold nodules are common benign vocal fold lesions. They are usually bilateral and 

occur at the junction of the anterior 1/3 and posterior 2/3 of the vocal folds. They may vary 

significantly in size. Voice quality characteristics include hoarseness, breathiness, and 
lowered pitch. A vocal fold polyp is a fluid-filled lesion that occurs either unilaterally or 
bilaterally. It is often manifested through hoarseness, breathiness, diplophonia (audible 

perception of two distinct pitches). Vocal fold cyst is a fluid-filled growth. A vocal cord cyst 

can cause hoarseness, breathiness, voice and pitch breaks. Reinke's Edema or Polypoid 

Degeneration describes a condition when a membranous portion of the vocal folds is filled 

with fluid. It is caused by long-term smoking and chronic vocal overuse or misuse. Voice 

quality characteristics associated with Reinke's Edema include lowered pitch and severe 

hoarseness. Excessive and unnecessary tension of laryngeal muscles during vocal fold 

vibration is referred to Muscle Tension Dysphonia (MTD). It is thought to be a compensatory 

mechanism in the presence of an underlying laryngeal pathology. 

Voice Disorders Related to Nervous System Disturbance 

Vocal fold paralysist / paresis! may result from a viral infection, cerebral vascular accident 

(stroke), trauma to the head, recurrent laryngeal nerve damage following surgery to the head, 

neck, or chest region, or may be idiopathic (cause unknown). A tumor may also cause 

immobility of the vocal fold(s). Vocal characteristics consistent with vocal fold 

paresis/paralysis include breathiness, hoarseness, diplophonia (audible perception of two 

distinct pitches), decreased pitch range, and an inability to increase loudness. 

Voice Disorders Related to Disease or Trauma 

A hemorrhage of the vocal fold occurs when a blood vessel bursts and bleeds into the 

submucosal vocal fold layer. It is caused by voice overuse in combination with the intake of 

the anticoagulants such as aspirin or persistent usage of steroidal inhalants. Dysphonia is 

manifested through hoarseness, loss of pitch range, and vocal fatigue. A varix is a long, 

t complete absence of movement 
2 weakness in the movement 
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defined blood vessel on the vocal fold surface. It is thought to be caused by vocal overuse or 

misuse in a single traumatic episode. Vocal quality may be hoarse. Presbylarynx is a 

condition that is caused through normal aging of the larynx and is manifested by the loss of 

vocal fold tone and elasticity, hoarseness, breathiness, decreased loudness, and pitch 

instability. The appearance of "bowed" vocal folds secondary to the vocal fold atrophy is 

a symptom of presbylarynx. Cancer can affect the oral, pharyngeal, or laryngeal 

cavities. Laryngeal cancers are generally caused by a chronic irritation due to cigarette 

smoke. Laryngeal cancers are often life-threatening (if not detected early), and have severe 

affects on voice quality as well as breathing, and swallowing. A contact ulcer is a small 

lesion that typically develops on the medial portion of the vocal folds. Contact ulcers are 

most often caused by vocal overuse and misuse, laryngopharyngeal reflux, smoking, and 

excessive alcohol consumption. Voice often exhibits hoarseness, breathiness, lowered pitch, 

as well as the decreased pitch range. Papillomas are lesions that can run deep into vocal fold 

tissue. Papillomas are thought to be caused by viruses and can form throughout the larynx 

and upper airway. The symptoms are severe hoarseness and breathiness, and in some cases, 

respiratory problems. 
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2.2.4 Voice Source Modeling 

In general, the glottal excitation models can be classified into two broad groups, the 

physically informed and analytical models. Physical models attempt to describe the laryngeal 

level of speech production system in terms of physiological quantities. The glottal airflow is 

viewed as a product of viscoelastic-aerodynamic interactions in the glottis. On the other 
hand, the analytical models ignore the vocal fold physiology and are primarily concerned 

with the representation of the glottal airflow or the glottal airflow derivative waveforms. 

2.2.4.1 Physically informed models 

In the early 1950's, myoelastic-aerodynamic theory was the principal description of the vocal 

fold oscillations. Although, the theory explains the basic principals behind the vocal fold 

behavior, it lacks sophistication to account for more intricate features, such as the non-linear 

viscoelasticity of vocal fold tissue, non-linear interaction between the glottal airflow and 

glottal area, collision of the opposite vocal folds, vertical phase difference of vocal folds, 

etc... 

Over the years new theories have been developed that incorporate a wider range of 

physiological details of voice production system. Finite-element models provide a very 

accurate description of vocal fold physiology and explain a range of oscillation patterns. 

However they are computationally very intensive. Lumped-element models, such as the mass- 

spring and the body-cover model attempt to reduce the modeling complexity and 

computational intensity, while retaining the representation of the most significant 

characteristics of vocal fold oscillations. The physical voice source models provide a 

platform for understanding the underlying principles behind the laryngeal physiology. They 

can also be used in voice synthesis and in the study of voice pathology. However, they 

typically involve a large number of parameters that are difficult to estimate and control in a 

manner that is required by most practical applications. 
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Figure 2.10: Finite element model 

Finite elements and continuum models of the vocal folds 

Finite-element [144] and continuum models [12], [13] were developed in order to provide a 

highly informative physiological description of vocal folds. The models are based on the 

simulations of the distributed mechanical displacements and aero-dynamical forces in the 

glottis. 

Finite-element modeling (FEM) uses a large number of mass-like elements to obtain an 

accurate 3-dimensional representation of vocal fold structure, see Figure 2.10. The FEM 

models are able to describe the propagation of oscillations within the vocal-fold tissues 

through the viscoelastic and aerodynamic equations. The model describes a wide range of 

features of vocal fold dynamics including distributive effects, boundary conditions and a 

variety of vibration modes. However, finite element modeling is computationally highly 

expensive and its use is almost completely restricted to research applications. 
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Figure 2.11: Continuum model - Three principle eigenmodes of vocal fold vibration. 
Dashed boxes describe vocal folds in the rest position. 
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In continuum models, the vocal folds are assumed to take a restricted number of simple 

shapes such as a rectangular parallelepiped, see Figure 2.11. The tissue properties are uniform 
in the plane normal to the longitudinal direction [137]. The basic concept behind the 

continuum models is to represent complex vibration patterns in terms of a small number of 

orthogonal modes and thus reduce the modeling complexity and computational intensity. In 

comparison to the finite-element model, the continuum model offers a less accurate 

representation of the interactions between the aerodynamic flow and the elastic vocal fold 

tissue. 

On the other hand, the lamped elements models attempt to capture the essential traits of vocal 

fold vibrations with as few control parameters as possible, such that their use would not be 

restricted by computational intensity. This is achieved by lamping the large portions of vocal 
folds anatomy into discrete mass elements. 

The one-mass models 

In 1968, Flanagan & Landgraf proposed the first lumped element model of the vocal fold 

oscillations [48]. The one-mass model is illustrated in the Figure 2.12a). The model is 

symmetrical and each vocal fold is represented by identical mass-dumper-spring system. The 

motion of the vocal folds is restricted to horizontal direction. 
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a) Trachea b) Trachea 

Figure 2.12: Mass-spring models of vocal folds. a) one-mass model; b) two-mass model 

In this vocal fold model, the effect of vocal fold load on larynx is ignored. It is also assumed 

that the supraglottal pressure is I atmosphere and the subglottal pressure Ps is of constant 

value. Under such conditions, vocal fold dynamics is represented by following equation: 

m. x + rx + kx = d1Pg(x) (2.2) 

The positive constants: m, r and k represent mass, stiffness and viscous damping of vocal 

folds, respectively. The length and width of vocal folds is represented by d and 1, 

respectively. The glottal airflow dynamics may be described by Bernoulli's equation. The 

glottal air-pressure, Pg depends on the geometry of the glottis, and as such it is a function of 

vocal fold displacement, x. The glottal air pressure decreases with the increasing area of the 

glottis and it reaches its maximum value for a fully closed glottis. The product of dl Pg 

describes the aerodynamic force that acts perpendicularly to the vocal fold tissue surface. 

dt(Ek +Ep)=-rx' <0 (2.3) 
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Equation (2.3) shows that the derivative of the sum of the potential and kinetic energy of the 

system is always negative. The total energy of the system decreases along trajectories and 

thus, the model can not produce self-sustaining oscillations. Furthermore the system has no 

limit cycles due to the lack of the necessary degrees of freedom in the oscillatory system. 

However, self-sustaining oscillations do occur when the inertive load of vocal tract is added 

to the model [138], [140]. The one-mass model allows only lateral movements of oscillating 

mass and is not able to incorporate vertical phase difference of vocal folds. The observations 

of the vocal fold movement demonstrate that the vocal fold tissue displacement is non- 

uniform and that the upper and lower portions of the vocal folds move out of phase. Hence, 

a more complex two-mass model was developed to incorporate the finer features of vocal fold 

dynamics. 

The two-mass models 

In 1972, Ishizaka & Flanagan proposed the two-mass model of the vocal fold oscillations 

[75]. According to many researchers, the two-mass model adequately describes the most 

relevant features of vocal fold oscillations: self-sustaining oscillations and the phase 

difference in motion of upper and lower edge of vocal folds. 

The two-mass model is illustrated in the Figure 2.12b). The vocal folds are assumed to be 

bilaterally symmetric and are both modeled by identical pair of masses. As in the one-mass 

model, the masses are allowed only lateral motion. Each mass is subjected to elastic and 

dissipative forces, and as such this mechanical system can be described as a second order 

oscillator. The source of oscillation damping is provided by the viscous resistance of the 

vocal folds and larynx tissues. Further damping is also induced by the adhesiveness of the 

soft and moist contact surface of vocal folds during their contact. The properties of the vocal 

fold tissue primarily determined by the levels of muscular tension and vocal fold elongation. 

For accurate representation of the vocal folds, the stiffness parameters, kf and k2, are modeled 

as non-linear quadratic functions of their corresponding displacement. The stiffness of the 

coupling spring, k, describes the vocal fold stiffness in a direction perpendicular to the 

direction of the vocal fold oscillations. The coupling spring stiffness is non-linear. Its value 
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is governed by the vocal fold tension and width, and can vary systemically. The collision 
between the folds is modeled by a restoring contact force. The overall mechanical system 

can be described by (2.4). The equations relate pressures pm, and pmt to the driving surfaces 

of the masses, d, 1 and d21. 

m, z, + r, z, + k, x, +kc (x, - x2 )= d, l pm, 

m2 . 
z2 + r2 z2 + k2 x2 + kc (x, - x2 )= d2 1 pm2 

(2.4) 

Ishizaka and Flanagan described the pressure distributions inside the glottis via successive 
discrete steps p;,, see Figure 2.12b). The have assumed that the dimensions of the glottis are 

small compared to the wavelengths of the produced sound. Furthermore, the glottal flow is 

viewed as quasi-stationary. This follows the assumption that the glottal flow velocity is 

significantly higher than the period of the vocal fold oscillations. 
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The pressure distribution along the glottis is described by the set of equations (2.5). The 

pressure drop at the inlet of the glottis ps - p11 is obtained from the Bernoulli law for an 

ideal fluid in a static system. The pressure drops along the masses, p11 - p12 and p21 - P22 

are directly proportional to the shear air viscosity, v. At the transition point between the 

masses mj and m2, the glottal volume flow is of constant value. However the velocity of the 

air particles is different due to the sudden change in the glottis area. The pressure change 
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P12 - p2, is equal to the change in kinetic energy per unit volume of the fluid. At the upper 

edge of the glottis, the pressure approximates to the atmospheric value. The pressure drop 

P22 - p, is dependant on vocal tract input area, S. 

In order to complete the description of the mechanical model, the driving pressures of the two 

masses, p, �, and Pmt are related to the pressure distribution along the glottis, as in (2.6). The 

driving pressures are obtained by computing the mean pressure along the masses. 
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(2.6) 

The model can be implemented and coupled to the vocal tract model numerically using the 

Euler method. The two-mass model captures the two eigenmodes of vocal fold oscillation. 

The two eigenmodes are equivalent to those of distributed model. The eigenmodes shown in 

Figure 2. llb) and Figure 2. llc) correspond to the two masses moving in phase, and 180 

degrees out of phase, respectively. The model is able to incorporate subtle features of speech 

production, such as the acoustic interaction between the glottis and vocal tract. As a result of 

this interaction the model is able to synthesize a more natural speech where the changes in the 

glottal cycle period and the open quotient due the vocal tract load are adequately represented. 

Since the introduction of the two-mass model, a great deal of research effort has been done to 

overcome some of its limitations [87], [94]. For example, the two-mass model makes an 

assumption that the elastic structure of the vocal folds is fixed to a rigid wall. This is not 

strictly true as repeated experiments have confirmed the existence of surface waves radiation 

from the throat during the voiced phonation. In the two-mass model the glottal areas are 

described as squares and this approximation usually leads to over-abrupt glottal closures and 

more intense glottal peaks. The model requires estimation of up to 19 parameters and as such 
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it is still computationally intensive. Furthermore, the accuracy of the model is compromised 
by the abrupt pressure drop at the junction of the two masses. 

In contrast, the body-cover model of vocal folds obtains an improved pressure distribution in 

the glottis and is also able to describes the surface wave propagating ahead of the vocal folds 

Body-cover and mucosal wave models 

Based on the examination of mechanical properties of the vocal fold tissue, Hirano [70] 

suggested that the vocal fold structure can be split into two distinct components with specific 

mechanical characteristics. The two components correspond to the outermost cover layer, 

consisting of a pliable tissue (the epithelium and the superficial layer) and the inner or body 

layer, consisting of muscle and ligament fibers. The results of further investigation of the 

vocal fold dynamics suggest that there is a wavelike motion in the superficial mucosal tissues 

during the voiced phonation. On the basis of these results, Titze developed a body-cover 

model of vocal folds [138]. The body-cover model is illustrated in the Figure 2.13a). In 

addition to enabling representation of the surface wave propagation, the body-cover model 

also has physiologically more realistic control parameters. 
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Figure 2.13: a) The body-cover model of the vocal folds; b) Three-mass model 
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The mechanical aspect of the body-cover model can be described as a second order oscillator. 

mz + rk + kx = f(. X, x) (2.7) 

In this representation, the aerodynamic driving force is a function of velocity as well as of 
displacement. This implies that the driving force has a component in phase with tissue 

velocity, and as such it allows the energy transfer from the glottal airflow to the vocal fold 

tissue. The motion equations for the body-cover system are coupled to the aerodynamic 

driving force via the glottal area. The driving pressure exerts a force on the cover masses to 

produce oscillations. The average driving pressure, Pm is a function of trans-glottal pressure 

(PS-PI) as in (2.8). 

pl+ 
(PS -F)(1-a2/a1 - ke ) 

(2.8) 
kl 

, where PS and Pj denote the subglottal pressure and the vocal tract input pressure, 

respectively. The parameters, k, and ke describe the pressure loss and recovery coefficients. 

The two coefficients take into an account kinetic losses due to the turbulent behavior of the 

airflow at the glottal expansion region. The magnitude of the driving pressure is to a large 

extent governed by the glottis areas in the regions of the upper lower cover mass, a,, and the 

lower cover mass, a2. The cross-sectional areas at glottal entry and exit are approximated to: 

a, =2 1g (xol +x+r 
. 
x) 

a2 = 21g (xa2 +x-z. z) 
(2.9) 

, where !g corresponds to the length of the glottal folds in antero-posterior direction and 

r denotes the time interval for the mucosal wave to travel half the glottal width (the length of 

the glottis in the direction of the airflow). Since, the driving aerodynamic force of the 

mechanical system is proportional to the average driving pressure and the driving surface 

area, the vocal fold motion equation is expressed in terms of subglottal pressure, as in (2.10) 
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mz + rz + kx = d1g Ps(x01 -x02 +2Tx) 
k, (x01 +x+z. z) 

(2.10) 

In order to analyze the behavior of vocal folds at the equilibrium position x=0, equation 
(2.10) is linearized around x=0: 

2zdl P 
mx+(r- gS )x+kx =0 

xo 
(2.11) 

It is clear that the glottal airflow induces negative damping on vocal folds. For small values 

of subglottal pressure, PS , the overall damping is positive and the equilibrium state is stable. 

However, for large values of PS , the overall damping is negative due to the net energy transfer 

from the glottal airflow to the vocal folds. This energy is used to overcome the energy 
dissipated in the tissue and maintain the vocal fold oscillations. The amplitude of vocal fold 

oscillations is limited by the collisions of the opposite vocal folds and other nonlinear effects. 

The fact that the one-mass and two-mass models do not capture the layered structure of vocal 
folds, has led Story and Titze to propose a lumped-element approximation of the body-cover 

model [127]. In order to maintain the low-dimensionality, they have simply added a third 

mass to the two-mass model to describe the "body" of vocal folds. The resulting three-mass 

model, Figure 2.13b) is able to replicate the body-cover coupled oscillations. It also provides 

physiologically realistic parameters. Unlike the two-mass model, it is able to adequately 
describe a naturally common situation when a contraction of thyroarytenoid muscle stiffens 

the body, without any affect on the stiffness of the cover. 

The complex larynx physiology presents a continuous challenge to researchers. There is a 

need to retain a relative degree of simplicity and a reduced number of control parameters so 

as to improve the computational efficiency of the models. On the other hand, there is a need 

to improve the faithfulness of the voice source model and also a desire to include the complex 
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non-linear phenomena in the vocal fold dynamics, such as chaotic behavior [68], [79], limit 

cycles [68], [97] and bifurcations [140], [98]. 

2.2.4.2 Analytical models 

Analytical models are less concerned with the underlying physical processes behind the vocal 
fold oscillations, but rather attempt to directly describe the glottal airflow waveforms with an 

opportune combination of mathematical functions. The advantage of this approach to voice 

source modeling is reduced number control parameters. Generally, the parameters of the 

analytical glottal airflow models can be related to speech perception, voice quality and to a 

certain extent they can also describe some aspects of the voice source physiology. Many 

state of the art speech analysis, speech synthesis, speech coding and speech morphing 

systems employ the analytical models of the glottal airflow. Over the past decades of 

research, a number of analytical glottal flow models have been proposed in the literature: 

Hedelin [65], Fant, Liljencrants and Lin [43], Fujisaki and Ljungqvist [53], Klatt & Klatt 

(RK model) [86], Milenkovic [105], Childers and Hu [22], Veldhuis [141]. The Liljencrants- 

Fant (LF) model [43] is the most widely accepted voice source model as it is able to 

adequately represent a wide range of natural glottal airflow variations. 

Liljencrants-Fant (LF) model 

The LF-model is a parametric description of glottal airflow derivative cycle in the time 

domain. The LF-model is defined by the following equations: 

v(t) = Ep e" sin(mg t) 0! 5 t< Te 

v(t) = 
Ee 

le-E(t - 
r) 

_e-E(r- 
r) Te <t<Tc 

eTq 

v(t)=0 T, 5t<Ta 

(2.12) 
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The constraints in (2.13) are placed on the LF-model in order to satisfy the continuity of the 
model. Furthermore, the constraints take into account that no air flow takes place during the 

closure of glottis and that there is no net gain in the airflow over a glottal cycle. 

To 
Jv(t)dt 

=0 
0 

t1g =- TP 

sT = 1- e-'(T, -r ) 
Ee E° 

e' T sin(r. ogTe ) 

(2.13) 

The glottal excitation is characterized by the glottal cycle duration, amplitude and glottal 

shape. An example of the glottal airflow derivative obtained via LF-model is shown in the 

Figure 2.7. The parameters, Ee and To denote the maximum glottal airflow declination rate 

and the glottal cycle duration, respectively. The shape of the glottal flow derivative is 

determined by the following parameters Tp, Te, Tc and Ta. They are often referred to as timing 

parameters of the LF-model. They correspond to the significant events in the glottal airflow 

cycle in relation to the glottal opening instant. The parameters Tp and Te denote the instants 

of maximum glottal airflow and vocal fold closure onset, respectively. TT marks the instant 

of complete glottal closure and Ta describes the effective duration of the return phase. Ta is 

defined as time interval between to and the point where the tangent to the second segment of 

the glottal volume velocity waveform intersects the time axis, as illustrated in Figure 2.7b). 

If Ta is small, then the abruptness of closure is fast. The exponent 6 is directly related to Ta 

and it can be uniquely estimated from the timing parameters. In fact, the timing parameters 

are a sufficient representation of the LF-model, and all the other parameters, such as the 

dummy parameter a, can be derived by solving the equations (2.12) and (2.13). 

The integral of LF pulse, Figure 2.7a), is a bell-shaped representation of the glottal airflow 

and it is characterized by having only positive or null values. The glottal airflow increases 

during the opening phase of the glottal cycle. It reaches its maximum value of AV at the 
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instant Tp. Thereafter, the glottal airflow decreases until it finally reaches zero value at the 
instant of complete glottal closure. 

The ratios, of the timing parameters of the LF-model, such as open quotient and speed 

quotient are commonly used to describe the glottal waveform shape and to quantify voice 

quality. The open quotient, Oq describes the time interval in which the vocal folds are open, 

with respect to the duration of glottal cycle. On the other hand, the speed quotient Sq reflects 

the asymmetry of the glottal flow derivative waveform. It is a ratio of rise and fall time in the 

glottal airflow. In natural speech, the glottal opening phase is longer than the glottal closure 

phase and thus the speed quotient values are found to be above 0.5. 

09=T 
T, 
TO 

TP 
S9=Tý_To 

(2.14) 

(2.1 s) 

Another common representation of the glottal shape is a set of normalized time parameters, 
defined in (2.16). 

Ra 

Rk 

Rg = 

Ro = 

T. 
To 

TO 
2 To 

(T, - Ti, ) 

Tp 

T, 

To 

(2.16) 

The parameter, RQ controls the spectral tilt of the glottal flow derivative by adding an extra 

6dB/oct attenuation above the cutoff frequency, j 
.. 

Doval and d'Alessandro have analytically 

derived the spectrum of the LF-model and they have shown that the cut off frequency f, is 
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largely determined by the parameter Ra and much less affected by the values of Rg and Rk [38]. 

They have also suggested that for most glottal pulse shapes, f can be adequately 

approximated by: FQ =1 / 2, r TQ . The parameter Rg controls the frequency scaling whereby an 

increase in Rg value results in the energy shift from the low frequency harmonics towards the 

medium and high frequency harmonics. The remaining parameter, Rk is mostly responsible 
for determining the first harmonics amplitude. The R-parameters can be related to open 

quotient as Oq = (1 + Rk) / (Mg). 

Transformed LF-model 

The transformed LF-model is developed by Fant in an attempt to describe glottal derivative 

waveform and quantify the voice source quality by a single parameter, Rd [46]. He argued 

that the Ra, Rg and Rk parameters of the LF-model are inter-independent, and highly 

correlated. He demonstrated that that optimal value for the glottal pulse shaper parameter, Rd, 

is obtained by the following equation: 

Rd =1 (0.5 + 1.2Rk )( Rk 
+ RQ ) 

0.11 4Rg 
(2.17) 

Furthermore, he demonstrated that the Ra, Rg and Rk parameters may be predicted from the Rd 

value using the following equations in conjunction with (2.17) 

RQ = 0.01(-1 + 4.8 Rd ) 

Rk = 0.01(22.4 + 11.8 Rd ) 
(2.18) 

This relationship between the R-parameters Ra, Rg and Rk ensures that the accuracy of Rd is in 

the range of 0.5 dB for the values of Rd less than 1.4. The least reliable Rd value is 2.7, where 
the estimation error is round 1.5dB. In Chapter 5, the R-parameters of the LF-glottal flow 

derivative model, as well as the speed quotient and open quotient are used in the development 

of a parametric voice quality profile. Furthermore, in Chapter 6, the glottal shape parameter 
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Rd is used as a perceptual distance measure in the source-to-target voice quality conversion 

experiment. 

2.3 Vocal tract 

2.3.1 Anatomy and physiology of vocal tract 

The vocal tract is comprised of the larynx tube, pharyngeal cavity, oral cavity and the nasal 

cavity that is coupled to the oral tract via velum. The geometry of the oral tract is governed 
by the position of the primary articulators, i. e. the velum, jaw, tongue and lips. The oral tract 

of a typical male speaker has an average length of 17 cm and a spatially varying cross-section 

of 20 crn2. These dimensions are slightly smaller for female speakers. 

The primary purpose of vocal tract is to spectrally shape the voice source and provide 

information to the linguistic layer of the speech communication. The vocal tract is essentially 

an acoustic resonator that enhances some frequencies and attenuates the others. The spectral 

shaping characteristics of vocal tract are controlled by supralaryngeal settings, i. e. the 

configuration of articulators. The primary articulator is the tongue, which divides the vocal 

tract into two resonant cavities and thereby strongly affects the transmission characteristics of 

the vocal tract. Velum controls the extent of coupling into the nasal tract. When the opening 

area is less than 20 mm2 nasality is generally not perceived. Wider openings generally result 

in nasal resonances, and when the opening area reaches close to 50mm2 the speech is 

perceived as nasal. In speech science, the resonant frequencies of the vocal tract are called 

formant frequencies. The spectral contribution of a resonance is described through formant 

bandwidth and formant amplitude. It has been shown that the first three formants are 

sufficient for the perceptual characterization of English vowels and consonants. Higher 

formants have a less significant linguistic role, but they contribute to the "naturalness" of 

speech. An example of the temporal evolution of the vocal tract resonances is shown in 

Appendix A, Figure: A. 1. The figure shows the formant trajectories of a male speaker over 
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the utterance "We were away a year ago". The formant trajectories were obtained using the 

closed-phase, pitch synchronous, 14th order covariance based linear prediction analysis and a 

Viterbi search algorithm. 

The secondary purpose of vocal tract is to generate new sources for sound production, 

namely impulse and noise sources. With a complete constriction of vocal tract and the 

continual expiration (breathing out), the air pressure is build-up behind the closure. If the 

constriction is removed, the abrupt release of pressure produces an impulse sound. 

Phoneticians refer to these sounds as stops (focusing on the closure) or plosives (focusing on 

the release). On the other hand, when air is forced to flow passed the vocal tract constriction 

that is just short of being complete, the turbulent sound is produced. For instance, when the 

lower teeth are pressed against the upper lip and the air is forced through, a sound associated 

with IPA§ symbol [f] is formed. This type of turbulent flow is commonly referred to as 

friction, and the sounds associated with friction are called fricatives. Generally, constrictions 

can be made anywhere along the vocal tract, from the larynx to the lips. It is difficult to 

make a complete constriction in the pharyngeal region, but a narrow fricative constriction in 

pharynx is possible. Voice source can also arise from the interaction of vortices with the 

vocal tract boundaries, i. e. the occlusions in the oral tract, teeth and the false vocal folds [9]. 

This type of sound source is much less understood than either impulse or noise source. 

However, there is some evidence that the sound sources due to vortices have a notable effect 

on the temporal, spectral and perceptual characteristics of speech [9]. The supralaryngeal 

settings also have some influence on phonation and voice quality; mostly by affecting the 

extent of source-vocal tract coupling. Nevertheless, in voice source research, particularly 

from the signal processing perspective, the role of vocal tract is commonly neglected at the 

expense of laryngeal level of sound production. 

s International Phonetic Alphabet - official kept by International Phonetic Association; founded in Paris, 1886 
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2.3.2 Vocal tract modeling 

The object of the vocal tract modeling is to represent the anatomical, phonetic, and acoustic 

features of produced sound. Over the years, a number of vocal tract models have been 

developed (Flanagen [49]; Kröger [91 ]; Meyer [ 102]; Maeda [100]; Nowakowska & Zarnecki 

[112]) and most of them are based on numerical methods and computer simulations. In this 

section, we will present the lossless tube vocal model and its digital equivalent. The model is 

based on the assumption that the sound propagates as a plane wave, and the losses due to the 

heat conduction and the viscous friction at the vocal tract walls are ignored. 

Lossless Tube Concatenation Model 

Glottis Al A2 

4- it -ý4-- 12---º-13-º ---- lq ---- 

Figure 2.14: The lossless tube model of vocal tract 

A. 4 *00 
Lips 

(2.19) 

The diagram of lossless tube concatenated model of vocal tract is shown in Figure 2.14. The 

sound waves propagating through a lossless tube satisfy the following set of equations: 

_ 
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aA 
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where p= p(x, t) - sound pressure in the tube; u= u(x, t) - volume velocity; A= A(x, t) - 
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tube cross-sectional area; p- density of the air in the tube; c- velocity of sound. 
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Assuming the tube is uniform such that A(x, 1) = A, where A is a constant, the solution of 

sound propagation is a traveling wave 

u(x, t) = 

P(x, t) =C [u+(t-c)+u (t+c)] 
A 

(2.20b) 

The total volume flow in the tube at any given instant is a superposition of two waves, one 

going in a forward and the other in a reverse direction, as in Figure 2.15. The total acoustic 

pressure in a tube is related to the sum of forward 

and backward volume flow and the acoustic 

impedance of the tube (c). The equations (2.20a) 

and (2.20b) are the same as for the transmission line 

with u ; zz current, p voltage and Figure 2.15: Forward and backward 

wave propagation 
pc /A -- impedance. At boundaries, the volume 

flow continuity and the pressure flow continuity must be satisfied. Therefore, at kih boundary: 

uk (lk, 0 
Pk (lk 

9 t) - Pk+1 ( 0, tý (2.21) 

Combining the equations (2.20) and (2.21) we obtain the expression for the forward and 

backward wave propagation: 

uk+l +rk ) uk (t/- tk ý+ rk uk+1 

l. lk(t+Zk // ý- 
l-rk) uklt-Zký+(1-rk) uk+lýtý 

(2.20a) u+(t-x)-u-(t+x) 
cc 

= uk+I ( 0> t) 

(2.22) 
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where rk =1 k. The reflection coefficient, rk , 
bounded by -1 <- rk 5I is defined in terms of c 

the cross-sectional areas of the tubes surrounding the junction. 

rk = 
uk+1 ýtý 

_ 

Ak+l 
- 

Ak 

uk+1 (t) Ak+l + Ak 
(2.23) 

Having modeled the propagation of acoustic wave through a set of concatenated lossless 

tubes we can derive the flow diagram of the vocal tract, see Figure 2.16. In order to obtain 
the vocal tract transfer function, (2.24), it is assumed that all the concatenated tubes have the 
length of half the sampling period lk = 0.5 cTsamp 

V(z) = 

where, 

D(z) = [1- rc ] 

N 

0.5(l+PG) fl(l+Yk)z-N/2 

k=1 

D(z) 

1 -r, 1 -rN 1 

-r, z' z -i _rNz-N z' ý 

(2.24) 

Furthermore, if we approximate glottis area to zero, and assume that the lips do not reflect 

sound back into the vocal tract, we can write transfer function of the vocal tract in terms of 
N 

G- gain, zz- acoustic time delay along the vocal tract, and the N`h order all pole filter as 

N 

Z2 V(z) 
=GN 

1-lQkZ-k 

(2.25) 

k=1 
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Figure 2.16. " Flow diagram of the vocal tract 
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These assumptions establish the relationship between the number of tube segments in the 

vocal tract model and the sampling frequency as N= fs 
2L 

. 
Since the average vocal tract 

c 
length is typically around 15-17 cm in adults, N= fs /1000. However, in LPC modeling a 

rule of thumb is to select a filter of (2 + fs/1000) `h order. The poles of the all pole filter 

occur in form of complex conjugate pairs and correspond to the resonances or formants in the 

vocal tract frequency response. Experiments have shown that the vocal tract transfer function 

(of a male adult) has about 1 formant per 1 kHz. 

From the transmission line analogues, the lips are treated as a radiation impedance load on 

the vocal tract. Morse models the lips as the radiation from a spherical baffle [ 108]. Stevens' 

model involves a resistive load and three other frequency dependant components [125]. Fant 

represents the lip radiation with a resistive part, to account for acoustic energy loss, and a 

reactance part that describes the mass inertia of air at the lips [42]. The most commonly 

adopted lip radiation model approximates the transfer function between the airflow at the lips 

and the pressure at the microphone to a Is`-order high-pass response with a corner frequency 

of ff =c/ 4A - 5kHz , where A corresponds to lip-opening area. For the sampling 

frequencies below 20 kHz the lip radiation transfer function can be further simplified: 

R(z) =1 - az-' (2.26) 
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Although the expression for R(z) is obtained as a single zero on the unit circle, it is more 

realistic to represent the lip radiation with a zero moved slightly inside the unit circle such 

that a <I. The near field measurements at the lips do not show the 6dB/octave rolloff as 

predicted by the zero on the unit circle [49]. An extensive overview and comparison of 

various lip radiation models is provided by Lin [95]. 

2.4 Aspiration noise 

2.4.1 Overview of aspiration noise production theory 

Turbulence occurs at the exit of the constriction if the flow velocity is sufficiently high and 
the area of constriction is small enough. The Reynolds number indicates the likelihood of the 
turbulence, as in (2.27). The turbulence occurs if the Reynolds number exceeds the threshold 

value determined by the geometry of constriction. 

Re = 
2U (2.27) 

v A,; t 

The parameters correspond to: U- volume velocity, A, - effective area of constriction and v- 
kinematics viscosity of the fluid. 

Modal Voice Breathy Voice Whispery Voice Whisper 

4 

Aspiration Noise 

Voicing 

Figure 2.17: The relationship between the voice quality and the aspiration 
noise levels along the auditory continuum. 
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Depending on the generation mechanism, turbulence noise source can be differentiated as 

monopole, dipole or quadruple. A monopole source arises from a net unsteady mass injection 

into the fluid region. A glottal volume flow can be considered as a monopole source acting 

on the vocal tract. The monopole source is often represented through volume velocity. A 

dipole source is a net fluctuating force in the medium without the net mass injection. It can 

arise from a rapid flow of air hitting an obstacle or a surface. The spectrum of the dipole 

source has a peak at frequency proportional the flow velocity and inversely proportional to 

the characteristic dimension of the constriction. The overall shape of the spectrum depends 

on the constriction geometry. The dipole source is often modeled as a sound pressure source. 

A quadruple turbulence noise source occurs when two opposite dipoles are positioned at 

close proximity to each other. It exists in an unbounded medium without the net mass 

injection and without the net force. 

The turbulence noise that is produced in vicinity of glottis is referred to as aspiration noise. 
The main cause of aspiration noise is a dipole source due to the glottal airflow impinging on 

laryngeal surface in proximity of false vocal folds and the epiglottis. The extent of aspiration 

noise during voiced phonation is an important correlate of voice quality. The aspiration noise, 

essentially, adds a degree of "breathiness" to voice texture [34]. In some minor languages 

contrasting between the breathy and modal phonation carries linguistic information [59] as 

well. The role of the voice quality in conveying the paralinguistic information, such as 

emotions, mood, and attitudes is explored and reported in [85], [58]. Whispery voice is found 

to be an important attribute of acoustic perception of "fear", while "sadness" is found to be 

commonly associated with the breathy voice. Breathiness is generally treated as a continuum, 

without a clear threshold for separating modal or breathy voice on perceptual, acoustic or 

physiological basis. The same applies for the transitions between the breathy and whispery 

voice. Figure 2.17 illustrates the relationship between the perceptions of voice quality and 

the relative aspiration noise levels along the auditory continuum. 
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2.4.2 Aspiration noise modeling 
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Figure 2.18: The schematic diagram of the aspiration noise model and an example of the 
synthesized aspiration noise signal. The following parameter values are used in the 
synthesis of this aspiration noise example: To =20 ms, ANF = 0.21, AM =0.79, 
N=50%. L=15%. 

The turbulence noise is initiated at the center or just downstream from the constriction region 

or it can be spatially distributed along the constriction region [126]. Cook argued that the 

turbulent flow is likely during the entire open phase of the glottal cycle, but the maximum 

power of the turbulent flow is generated at the instant of glottal closure while slightly smaller 

bursts of turbulence may occur at the instances of vocal fold abduction onset [26]. The 

notion that the aspiration noise might be non-stationary was further confirmed by the results 

of psychoacoustic experiments conducted by Hermes [66]. Using the source-filter synthesis 

model, he demonstrated that the stationary noise does not adequately represent the aspiration 

turbulence as the noise is perceived as being acoustically separate from the rest of speech. 

Subsequently, Hermes developed an aspiration noise model that was able to achieve the 

desired perceptual effect. This model describes the aspiration noise as de-emphasized, high- 

pass filtered, amplitude modulated, pitch synchronized white noise. De-emphasis is achieved 

with the low pass filterH(z) =]/(I - 0.9z-') 
. 

The high-pass filter with the cut-off frequency 

in the range of 1.2-2 kHz controls the level of breathiness. The cut-off frequency of the high- 

pass filter is thought to be inversely proportional to level of perceived breathiness. 
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Figure 2.18 shows a schematic diagram of the aspiration noise model that is used in this 

thesis. It is conceptually similar to the model used by Childers [23]. The spectral shaping 

component includes the de-emphasis filter and the high pass filter. Prior to spectral shaping, 

the turbulence noise consists of two components; the noise floor that is present throughout the 

glottal cycle and the pitch synchronous amplitude modulated component. The first block of 

the aspiration noise model generates the white Gaussian noise of unit variance and zero mean. 
The noise floor is obtained by scaling the white Gaussian noise by noise floor amplitude 

parameter, ANF. On the other hand, the pitch-synchronous amplitude modulation is achieved 
by scaling the white Gaussian noise with the Hamming window. The modulation is 

controlled by the following parameters, AM, N, L, GCI. The parameters, AM and N describe 

the amplitude and the duration of the Hamming window, respectively. The parameter, L 

indicates the lag between the midpoint of the Hamming window and the glottal closure 
instant, GCI. The length of the Hamming window, N and the lag, L are both measured in 

terms of percentages relative to the glottal cycle duration. 

Effectively, the noise floor scaling and the amplitude modulation combine to form the 

aspiration noise envelope. A particular example of the aspiration noise envelope is shown in 

Figure 2.19. Childers has shown that the aspiration noise can be adequately modeled as 

amplitude modulated pitch synchronous Gaussian noise without the spectral shaping 

components [23]. Our informal listening tests confirm that perceptual effects of the spectral 

shaping component are not significant, and as such, the spectral shaping component will also 

be omitted in the final implementation of the aspiration noise model. Figure 2.20 shows an 

example of the glottal excitation signal for SNR = 20 dB. The synthesis is carried out by 

directly adding the aspiration noise to the Liljencrants-Fant's representation of the glottal 

flow derivative signal. This type of synthesis will be used throughout the thesis. 
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Figure 2.19: Synthesized glottal excitation signal example. The glottal volume velocity derivative is 

synthesized using the following LF parameters Tp = 58%; TQ = 84%; TT = 100%; 
Ta = 12%; The following parameter values are used synthesize of turbulence noise: 
To =200, ANF = 0.21, AM =0.79, N=50%, L=15%. SNR=20dB 

aCl O61 



Chapter 3 

Voice Source Estimation 

ABSTRACT 

This chapter presents a comparative study of the temporal structure of the glottal flow 
derivative estimates in relation to an idealized view of voice source realizations as 
defined by Liljencrants-Fant (LF) model. Specifically, we endeavor to ascertain the 
extent by which LF model can be used to represent the voice source estimates obtained 
via closed-phase pitch synchronous inverse filtering of recorded speech. The study 
includes several phonation types and two examples of voice pathology. The study has 
established the following. Due to the limited degrees of freedom, Liljencrants-Fant's 
model is only capable of adequately representing the "coarse" glottal pulse structure. 
We have presented evidence that the unrepresented elements or the "fine" glottal flow 
derivative structure contains information related to voice source individuality. In 
addition, we have shown that LF-parameters do not always accurately portray 
significant events in the vocal fold dynamics which might have a effect on the accuracy 
and robustness of LF based voice source parameterization techniques. In this chapter, 
we have also considered a group delay approach to GCI estimation. Specifically, 
average group delay and energy weighted group delay measures are discussed in detail. 
We have proposed a GCI estimation method that is based on a group delay algorithm 
and the translation-invariant hard-thresholding of the LPC residue. The performances 
of the two group delay measures and the proposed method are evaluated for a range of 
fixed and pitch-synchronous group delay window lengths. We have found that the pitch 
synchronous energy weighted group delay measure with the wavelet-denoised LPC 
residue provides by far the best GCI estimation performance. 

3.1 Introduction 
3.2 Glottal closure instant detection 

3.2.1 Group delay measures 
3.2.2 Performance evaluation on synthetic data 
3.2.3 GCI estimation with the wavelet de-noised LPC residue 
3.2.4 Performance evaluation on natural speech 

3.3 Source-filter deconvolution and voice source properties 
3.3.1 Closed-phase inverse filtering 
3.3.2 Formamt modulation analysis 
3.3.3 A study of glottal flow derivative estimates 

3.4 Conclusion 
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3.1 Introduction 
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Analysis of the vocal fold vibrations is a challenging problem as the larynx is not easily 

accessible. Nevertheless a number of techniques have been developed to enable the study of 
laryngeal dynamics. Electroglottography is widely used for clinical and research purposes 
[139]. The electroglottographic signal is obtained by measuring the impedance changes 
across the speaker's neck. The change in impedance values is related to the changes in the 

contact area between the vocal folds. As such, the electroglottographic signal is comparable 
to the volume velocity in the air stream through the glottis. On the other hand, the 

electromagnetic glottography uses high frequency electromagnetic waves to measure tissue 

motion [139]. Optical methods, such as transillumination and high-speed imaging are also 

useful in obtaining information about the larynx and the nature of vocal fold oscillations [84]. 

Transillumination uses a fiberscope inserted through the nose to illuminate the glottis. 
Subsequently, an estimate of the glottis area can be obtained by measuring the light intensity 

passing through the glottis via a photo sensor that is externally attached to the larynx. High- 

speed imaging is performed through a speaker's mouth using a mirror located near the uvula 

or through the fiberscope inserted through the nose. In 1959, Miller introduced the first 

inverse filtering technique [106]. He applied analogue electronic filters to cancel the effects 

of two lowest formants and the lip radiation from recorded speech. In 1973, Rothenberg 

developed an alternative form of inverse filtering, whereby an estimate of volume-velocity of 

air at the mouth is obtained using a pneumotachographic mask that measures the pressure 
differential across the mask's screen [117]. The corresponding signal is then inverse-filtered 

to yield estimates of the glottal volume velocity waveforms. This method is very accurate 

and robust to the low frequency noise. However, its useful frequency range is constrained to 

below 1.6 kHz. 

The inverse filtering of recorded speech is proving to be the most popular approach to 

estimate the glottal excitation signals. It is non-invasive, does not cause any discomfort to 

the speaker and does not require bulky or expensive equipment. It is based on the theoretical 
framework of the source-filter theory of speech production, and as such, it allows 
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independent studying of voice source and vocal tract. In principle, provided that the vocal 
tract transfer function is known, the glottal excitation signal can be obtained by feeding the 

speech signal through the inverse of the vocal tract filter. 

Sophisticated inverse filtering techniques relay on accurate estimates of glottal closure 
instants (GCIs). In Section 3.2, we have presented a group delay approach to GCI 

estimation. Specifically, average group delay and energy weighted group delay measures are 
discussed in detail. Their properties are studied on the synthetic and natural speech datasets. 

We have proposed a GCI estimation method that is based on a group delay algorithm and a 
translation-invariant hard-thresholding of the LPC residue. The performances of the two 

group delay measures and the proposed method are evaluated for a range of fixed and pitch- 

synchronous group delay window lengths. The optimal GCI estimation strategy is evaluated 

and reported. In Section 3.3, an overview of the closed-phase pitch-synchronous inverse 

filtering method for obtaining the estimates of glottal flow derivative waveforms is presented. 
Subsequently, we describe a formant modulation analysis technique. The formant 

modulation analysis is used to determine the extent of nonlinear source-filter coupling. Both 

techniques are employed on a range of voice qualities, including two examples of 

pathological voices, to enable a comparative study of the temporal structure of the glottal 

flow derivative estimates in relation to an idealized view of voice source realizations as 
defined by Liljencrants-Fant model. Section 3.4 concludes the chapter. 

3.2 Glottal Closure Instant Detection 

Automatic, robust and accurate identification of glottal closure instants can be beneficial to a 

range of speech processing applications. In PSOLA-based concatenative synthesis and in 

some voice conversion techniques, the glottal closure instants are indispensable in preserving 

coherence across segment boundaries [62], [132]. Blind deconvolution of the voice source 

and vocal tract via pitch synchronous closed-phase analysis relies on the glottal closure 

instants to segment the glottal cycle into closed and open phases [27], [148]. The use of 
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GCIs can also be found in speech coding, voice quality analysis, pitch tracking, voice 

conversion, and speaker verification systems. Over the years, numerous methods and 

approaches to GCI identification have been proposed. For research purposes, glottal closure 
instants can be obtained from the electroglottographic (EGG) impedance signals, but in most 

other applications, signals are not available [90]. 

Strube uses the peaks of the log-determinant of a sliding autocovariance window to relate the 

instances of glottal excitation to the discontinuities in the linear model of speech production 

[ 131 ]. McKenna developed a similar method based on Kalman filtering [ 103 ]. Navaro- 

Messa et al. estimate the GCIs by examining the features in the time-frequency representation 

of speech [ 111 ]. Cheng and O'Shaughnessy use a maximum likelihood method based on the 

Hilbert transform to obtain GCI approximations [19]. Ma et al. proposed a method whereby 

the glottal closure instants are identified as the maxima of the Frobenius norm of the signal 

matrix [99]. Smits and Yegnanarayana were the first researcher to propose the use of a group 

delay measure to determine the instants of acoustic excitations [124]. Each of these methods 

has some shortcomings which may result in the GCI identification errors. The main 

disadvantage of the group delay based GCI estimation methods is their intrinsic sensitivity to 

the presence of noise. 

3.2.1 Group delay measures 

The group delay based GCI estimation exploits the properties of the minimum phase signals 

and the group delay function, i. e. the average group delay of a minimum phase signal is zero. 

On the assumption that the vocal tract is a minimum phase system (all pole vocal tract 

model), the speech pressure waveform following the glottal closure instant is a minimum 

phase signal within one glottal pulse cycle. As such, a window of speech or LPC residue will 

change a sign in the phase slope as it crosses the moment of excitation (zero-phase). For a 

given input signal u(r), we consider an N-sample windowed segment beginning at a sample r 
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z, (n) = w(n) u(n + r) n=0,..., N-1 

and its corresponding group delay function 

rý (k) --d 
arg(X, (k)) 

do) 
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(3.1) 

(3.2) 

where X, (k) is a Fourier transform of xr(n) at frequency k, w= 2kn/N; w(n) denotes the 

analysis window function used in the short term group delay analysis. Since group delay 

function is highly sensitive to noise, averaging over frequency is required to increase the 

level of robustness. We will consider two types of group delay measures, average group 

delay dA y, and energy weighted group delay dEW : 
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(3.4) 

Note that in the average group delay measured,, , the conjugate symmetry of X and 

X ensures that the corresponding summation is real. Prior to applying a group delay 

measure, the speech signal is first passed through a ls` order pre-emphasis filter with a 50 Hz 

comer frequency. The pre-emphasized speech is subsequently inverse filtered using the 22nd 

order autocorrelation-based linear prediction coefficients and a sliding 20 ms analysis 

window (Hamming) with 50% overlap. The high frequency noise is removed from the LPC 

residual signal with a4 kHz, 2"d order Butterworth low-pass filter to obtain a signal u(r). The 



Ch. 3: Voice Source Estimation 53 

group delay measures are applied on u(r) using a sliding Hamming window analysis. The 

energy weighting, 3`d order median filter and a 1.5 kHz low pass filter are applied to the dAv 

measure to remove the occasional extreme values [110]. 

In our implementation of the group delay measures, the time origin is shifted to the central 

point of the group delay window, w(n) in (3.1), so that d; (r) = d; (r -N/2-0.5) -N/2-0.5, 

where iE {A V, EW }. 

3.2.2 Performance evaluation on synthetic data 

The Effect of Window Length 

The effect of the group delay window length on the performance of GCI estimation is 

investigated using an idealized version of the LPC residual. The synthesized signal consists 

of an impulse train with additive white Gaussian noise at SNR = 20 dB. The successive 
impulses are delayed by periods of 60,50,40,30,20,10,10 and 6 samples. The last impulse 

has twice the intensity of the other impulses. The test signal is shown in Figure 3.1 a). 

50 100 150 
Time (sarnpNf) 

200 250 

Figure 3.1 a) A train of impulses with periods of 60,50,40,30,20,10,10 and 6 samples 
with additive noise at SNR=20 dB. In panels b)-e) energy weighted group 
delay functions are displayed for a range of group delay window lengths. 
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The energy waited group delay function is obtained for four group delay window lengths, 

N=101, N=61, N =13, N=21. The results are shown in Figures 3.1 b)-l e), respectively. On 

the first glance we can establish that the shape of the group delay functions varies strongly 

with the window length. The longer windows produce much smoother group delay functions 

with very few, but clearly defined negative zeros crossings (NZC). Note that NZC instants 

identify the instants of acoustic excitation. For N=101, only the first three impulses are 
identified. The corresponding NZC onstants are clearly defined with the local gradient that 

is close to the ideals value of -1. The slight deviation from the ideal value is due to the 

presence of noise. For the slightly smaller window, N=61, the number of identified impulses 

is higher; first five as well as the last impulse are correctly identified. With further reduction 
in the window length, more impulses are detected, but only the closely spaced impulses are 
distinctly identified. For N=13 and N=21, the group delay function is much more jittery 

and it contains a number of spurious zero crossings. In such cases, the instances of zero 

crossing are less defined with the local gradient deviating further from the ideal, -1, value. 

It is evident that the ability of the group delay measure to identify the instances of acoustic 

excitations depends on the length of the group delay window and the distances between the 

successive excitations. With this simple experiment, we can establish that the optimal 

window length, as a fraction of pitch period length, should be in the range 0.5 < N< 2. If the 

window length is below this range, there will be moments when the group delay window will 

contain only noise. This will result in an increased number of spurious negative zero 

crossings and false detection. On the other hand, if the window length is too large, the ability 

to differentiate the individual excitations is impaired as more than a single excitation will be 

present in the group delay window at all times. However, it is interesting to observe that the 

last impulse in our idealized LPC residue is successfully identified even with the relatively 

large N=61 window. In the following section, we will investigate, in the context of a 

multiple-impulses problem, the effect of the excitation energy on the ability of the group 

delay measures to accurately detect the acoustic excitation instants. 

Group delay measures exhibit a form of shift invariance: If w(n) =1 and u(r) = u(N + r) =0, then 
di (r + 1) = di (r) - 1, where ie (A V, EW) . As such a gradient of -1 is expected for the ideal impulses. 
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Group delay response to multiple impulses 

The case of multiple impulses occurs when the group delay window is longer than the pitch 

period, or as it is often the case with the LPC residual, when the acoustic signal includes 

additional features, such as the false vocal cord excitations, vocal tract artifacts. 

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 
R 

Figure 3.2: NZC instance as a function ofparameter R 

In order to evaluate the response of group delay measures to multiple impulses, let us 

consider a general two impulse case: 

x(n) = (1- R) 8(n) + R8(n - no ) (3.5) 

, where no corresponds to the time lag between a pair of impulses and R controls their relative 
intensity levels. R values are constrained to 0<R <_ 1. With the test signal clearly defined, 

analytical solution for the energy weighted and the average group delay measures is reached: 

no NZCAV =1-bN/gcd(np, 
N) 

NZCEW = 
no 

1+b2 

(3.6) 

where b =1- R-'. gcd and NZC denote the greatest common divisor and negative zero 

crossing instant, respectively. Figure 3.2 shows the negative zero crossing function 

evaluated for a specific case, where N= 151 and no =100. 
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The results show that both group delay measures exhibit a bias towards the more intense 

impulse. For the energy weighted group delay measure, the negative crossing function 

exhibits a smooth transition from one impulse to another. On the other hand, NZC function 

of the average group delay is abrupt and can be described as a switch function with a sharp 

change occurring at, R=0.5. As such, the average group delay measure identifies the highest 

peak in the window. The energy weighted group delay is much more sensitive to the 

presence of extra impulses, whereby the identification accuracy is clearly compromised when 
the intensity of additional impulses is comparable to the intensity of the analyzed impulse. 

3.2.3 GCI estimation with the wavelet de-noised LPC residue 

The group delay based GCI estimation performance is evidently dependant on the quality of 

the acoustic signals. In the current implementation of the group delay measures, the vocal 

tract artifacts, aspiration noise, and other disturbances are removed from the LPC residue 

with the 2"d order Butterworth low-pass filter. In Chapter 4, we have developed an optimal 

wavelet thresholding strategy for the glottal volume velocity derivative signals. The 

denoising method is based on the translation invariant hard thresholding, 6-coefficient Coitlet 

filter and a decomposition level-7. Butterworth filtering is effective in removing the high 

frequency noise, but unfortunately it induces distortions in the underlying LPC residue signal. 

Although, it is desirable to remove the aperiodic features and noise from the LPC residue, we 

acknowledge that the group-delay-based GCI estimation relays on the prominence of the 

rapidly varying regions in the underlying signal corresponding to the glottal pulse peaks. 

Wavelet thresholding is able to preserve the slow, as well as the rapid variations in the 

underlying signal by exploiting the compactness property of wavelets i. e localizations in time 

and frequency. As such, wavelet thresholding is a much more sophisticated solution to this 

particular denoising problem. In the next section, we will evaluate if the proposed method 

can enhance the performance of the group delay measures as a replacement for the 

Butterworth filter. Furthermore, we will attempt to optimize the GCI estimation performance 

with respect to the group delay window length. 
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3.2.4 Performance evaluation on natural speech 

In this section, group delay measures are evaluated on a database containing a read speech 

sentence from five male and five female speakers. The corresponding electroglottographic 
(EGG) files are used as a reference source for the instants of glottal closure. Although, EGG- 

obtained glottal closure instants are themselves not entirely reliable, they constitute the best 

available GCI reference source. The performance of each GCI estimation method is 

evaluated in terms of detection rate, identification rate and identification accuracy. 
Identification rate is defined as a fraction of larynx cycles that contain exactly one negative 

zeros crossing instant in a group delay function. The detection rate measures the fraction of 
larynx cycles that contain any number of NZCs. If the correct NZCs could be distinguished 

from the redundant NZCs, then the identification rate and detection rate would equate. As 

such, detection rate indicates the capacity of a group delay measure to locate the acoustic 

excitations. Standard deviation of the identification errors (the discrepancy between the 

estimated and the actual acoustic excitations) is used as a measure of identification accuracy. 

Identification accuracy is evaluated for the glottal cycle that contain only one negative zero 

crossing. 

Note that in the presentation of experimental results, the group delay measures will be 

denoted as follows. 

" AV - average group delay 

" EW - energy weighted group delay 

" Den. AV- average group delay with the wavelet-denoised LPC residue 

" Den. EW - energy weighted group delay with the wavelet-denoised LPC residue 

Experiment 3. A: Fixed group delay window 

In this experiment, the optimal window length value is evaluated in terms of window length 

coefficients (WLC). The window length coefficient is defined as a factor by which the 

average pitch period value is to be multiplied to obtain the length of a group delay window. 
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Using the autocorrelation-based pitch estimation, the average glottal cycle length is estimated 

as 5.0 ms and 8.3 ms, for female and male speakers, respectively. The window length 

coefficient is varied in steps of 0.1 in the range defined as 0.5: 5 WLC <_ 2. The boundaries 

for WLC range are based on the qualitative evaluation of the grouped measures in Section 

3.2.2. Figure 3.3 shows the GCI estimation performance in terms of detection rate as a 
function of window length coefficient. The identification rate and identification accuracy 

values are shown in Figure 3.4 and Figure 3.5, respectively. The results suggest that the 

capacity of a group delay measure to detect acoustic excitations improves with the decreasing 

window length coefficient. At WLC = 0.5, both energy weighted group delay measures (EW 

and Den. EW) achieve a peak detection rate of 97.9 %. The average group delay measures 

(A V and Den. Ail achieve reasonably good detection rates for higher values of WLC, 

especially around the point WLC =1. 
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Figure 3.3: Detection rate as a function of Figure 3.4. Identification rate as a function 

fixed WLC. 
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Figure 3.5. Identification accuracy as a function of fixed WLC 
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On the other hand, the identification rate functions have the same general form, irrespective 

of the GCI estimation method. The optimal performance is achieved for some moderate 
WLC value. As the WLC is increased, or lowered away from the optimal WLC value, the 
identification rate gradually deteriorates. The average group delay (A V) attains the peak 
identification rate of 86.6%, for WLC=1.15. The performance of the energy weighted group 
delay (EW) is considerably better. The peak identification rate of 92.02% is reached for 

WLC= 1.4. 

The proposed change in the denoising method has had a positive effect on the performance of 
both group delay measures. The identification rate and identification accuracy are noticeably 
improved, especially for the lower window length coefficient values. These observations are 

in accord with out expectations, as they reflect a superior denoising performance of the 

wavelet thresholding method. Since, the presence of noise in the LPC residual is the 

principal cause of spurious NZCs in a group delay function, the frequency of false NZC 

instants increases when the group delay window is reduced below the glottal cycle length. 

Therefore, the effect of improved denoising is mostly evident for lower WLC values. The 

modified group delay measures, Den. AV and Den. EW, attain the peak identification rates of 

93.4 % and 95.8 %, at WLC=0.9 and WLC=I, respectively. The identification accuracy 

curves closely follow the identification rate curves. As such the optimal WLC values are 

generally the same for both performance measures. 

What we find interesting is that the identification accuracy of the energy weighted group 

delay has significant improved with the introduction of the wavelet-denoising method. In 

fact, the energy weighted group delay measure benefits considerably more from the change in 

the denoising method, than the average group delay. This observation can be explained by 

the multiple-impulse analysis presented in Section 3.2.2, where we have shown that in 

comparison to the average group delay, the energy weighted group delay measure is more 

sensitive to the energy levels of additional impulses within the group delay window. 
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Experiment 3. B: pitch synchronous group delay window 

In this experiment, pitch synchronous GCI estimation is evaluated for the same range of 

window length coefficient values as in the pervious experiment. However, in this case, the 

group delay window length is defined as a product of the glottal cycle length and the window 

length coefficient. The duration of consecutive glottal cycles is estimated via 

autocorrelation-based pitch estimation. The pitch trajectory is filtered with a 5`s order median 

filter in order to remove the effects of estimation inaccuracies and to allow gradual evolution 

of the group delay window size. The GCI estimation is evaluated in the same manner as in 

the pervious experiment. The detection rate, identification rate and identification accuracy 

results are reported in the Figure 3.6, Figure 3.7, and Figure 3.8, respectively. 

The general performance trends with respect to window length coefficient values have 

remained the same as for the fixed-window group delay analysis. The energy weighted group 

delay measures outperform their average group delay based counterparts. Also, the modified 

group delay measures, Den. EW and Den. A V, outperform the standard energy weighted and 

average group delay measures, EW and AV. Ultimately, Den. EW offers the best glottal 

closure instant estimation performance. At WLC=1, it attains the peak identification rate of 

98.59 % and the optimal identification accuracy of 0.423 msec. 

Compared to the energy weighted group delay (EW) measure with the fixed group delay 

window, the modified pitch synchronous energy weighted group delay measure (Den. EW) 

improves the identification rate and accuracy by 6.57 % and 0.158 ms, respectively. This 

represents a considerable improvement in the performance, especially if we consider that 

6.57% increase in the identification rate corresponds to 82.33 % reduction in the number of 

unidentified glottal excitations. As such, we will use this method to obtain the estimates of 

glottal closure instants throughout the thesis. 

We will end this section with a few general comments about the proposed GCI estimation 

method. Even for the optimal length of the pitch synchronous group delay window, the 

identification rate is below the detection rate for all GCI estimation methods including those 
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that implement the wavelet thresholding technique. This implies that the spurious negative 

zeros crossings are still present in the group delay functions. On closer inspection, we have 

ascertained that the vast majority of these false NZCs correspond to the peaks at glottal 

opening instants, and only few are due to noise. We would also like to note that in 

comparison to the glottal flow derivative waveform, LPC residue exhibits significantly 
different temporal and spectral characteristics. Thus, the proposed wavelet thresholding 

method might not be the optimal denoising solution for this type of signal. We would expect 
further, but not considerable, improvements in the GCI estimation performance if the wavelet 

thresholding is optimized for the LPC residual, specifically. 
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Figure 3.6. " Detection rate as a function of pitch 
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3.3 Source-filter deconvolution and voice source properties 

Voice source estimation via inverse filtering implies strong assumptions about the glottal 

volume waveform and the transfer function of the vocal tract. As such, the inverse filtering 

results are regarded as the glottal flow estimates and not the actual glottal waveforms. It 

might sound trivial, but the distinction is very important when discussing the quality of voice 

source reconstruction and the performance of voice source parameterization. Essentially, 

most of the inadequacies of the source-filter model of speech production, as well as the 

inaccuracies in the inverse filtering implementationt are manifested in the voice source 

estimate waveforms. In voice quality profiling, whereby one seeks to obtain a parametric 

representation for the perceived voice textures, the vocal tract artifacts and the artifacts of 

nonlinear source-filter coupling are seen as forms of voice source degradations that conceal 

the actual voice source signal and the true voice source parameters. On the other hand, in 

speech synthesis, voice source estimate represents the actual signal that needs to be 

adequately modeled in order to achieve faithful speech reconstruction. 

Another important voice source processing issue is that the manner in which the vocal fold 

vibrations and the corresponding glottal flow waveforms are realized varies from one speaker 

to another. Some speakers have widely abducted phonations, where the vocal folds may 

never fully close, while for other speakers, phonation may be adducted with complete and 

rapid glottal closures. The closure of vocal folds can occur simultaneously along the length 

of vocal folds, or it can occur in a zipper like manner. The extent of aperiodicity and 

aspiration noise can also vary between speakers. §vec et al. have demonstrated, via 

videokymography, that the deviations from the idealized vocal fold behavior, readily occur 

among the healthy people without any voice disorders [133]. For speakers with the distinctly 

adducted phonation, complex vibratory patterns can emerge, and often "ripples" are seen in 

the vibrations of the vocal folds. Healthy speakers with creaky phonation can have irregular 

vocal fold vibrations with sub-harmonic patterns, such as double opening. Normal larynges 

t Inaccuracies in the inverse filtering implementation are generally related to the estimation of glottal closure 
instants and the closed-phase intervals in the consecutive glottal cycles. 



Ch. 3: Voice Source Estimation 63 

are found to be rarely symmetric, and often there is a degree of phase delay between the vocal 
folds. This phenomenon can affect the voice texture, and under the extreme situations, such 

as high pitch and intensity, voice can sound completely hoarse. Zannger et al. have 

investigated the acoustic characteristics of the distorted tones that are commonly heard in 

rock music [149]. They have found that the "distorted" voice texture is associated with the 

vibrations of the supraglottal mucosa (including the ventricular folds, aryepiglottic folds and 

the anterior part of the mucosa that covers the arytenoid structure), and very complex and 

structurally rich glottal flow derivative realizations. 

In this section, an overview of the closed-phase pitch-synchronous inverse filtering method 
for obtaining the glottal flow derivative estimates is presented. Subsequently, we will 

describe a formant modulation analysis technique. Both techniques are employed on a range 

of voice qualities, including two examples of pathological voices, to enable a comparative 

study of the temporal structure of the glottal flow derivative estimates in relation to an 
idealized view of voice source realizations as defined by Liljencrants-Fant model. 

3.3.1 Closed-phase inverse filtering 

According to the source-filter theory of speech production, illustrated in Figure 2.2, the 

transfer function of the voiced speech can be expressed as: 

cr, ý e IWýN vi., ý A17N 
_A 

G(z) R(z) 
u\"J -/a výý. ý r l°J £%-. J - 

H(z) 
(3.7) 

where G(z) denotes the z-transform of the glottal flow over a pitch period; A is the gain factor; 

V (z) =1 / H(z) describes the minimum-phase all-pole vocal tract transfer function; R(z) 

corresponds to the radiation load. The combined effect of glottal flow, radiation load and gain 

can be expressed as b(n) =A g(n) * r(n) . Since radiation load can be represented by a 

differencing filter, r(n) = 8(n) - 8(n -1) [49], [95], the sequence b(n) describes a scaled 
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glottal flow derivative over one pitch period. Thus, the voiced speech signal, s(n) can be 

modeled as: 

s(n) _ý h(k)s(n - k) + b(n) * J,, 5(n - mP) (3.8) 
k=1 m=-w 

where P(z) denotes a periodic impulse train with a period P, where p[n] = 2]k 8[n - kP]. 

In voice source analysis, it is generally assumed that the sequence b(n) is shorter than the 
length of the glottal cycle, such that there exists a region C in which the difference equation 
(3.8) is not driven by b(n). This interval corresponds to the closed-phase region of the glottal 

pulse cycle, minus one sample to account for the affect of the lip radiation term. During the 

closed-phase interval, the speech signal is related to the vocal tract coefficients as: 

s(n) =t h(k)s(n - k), nEC 
k=1 

(3.9) 

As such, an estimate of the glottal flow derivative can be obtained by inverse filtering the 

speech waveform with the all pole vocal tract model that is derived over the closed-phase 
interval of the glottal cycle. This is the basic principle behind the closed phase pitch 

synchronous analysis [147], [27], [148]. 

The most challenging aspect of the closed-phase pitch synchronous analysis is obtaining 

accurate estimates of the closed-phase intervals. In regards to closed-phase estimation, a 

variety of approaches have been proposed, but the following methods have emerged as the 

most popular. Wong et al. [147], and Cummings and Clement [27] use a one-sample-shift 

sliding covariance analysis of the speech waveform and a function of the linear predictor 

error to obtain the closed-phase estimates. On the other hand, Plumpe and Quatieri use the 

sliding covariance analysis and the vocal tract formant modulation analysis to estimate a 

stationary formant region which is associated with the closed-phase glottal cycle intervals 

[114]. The closed-phase intervals can also be estimated via the analysis of 
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electroglottographic signals [20]. In this thesis, we will adopt the closed-phase pitch 
synchronous inverse filtering of recorded speech as the means for obtaining the glottal flow 
derivative estimates. Furthermore, we will use a one-sample-shift, sliding covariance 

analysis and a function of the linear predictor error to obtain the closed-phase interval 

estimates. 

3.3.2 Formant modulation analysis 

Formant modulation analysis is a term that describes the study of formant frequency 

movement within a glottal cycle. Since formant modulation (movement) is a result of time- 

varying non-linear source/vocal tract coupling, it is expected to be more prominent during the 

glottal open phase than during the closed phase, when the vocal folds are closed [4]. 

Correspondingly, the closed-phase of a glottal cycle can be estimated as a region during 

which formants are relatively "stationary". In addition, the extent of formant modulation 

during the glottal open phase can be used to indicate the level of source/filter coupling during 

speech production. Here, we present a brief overview of formant modulation analysis. A 

more detailed discussion is given in [ 114]. 

Formant Modulation 

In comparison to other formants, the first vocal tract formant exhibits the strongest dynamics 

after the onset of the open phase, and a higher degree of stationarity during the closed-phase 
interval. Thus, the formant modulation analysis is usually performed on the first formant. 

The trajectory of the 1S` formant is estimated over the glottal cycle duration using a one- 

sample-shift sliding covariance based linear prediction analysis. The analysis is initiated at 

one sample after an identified GCI mark, and is followed until the end of the last window 

reaches the next GCI mark. Hence, there are N-Nw number of windows over each glottal 

cycle, where N and Nw denote the pitch period and the analysis window lengths, respectively. 
Vocal tract coefficients are estimated for each analysis window using an all pole vocal tract 
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model of order, p=14.1S` formant trajectory is obtained by performing a Viterbi search on a 

space constrained to the four lowest poles with the bandwidths less than 500 Hz; 

The size of the analysis window is a crucial factor in the formant modulation analysis. The 

lower limit of the analysis window size is dictated by the prediction order. In order to avoid 

failure of Cholesky decomposition, N,, is required to be at least three samples longer than the 

prediction order. On the other hand, the upper constraint is governed by the amount of 

available data, i. e. the length of the glottal cycle. A meaningful formant modulation analysis 

requires the analysis window length to be a fraction of a pitch period length. Thus, the length 

of the analysis window is set to N�, =N/4, as long as the linear prediction order constraint is 

satisfied. Increasing the length of the analysis window beyond twice the prediction order is 

detrimental to the time resolution, while not having much effect on the accuracy of the 

formant modulation analysis. 

Initial stationary region 

Having obtained the formant trajectory, the next step is to identify the stationary formant 

region and the onset of formant modulation. In order to mark the onset of the open phase, an 

adaptive threshold on the degree of formant modulation is required. A fixed formant 

modulation threshold would not be able to provide accurate and consistent performance 

across the range of voice quality types and speakers. 

Adaptive threshold is based on a statistical analysis of the formant values. The first step in 

this statistical approach is to identify a region of the formant trajectory that exhibits the 

highest degree of local stationarity. This glottal cycle interval is referred to as the initial 

stationary formant region (ISFR) and it can be estimated via the following algorithm: 

n+4 

ISFR=argminEIF(i)-F(i-1)I , 15n<N-N,, -5 (3.10) 
n i=n 

where F(i) denotes the 1St formant's value at the ith sample after the instant of glottal closure. 

A conservative amount of data (five formant values) is used in an attempt to avoid taking 
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formant values that are possibly outside the stationary region. Subsequently, a statistical 
model of formant modulation is developed for the initial stationary region. Gaussian 

distribution is used for this purpose. 

Full stationary region 
The next step is to expend the initial stationary region with the neighboring points that are 

statistically similar to the initial stationary region. The expansion is done by a one-sample- 

shift using the following principle: if the next formant value is less than two standard 

deviations away from the mean value of the statistical model, it is associated with the 

stationary region. As the initial stationary region is expended to the right, the statistical 

model of the stationary formant region is adapted to include the "new points". Once the 

formant deviation from the statistical mean exceeds the threshold of two standard deviations, 

the formant value is considered to be outside the stationary formant region and the expansion 

stops. This point marks the onset of the open phase of glottal cycle and the start of formant 

modulation. Subsequently, the stationary formant region is expanded to the left to identify 

the onset of the stationary region. Again, a threshold of two standard deviations is used. 

However, in the expansion to the left, the statistical model of formant modulation is not 

adapted as the model is already well established. Furthermore, in some cases, the movement 

of the 1 s` formant prior to the initial stationary region can be very gradual and further update 

could lead to inaccurate threshold estimates. It is important to note that for high pitched 

voices, where the glottal cycle is below 7 ms, the size of the analysis window will be over- 

constrained. In such cases, it is assumed that both the source and the vocal tract are 

stationary over multiple glottal cycles and the covariance analysis window is split into two 

parts across two successive pitch periods. 
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3.3.3 A study of glottal flow derivative estimates 

The closed-phase pitch synchronous inverse filtering and the vocal tract formant modulation 
analysis are performed on a segment of sustained vowel /a/ for 5 male speakers with different 

types of phonation and voice quality. The dataset includes modal voice, creaky voice, 
breathy voice, and two examples of voice disorder, laryngeal cancer and vocal fold paralysis. 
The dataset is sampled at 10 kHz. Vocal tract poles are estimated over the glottal closed- 

phase regions, as determined by the formant modulation analysis, using the covariance 

method of linear prediction with a 10 order predictor. The results for creaky voice, breathy 

voice, vocal fold paralysis, laryngeal cancer, and modal voices are shown in Figure 3.9 - 
Figure 3.13, respectively. The top panels display the speech waveforms. The 1' formant 

trajectories and the formant stationary regions are shown in b) panels. The bottom panels 
display the estimates of the glottal flow derivative waveforms. Note that the formant 

trajectory graphs correspond to 75% of glottal cycle duration, as prescribed by formant 

modulation analysis procedure. The time domain labeling of both panels is referenced to the 

identified glottal closure instant. 

In each of five examples, the estimated formant trajectories exhibit clearly defined formant 

stationary regions. The most extensive formant modulation is observed in vocal fold paralysis 

examples and breathy voice. On the other end of the scale is the modal voice with the 

weakest formant modulation. An interesting observation is that the stationary formant 

regions do not always coincide with the closed-phase intervals according to the Liljencrants- 

Fant's representation of glottal flow derivative waveforms. In the instances of laryngeal 

cancer and breathy voice, the stationary formant regions extend well beyond the nominal 

closed-phases, whereas for modal and creaky voices, the formant modulation onsets occur 

prior to the nominal open phases. In the breathy voice example, inspection of the glottal flow 

derivative estimate suggests that vocal folds do not fully close. However, the results of 
formant modulation analysis reveal a clearly distinct region in which formants are stationary 

indicating a lack of source-filter coupling and a complete vocal fold closure. In both, modal 

and creaky voices, the formant modulation onset occurs before the onset of the nominal open 
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Figure 3.9: Creaky voice; 

a) speech signal; 
b) formant trajectory; 
c) glottal flow derivative waveform. 
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Figure 3.10: Breathy voice; 
a) speech signal; 
b) formant trajectory; 
c) glottalfow derivative waveform. 
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Figure 3.14: Glottal flow derivative estimates (solid 
thick line), synthesized LF waveforms (solid thin line), 
and the corresponding LF modeling residue (dotted 
line). 

phase and coincides with the onset of formant ripple. The term "ripple" is used to describe a 

sinusoidal-like perturbation that overlays the glottal derivative waveform. It arises from the 

time-varying non-linear coupling of the glottal flow with the vocal tract, primarily with the 

first formant resonances [21 ]. Thus, this phenomenon is also referred to as the first formant 

ripple. Thus, we are lead to infer that the vocal folds must have been partly open during the 

nominal closed-phases. In other voice example, the ripple is considerably suppressed or non 

existent at all. The speakers also exhibit varying amounts of turbulence in the voice source 



Ch. 3: Voice Source Estimation 71 

realizations. In laryngeal cancer and creaky voices, a high degree of turbulence is present in 

the voice source estimates suggesting a narrow and parallel vocal fold opening, rather than a 

triangular opening. The laryngeal cancer also exhibits a specific phenomenon that is not 
found in any other speaker; the voice source signal is highly irregular and two distinct types 

of glottal flow derivative realizations can be observed. Ultimately, the reason for the varied 
displays of the glottal flow derivative waveforms relates to the fact that the laryngeal settings, 

geometry, and physiology are different for each individual [4], [44]. 

We have employed a signal to noise ratio measure to establish the extent by which the 

Liljencrants-Fant's model can be used to represent the voice source estimates. Firstly, the 

glottal flow derivative estimates are parameterized using Alku, and Vilkman's direct 

estimation method [2]. Manual corrections were made when deemed necessary. The results 

of parameterization are displayed in Table 3.1. Subsequently, the Liljencrants-Fant's 

waveforms are subtracted from the glottal flow derivative estimates to obtain the modeling 

residual signals, i. e. vr(n) = vg(n) - VLF(n). The modeling SNR values are obtained as 

SNR =101og, o vg (n) (vg (n) - vLF (n)) 

r=o ; =o 

(3.11) 

, where N refers to the glottal cycle length. For each speaker, the modeling SNR value is 

evaluated and presented in Table 3.2. 

Table 3.1: Liljencrants-Fant's describing the synthetic waveforms in 
Figure 3.14, expressed as a percentage of glottal cycle duration 

Stimuli Tp [%] Te [%] TT [%] TQ [%] F)) [Hz] 

Creaky voice 8.17 9.15 34.13 13.74 76.34 

Breathy voice 64.22 78.90 98.00 1 1.01 91.74 

Vocal fold paralysis 43.00 61.00 86.00 15.00 103.09 

Laryngeal cancer 48.00 75.00 98.33 10.20 169.50 

Modal voice 36.26 40.66 59.34 9.80 111.11 
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Table 3.2: Modeling SNR for five speakers 

Creaky Breathy V. f paralysis Cancer Modal 

4.10 dB 8.92 dB 14.49 dB 6.88 dB 9.86 dB 

In Figure 3.14, we have displayed the estimated glottal flow derivative waveform, the 

synthesized Liljencrants-Fant's waveform, and the corresponding LF modeling residue, for 

each of 5 speakers. Note that Tja denotes the glottal opening instant obtained via formant 

modulation analysis, while Te marks the glottal closure instant. Since there is more than 10 

dB difference between the best (vocal fold paralysis) and the worst (creaky voice) modeled 

voice source signal (see Table 3.2), we are inclined to suggest that the ability of the 

Liljencrants-Fant's model to represent the voice source signal may be speaker dependant. In 

order to substantiate this proposition, a study of LF residue waveforms needs to be conducted, 

as in [ 114]. In [ 114], the authors have focused on the modal voices, only. Their findings 

indicate that the first formant ripple and aspiration noise are the predominant features of the 

LF residual waveforms. Given that our study includes a wider range of voice quality types, 

we are able to conduct a more conclusive analysis of the residue waveforms. 

Interestingly, in relation to modal voice, our results are in accord with those presented in 

[114]. However, in other examples, we have also identified the inadequacy of LF model to 

represent the complex temporal features in the voice source signal as jet another significant 

contributor to modeling error. In breathy voice, the ripple frequency is not anywhere near the 

formant frequencies as it is the case with modal voice. The graph in Figure 3.10 b) shows 

that there is very little formant modulation during glottal abduction. Thus, we believe that the 

observed "ripple" constitutes an integral part of the speaker's voice source signal. Creaky 

voice is an interesting case as well. It contains comparable amounts of first formant ripple, 

modeling error' and aspiration noise. The first formant ripple dominates over more than the 

first half of the abduction phase, while the modeling error and aspiration noise occupy the 

regions just prior and after the glottal closure instant, respectively. All three residual 

elements are clearly visible and seem to exist in temporal isolation. In the laryngeal cancer 

I For the purpose of simplicity, the term, modeling error is from here on used to specifically denote those features of the residual signal that 
can not be attributed to either aspiration noise or the formant ripple. 
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instance, the modeling residue waveform exhibits a high degree of irregularity. The formant 

ripple is a dominant residue feature only for the middle of the three glottal pulses. In other 

pulses, high frequency aspiration noise and modeling error are the principal elements of the 

residual structure. The last remaining subject of our analysis, vocal fold paralysis, displays 

by far the most idealistic voice source waveform. In addition, its modeling residue does not 

contain any significant amounts of formant modulation artifacts nor turbulent components 

related aspiration noise. Thus, the modeling SNR is notably higher than in other examples. 
Overall, these results show that the main residual features, namely, formant ripple, aspiration 

noise and modeling error, are a direct consequence of an over simplistic view of vocal fold 

realization that is adopted by the Liljencrants-Fant's model. The relative energy distribution 

of the individual residual elements exhibits drastic variation across speakers and phonation 

types. This fact alone constitutes a notable evidence that the fine glottal flow derivative 

structure might be an important correlates of speaker individuality and possibly voice quality. 

3.4 Conclusion 

Closed-phase pitch-synchronous inverse filtering and a formant modulation analysis 

technique are employed on a range of voice qualities types, including two examples of 

laryngeal pathology, to enable a qualitative evaluation of the temporal structure of glottal 

excitation estimates. The results of our study suggest that due to the inherent complexity of 

glottal flow realizations, the inadequacies of the source-filter model of speech production and 

the inaccuracies in the implementation of inverse filtering, more often than not, voice source 

estimates do not completely comply with the idealized waveforms of Liljencrants-Fant's 

glottal flow derivative model. In the best of circumstances, Liljencrants-Fant's model 

provides enough degrees of freedom to adequately represent only the general shape or the 

"coarse structure" of the glottal flow derivative waveforms. The fact that Liljencrants-Fant's 

model can not represent complex voice source realizations nor the formant modulation 

ripples is a serious deficiency of this model. In the LF representation, the fine glottal flow 

derivative structure is discarded and correspondingly, some of the information related to the 
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voice individuality and voice quality is inevitably lost. Furthermore, formant modulation 

analysis has shown that Liljencrants-Fant's parameters do not always accurately identify the 

significant events in the vocal fold dynamics, and thus, the process of LF-based voice source 

parameterization carries an inherent degree of fallibility. Presumably, these limitations are 

manifested in the qualities of LF-based speech synthesis and related voice quality conversion 

methods. Thus, we deem that a more sophisticated model is required to satisfy the 

requirements of the state of the art speech processing applications. In this chapter, we have 

also considered a group delay approach to GCI estimation. Specifically, average group delay 

and energy weighted group delay measures are discussed in detail. We have proposed a GCI 

estimation method based on a group delay algorithm and the translation-invari ant hard- 

thresholding of LPC residue. Thresholding is performed with the 6-coefficient Coiflet filter 

and a primary resolution level-7. The proposed method is based on a study, presented in 

Chapter 4, where we have aimed to develop an optimal wavelet thresholding strategy for the 

glottal volume velocity derivative signals. The performances of the two group delay 

measures and the proposed method are evaluated for a range of fixed and pitch-synchronous 

group delay window lengths. We have found that in comparison to the energy weighted 

group delay measure with a fixed group delay window, the pitch synchronous energy 

weighted group delay measure with the wavelet-denoised LPC residue improves the 

identification rate and accuracy by 6.57 % and 0.158 ms, respectively. This represents a 

considerable improvement in the performance, especially if we consider that 6.57 % increase 

in the identification rate corresponds to 82.33 % reduction in the number of unidentified 

glottal excitations. In large, these results reflect a superior denoising performance of the 

wavelet thresholding method. In the standard implementation of the group delay measures, 

the vocal tract artifacts, aspiration noise, and other disturbances are removed from the LPC 

residue with the 2"d order Butterworth low-pass filter. Unlike Butterworth filtering, wavelet 

thresholding is able to preserve the slow, as well as the rapid variations in the underlying 

signal by exploiting the compactness property of wavelets i. e localizations in time and 

frequency. We would expect further, but not considerable, improvements in GCI estimation 

performance if the wavelet thresholding is optimized for the LPC residual, specifically. 



Chapter 4 

Voice Source Denoising 

ABSTRACT 

Estimates of voice source signal obtained via closed-phase pitch-synchronous inverse 
filtering of recorded speech exhibit complex temporal and spectral features and to 
various degrees contain elements of aspiration and processing noise. In this chapter we 
attempt to develop an optimal wavelet-based de-noising strategy for voice source signals. 
Wavelet thresholding techniques are preferred over the traditional linear denoising 
methods, primarily because they exhibit near optimal properties in the minimax sense 
and offer a better rate of convergence. Our principal aim is to preserve the shape of a 
non-stationary signal that is observed in additive noise for further glottal excitation 
analysis, e. g. voice source parameterization. We acknowledge the fact that even a small 
degree of over-smoothing can considerably compromise the authenticity of the 
parametric voice quality description. Thus, denoising distortion measures, in 
conjunction with SNR enhancement, are employed as the performance evaluation 
criterion. We compare an assortment of thresholding estimators, including the classical 
term-by-term thresholding methods, block thresholding methods and a Bayesian 
method, in an extensive simulation study on six commonly cited voice quality types and 
a variety of priori noise levels, wavelet basis functions, and decomposition levels. The 
results show that the relationship between the thresholding parameters and the 
thresholding performance is highly non-linear. Short wavelet filters tend to have 
inadequate approximation properties, while more regular wavelets, corresponding to 
higher filter orders, have better decorrelating properties at the expense of temporal 
compactness. The choice of decomposition level is also found to have a strong effect on 
the quality of the reconstructed signal and in particular around the instants of glottal 
closure. Ultimately, the optimal denoising strategy is associated with translation 
invariant hard thresholding, decomposition level-7 and Coifl wavelet basis function. 
The results obtained on natural voice source data suggest that the superior 
performance of this denoising strategy can be attributed to its effectiveness in 
suppressing the pseudo-Gibbs artifacts. 

M Introduction 

4.2 Wavelet estimators in nonparametric regression 
4.2.1 Thresholding functions 
4.2.2 Thresholding methods 

4.3 Developing the optimal denoising strategy for glottal flow derivative signals 
4.4 Results and discussion 

4.5 Conclusion 
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4.1 Introduction 

Deconvolution of the aperiodic features from the periodic components in the voice source 

estimates is an important aspect of voice source analysis. The problem, is to recover the 

underlying signal from a voice source estimate without inducing a significant level of 

distortions in the recovered signal. We want to preserve both, the slow and rapid variations 
in the glottal flow derivative waveforms in order to allow accurate parameterization of the 

voice source signal. In particular, we are concerned with preserving the original glottal pulse 

shape in the region of the glottal closure instants as we are aware that even a small degree of 

over-smoothing can considerably compromise the authenticity of the parametric voice quality 

description. The glottal flow derivative estimates obtained via closed-phase pitch 

synchronous inverse filtering tend to exhibit a range of features in both temporal and spectral 

domains. Thus, the denoising methods based on a time-frequency representation of signals 

should, in theory, provide better denoising performances than the standard linear methods. 

Unlike other standard orthonormal bases, wavelets are localized in time and frequency. 

Signals exhibiting rapid local changes can be well represented with just a few wavelet 

coefficients. Heisenberg's principle states that modeling of time-frequency phenomena can 

not be accurate in time domain and frequency domain simultaneously. However, by their 

inherent nature, wavelets provide an automatic tradeoff of the time-frequency accuracy and 

are able to manage the constraints related to Heisenberg's principle in a data dependant 

manner. 

Weaver et al. [146] are generally regarded as the first researchers to use wavelet transforms 

for the purpose of suppressing noise. They have proposed a novel method, essentially, a hard 

thresholding scheme, for denoising magnetic resonance images. Their results highlighted 

preservation of edge sharpness as the principal advantage of the wavelet-based denoising. 

Subsequently, Donoho and Johnstone [37] mathematically derived several important 

properties of wavelet thresholding. They showed that wavelet thresholding exhibits near 

optimal properties in the minimax sense and offers a better rate of convergence than the 

conventional linear denoising methods. Since then, much of research effort has been 
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dedicated to methods for threshold estimation, while the importance of other thresholding 

factors or specifically, the choices of a wavelet basis function and a primary resolution level 

are commonly neglected. Hall and Patil [61 ] initiated the research work in primary resolution 

(decomposition) level optimization. Their results unequivocally show that the choice of 

primary resolution can have a significant influence on the thresholding performance. 

Subsequently, Härdle, et al. [63] suggested that the primary resolution level should be 

asymptotically prescribed by the following equation: jo (n) =1og2 (109(n))+'. Nevertheless, 

there is a general consensus among researchers, e. g Hu & Loizou [74], Fadili & Bullmore 

[41 ], that the optimal resolution level is best determined via simulation experiments, where a 

full range of resolution levels is systematically evaluated. As far as the choice of wavelet 

basis function is concerned, researchers commonly disregard other alternatives and 

automatically opt for the Daubechies' family of wavelets with some moderate number of 

vanishing moments, e. g. Zhang & Luo [150], Lu, [96]. Although, this type of wavelet basis 

exhibits good approximation properties for a wide range of signals, ultimately, the optimal 

choice and order of wavelet basis depends on the dominant features of the underlying signal. 

In the context of voice source processing, there has been some effort to apply wavelet 

thresholding techniques on the glottal excitation signals; most notably by Hui-Ling Lu [96]. 

However, this PhD thesis presents a very limited study in a sense that only a single voice 

quality type and a single priory SNR value are considered. In addition, the author does not 

attempt to optimize any of the thresholding parameters for the voice source signal, 

specifically. 

The chapter is organized as follows. In Section 4.2, an overview of wavelet thresholding is 

presented. In our study, we have included a range of commonly used thresholding methods 

such as Universal thresholding, SureShrink thresholding, Hybrid-Sure thresholding, 

Translation-Invariant thresholding, Hypothesis-Testing-based thresholding, Block 

thresholding, and Bayesian Adaptive Multi-resolution Smoother. A brief description of these 

methods is also provided. In Section 4.3, we have introduced a set of experiments designed 

to attain an optimal denoising strategy for voice source signals. Note that the optimal 

denoising strategy for voice source signals is first developed on simulated signals and is 
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eventually evaluated on the natural acoustic data. The results of these experiments are 

reported and discussed in Section 4.4. Section 4.5 concludes the chapter. 

4.2 Wavelet estimators in nonparametric regression 

Let us consider the standard wavelet shrinkage or nonparametric regression model: 

y; =g; +w; i=0,..., N-1 (4.1) 

where the signal, g; is corrupted with additive white Gaussian noise w, - N(0, a 2) with zero 

mean and variance 62 . 
The aim is to recover the underlying signal g; from the observed 

noisy data yj without assuming any parametric structure for g. The signal, gi is only 

assumed to have a prescribed level of regularity. Wavelet thresholding methods exploit the 

fact that the energy of a signal with a certain amount of regularity is concentrated in a few 

coefficients in the wavelet domain, whilst the noise energy is expected to be uniformly 

distributed among the wavelet coefficients. Thus, the thresholding methods aim to discard 

the smaller coefficients associated with noise and retain the larger coefficients that represent 

the underlying signal g. In general, implementation of wavelet denoising is based on a three- 

steps procedure involving wavelet decomposition, non-linear thresholding and wavelet 

reconstruction. Note that for understanding the material presented in this chapter a 

familiarity with wavelet theory and its signal processing applications is required. The author 

strongly recommends the following book [145]. 

4.2.1 Thresholding functions 

Thresholding functions are critical to the performance of wavelet based denoising methods as 

they dictate the level and the manner of wavelet coefficient attenuation. The two commonly 

used thresholding functions, Hard and Soft thresholding, are illustrated in Figure 4.1. Hard 
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thresholding is based on a discontinuous function that discards the wavelet coefficients with 

the absolute value below a certain threshold, and retains all the other coefficients. It is often 

referred to as "keep" or "kill" rule. Soft thresholding also discard the coefficients with 

absolute values below the threshold. However, the remaining coefficients are shrunk towards 

zero, rather than left completely unchanged. As such, the soft thresholding rule is referred to 

as a "shrink" or "kill" rule. The main distinction between these two types of thresholding 

functions is that soft thresholding does not introduce discontinuities in the signal around the 

threshold value. The mathematical description for the hard and soft thresholding functions is 

presented in (4.2) and (4.3), respectively. 

8z (djk) 

x 

/ 

SZ (d 
jk 

) 

d; k 
d; k 

a) Hard thresholding b) Soft thresholding 

Figure 4.1: Hard thresholding and soft thresholding 
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, where dk 
,j= jo, 

... , 
J- 1; k=0, 

... , 2'-1 corresponds to empirical wavelet coefficients. 

Many other thresholding rules have been developed, such as nonnegative garrote 
thresholding [56], firm thresholding [55], SCAD thresholding [6] etc... However, in practical 

applications, the soft and hard thresholding are by far the most commonly employed 
thresholding rules, and for those reasons only they will be considered in this thesis. 

A choice of threshold levels is crucial for the performance of wavelet based denoising 

systems. The threshold estimators aim to select a threshold value that has a high probability 
of being just above the maximum level of the noise coefficients. What follows is a brief 

overview of the thresholding methods that are considered in our attempt to develop the 

optimal denoising strategy for voice source signals. 

4.2.2 Thresholding methods 

Universal threshold 

Donoho and Johnstone proposed a simple but very effective wavelet shrinkage method 
(VisuShrink) based on the universal threshold for each scale [35]. The universal threshold is 

defined as: 

Au =Q 
21og N (4.4) 

, where a2 and N denote the noise variance and the signal length, respectively. 

Since the universal threshold estimator relies only on noise variance value and not on the 

input signal, it can be efficiently implemented. However, it tends to overestimate the 

threshold level and in many occasions it over-smoothes the noisy signal [37]. 
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SureShrink threshold 

Donoho and Johnstone proposed a method whereby empirical wavelet coefficients are 

thresholded at each resolution level j based on the threshold value '% [37]. The proposed 

method relies on the Stein's unbiased risk criterion to obtain an unbiased estimate of I2-risk. 

Let us consider the principal denosing problem in (4.1), and suppose that {X, , ..., Xs } are 

independent s-dimensional random variables N(1u,, 1), i=1,1,. .., s. The problem is to estimate 

the mean vector u= (µ, ,...,. us )' with minimum 12-risk. Stain showed that for a nearly 

arbitrary nonlinear biased estimator its 12-loss can be estimated in the unbiased fashion. For 

any estimator g that can be expressed as ji(X) =X +g(X) , where function 

g= (g; ),: Rs ->Rs is weakly differentiable, Stein states that IIji(X) - , UIIZ can be 

formulated as: 

E,, IIA(X)-, u1I2 =s+Eý, {Ilg(X)I12+2o- g(X)} (4.5) 

where 2V " g(X) _ 
a' 

. ' ag s 

Applying the soft thresholding rule on (4.5) we can obtain the unbiased estimate of 12-risk. 

(IX; In'Z)2 (4.6) SURE(Ä; X)=d-2"#{i: IX; I <_Ä) +2 
, _ý 

where E,, SURE(,; x) = El, Il p" (X) - NII2 ;# denotes the cardinality of a matrix. 

The SURE threshold estimator is set to minimize the 12-risk estimate as: 

2 =arg min SURE(,; X) (4.7) 
OsAsA' 
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, or equivalently: 

, lS = arg min SURE(A; ' ), j= jo,..., J-1; k=0, 
..., 2/-1 

O5i52 Q 

82 

(4.8) 

where A* = f2 logs 
, and Au 6 2logN with N= 2' . Donoho and Johnstone [37] 

proposed a robust estimate of noise level: 

MADj 
x 6' 

0.6745 
(4.9) 

where MADJ,,, denotes the median absolute deviation of all wavelet coefficients at resolution 
level j. The normalization factor is derived from the fact that the expected median magnitude 

of a zero mean Gaussian white noise sequence of variance 62, is given by 0.67456. The 

estimator is very robust and accurate, and as such, it is used by most thresholding methods. 
Johnstone and Silverman have shown that the SURE threshold estimator can also be applied 
in the presence of correlated noise [80]. 

Hybrid Sure threshold 

Donoho has shown that in the instances of severe sparsity of wavelet coefficients, such as 

when the noise dominates the input signal X= {x}, "_, 
, the universal threshold outperforms the 

SURE threshold [36]. For that reason Donoho and Johnstone [37] developed a heuristic 

SURE estimator where a threshold value is selected as either SURE or Universal based on a 

comparison of sd and 'd values. The heuristic SURE estimator is given as: 

_ 
Jv 21og N, sa _< ý 

�- ýS, sd >ý 
(4.10) 

N3 

where sä =1x; _Q2 and Ad = (1og2 N) 2. As is obtained according to (4.8). -rN N ý_ý 
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Translation-Invariant threshold 

Translation invariant thresholding was first introduced by Coifinan and Donoho in [25]. The 

method is developed with the purpose to reduce the thresholding artifacts associated with the 

pseudo-Gibbs phenomena around the discontinuity points. This achieved by averaging out 

the translation dependence. Essentially, the process involves shifting of data, denoising of 
the shifted data, and back-shifting of the reconstructed data. The procedure is repeated for a 
full range of circulant shifts and the average of the reconstructed signal is taken to represent 
the denoised signal. 

The translation invariant wavelet thresholding estimator for data y= (yi, y2, y3 ... , y, J is 

defined as : 
1n/ 

(WSk )f s. 
i 

(WSky) 
n k=1 

where Sk denotes the shift matrix: 

Sk 
Okx(n-k) Ikxk 

= 
I(n-k)x(n-k) 0(. 

-k)x k 

(4.11) 

(4.12) 

The term Sz corresponds to a thresholding rule type (e. g. soft or hard). W represents the nth 

order orthogonal DWT matrix; I and 0 denote the identity matrix and zero matrix, 

respectively. The subscripts denote matrix dimensions. 

In this thesis, we will consider translation invariant thresholding with both hard and soft 

thresholding rules. Translation invariant methods will be based on the thresholding level 

that is recommended by Coffman & Donoho A=Q 21ogj(n loge (n)). They have 

suggested that the lower thresholding levels can have counterproductive effects, whereby the 

extent of the thresholding artifacts is higher than for the non-invariant thresholding methods. 
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Thresholding as a Recursive Hypothesis Testing Problem 

Ogden & Parzen proposed a hypothesis testing procedure with the level dependant thresholds 

[113]. In this thresholding method, wavelet coefficients are retained only when there is 

strong evidence that they are required for reconstruction. Let us consider {Xi, X2, X3 ..., XS} as 
independent random variables N(u1,1), that represent the observed wavelet coefficients at 

any level j=Jo..... J-1 with s= 22. In addition, let IS denote a non-empty subset of 

indices {l, ..., s). The multiple hypothesis testing problem can be expressed as follows: 

Ho :, u, = 0, iE Ir vs H, : ft, ;,, - 0, iE Is and u, =0 for all io IS . (4.13) 

The hypothesis is tested with the standard likelihood ratio test (LRT). If IS cardinality is 

known, say equal to k, then the standard likelihood ratio test statistic is the sum of squares of 

the k largest X 's. In practice, the cardinality of the set IS, is rarely known and the authors 
have suggested a recursive testing procedure for IS. The critical threshold at level a for this 

distribution is derived as: 

z [1_ah', +1 
2 

(4.14) 

where ' denotes the cumulative distribution function of a standard normal random variable. 

The threshold '% at each level j= jo, ..., J-1 is obtained recursively according to the 

following steps 

1. Obtain Aa according to (4.14) for each level and orientation and compare it to the largest XZ 
. 

2. For X, >_ A° discard the X's with the largest absolute value, set s to s-1, and return to Step 1. 

3. IfX2 < A,, then the residual wavelet coefficients are deemed not to contain a strong signal. 

For the current level j the threshold Ai is set equal to the largest remaining X, in absolute 

value 
4. Apply the inverse DWT to obtain an estimate of the function g. 
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This procedure has level dependent thresholds 2j with inherent soft thresholding rule. At 

each level j, `large' wavelet coefficients are discarded from the dataset until the residue is not 

distinguishable from pure noise. Having threshold 2'i equal to the maximum absolute value 

of the residual wavelet coefficients, it is ensured that the residual coefficients are shrunk to 

zero. The significant wavelet coefficients are also shrunk towards zero by the same amount. 

The parameter a determines the thresholds 2,1, and controls the amount of smoothness. By 

increasing the value of a, the likelihood of a wavelet coefficient being included in the 

reconstruction increases, and thus, the reconstructed signals tend to exhibit higher levels of 

smoothness. In our study, the recommended value a=0.05 will be used. 

Block thresholding 

In term-by-term thresholding, each wavelet coefficient is compared with a set threshold. The 

coefficients with the absolute value above a threshold value are retained, while others are 
discarded. This approach tends to remove too many terms from the empirical wavelet 

expansion which leads to estimation bias and a suboptimal 12-risk convergence rate. Block 

thresholding methods attempt to improve the estimation accuracy by taking into account 
information about neighboring empirical wavelet coefficients. The empirical wavelet 

coefficients are thresholded in blocks rather than individually. Hence, the amount of 

information available for estimating the "average" empirical wavelet coefficients and for 

making decisions about retaining or discarding them is an order of magnitude larger than in 

the case of term-by-term thresholding. In our, study, we will consider both the non- 

overlapping and overlapping block thresholding estimators. 

Non-Overlapping Block threshold 

Cai proposed a non-overlapping block thresholding estimator based on the ideal adaptation 

approach and inequality oracle [14]. At each resolution level j =jo, ..., J-1, the observed 

wavelet coefficients dfk are assembled into blocks of length L. When L does not divide 2' 

exactly, the first few empirical wavelet coefficients can be used in deduction of the final 
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block (augmented case), or the remaining observed wavelet coefficients can be discarded 
(truncated case). Within each block, wavelet coefficients are estimated simultaneously using 
the James-Stein thresholding rule: 

zz 
dýk = max 0, 

Sjb 

s2 ,k ib 

(4.15) 

where S2 corresponds to the sum of squared empirical wavelet coefficients in the block (jb); 

The term (jb) indicates the set of indices of the wavelet coefficients in the b`h block at level j 

such that (jb) = {(j, k) : (b -1)L +1<k <- bL) . The function g is reconstructed by applying 

IDWT on a vector of thresholded wavelet coefficients dk for k=0... 2'°-1 andj=j°... J--1. 

Cai has shown that block size L= log(n) realizes an estimator that is both locally and 

globally adaptive [14]. He has also recommended a threshold value for function estimation 

problems, A=4.50524. The resulting non-overlapping block thresholding estimator is 

commonly referred to BlockJS. 

Overlapping Block threshold 

Overlapping block thresholding estimator is essentially a variant of the non-overlapping 

block thresholding estimator. In the overlapping estimator, blocks are extended by 

Le = max(1, Lo / 2) in each direction, to include the wavelet coefficients of the neighboring 

blocks. Lo refers to the length that a block would have without the overlap. Within each 

block, wavelet coefficients are estimated simultaneously using the James-Stein thresholding 

rule in (4.15). As in the case of non-overlapping block thresholding, the function g is 

reconstructed by applying the inverse DWT on a vector of thresholded wavelet coefficients 

d jk for k=O... Y°-1 and j jo... J-1. Cai & Silverman [15] suggested using Lo = log(n/2) and 

A=4.50524. The resulting thresholding procedure is referred to as NeighBlock. 
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Bayesian Adaptive Multiresolution Smoother (BAMS) 

Vidakovic & Ruggeri have developed the Bayesian Adaptive Multiresolution Smoother [142]. 
In comparison to other Bayesian-based wavelet thresholding methods, BAMS uses simple 
and optimized shrinkage rules, and thus, it is computationally inexpensive. For more 
information on the Bayesian Adaptive Multiresolution Smoother (BAMS) refer to [ 142]. 

4.3 Developing the optimal denoising strategy for glottal 
flow derivative signals 

In the previous section, we have described a number of denoising procedures. These 

procedures are listed in Table 4.1. The first two columns denote the indexes and the 

acronyms, while the final two columns provide the description of the thresholding methods. 

Table 4.1: 
A list of wavelet thresholding procedures considered in the voice source denoising study. 

I VISU-H VisuShrink Hard 
2 VISU-S VisuShrink Soft 
3 SURE SureShrink Soft 
4 HYB-SURE SureShrink Hybrid 
5 TI-H Translation Invariant Hard 

6 TI-S Translation Invariant Soft 

7 THRDAI Hypothesis Testing Soft 

8 BLOCKJS-A Block Thresholding Augment 
9 BLOCKJS-T Block Thresholding Truncate 
10 BLOCK-NEIGH Overlapping Block Thresholding 
11 BAMS Bayesian Adaptive Multi-resolution 
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Dataset 

The optimal denoising strategy for voice source signals is first developed on simulated 

signals and is eventually evaluated on the natural acoustic data. In this section, we will 
describe the synthetic dataset. Synthetic dataset consists of 6 test signals. The test signals are 

essentially a synthesized stream of 100 glottal flow derivative pulses (Liljencrants-Fant's 

model) with added aspiration noise (aspiration noise model is presented in figure 2.18). Each 

test signal corresponds to one of the 6 voice quality types that are most commonly cited in 

literature: modal, vocal fry, falsetto, breathy, tense, and lax voice. As such, it is our hope that 

the selected data would be adequately representative of the full spectrum of naturally 

occupying voice source realizations. 

Table 4.2: 
Fitch frequency and R-parameters (expressed as a percentage of the glottal cycle duration) 

describing the synthetic dataset. The values for modal, vocal fry, falsetto, and breathy voice 
are obtained from Childers and Lee [20] while the values for tense and lax voices are 

obtained from Van Dinther [33]. 

Index Voice Quality Ra [10.21 Rk 110,2] Ro [10-2] Fo [Hz] 

1 Modal 2.1 30.6 64.0 106 
2 Vocal Fry 0.5 25.0 25.0 45 
3 Falsetto 13.3 35.1 77.0 344 
4 Breathy 10 44.8 84.0 200 
5 Tense 1.1 25.0 41.0 110 
6 Lax 2.0 51.0 82.0 110 

Table 4.2 shows the parametric description of the considered voice quality types. The 

parameters for modal, vocal fry, falsetto, and breathy voice are obtained from Childers and 

Lee [20], while the parameters descriptions the tense and lax voices are taken from Van 

Dither [33]. Glottal flow derivative waveforms are synthesized using the Liljencrants-Fant's 

model, see Chapter 2, Subsection 2.2.4.2. The turbulence noise is synthesized using the 

model described in Figure 2.18, using the Hamming window with N=0.5 duty cycle. The 

Hamming window is centered around the glottal closures instant, and thus L=0; the noise 

floor is set to 40.0 % of the maximum noise envelope amplitude, ANF / AM = 0.4. The actual 
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values for the two amplitude parameters are obtained from the priori SNR value. Examples 

of synthetic dataset are provided in Appendix B, Figures B. 1 - B. 6. We have to stress that 

the synthetic dataset represents only a crude approximation to the actual voice source 

estimates as the lack the fine glottal flow derivative structure as well as a range of 
degradations due to the imperfect source-filter deconvolution. 

Evaluation criteria 

The performance of thresholding methods is evaluated using the following performance 

criteria: signal to noise ratio and maximum deviation. Signal to noise ratio (SNR) is defined 

as the energy ratio between the "clean" test function (a stream of glottal derivative pulses 

prior to addition of turbulence noise) and the error in the reconstructed (denoised) signal- 

SNR values are obtained as: 

j 
Nf 2(n) 

SNR =10 log, () 
n=i (. f(n)-1f(n))2 

(4.16) 

where f (n) and 1(n) correspond to the "clean" test function and the reconstructed signal, 

respectively. N denotes the number of samples in each of the two functions. 

Maximum deviation (MXDV/) is a measure of distortion in the recovered signal. Maximum 

deviation is obtained for each glottal cycle and a statistical model of MXDV distribution over 

a stream of glottal pulses is used as a performance measure. Four statistical parameters of 

maximum deviation (MXDV) are considered: the average value, standard deviation, and its 

upper and lower limit. MXDV for the ith glottal flow derivative pulse is estimated as 

MXDV = max 
If (n) -f (n) j 

(l-t)xTSrtSTxi-l 
(4.17) 

where T denotes the length of glottal cycle. ALM Vi indicates the maximum deviation valuc 

for the i`h glottal pulse in the glottal pulse sequence. 
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Experiments 

In the first experiment, the performance of each thresholding method is optimized with the 

respect to the wavelet basis family, decomposition level, and wavelet filter length. For that 

purpose, a set of orthogonal wavelet families (Daubechies', Symmlets and Coiflets), a wide 

range of filter lengths (4-20 for Daubechies', 4-16 for Symmlets, 6-30 for Coiflets), and a 

range (2-9) of decomposition levels are considered. During the optimization process, average 
SNR value across the test functions is used as a primary performance criterion. However, 

when two or more denoising strategies are found to have similar SNR performances, then 

their MXDV results are used to indicate the best denoising option. In the second experiment, 

the performance of the optimized thresholding methods is evaluated on the individual voice 

quality types. Our final judgment on the optimal voice source denoising strategy is made 

upon consideration of the performance of each thresholding strategy across a range of priory 

SNR levels. Finally, the optimal voice source denoising strategy is evaluated on natural 

acoustic data. In order to simplify the presentation of results, the labeling of some graphs is 

based on the numerical indexes, rather than on the actual names of the denoising procedures 

and test functions. 
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4.4 Results and discussion 

Optimizing the performance of each thresholding method 
The performance of each thresholding method is evaluated as a function of filter length and 
decomposition level. The test signals are synthesized for SNR = 6dB. The chosen SNR value 
is considerably lower than what would be the realistic aspiration noise level in the voice 

source estimates. However, low SNR value puts a higher strain on denoising methods and 

enables easier performance evaluation. The results for Daubechies', Coiflet, and Symmlet 

wavelets are shown in Figure 4.2, Figure 4.3, and Figure 4.4, respectively. The panel a) 

corresponds to average SNR results, while panel b) displays the average maximum deviation 

results across the voice quality types. The graphs show how the performance of each 

thresholding method varies as a function of two parameters wavelet filter length and 

decomposition level. 

Visual inspection of these performance surfaces and their respective contour lines suggest 

that the relationship between the thresholding parameters and the thresholding performance is 

highly non-linear. Clearly, completely different combinations of decomposition levels and 

wavelet filter lengths can lead to similar thresholding performances. It is also evident that 

this relationship differs from one thresholding method to another. Some thresholding 

methods are more sensitive to wavelet filter length, whereas other methods are more sensitive 

to the choice of decomposition level. For instance, VISU-S, TI-S and THRDA 1 are much 

more sensitive to the choice of decomposition level than they are to filter length while in 

contrast, the performances of TI-H and SURE are almost exclusively dependant on the choice 

and order of wavelet basis. 

In order to further investigate how the choice and order of the wavelet basis affects the 

thresholding performance we have reported the performance of each thresholding method at 

decomposition level J. =5 as a function of wavelet filter length, see Figure 4.5. This figure 

allows a comparative study between Daubechies, Coiflet and Symmlet wavelets. Again, 

SNR and average MXDV results are shown in panels a) and b), respectively. Although the 
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results suggest that each thresholding method is uniquely affected by the choice of wavelet 
filter length, some generalizations can still be made. First, we will note that the length of the 

filter determines the number of vanishing moments and the regularity of the wavelet. 
Vanishing moments correspond to the degrees of the polynomials representing a linear 

combination of the smoothing function and its translation. As such, the number of vanishing 

moments determines the rate of wavelet convergence. In Figure 4.5, we can clearly see that 

wavelets with short filter lengths tend to perform poorly. They do not exhibit a sufficient 
degree of regularity to provide an adequate representation of the voice source signal. On the 

other hand, more regular wavelets, corresponding to higher filter orders, have better 

decorrelating properties at the expense of temporal compactness. Clearly, as the length of the 

wavelet filters is increased beyond the optimal value the performance of the denoising 

methods deteriorates. When the wavelets become too regular, the rapidly varying 

components of the underling signal are being over-smoothed. This phenomenon is easily 
detected by the sharp increase in MXDV values. In the vast majority of the considered 

thresholding methods, a reasonable compromise between temporal compactness and 

regularity is found to exist for some moderate filter length. 

Our observations of the reconstructed voice source signals have suggested that the choice of 

decomposition level has a significant effect on the thresholding performance. Generally, at 

near optimal decomposition level, the reconstructed signal contains temporally localized 

distortions in form of aspiration noise residue and pseudo-Gibbs artifacts. The pseudo-Gibbs 

artifacts arise due to the poor alignment between the discontinuities in the signal and wavelet 

features. We have to note that in contrast to the classical Gibbs phenomena corresponding to 

the Fourier based analysis, the pseudo-Gibbs phenomena are considerably better behaved. 

Pseudo-Gibbs artifacts exhibit a high level of temporal localization and low amplitudes of 

oscillation. At inadequate decomposition levels, and especially when the decomposition is 

too-deep, the reconstructed signal contains significantly higher levels of distortion. Low 

decomposition levels cause "over-smoothing" of the underlying signal around the glottal 

closure instant. The average maximum deviation results in Figure 4.2, Figure 4.3, and 

Figure 4.4, are in accord with these observations. 
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Table 4.3: 
The worst and the optimal combination of thresholding parameters for each denoising 
method. The denoising strategies are arranged in a descending order according to the 

maximum SNR level 
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Max SNR Min SNR Optimization 
Method 

Wavelet Filter 
length 

Decomp 
level 

SNR 
[dB] Wavelet 

Filter 
length 

Decomp 
level 

SNR 
[dB] 

Capacity 
[dB] 

BAMS Sym7 14 6 7.31 Db9 18 9 7.14 0.17 
SURE Sym 7 14 7 8.02 Db 8 16 9 7.59 0.43 

VISU-H Sym 7 14 8 14.15 Db 10 20 2 12.11 2.04 
BLOCKJS-A Db 7 14 8 15.89 Db 4 8 9 14.34 1.54 
BLOCKJS-T Db 7 14 8 15.89 Db 4 8 9 14.34 1.54 

VISU-S Coif 3 18 8 15.93 Db 10 20 2 9.62 6.31 
BLOCK-NEIGH Sym 7 14 8 15.95 Db 4 8 9 14.35 1.60 

THRDAI Coif 3 18 8 16.05 Db 10 20 2 12.34 3.70 
HYB-SURE Sym 4 8 6 16.79 Coif 1 6 9 14.47 2.32 

TI-H Coif 1 6 7 17.23 Db 9 18 9 14.42 2.81 

TI-S Db 1 2 8 17.24 Db 10 20 2 9.61 7.63 

In order to demonstrate the importance of selecting adequate decomposition levels and 

wavelet basis functions, we have evaluated optimization capacity of each thresholding 

method. The optimization capacity is defined as the SNR difference between the best and the 

worst SNR performance for the considered range of thresholding parameters. The results arc 

presented in Table 4.3. TI-S, with optimization capacity of 7.63 dB, is found to have the 

highest level of sensitivity to the choice of thresholding parameters. VISU-S exhibits the 

second highest optimization capacity of 6.31 dB, while the majority of other methods have 

the optimization capacity just above 1.5 dB. The results also show that the two optimized 

translation invariant procedures by far outperform the other thresholding strategies. Our 

informal evaluation of the reconstructed voice source signals indicate that the superior 

performance of these methods can be attributed to their effectiveness in suppressing pseudo- 

Gibbs artifacts. The results in Table 4.3 also show that the optimal choice and order of 

wavelet basis function varies significantly between the thresholding methods. In fact, all 

three wavelet families, i. e. Daubechies, Coiflet and Symmlet wavelets, constitute an optimal 

choice for some thresholding method. Since, more than a third of the considered thresholding 
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methods achieve their optimal performance for Symmlet 7 wavelet, we can infer that this 

wavelet basis has similar levels of smoothness as the voice source waveforms. On the 

opposite extreme is the Daubechies wavelet with the filter length 20. This wavelet basis 

function is often found to produce poor denoising performances. With respect to the 
decomposition level, the thresholding methods perform very poorly for the extreme values of 
the considered decomposition level range. On the other hand, moderately high 

decomposition levels are found to provide the best denoising options. Indeed, all of the 

considered thresholding methods attain their optimal performances for the decomposition 

levels ranging from 6-8. 

Performance evaluation: optimized thresholding methods across voice quality types 

The performances of each optimized thresholding method across the voice quality types are 

reported in Figure 4.6. We will remind that the x-axis indices {I, 2,3,4,5,6) correspond to 

the following voice quality types: modal, vocal fry, falsetto, breathy, tense and lax voice, 

respectively. Panel a) corresponds to SNR results, while panel b) displays the maximum 
deviation results. Four statistical measures of maximum deviation (MXDV) distribution are 
displayed: the average value, standard deviation, and its upper and lower limit. The 

rectangular box is centered at the mean of maximum deviation and its length indicates a 

distance of two standard deviations. The vertical line corresponds to the distribution span. 

The SNR results show that the thresholding performances are relatively consistent across the 

voice quality types. Only tense voice slightly stands out with somewhat lower SNR values 

compared to the other voice quality types. We have found maximum deviation results much 

more interesting. Figure 4.6b) suggests that the falsetto, breathy and lax voices exhibit larger 

distortion levels than vocal fry and tense voices. Based on our experience with wavelet 

thresholding, we have come to expect higher distortion levels from rapidly varying signals 

with intense spikes and more discontinuities. In case of voice source signals, the adducted 

phonations, such as vocal fry and tense voices, are associated with long closed-phases, sharp 

and intense pulses around the glottal closure regions. On the other hand, the abducted 

phonations, such as falsetto, breathy and lax voices, vary more gradually and the glottal 
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closure pulses are less intense and less rapid. As such, we would expect the reconstructed 

waveforms corresponding to abducted phonations to exhibit considerably lower distortion 

levels. The fact that the opposite is true can be explained by considering the temporal 

structure of glottal flow derivative pulses and turbulence noise signals. The abducted 

phonations have short closed-phases, and thus, they have a uniformly distributed glottal flow 

derivative energy. Conversely, the adducted phonations, with long closed phases, have a 

very asymmetrical energy distribution over the glottal cycle length; much like the aspiration 

noise, most of the glottal flow derivative energy is concentrated in a close proximity of the 

glottal closure instants. Thus, the effective SNR level in the vicinity of glottal closure 

instants is lower in adducted phonations and consequently, the reconstructed voice source 

signals exhibit higher levels of aspiration noise residue and higher distortion levels. Note that 

the noise residue corresponds to the high amplitude components of aspiration noise that were 

not suppressed as their amplitude exceeded the estimated threshold value. 

Optimized thresholding methods across a range of priori SNR level 

In this section, we have evaluated the performance of the optimized thresholding strategies 

for a priori SNR range of 0 dB - 21 dB, in increments of 3 dB. The results are reported in 

Figure 4.7. Let us remind that we have already established that TI-S provides the best 

denoising option for prior SNR =6 dB. The results in Figure 4.7 show that the translation 

invariant soft thresholding does not retain a superior performance across the range of SNR 

levels. This phenomenon can be explained by a very small thresholding parameter space for 

which TI-S thresholding achieves a near optimal performance. Figure 4.4a) clearly illustrates 

that TI-S is very sensitive to decomposition levels and performs considerably better at level 8 

than for any other level. On the other hand, TI-H thresholding is almost insensitive to 

decomposition levels and performs at near optimal performance for a wide range of 

thresholding parameters. It provides almost a constant SNR enhancement of around 10.5 dB 

across the considered noise range. Furthermore, in relation to most other methods, its 

performance improves with lower and more realistic noise levels (SNR>6 dB). As such, the 

translation invariant hard thresholding, based on a wavelet basis function Coifl and 

decomposition level 7, constitutes the optimal thresholding strategy for voice source signals. 
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Performance evaluation on natural acoustic data: optimized TI-H thresholding 

Since the development of an optimal denoising strategy is based on a database of 6 different 
voice quality types, we would expect the optimized TI-H thresholding to adequately cope 
with a range of voice quality realizations. However, the simulated voice source signals do 
not contain "fine" structural elements* that are found in the real acoustic data. In this section. 
the performance of translation invariant hard thresholding, based on the 6-coefficient Coiflct 
filter and a primary resolution level-7, is evaluated on natural acoustic data. The test data 

corresponds to a read speech sentence: "She had your dark suit in greasy wash water aff 

year", sampled at FS= 10 kHz. The waveform belongs to a male speaker with modal 

phonation - WSJCAMO database. An estimate of voice source signal is obtained via closed- 

phase, pitch-synchronous inverse filtering of the speech waveform. In the process of blind 

deconvolution, the vocal tract frequency response is modeled with 14 coefficients obtained 
through a covariance based linear prediction analysis. The glottal closure instant estimation 
is based on the energy weighted group delay algorithm and the wavelet-denoised LPC residue; 
The GCI estimation algorithm is provided in Chapter 3. Subsequently, translation-invariant 

hard-thresholding is applied on the voice source estimate to remove the turbulent components 
from the underlying signal. The results corresponding to a vowel /a/ in the word "all" are 

reported in Figure 4.8. Panel a) shows the voice source estimate waveform. The 

corresponding denoised waveform is displayed in panel b). The extracted noise is shown in 

panel c). 

This example is a particularly aspirated voice source signal which was chosen deliberately in 

order to allow a better qualitative evaluation of TI-H performance. Apart from the "coarse" 

glottal flow derivative structure [114] and aspiration noise, the voice source estimate contains 

elements of the first formant ripple. The ripple describes a sinusoidal-like perturbation in the 

glottal derivative waveform due to the time-varying non-linear coupling of the glottal flow 

and the vocal tract, [21 J. Overall, the temporal structure of the voice source estimate 

complies with Ananthapadmanabha and Fant's [4] predictions and thus, it constitutes a valid 

dataset for our study. The results of voice source thresholding are rather pleasing. 

A discussion on the temporal glottal excitation structure is presented in Chapter 3, Subsection 3.3.3; 
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Aspiration noise is almost completely absent in the reconstructed signal. On the other hand, 
the rapidly varying components in the glottal flow derivative waveforms are clearly preserved. 
We can visually confirm that the glottal excitation peaks corresponding to the glottal closure 
instants are denoised without any observably traces of over-smoothing. Furthermore, the 
elements of formant modulation ripple are also suppressed as evidenced by the prominent and 
well defined closed-phase regions in the reconstructed signal. Nevertheless, a certain amount 
of distortion, in the form of isolated spikes can be noticed around the closed-phase intervals 

of glottal cycle, and in particular around the closed-phase onset. These distortions are an 
amalgam of the residual pseudo-Gibbs artifacts and the high amplitude components of 
aspiration noise, which were not suppressed as their amplitude exceeded the estimated 
threshold value. We deem that the presence of these distortions would not be detrimental to 

process of voice source parameterization as they are temporally localized and small in 

amplitude. In Appendix B, Figures B. 1- B. 6, we have presented the thresholding results 
corresponding to the synthetic voice source signals. Clearly, the thresholding performance 
does not differ between the synthetic and natural acoustic data. The figures in the Appendix 
B are presented to provide an additional support for the arguments made earlier in this section. 
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Figure 4.8: a) Voice source estimate; b) Denoised voice source estimate; c) Extracted noise; 
Waveforms correspond to the utterance /a/ from "She had your dark suit in greasy 
wash water all year". Male speaker; Fs= 10 kHz; 
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4.5 Conclusion 

In this chapter we have aimed to develop the optimal thresholding strategy for glottal flow 

derivative signal. The following methods have been considered: Universal thresholding, 

SureShrink thresholding, Hybrid-Sure thresholding, Translation-Invariant thresholding, 

Hypothesis-Testing-based thresholding, Block thresholding, and Bayesian Adaptive Multi- 

resolution Smoother. We have systematically investigated the thresholding performance as a 
function of two thresholding parameters - the choice of wavelet basis function and the 

coarsest level of the wavelet decomposition. The main problem that we have encountered is 

the fact that the relationship between the thresholding parameters and the thresholding 

performance is highly non-linear. Furthermore, this relationship differs from one 

thresholding method to another. However, some rather crude trends were made apparent. 

Short wavelet filters, i. e. wavelets with a small number of vanishing moments, tend to have 

inadequate approximation properties, and as such, the quality of the reconstructed signal is 

often poor. On the other hand, more regular wavelets, corresponding to higher filter orders, 

have better decorrelating properties at the expense of temporal compactness. In the vast 

majority of the considered thresholding methods, a reasonable compromise between these 

effects is found to exist for some moderate filter length. A choice of decomposition level is 

also found to have a strong effect on the quality of the reconstructed signal. In most cases, if 

the decomposition level is too deep, the reconstructed signal is found to contain distortions 

around the instant of glottal closure (over-smoothing of glottal peak). 

Ultimately, the optimal denoising strategy was associated with the translation invariant hard 

thresholding based on the decomposition level-7 and Coifl wavelet basis function. It is 

important to note that the optimal decomposition level is dependent on the sampling rate. In 

our case, the analysis is performed at 10 KHz. For higher sampling rates, the decomposition 

level should be increased and vice-versa. The translation invariant thresholding performs 

better than other considered thresholding methods as it is able to minimize the thresholding 

artifacts associated with misalignments between the sharp changes in the signal and the 

features of the wavelet. When the TI-H thresholding is applied on a voice source estimate 
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obtained from the natural speech via inverse filtering, the results were very pleasing. 
Turbulent components in the voice source estimate were almost completely removed. On the 

other hand, the rapidly varying components in the glottal flow derivative waveforms were 

clearly preserved. We could visually confirm that the glottal excitation peaks corresponding 

to the glottal closure instants were denoised without any observably traces of over-smoothing. 
However, a certain amount of distortion, in form of isolated spikes, was noticed around the 

closed-phase intervals of glottal cycle, and in particular around the closed-phase onset. In 

large, these distortions correspond to the high amplitude components of the aspiration noise 

that were not suppressed as their amplitude exceeded the estimated threshold value. However, 

the distortions around the closed-phase onset might correspond to the pseudo-Gibbs 

phenomena induced by the thresholding process. However, we deem that these distortions 

will not be detrimental to voice source parameterization as they are temporally localized and 

small in amplitude. 



Chapter 5 

Voice Source Parameterization 
with application to Voice Quality Profiling 

ABSTRACT 

In this chapter, we propose Characteristic Glottal Pulse Waveform Parameterization 
and Modeling (CGPWPM), which is a novel fully automatic source-filter based 
framework for voice source analysis, parameterization and reconstruction. The 
proposed method is not constrained to the idealized glottal waveform approximations 
(e. g. Liljencrants-Fant's model), but instead relies on the estimates of Characteristic 
Glottal Pulse Waveforms to parametrically describe voice source dynamics and perform 
adaptive voice source reconstruction. CGPWPM enables representation of both, the 
"coarse" and the "fine" voice source structures and correspondingly, it facilitates the 
analysis of those voice source features that can not be accurately or efficiently 
represented by a deterministic glottal model. Furthermore, unlike any other method 
that we are aware of, it enables accurate estimation of statistical properties of turbulent 
components related to aspiration noise. In the design of CGPWPM, specific measures 
are taken to prevent pathological voice source parameterization and to mitigate the 
effects of inaccurate glottal closure instant estimation. In this chapter we present the 
voice source parameterization aspect of the proposed method and its application to voice 
quality profiling, while the voice source reconstruction aspect and its applications are 
discussed in the following chapter. Voice source parameterization is evaluated on both 
synthetic and natural acoustic signals and the results demonstrate the accuracy and 
robustness of the proposed method. The voice source parameters obtained on natural 
acoustic data attain realistic values and are generally free from outliers. We have used 
our voice quality profiling results to derive a surprising simple relationship between the 
glottal shape parameter Rd and voice quality. The relationship depicts a harsh and 
falsetto voices as the two extremes of voice quality spectrum. Creaky and Breathy voices 
exhibit somewhat more moderate deviation from modal voice while lax and tense voices 
attained a glottal pulse shape values that were the closest to modal voce. 

5.1 Introduction 

5.2 Characteristic Glottal Pulse Waveform Parameterization 

5.3 Performance evaluation 
5.3.1 Performance evaluation - synthetic dataset 
5.3.2 Performance evaluation - natural speech dataset 

5.4 Voice quality profiling 
5.5 Conclusion 
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5.1 Introduction 

A robust modeling and parameterization of voice source signal estimates has applications in all 
areas of speech processing, but in particular for speech synthesis, speaker verification, speaker 
identification, voice morphing, voice quality analysis and clinical research. In the early days of 
speech synthesis, voice source signals were modeled as a series of impulses spaced at the 
fundamental frequency of vocal fold vibrations. It was soon realized that more accurate 
modeling of glottal waveforms is required to synthesize a natural sounding human voice. 
Although much research work has been done since, the modeling and the analysis of glottal 
pulse waveforms remains as one of the most important, difficult and relatively under-explored 

aspects of speech processing. In this introductory section, we will briefly describe some of the 

most important issues related to voice source parameterization and modeling. 

Voice source parameterization can be approached via analysis of temporal [128], [52], [ 123] or 

spectral features [32], [54], [3], [73] in the estimated voice source signal. There have also been 

some attempts to develop a hybrid approach [82], [17], [18], [45]. However, it is undeniable 

that the temporal-analysis-based voice source parameterization methods have emerged as more 

successful. These methods can be classified into two broad groups, direct estimation and fit 

estimation methods. Direct estimation methods [1], [2], [88], [57] attempt to estimate the 

characteristic voice source features via simple programming procedures, such as: minima, 

maxima and zero crossings, whereas fit estimation methods [5], [77], [116], [105], [81 ] employ 
fitting of a mathematically defined glottal waveform to the observed data. In each case, the 

choice of a glottal pulse model is the single most important performance factor. When 

considering this issue, it is also important to appreciate that humans produce a very extensive 

range of vocal fold realizations [133], [149], and that any approach to voice source estimation 
inherently carries a variety degradations with varying spectral and temporal properties [119], 

[4], [21]. The most severe forms of voice source signal degradations are induced by the 

imperfect deconvolution of the voice source signal and the vocal tract filter from speech. The 

artifacts of source-vocal tract interaction, such as the formant-like ripple, and the induced 

glottal pulse skewness to the right due to the inertive loading by the subglottal and supraglottal 
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acoustic systems can make a voice source signal particularly difficult to parameterize. Current 

glottal pulse models, e. g. [22], [105], [141], [65], [86], [53], including the popular 
Liljencrants-Fant's (LF) model [43] have adopted overly simplistic interpretations of voice 

source dynamics, and yet, they do not offer the desired levels of modeling accuracy and 

parameterization robustness. In Chapter 3, we have demonstrated the extent of diversity in the 

temporal structure of the glottal flow derivative estimates and have shown that LF model can 

adequately describe only the general shape of the glottal flow derivative waveforms, leaving 

the fine structural elements [ 114] of glottal pulse realizations unrepresented. In instances when 

the glottal model waveforms substantially differ from the actual voice source signal, the 

concept of parameterization accuracy looses its meaning altogether. 

There is a need for a more sophisticated voice source model that can represent a wider scope of 

vocal fold realizations, preserve the "fine" structural elements in glottal pulse waveforms and 

ultimately, enable a high quality voice source analysis and source-filter-based speech synthesis. 
With these motivations, we have developed Characteristic Glottal Pulse Waveform 

Parameterization and Modeling (CGPWPM) as a more robust and more accurate alternative to 

Liljencrants-Fant's model. In fact, CGPWPM offers an entirely novel framework for voice 

source analysis, parameterization and reconstruction. The proposed method is not constrained 

to the idealized glottal waveform approximations, but instead relies on the estimates of 

Characteristic Glottal Pulse Waveform to parametrically describe glottal flow dynamics and 

perform adaptive voice source reconstruction. The novelty of this approach requires an 

extensive elaboration on a range of issues. As such, the problems of voice source 

parameterization and voice source reconstruction are treated separately. In this chapter we will 

focus on voice source parameterization, whereas in Chapter 6, we will describe how the 

principles behind the Characteristic Glottal Pulse Waveform Parameterization can be extended 

to voice source reconstruction, speech synthesis and voice quality conversion. 

Section 5.2 describes the CGPWPM approach to voice source parameterization. In Section 5.3, 

the CGPWPM performance is evaluated on the synthetic and natural speech datasets. In 

Section 5.4, we aim to develop a parametric voice quality description for a range of voice 

quality types. Section 5.5 concludes the chapter. 
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The proposed voice source parameterization procedure is outlined in Figure 5.1. The figure 

shows the voice source deconvolution components that are described in Chapter 3. We will 

remind that the voice source estimates are obtained via closed-phase pitch-synchronous inverse 

filtering of speech signals. In the process of blind deconvolution, the vocal tract frequency 

response is modeled with 14 coefficients obtained through a covariance based linear prediction 

analysis. The glottal closure instant estimation is based on the energy weighted group delay 

algorithm and wavelet-denoising of the LPC residue. The improved estimates of glottal 

closure instants and the glottal excitation strength (Ee) contour are obtained using the standard 

peak-picking procedure. The glottal flow derivative estimates are denoised via translation 

invariant hard thresholding based on the 6-coefficient Coiflet filter and a decomposition 

level-7. In Chapter 4, the above mentioned method is found to be the optimal wavelet 

thresholding strategy for the glottal flow derivative signals. Before we describe the remaining 
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components of the Characteristic Glottal Pulse Waveform Parameterization (CGPWP), we will 
outline the main principles behind the parameterization process. 

The estimates of glottal flow derivative waveforms are normalized in both, time and amplitude 
domains, and subsequently, sequentially arranged to form a matrix of glottal pulses that we 

refer to as glottal matrix. In the next stage, Characteristic Glottal Pulse Waveform (CGPW) is 

estimated from the glottal matrix via a modified Euclidian distance measure. CGPW denotes 

a single glottal flow derivative pulse that "best" describes the entire database of glottal matrix 

pulses and correspondingly represents a typical oscillatory cycle in the voice source estimate. 

In that respect, each glottal matrix pulse is treated as a potential candidate for Characteristic 

Glottal Pulse Waveform. Under the proposed framework, CGPW is used as a glottal flow 

derivative model, rather than an opportune combination of mathematical functions. Thus, the 

voice source model is of adaptive nature and its form and structure is directly dependant on the 

observed voice source signal. Accordingly, voice source parameterization objective is 

redefined as obtaining a parametric description for the non-linear temporal evolution of CGPW 

through a sequence of glottal matrix pulses. The first step in the parameterization process is to 

obtain a parametric description for the Characteristic Glottal Pulse Waveform, itself. For this 

purpose we employ a simple, but a robust direct estimation method [2] to produce a set of 

modified LF parameters, which we denote as glottal matrix (GM) parameters. In the same way 

as LF parameters, the GM parameters signify the important events in the temporal structure of 

the glottal flow derivative model and thus, they can be readily used to derive the established 

LF-based voice quality quantifiers (e. g. speed quotient, open quotient... ). In the second stage, 

the temporal relations between CGPW and other glottal matrix pulses are established via 

Dynamic Time Warping (DTW) algorithm. The output of DTW block or specifically, a 

surface of optimal non-linear alignment functions is utilized to extend the GM parameters from 

CGPW to other glottal matrix pulses. As such, the parameterization results for an entire glottal 

matrix are referenced to the parametric description of a single glottal pulse waveform. This 

property enables CGPWPM to be very effectively employed in a semi-automatic manner, e. g. 

the parametric description of CGPW can be manually altered, and GM parameters are 

automatically extended to the entire voice source signal. The waveform decomposition block 

is used to quantify the quality of voice source parameterization. More importantly, this block 
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provides the means to estimate the statistical properties of non-stationary turbulent components 

related to aspiration noise. As we will demonstrate in the following chapter, aspiration noise 

can also be successfully synthesized and integrated with the glottal flow derivative to realize a 

faithful voice source reconstruction. 

Waveform Normalization and Alignment, and glottal matrix estimation 

Waveform normalization and alignment provides a platform for voice source parameterization 

independent of glottal excitation strength and pitch frequencies. The amplitude normalization 

is performed in the following manner. The glottal excitation strength estimates (Ee) are 

interpolated, via monotone piecewise cubic interpolation [51] over the entire duration of 

voiced source signal to obtain a Ee envelope. Ee envelope is subsequently used to scale the 

voice source magnitude so that the instants of main voice source excitations, i. e. GCIs, have the 

identical amplitudes, Ee = -1. 

The temporal normalization is achieved by re-sampling the individual glottal pulse to a 

normalized pitch period length, TN. The re-sampling factors are obtained as ratios of the pitch 

period estimates and TN. 
. The pitch trajectory is estimated directly from the GCI estimates. In 

the process of constructing a glottal matrix, each glottal pulse is extracted from the voice 

source signal with a rectangular window centered in-between the successive glottal closure 

instants. The boundaries of the window are extended beyond the glottal closure instants, such 

that the glottal matrix frame length is 20 % longer than the length of the normalized pitch 

period length. This is done in order to enable CGPWP to cope with potential GCI errors. This 

issue is further explored in the later sections of this chapter. When the observed glottal flow 

derivative pulses are normalized and sequentially aligned to form a glottal matrix, G, then, the 

i`h normalized glottal pulse, e, is defined as: 

e; (n)=G(i, n+8+1), O5n<TN (5.1) 

The 8 value is related to the normalized pitch period length TN and the glottal matrix frame 

length L as: 5= (L - TN )/2. The glottal matrix is an N-by-L matrix; where N and L denote the 
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number of glottal matrix pulses and the glottal matrix frame length, respectively. Throughout 
this paper CGPWPM uses L=120, TN =100, and 8 =10. The normalized pitch period length 

value, TN=100, represents a compromise between the desired temporal resolution of glottal 
flow derivative waveforms and the computational efficiency requirements (limited by DTW). 

Examples of glottal matrixes are provided in a) panels of the following figures: Figure 5.14, 
Figure 5.19, Figure 5.24, Figure 5.29, Figure 5.34, and Figure 5.39. The graphs correspond to 
the voiced segment of a read speech sentence, "Don't ask me to carry an oily rag like that", 
from each of 3 male and 3 female speakers from the WSJCAMO database. Note that the x-axis 

of these graphs (labeled as glottal cycle index) indicates the sequential order of the individual 

glottal pulses as they appear in the voice source signal. 

Characteristic Glottal Pulse Waveform estimation 

Characteristic Glottal Pulse Waveform (CGPW) estimation aims to select the most typical 

glottal flow derivative realization from a database of normalized glottal pulse waveforms. The 
Characteristic Glottal Pulse Waveform is estimated as a glottal pulse waveform that attains the 

minimal cumulative Euclidian distance across the candidate waveforms. In that respect, every 
single glottal pulse in the glottal matrix is treated as a Characteristic Glottal Pulse Waveform 

candidate. The estimation is conducted using the following algorithm: 

N 

CGPW = ei = min 1 (ei -ek )T (ei - ek ), 1: 9 i: 5 N 
argi k=1 

(5.2) 

where e; is a column vector representing the i'h' glottal pulse waveform in the glottal matrix. 

Since the glottal pulse waveforms are normalized in both, time and amplitude domains, the 

selection is based, exclusively, on the waveform shape. Thus, provided that the normalized 

glottal pulse waveforms are correctly aligned in a glottal matrix, CGPW estimation will select 

a glottal pulse waveform with the temporal structure that is most frequently produced by a 

speaker. CGPW estimation involves the glottal matrix pulse regions in-between the two glottal 

closure instants to ensure that only exact glottal cycle periods are used. The remaining 20% of 
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glottal matrix frame length is neglected to avoid introducing estimation bias. It is also 
important to note that apart from the general glottal pulse shape, the fine glottal flow derivative 

structure can also have a significant influence on the Characteristic Glottal Pulse Waveform 

estimation process. 

Dynamic Time Warping - DTW 

CGPWPM requires an automatic temporal alignment between the Characteristic Glottal Pulse 
Waveform and other glottal matrix waveforms. For this purpose we use DTW, as it provides 
the optimal solution for the time series alignment problems [115]. In DTW framework, CGPW 

and an analyzed glottal pulse are viewed as a reference signal R and a test signal T, 

respectively. 

7= ti, t2, t3, 
" , 

ti"""tn (5.3) 

R= ri, r2, r3,... rj ... rm (5.4) 

In the first stage of DTW a, an n-by-m matrix is constructed, where the (i'", j'") element of the 

matrix contains the distance d(t,, rj) = (t, - rß)2 between the points t; and rj. The matrix element 
(i, j) represents the alignment between the elements t; and rj. An alignment path, W 

W= wI, W2, wj, ... WK (5.5) 

is a contiguous set of matrix elements that describes the mapping between T and R. The kth 

element in the alignment path corresponds to wk = (i, j)k. The optimal alignment is found using 

the dynamic programming to evaluate the recurrence in (5.6), which defines the cumulative 
distance D(i j) as a summation of the distance in the currant cell d(i j) and the minimum 

cumulative distances of the adjacent cells. The alignment path is typically subjected to several 

constraints, namely, boundary constraint, monotonicity constraint, and continuity constraint. 

D(i -1, j -1) 
D(i, j) =d (t,, rj) + min D(i -1, j) 

D(i, j -1) 

(5.6) 
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Boundary constraint: forces the alignment path to begin and end in the in the diagonally 

opposite corner cells of the alignment matrix: w, =(1,1) and wk=(n, m). 

Monotonicity constraint: requires the elements of the alignment path to be monotonically 

spaced in time. If Wk = (x, y) and the Wk-1 = (x', y'), then the 

monotonicity constraint imposes x-x' >_ 0 and y-y' -O. 

Continuity constraint: restricts the allowable steps in the warping path to adjacent cells. This 

includes the diagonally adjacent cells. If wk = (x, y) and the wk_1= (x', 

y'), then the continuity constraint imposes x-x' S1 and y-y' S 1. 

In addition to the boundary, continuity and monotonicity constraints, the global constraints in 

form of Sakoe-Chiba Band [ 121 ] are imposed on warping path in order to prevent pathological 

alignments, as well as to increase the computational efficiency of DTW. Pathological warping 

arises when a relatively small section of one sequence maps onto a relatively large sequence of 

another. On the other hand, if the global constrains are too "severe" the alignment process 

could become meaningless. In Section 5.3.2, we have evaluated the optimal size for the DTW 

alignment window. An alignment function example between CGPW and a glottal pulse is 

shown in Figure 5.2. CGPW is obtained from the utterance "We were away a year ago", 

sampled at 10 kHz. A displayed glottal pulse belongs to a vowel /a/. Voice source 

parameterization is performed for L=120 and TN=100. The acoustic data corresponds to a 

female speaker and the WSJCAMO database. 

Mapping adjustment 

Before voice source signal could be parameterized, the effect of glottal closure instant 

estimation errors on DTW alignment functions needs to be considered. The glottal closure 

instants play an import role in CGPWP parameterization process. They provide the means to 

estimate pitch trajectories, and in turn, to estimate the re-sampling factor by which glottal 

waveforms are temporally normalized. Furthermore, in the process of glottal matrix synthesis, 

they enable sequential glottal pulse alignments. As such, GCI estimation errors can have a 

significant impact on the voice source parameterization performance. 
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In this section, we will describe a measure that attempts to reduce the effect of GCI errors. Let 

us assume that CGPW is bounded by accurate GCIs. Since CGPW estimation algorithm, (5.2), 

is highly sensitive to inaccurate glottal pulse alignment and normalization, this assumption will 
hold true even for the moderately-performing GCI estimation algorithms. Let us also adopt an 

analogue representation of alignment functions, such that the alignment path between the i`h 

glottal matrix pulse and CGPW can be described as Wi(r), where 0S r< TN, . Thus, in the 

instance when the two GCIs bounding a glottal matrix pulse are correctly estimated, the 

alignment path between the glottal pulse and CGPW will contain the following two points 

(GCh, GCh) and (GCI2, GCIZ). Conversely, any discrepancy between GCIZ and W,. (GCI, ) or 

GCI2 and W, (GCIZ) is an indication of GCI error. In such instance, the alignment function is 

adjusted by the following algorithm: 

W 
=W,. +r-W,. (GCI, )+ 

(GCI, -r)(W,. (GCI2)-W; (GCI, )) 

GCI2 - GCI, 
(5.7) 

where W and W,. denote the adjusted and DTW obtained alignment functions, respectively. 

Essentially, the adjusted alignment function describes the optimal alignment function that 

would exist between CGPW and a glottal pulse if the glottal pulse was accurately normalized 

and aligned. The discrepancies between GCI1 and W. (GCI, ) , and GCI2 and W,, (GCI2) are 

multiplied by the re-sampling factor that is used in temporal glottal pulse normalization to 

obtain the actual GCI error values and the improved pitch period estimates. In Figure 5.3, we 

have illustrated the mapping adjustment process. In this example, the relative error in the GCI 

estimates has caused the pitch period to be overestimated, the glottal matrix pulse is 

represented with fewer than TN =100 samples, the alignment function is shifted in r domain and 

its average slope, in the regions between GC11 and GCI2, has decreased bellow 1. The figure 

shows that the adjusted alignment function contains points: (GCI1, GCI1) and (GCI2, GCI2). 
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Voice source parameterization 
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Figure 5.2. Optimal alignment function is used to map GM -parameters from CGPW to a glotta 
matrix pulse. Darker colors indicate a lower cost in the DTW cost matrix. Since in thi. 

case, GCI estimation is accurate, the adjusted alignment function is identical to th( 
optimal DTW alignment path. 

In the parameterization of Characteristic Glottal Pulse Waveform we have opted for a 

computationally efficient and a highly robust direct estimation method described in [2]. In 

addition to the timing parameters of the Liljencrants-Fant glottal flow derivative model, the 

maximum glottal flow derivative instant, tm (see Figure 2.7) is include in the GM parameter set 

to ensure a sufficient temporal resolution of CGPW for adequate CGPWPM-based voice 

source reconstruction; This issue is further clarified in Chapter 6. 

Since the temporal relationships between CGPW and the other glottal pulses in the glottal 

matrix are described by a surface of DTW functions, the entire glottal matrix can be 

Since CGPW is just a single glottal pulse waveform, we can afford to manually verify and alter 
the parameterization results. However, in our experience, manual corrections are hardly ever required. 
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parameterized by the following algorithm: 
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P_W, (PccPwý PCGPW to to, tm, tp, te) (5.8) 

where W refers to the adjusted alignment function between CGPW and the i`h glottal matrix 

pulse. PccPw and P; denote the GM-parametric descriptions of CGPW and the i`h glottal matrix 

pulse, respectively. Since the alignment path is in reality a discrete-valued function, P, values 

are obtained via interpolation. For this purpose, monotone piecewise cubic interpolation is 

employed as this method retains the shape and monotonicity of the DTW alignment functions. 

Note that in the parameterization process, the adjusted alignment functions are used, rather 

than the DTW alignment functions, as the adjusted functions are more accurate with the respect 

to GCI estimates. The algorithm (5.8) enables the GM parameters to be extended from the 

CGPW to other glottal matrix pulses using the surface of adjusted alignment functions, only. 

Figure 5.2 illustrates how the adjusted alignment functions are used to map the GM parameters 

from CGPW to other glottal matrix pulses. In Figure 5.4 we have shown a sequence of 

adjusted alignment functions and GM-trajectories for the first 80 glottal pulses in the utterance 

"We were away a year ago ", articulated by a female speaker. Alignment functions depict a 

nonlinear evolution of CGPW through a sequence of glottal matrix pulses, whereas, 

GM-trajectories illustrate the dynamics of important features in the glottal flow derivative 

waveform. The GM-trajectories also coincide with the characteristic alignment function 

features. This property will be later exploited in voice source reconstruction. Due to the nature 

of the proposed method, the two glottal closure instants inside each glottal matrix frame are 

fixed at GCI1=ä+1 and GCI2=L-6+1. Thus, the non-linear CGPW evolution is described by 

only four variable parameters {tt, to, t�,, t, }. Note that the return coefficient, Ta is not included 

in the GM parameter set as it is a measure of effective closed-phase abruptness rather then a 

specific event in the glottal derivative waveform. Nevertheless, we acknowledge the fact that 

the return coefficient is an important voice quality correlate and thus, we employ the 

exponential fit procedure on glottal matrix pulses, in the regions between 6+ 1 and t, to obtain 

Ta estimates. 
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alignment surface shown in Figure 5.4 ago ". Female speaker - WSJCAMO database 

Waveform Decomposition 

Waveform decomposition provides the means to estimate the aspiration noise envelope, which 
is the principal statistical description of the non-stationary turbulent components related to 

aspiration noise [23]. The procedure requires the wavelet denoising block to be omitted from 

CGPWP parameterization system. The first stage in this process is to produce aligned glottal 

matrix by aligning the glottal matrix towards CGPW via alignment functions provided by the 

DTW block. Some examples of the aligned glottal matrixes are provided in the b) panels of the 

following figures: Figure 5.14, Figure 5.19, Figure 5.24, Figure 5.29, Figure 5.34, and Figure 

5.39. Visual inspection of these graphs, confirms the assumption that CGPW can be used to 

adequately represent other glottal pulse waveforms via the constrained non-linear optimal time 

warping functions. 
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In the second stage, the estimated CGPW is subtracted from each aligned matrix frame to 

produce residue matrix, R. 

R(i, n) = G' (i, n) -M cGPw (i, n) (5.9) 

where G' denotes the aligned glottal matrix and MCGPw represents an N-by-L matrix 

containing N repetitions of the Characteristic Glottal Pulse Waveform. The residue matrix is 

composed of aspiration noise and the slowly evolving glottal matrix features that can not be 

represented via CGPW and the monotonically increasing DTW functions, alone. In a similar 

manner as in Enhanced Waveform Interpolative Coding t [60], i. e. via simple 
high-pass/low-pass filtering, the residue matrix is then decomposed into modeling residue and 

aspiration noise matrices. Modeling residue matrix represents the true modeling error, 

whereas aspiration noise matrix represents the turbulent components related to aspiration noise 

and to a much lesser degree, processing noise. Aspiration noise envelope is related to a 

waveform of RMS values obtained across the glottal cycle index of aspiration noise matrix. 
Some examples of aspiration noise matrixes and modeling residue matrixes are provided in d) 

and e) panels, respectively, of the following figures: Figure 5.14, Figure 5.19, Figure 5.24, 

Figure 5.29, Figure 5.34, and Figure 5.39. Examples of aspiration noise envelope are provided 
in the following figures Figure 5.16, Figure 5.21, Figure 5.26, Figure 5.31, Figure 5.36, and 

Figure 5.41. Note that only the sections in-between the two GCIs are shown. As such, the 

presented aspiration noise envelopes correspond to exactly one normalized pitch cycle, 

TN=100 samples. The aspiration noise envelopes exhibit strong peaks in the regions of glottal 

closure and have relatively low energy levels in the remaining segments of the glottal pulse 

cycle. In case of M3 and F2 speakers, the aspiration noise shows high intensity levels around 

the glottal opening instant. This phenomenon is also in line with the naturally occurring 

aspiration noise behavior. In Chapter 6, described aspiration noise envelope estimation 

procedure is evaluated via speech synthesis experiments. 

t The rapidly evolving component (REW ) of the EWI coders can not be used to represent the aspiration noise for 
the following reasons. In EWI coders, the acoustic waveforms are not aligned in the manner that could account for 
the non-linear evolution of the glottal flow derivative waveforms. Secondly, the system is usually applied on the 
LPC-residue or the speech signal, rather than on the credible voice source estimates. 



Ch. 5: Voice Source Parameterization with application to Voice Quality Profiling 120 

5.3 Performance evaluation 

Evaluation of voice source parameterization techniques is not a trivial task and there is neither 

a generally accepted nor standardized way in assessing the parameterization performance. The 

validity of experiments conducted on natural speech is hindered by a simple fact that the 

correct voice source parameters are not known. Also, it is important to appreciate that the 

voice source parameterization is ultimately affected by the quality of voice source estimates. 

In practice, voice source signals often contain numerous disturbances and degradations caused 
by the imperfect deconvolution of a voice source signal and a vocal tract filter from speech. 

First formant ripple is often observed in the glottal flow derivative signal obtained via inverse 

filtering [21]. The glottal flow derivative waveforms may be skewed to the right due to the 

inertive loading by the subglottal and supraglottal acoustic systems [119]. A nonlinear 

increase in the voice source strength can occur when the frequency of the first vocal tract 

resonance is near an integral multiple of glottal cycle frequency [4]. The extent in which these 

degradations are present in the voice source signal, as well as their effect on the 

parameterization performance is not easy to quantify. Thus, the experiments on natural speech 

are usually constrained to sustained vowels or the short term segments of "well behaved' voice 

source signal [52], [77], [105], [54]. The most common form of parameterization performance 

evaluation is of qualitative nature, an example of which is the visual comparison between the 

glottal flow derivative signals and the waveforms generated by a glottal model [32], [116], [73], 

[43]. Usually, if not exclusively, the visual inspections are performed over a small number of 

glottal cycles. In addition, listening tests can be set up to asses the "naturalness" of 

synthesized speech, where the voice source signal is reconstructed from the estimated voice 

source parameters. However, neither of the two methods is effective enough in distinguishing 

the levels of voice source parameterization accuracy that are required in the fundamental 

research on speech production, clinical research and voice quality research. 

Another approach in assessing the parameterization performance is based on the synthetic 

speech databases [28], [129]. The main advantage of this approach is that the voice source 

parameters are known in advance and thus, the voice source parameterization performance can 
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be quantitively evaluated. However, the synthetic glottal pulses lack the structural 

complexities of the natural acoustic signals as well as a range of degradations that are normally 
imposed by the voice source estimation procedures. As such, the performance results that are 
obtained on these well behaved mathematically idealized voice source signals can not be taken 

as a faithful reflection of the parameterization performance on the natural acoustic data. 

In order to provide a thorough assessment of the Characteristic Glottal Pulse Waveform 

Parameterization (CGPWP) performance, evaluation experiments are conducted on natural and 

synthetic speech datasets. At this stage, we would like to note that due to the nature in which 
CGPW parameterization is realized we are able to provide both, qualitative and quantitive 

evaluation, on natural datasets. 

5.3.1 Performance evaluation - synthetic dataset 

Strik et al. have conducted a set of experiments to study the effects of various types of signal 
distortions on the performance of two voice source parameterization techniques [130]. Our 

evaluation of the Characteristic Glottal Pulse Waveform Parameterization is roughly based on 

these experiments. However, we have introduced certain refinements in order to enable a more 

thorough and more objective performance assessment. In addition to the experiments designed 

to study the effect of non-integer glottal pulse parameter values and the effect of low pass 
filtering, we have also introduced an experiment that studies how the inaccuracies in the glottal 

closure instant estimates affect the parameterization performance. 

The CGPWP performance will be compared to the voice source parameterization methods 

considered in [130]. These two methods are prominent examples of fit estimation (FE) and 
direct estimation (DE) approach to voice source parameterization. The fit estimation method is 

a three stage parameterization procedure involving the initial parameter estimation, simplex 

search algorithm, and Levenberg-Marquardt algorithm. The direct estimation approach is 

represented by Alku and Vilkman's parameterization technique [2]. The performances of these 
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two methods will be used as a performance benchmark for the CGPWPM-based voice source 
parameterization. 

For effective comparison, we will use the same performance criteria and the same experimental 

setup as those in [130]. The parameterization performance is evaluated with the respect to the 

individual voice source parameters, and the median absolute error is used as a performance 

measure. The test voice source signals are synthesized via Liljencrants-Fant glottal pulse 

model. Also, the glottal cycle duration is kept at a constant value of 10 ms and the acquisition 

(sampling) rate of 10 kHz is employed. Unlike in [130], we will also evaluate CGPWP 

performance with the respect to the instant of complete glottal closure tt, as we deem that its 

value is important in estimation of certain voice quality correlates, e. g. open quotient and speed 

quotient. Note that Strik has justified the exclusion of this voice source parameter by citing its 

insignificant role in voice source synthesis *T. Table 5.1 shows the parametric descriptions for 

11 types of glottal pulses used in Strik's performance evaluation experiments. We think that the 

size of this dataset does not adequately reflect the full range of naturally occurring vocal fold 

realizations. It is important to note that the shape of the glottal pulse is a critical factor in any 

voice source parameterization related experiments and a study of signal distortion effects is not 

an exception. A constrained dataset such as this is likely to introduce a bias in the experimental 

results. 

Table 5.1: 
The parameter values of test glottal pulses expressed as a percentage of pitch period 

Test pulse index 1 2 3 4 5 6 7 8 9 10 11 

T-[%] 40 40 60 60 60 60 40 40 52 52 52 

T. -[%] 52 52 72 72 88 88 60 60 72 72 72 

T, -[%] 100 100 100 100 100 100 100 100 100 100 100 

T. -[%] 4 16 4 16 4 8 4 16 4 10 16 

'"t The end of closing phase of glottal cycle can be ascertained, with a certain degree of accuracy, from the t, and tq 

values, Childers and Ahn [23], Childers and Hu [22]. 
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In our study, we have used a dataset of 800 glottal pulses. The parametric description of the 

dataset is presented in Figure 5.5. The x-axis of the graph corresponds to the index of 

individual glottal pulses while the y-axis shows the parameter values for each glottal pulse, 

expressed as a percentage of pitch period length. The parametric description for these pulses is 

obtained using the linear interpolation of the parameters denoting examples of vocal fry voice 

and breathy voice. In Figure 5.5, we have also displayed a dataset from Strik's experiments (as 

circles), and it is evident that this data exhibits a bias towards breathy voice. 

The set of 800 parameters is divided into four equal size sections. Based on these sections, four 

separate voice signals are synthesized with continually varying glottal pulse waveforms. The 

dataset is partitioned in order to enable a reduced size of the DTW window, and 

correspondingly improve the computational cost. Note that the size of the required alignment 

window is proportional to the extent of glottal waveform variation. In natural speech, it is 

unlikely that a speaker will exploit a full voice quality range that is presented in Figure 5.5. 
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Prior to describing the evaluation experiments, we want to remind that in the process of CGPW 

parameterization, the parametric description of CGPW is automatically extended to all the 

other glottal matrix pulses via DTW algorithm. In order to demonstrate that the glottal matrix 

parameterization can be performed accurately, even in the instances of severe voice source 

signal degradation, in each of the following experiments, we will provide accurate voice source 

parameter values to describe the Characteristic Glottal Pulse Waveform, only. 

Time Shift Experiment 

Commonly, the values of the estimated voice source parameters are rounded off to a nearest 
sample value. However, in practice, it is very unlikely that the voice source parameters will 
coincide with the sample values. In this experiment, the voice source signals are shifted from 

0.0 to 0.1 msec, in increments of 0.01 msec. For each shift value, the parameterization 

performance is evaluated and the results are reported. The experiment essentially assesses the 

effects of the induced quantization error on the accuracy of the voice source parameterization 
methods. 

The process of rounding off the voice source parameter values to a nearest integer, introduces a 

uniformly distributed estimation error with the expected mean absolute value of 251ts. This is 

the theoretically minimum estimation error that can be achieved by any parameterization 

method that employs the rounding off procedure. As such, it will be used as the performance 

benchmark. 

Figure 5.6 shows the median absolute estimation error values for the individual voice source 

parameters and for a range of time shifts. As expected, with the respect to each voice source 

parameter, both fit estimation (FE) and CGPWP methods are able to achieve higher accuracy 

levels than the 25ýs benchmark value. Since CGPW parameterization is based on the 

non-linear optimal alignment functions, it responds particularly well to the signal distortions 

caused by the temporal shifts of the voice source signal. The CGPWP outperforms the FE 

method with the respect to the instant of vocal fold abduction to, the instant of maximum glottal 

airflow tp and the instant of vocal fold closure onset te. Somewhat worse performance is 



Ch. 5: Voice Source Parameterization with application to Voice Duality Profiling 125 

achieved for parameter that describes the effective duration of return phase tQ. This is due to 

the fact that unlike other voice source parameters, tp estimation is not directly based on DTW 

functions, but it instead relies on the exponential fit procedure. Nevertheless, the performance 

of the fit procedure is improved by the accuracy levels in the to and tt estimates and as a result, 

to values are also estimated with a reasonable level of accuracy. 

In the case of CGPWP, when the voice source parameters do not coincide with integer sample 

values, they are obtained via the monotone piecewise cubic interpolation of the alignment 
functions. Since this form of interpolation preserves the shape of data and respects the 

monotonicity of the alignment path, CGPWP performance did not exhibit any significant 

dependency on the size of the induced quantization error. As such there is no observable trend 

between the time shift values and the estimation accuracy levels for any of the voice source 

parameters. Note that the performance results for the direct estimation (DE) method are not 

reported as its performance was not comparable to the other two methods. 
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Figure 5.6. The performances of fit estimation and CGPWP with the respect to the individual voice 
source parameters and a range of time shift values. 
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Figure 5.7: Comparative evaluation of fit estimation, direct estimation, and CGPWP on a voice 
signal distorted by Blackman window convolution. 

Low-pass filtering Experiment 

To various degrees, the estimates of the voice source signal contain the disturbances in form of 

aspiration noise and artifacts arising from the imperfect source-vocal tract deconvolution. In 

order to reduce the effect of these disturbances on the voice source parameterization, it is a 

common practice to apply a low pass filter on the voice source signal prior to parameterization. 

The effect of low pass filtering on the parameterization performance is studied by convolving 

the synthesized voice source signals with the Blackman window. The extent of low pass 

filtering is varied by changing the length of the Blackman window from 3 to 19, in steps of 2. 

The voice source parameterization performance is evaluated in the same manner as in the 

previous experiment. Figure 5.7 shows the performance results for the direct estimation (DE), 

fit estimation (FE) and CGPWP across the range of window lengths. The results of the direct 

estimation are shown only for those parameters where its performance was comparable to the 

other two methods. Compared to the other two methods, CGPWP achieves a superior 

performance across the filter lengths and across the voice source parameters, except for to. 
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With the respect to individual parameters, the highest estimation accuracy is obtained for tp and 
te. Glottal pulse is usually associated with the low energy values in the immediate region 

around the glottal opening instant to. Therefore, this region of the glottal pulse cycle has lower 

significance in determining the optimal alignment path via DTW. As a result, to tends to be 

estimated with the lower levels of accuracy. To a lesser degree, the same is true for the onset 

of closed-phase, t,. The effect of removing the high frequency components of glottal pulse 

waveform is such that it causes the glottal pulse to become "breathier". For very long window 
lengths, such as 19, the extent of glottal pulse degradation is so severe that the degraded pulses 

associated with the vocal fry are observed as modal glottal pulses. Nevertheless, CGPWP is 

able to achieve high estimation accuracy levels by exploiting the fact that the extent of 
degradation is similar for all glottal pulses in the glottal matrix, including the Characteristic 

Glottal Pulse Waveform. 

GCI Experiment 

One of the most import issues that need to be 
e.................. --------------------------------------------- CGPwposition 
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with the potentially incorrect GCI estimates, namely, 

Figure 5.8: An example of the imposed the mapping adjustment and the extended size of the 
GCI errors. 

glottal matrix. In the following experiment, the 

effectiveness of these measures is evaluated. We will only consider GCI errors of up to eight 

samples long, as in practice it is very unlikely that the GCI estimation would be of such poor 

accuracy. For the purpose of this experiment, the alignment path slope constrains are relaxed 

to 5: 1 and 1: 5 ratios. The size of the Dynamic Time Warping window is correspondingly 

extended. The GCI errors are introduced in form of Gaussian noise with its values rounded to 

Glottal Index 
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Figure 5.9: The performance CGP WP as a function of mean absolute error in the glottal closure 
instant estimates. 

a nearest sample. Figure 5.8 shows an example of GCI error signal with the mean absolute 

value of 3 samples. The figure shows GCI error for each glottal pulse and the position of 
CGPW in the glottal matrix. Clearly, the estimated CGPW is bounded by the accurately 

estimated GCIs, as we have assumed in the CGPW estimation section. The performance 

results of CGPWP with the respect to various levels of GCI error are displayed in Figure 5.9. 

These results suggest that there is almost a linear relationship between CGPWP performance 

and the levels of error present in the GCI estimates. Increase in the levels of GCI error leads to 

a proportional decrease in the voice source parameterization accuracy. 

However, the deterioration in the performance is not so much caused, directly, by the 

individual GCI errors, but rather by the consequential inaccuracies in the pitch period estimates. 

When the pitch periods are overestimated, the corresponding glottal pulses are represented by a 

reduced number of samples in the glottal matrix frames. This in turn reduces the effective 

resolution of the DTW alignment functions, which ultimately leads to a deteriorated 

parameterization performance. However, to put the results in perspective, CGPWP exhibits 

ýi 

__:. -.:.......... 1 
------ ----- .......... .......... 1 
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better performance for the highest levels of the considered GCI errors than for the lowest levels 

of low pass filtering. As long as the entire glottal pulse is present inside the glottal matrix and 
it is "covered" by the DTW window, we can expect CGPWP to adequately cope with even 

unrealistically high GCI errors. Let us remind that in the design of CGPWP, we have assumed 

that the estimated Characteristic Glottal Pulse Waveform will be bounded'by the accurately 

estimated glottal closure instants. Since this assumption has held true throughout the 

experiments, no additional measures will be taken. 

In the conclusion of this section, we want to stress that all of the considered performance 

evaluation experiments were inherently biased toward the direct estimation and fit estimation 

methods. Unlike these methods, CGPWP does not take a premise that the analyzed voice 

source signal behaves according to Liljencrants-Fant's model. Its performance is equally good 
if the voice source signal deviates from the ideal perspective of vocal fold realization. When 

applied on the natural voice source signal, the difference in the performances between CGPWP 

and the other two methods is even more substantial. 

5.3.2. Performance evaluation - natural speech dataset 

The modeling accuracy of CGPWPM can be evaluated via a modified segmental SNR 

measure: 

10 N L-s G'z (n) 
SNR_seg=-E1ogla 

N 
1=1 n=ö+I E1 (n) (s. 10) 

where G' and E denote aligned glottal matrix and a modeling residue matrix, respectively. N 

and L represent the number ofglottal matrix pulses and the length of each glottal matrix frame, 

respectively. The parameter S is defined as S= (L - TN )/2, where TN denotes the normalized 

pitch period length. In the similar fashion, the extent of aspiration noise in a voice source 

estimate can be quantified as: 



Ch. 5: Voice Source Parameterization with application to Voice Quality Profiline 130 

10 " c-a G' ? (n) 
SNR_aspiration =-Z log, o 2 N 

r=i »=s+i 
A; (n) 

(5.11) 

where G' and A denote aligned glottal matrix and aspiration noise matrix, respectively. 

The segmental SNR values reflect the extent by which the constrained non-linear temporal 

warping of the Characteristic Glottal Pulse Waveform can be used to represent the other glottal 

waveforms in a glottal matrix. Since the voice source parameters are directly estimated from 

the alignment functions, segmental SNR values to a large extent reflect the quality of voice 

source parameterization performance. An important attribute of this measure is that it 

evaluates the overall representation of the glottal pulse shapes, and as such it accounts for the 

entire set of voice source parameters, simultaneously. If the SNR_seg values are low, it would 

indicate that CGPWPM is not able to adequately represent a large fraction of glottal pulses, and 

consequently, the parameterization results might not be credible. On the other hand, high 

SNR_seg values imply that an accurate relationship between the Characteristic Glottal Pulse 

Waveform and the other glottal pulses in the glottal matrix has been established and thus, we 

can be confident in the voice source parameterization results, as well. In the following 

experiment, we will use the segmental SNR measure to estimate the optimal size for the DTW 

window. Subsequently, we will use the segmental SNR, and the optimal alignment window to 

indirectly evaluate the quality of voice source parameterization across a range of voice quality 

types. 

Estimation of the optimal window size 

The experiment is performed on a subset of a WSJCAMO database containing two read speech 

sentences from 20 male and 20 female speakers. Subsequently, CGPWPM is applied on each 

acoustic stimulus to produce a set of glottal matrixes and modeling residue matrixes. The 

speech signals are sampled at 10 kHz and CGPWPM is performed for L=100 and TN=120. We 

varied the size of the DTW window from 0.0 % (Euclidean distance) to 100 % (no global 

constraints) in increments of 0.833 % (1 sample). Each time, the mean segmental SNR is 
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evaluated across the dataset. The results are reported in Figure 5.10. Note that only a section 

of the graph below the SNR saturation value is displayed. 

The graph indicates a non-linear relationship between the SNR and the window size. An 

increase in SNR value with the respect to a unit increment in the window size is higher for the 

lower window lengths. At 21.67 % window length, SNR function reaches a saturation value of 
22.11 dB. Let us remind that DTW algorithm exhibits 0(n2) time complexity. As such, the 

optimal alignment window length is estimated as a window length for which the SNR function 

is I% below the saturation value. In doing so, the computational cost is significantly reduced 

for only a slight sacrifice in the modeling accuracy. The optimal window length corresponds to 

11.67 % (14 samples), for which the modeling accuracy is at 21.87 dB. In the final comment 

on this experiment, we want to point out that even in the instance when the alignment window 

size is reduced to 0.0 %, a reasonably high SNR level is achieved. This result confirms that an 

estimated Characteristic Glottal Pulse Waveform is indeed an adequate representation of a 

typical glottal flow derivative waveform of a speaker. 
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Segmental SNR across voice quality types 

In this section, a segmental SNR measure is obtained for a range of voice quality types. Each 

voice quality type is represented with a database of 5 male and 5 female speakers. Two read 

speech sentences are obtained from each speaker. The speech files are sampled at 10 kHz. 

CGPWPM is performed for L=100, TN=120 and for the optimal alignment window size of 
11.67% (14 samples). The local, alignment slope constraints are kept at 3: 1 and 1: 3 ratios. 
Figure 5.11 displays the segmental SNR values for model, creaky, harsh, breathy, falsetto, 

tense, lax voice and two types of voice pathologies: cancer and vocal fold paralysis. 

As we have expected, the lowest modeling accuracy is obtained for the pathological voices. 
Difficulties in modeling pathological voices, especially those associated with the laryngeal 

cancer arise from the speakers' inability to maintain a reasonable level of regularity in the 

glottal flow derivative waveform realizations, as well as from the high aspiration noise levels. 

Conversely, the SNR seg values across the healthy voice types are consistently high. However, 

breathy, lax and falsetto voice are slightly better modeled than the other voice types. We 

believe that this is related to the fact that the abducted phonations, associated with the slowly 

varying glottal pulse shapes, are less prone to quantization error. 

In the remainder of this section we present the results of Characteristic Glottal Pulse Waveform 

Parameterization for three male (Ml, M2, M3) and three female speakers (Fl, F2, F3). The 

presentation for each speaker includes the following: 

" Parametric voice quality description of the estimated CGPW 

" GM and LF trajectories across the read speech sentence: "Don't ask me to carry an oily rag like that. " 

"A0.08 second segment of a voice source estimate and the corresponding synthesized waveform, 

starting with the first identified glottal closure instant. 

" Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal Matrix, Aspiration Noise 

Matrix and Modeling Residue Matrix. 

" Phase-plane plot of the Characteristic Glottal Pulse Waveform. 

" RMS values obtained on aspiration noise and modeling residue matrices across glottal cycle index. 
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Tables 5.2-5.7 show the parametric voice quality description and the SNR seg value for each of 

six speaker. The GM and LF parameter trajectories are presented in Figure 5.12, Figure 5.17, 

Figure 5.22, Figure 5.27, Figure 5.32, Figure 5.37, whereas the corresponding aspiration noise 

envelopes are shown in Figure 5.16, Figure 5.21, Figure 5.26, Figure 5.31, Figure 5.36, Figure 

5.41. The relevant examples of voice source estimates and the corresponding synthesized 

waveforms are shown in, Figure 5.13, Figure 5.18, Figure 5.23, Figure 5.28, Figure 5.33, 

Figure 5.38. The qualitative evaluation of the synthesized voice source signals is in accord with 
high SNR_seg values. Even in the cases of speakers MI and M3, where the voice source 

estimates do not conform to the idealistic view of glottal flow derivative waveform, CGPWPM 

is robust enough to parameterize every single glottal pulse in the voice source estimate and to 

provide accurate voice source reconstruction. Furthermore, Figures 10-13 show that GM and 
LF trajectories do not have extreme outliers, and that the voice source parameters attain 

realistic values. This CGPWPM quality can be attributed to the global and local constraints in 

DTW that preclude pathological alignment and parameterization. Observation of voice source 

parameter trajectories indicates that the nature of their general movement across the same 

utterance is to some extent shared by all speakers. These results lead us to postulate that the 

voice source signal might have influence on the linguistic layer of speech communication. 

Although during our extensive work in voice source parameterization we gathered further 

evidence to support the above mentioned claim, until further experiments are conducted we 

will leave the issue with this postulation. 

The estimated aspiration noise envelopes also comply with their expected form [23]. Except 

for the strong peaks around the glottal closure and glottal opening instants, aspiration noise 

envelopes realize an almost constant value over the glottal cycle duration. Note that the 

presented aspiration noise envelopes correspond to the sections in-between the GCIs, or 

exactly one normalized pitch cycle length. As far as we are aware, this is the only method that 

enables accurate and robust estimation of statistical properties of the turbulent components 

related to aspiration noise. The results clearly show that the aspiration noise envelopes and the 

energy distribution of turbulent components over the glottal cycle duration vary considerably 

across speakers. In Chapter 6 the estimates of aspiration noise envelope, rather than the 

idealistic approximations, e. g Hamming window, will be used in the process of aspiration noise 
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synthesis to enable faithful voice source reconstruction. 

The phase-plane plots can be used to evaluate the quality of voice source deconvolution from 

the vocal tract filter [40]. A successful inverse filtering would remove all the vocal tract 

resonance information from the glottal waveform estimates. Therefore, the phase-plane plot of 
the voice source estimates should produce a single closed-loop with no self-intersections. If a 

phase-plane plot exhibits more than one closed loop or displays self-intersections, it would be 

an indication that the vocal tract resonances are present in the voice source estimate. By 

applying the phase-plane analysis on the Characteristic Glottal Pulse Waveform, one can 

obtain a quick an objective assessment of the glottal flow derivative estimate quality, and thus 

avoid a tedious process of evaluating the quality of each glottal pulse individually. Further 

justification for the phase-plane analysis of the voice source signal quality is provided in 

Appendix C. The inspection of the phase-plane plots shown in following figures: Figure 5.15, 

Figure 5.20, Figure 5.25, Figure 5.30, Figure 5.35, and Figure 5.40, confirms the quality of 

voice source estimation as no additional loops or self intersections can be observed. 

Apart from providing the means to evaluate the quality of voice source estimates, phase-plane 

plots also offer an alternative perspective on glottal flow dynamics. The phase-plane plots of 

the Characteristic Glottal Pulse Waveform display significantly different characteristics for 

each of the considered six speakers indicating that the temporal structure of the CGPW is 

specific for each speaker. This argument is of course supported by varying CGPW parametric 

descriptions in Tables 5.2-5.7. However, the CGPW parameters are only related to the 

"coarse" or the general behavior of the glottal pulse shape, whereas the nature of phase-plot 

realization also reflects the fine glottal flow derivative structure. 



Ch. 5: Voice Source Parameterization with application to Voice Quality Profiling 

Table 5.2: 
Subject MI: Parametric voice quality description and the modeling SNR value 

Ra [10-2] Rk [ 10-2] Ro [10-2] Rd Oq [10-21 Sq 
Aspiration 
SNR [dB] 

Modeling 
SNR [dB] 

2.00 48.36 71.00 1.33 74.00 1.83 13.78 18.76 
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Figure 5.12: Subject M1: The trajectory of the GM and LFparameters across a sentence. 
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Figure 5.13: Subject M1: A segment of voice source estimate and its synthetic version. 
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a) Glottal Matrix b) Aligned Glottal Matrix 

e) Aligned Modeling Residue 
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Figure 5.14: Subject MI: Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal Matrix, 
Aligned Aspiration Noise estimate and Modeling Residue. 
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c) Aligned and Denoised Glottal Matrix 
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Figure 5.15. - Subject MI: Phase plane plot of Figure 5.16: Subject MI: RMS values across glottal 
the Characteristic Glottal Pulse Waveform cycles of Aspiration Noise, and Modeling Residue 

Matrices 



Ch. 5: Voice Source Parameterization with auylication to Voice Quality Profiling 

Table 5.3: 
Subject M2: Parametric voice quality description and the modeling SNR value 
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Ra [10-2] Rk [ 10-2] Ro [ 10-2] Rd Oy [10-Z] Sq Aspiration 
SNR dB 

Modeling 
SNR [dB] 

0.40 57.14 66.61 1.35 68.61 1.62 18.10 22.84 

120 
Trajectories of GM parameters 
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Figure 5.17: Subject M2: The trajectory of the GM and LFparameters across a sentence. 
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a) Glottal Matrix b) Aligned Glottal Matrix c) Aligned and Denoised Glottal Matrix 

e) Aligned Modeling Residue 
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Figure 5.19: Subject M2: Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal 
Matrix, Aligned Aspiration Noise estimate and Modeling Residue. 
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Ra [10"2] Rk [10-2] Ro [10"2] Rd Oq [10-2] Sy Aspiration 
SNR [dB] 

Modeling 
SNR [dB] 

3.40 78.27 56.00 2.05 62.00 1.03 20.3 24.22 

120 

__.... ___.... -ý , . ____. ýý^ ý. =_, . --ý----- 

Profilin 

Table 5.4: 
Subject M3: Parametric voice quality description and the modeling SNR value 
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Figure 5.22: Subject M3: The trajectory of the GM and LFparameters across a sentence. 
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Figure 5.24: Subject M3: Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal 
Matrix, Aligned Aspiration Noise estimate and Modeling Residue. 
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Table 5.5: 
Subject Fl: Parametric voice quality description and the modeling SNR value 

141 

Ra [ 10 2] Rk [10-2) ý[ 10"2] Rd Oq [10"2] Sq 
q SNR [dB] 

Modeling 
SNR [dB] 

4.37 36.72 91.28 1.42 96.30 2.26 17.88 21.65 
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Figure 5.28: Subject Fl: A segment of voice source estimate and its synthetic version. 
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a) Glottal Matrix b) Aligned Glottal Matrix 
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c) Aligned and Denoised Glottal Matrix 
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Figure 5.29: Subject Fl: Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal 
Matrix, Aligned Aspiration Noise estimate and Modeling Residue. 
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Table 5.6: 
Subject F2: Parametric voice quality description and the modeling SNR value 
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R. [10"2] Rk[10"Z] Ro [10"2] Rd Oq [10 Z] S 
q 

Aspiration 
SNR [dB] 

Modeling 
SNR [dB] 

7.53 37.35 86.15 1.66 92.44 2.11 27.74 26.02 
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Figure 5.32: Subject F2: The trajectory of the GM and LF parameters across a sentence 

01 

005 

0 

-005 

-0. i 

-0.15 

-0.2 
- -L- ----I -- --- .. --L- -I1 

1' 11I 
0.01 0.02 0.09 004 0a, 006 00/ u. 1 

Time sec 

Figure 5.33: Subject F2: A segment of voice source estimate and its synthetic version. 



ýh. S: Voice Source Parameterization with application to Voice Quality Profiling 144 
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Figure 5.34: Subject F2: Glottal Matrix, Aligned Glottal Matrix, Aligned and Uenoised Glottal 
Matrix, Aligned Aspiration Noise estimate and Modeling Residue. 
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Table 5.7: 
Subject F3: Parametric voice quality description and the modeling SNR value 

145 

Ra [ 10 2] Rk P01 Ro [10-2] Rd Oy [ 10-2] S q 
Aspiration 
SNR [dB] 

Modeling 
SNR [dB] 

12.77 28.23 76.0 1.61 87.00 2.14 26.13 23.12 
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Figure 5.37: Subject F3: The trajectory of the GM and LFparameters across a sentence. 
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Figure 5.38. " Subject F3: A segment of voice source estimate and its synthetic version. 
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Figure 5.39: Subject F3: Glottal Matrix, Aligned Glottal Matrix, Aligned and Denoised Glottal 
Matrix, Aligned Aspiration Noise estimate and Modeling Residue. 
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5.4 Voice quality profiling 
As we have discussed in the Chapter 1, Subsection 1.2.2, voice quality can be broadly 

classified into five categories: modal, creaky, harsh, breathy, and falsetto phonation. Two 

additional phonation categories, tense voice and lax voice, are commonly cited in literature as 

means of describing the overall laryngeal and supralaryngeal muscular tension settings. These 

seven phonation types are the subject of our voice quality profiling study. The voice quality is 

an amalgam of many parameters and the degree and the order of importance among them 

differs for each type of phonation. As such, we will consider, not just the glottal shape 

parameters as in [33], but also signal to aspiration noise ratio, and the aperiodic acoustic 
features (shimmer, jitter and perturbation of glottal shape parameter, Rd). The aperiodic 
features are thought to be a product of non-linear behavior in the speech anatomy, whereby 

successive cyclic variations may alternate on each cycle of vocal fold vibrations [134], or they 

may appear random while in reality being the product of an underlying deterministic system 
[67]. Pitch, amplitude and glottal shape perturbations over the successive glottal cycles give 

the vowels a perception of "naturalness". On the other hand, a monotonic voice source signal 

is usually perceived as a machine like sound. Varying levels of jitter and shimmer can give 

voice specific perceptual characteristics, and thus, they are important features that need to be 

considered in any voice quality analysis or voice pathology classification study. 

Over the years, considerable research effort has been committed to developing a parametric 

description for various voice quality types [83], [20], [33]. However, due to the fact that the 

voice quality types are not mutually exclusive, and that the perception of voice quality is a 

highly subjective matter, the parametric voice quality descriptions tend to differ from 

researcher to researcher. A common approach to voice quality profiling is to estimate an 

average value of a voice source parameter across pitch-scales, vowel types and speakers. 

However, voice source parameters are not independent, and consequently, the result obtained 

by averaging the individual parameters in isolation can be very misleading. 

In this thesis, we have attempted to extend the principles behind the Characteristic Glottal 

Pulse Waveform estimation to voice quality profiling. Let us remind that CGPW estimation is 
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a process whereby a database of normalized glottal pulse signals is analyzed, and a particular 

glottal flow derivative waveform is selected as being the most representative of the entire 
database. Since the glottal pulse waveforms are normalized in both, time and amplitude 
domains, the selection is based exclusively on the waveform shape. As such, the process takes 
into account all of the voice source parameters simultaneously. Invariably, the voice source 

parameters that describe the Characteristic Glottal Pulse Waveform, also describe the true 

average voice quality of a database. As such, if the glottal matrix is extended to contain the 

glottal pulses of a group of speakers of the same voice quality type then, the estimated 
Characteristic Glottal Pulse Waveform would represent the most typical glottal flow derivative 

realization for that particular voice quality type. 

In our study, the voice quality profiling experiment is conducted in the following manner. 
Each voice quality type is represented with a 10 speaker database. For each speaker, a 250 long 

sequence of glottal flow derivative pulses is used. Voice source estimates are obtained via 

closed-phase pitch synchronous-inverse filtering of speech using 14th order liner prediction 

coefficients to model the frequency response of vocal tract. The acoustic stimuli correspond to 

read speech sentences sampled at 10 kHz. The entire database of 2500 glottal pulse signals is 

normalized and aligned to form an intra-speaker glottal matrix. Finally, the Characteristic 

Glottal Pulse Waveform is estimated from each voice quality database and subsequently 

parameterized via a direct estimation method described in [2]. Since only one glottal pulse 

waveform needs to be parameterized for each voice quality type, the results of 

parameterization are verified and, if judged necessary, corrected manually. For each phonation 

type, the aperiodicity features and the signal to noise ratio value are obtained by applying 

CGPWPM on the speech file from which the Characteristic Glottal Pulse Waveform is 

estimated. Since the CGPW belongs to one of the 10 speakers involved in the extended glottal 

matrixes, only the speech file for that particular speaker is parameterized. 

The jitter values are estimated using the perturbation quotient of a sequence according to (5.12). 

Jitter is defined as the perturbation cycle-by-cycle of pitch, or as the change in the periodicity 

of the glottal cycle. Shimmer is defined as the perturbation of the glottal excitation amplitude 

and it is estimated according to (5.13). We have also introduced the perturbation of the glottal 
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flow derivative shape as a voice quality correlate parameter. It is estimated as a perturbation 
quotient of Rd trajectory (5.14). The perturbation quotients for all of the considered aperiodicity 
measures are estimated for K=3. 
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Table 5.8: 
The voice quality profile in terms of R-parameters, open quotient, speed quotient, aspiration 

SNR, and perturbation quotients 
R. 

[ 10-2] 
Rk 

[ 10-2] 

R. 

[10-11 
Rd 

Oy 

[ 10-1] 
Sq 

SNR 

[dB] 

RDPQ. 
[%] 

Shimmer 

[%] 

Jitter 
[%] 

VOICE 
QUALITY 

2.6 40.8 61.2 1.03 67.2 1.83 32.0 0.75 1.96 0.20 MODAL 
1.0 32.1 37.0 0.44 41.3 2.11 20.4 1.73 2.73 0.44 CREAKY 
0.8 23.3 34.9 0.29 40.0 2.42 8.9 1.92 2.99 1.94 HARSH 
7.5 45.9 71.5 1.79 84.3 1.39 19.1 0.74 2.06 0.18 BREATHY 
11.5 51.0 83.7 2.59 99.1 1.27 34.4 0.53 1.85 0.24 FALSETTO 
1.6 28.4 45.8 0.51 52.9 2.07 21.5 1.71 2.92 1.83 TENSE 
3.1 45.1 74.1 1.38 82.0 1.65 25.2 0.76 1.88 0.31 LAX 
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Table 5.8 displays our parametric voice quality profile for modal, creaky, harsh, breathy, 
falsetto, tense and lax phonation. Note that the definitions for R-parameters, open and speed 
quotients are provided in Chapter 2, Subsection 2.2.2. In Table 5.9 we have also presented the 

voice quality profiling results obtained from the following references: 1-18 Karlsson and 
Liljencrants [83], 19-27 Childers and Lee [20], 28-33 van Dinther [33]. Effective comparison 
between the results our study and those of Karlsson and Liljencrants, Childers and Lee, and van 
Dinther is difficult to make as they have reported a range of different parametric descriptions 
for the identical voice quality types. This is quite understandable as the parameterization 
results depend on the choice of speech files involved in the profiling database. Voice quality is 

not constrained to a narrow region of the auditory continuum, and it is expected that a range of 
parameters would fit under the same voice quality category. Furthermore, phonation types are 

not mutually exclusive and some of them can combine to form the compound phonations. 

Nevertheless, the relative trends in R-parameter values, in relationship to voice quality types, 

are shared by all four voice quality profiles, including ours. In comparison to modal voice, R,, 

values tend to be higher for lax, falsetto, and breathy voice. On the other hand tense, vocal fry 

and creaky voices are characterized by abrupt glottal closures, and they generally have lower 

Ra values. The parameter R. attains the lowest value for harsh voice, whereas the highest Ro 

values are found in falsetto and breathy voices. Our results indicate that the glottal pulse 

skewness is low for falsetto and breathy voice. On the other end of the scale, harsh voice has 

the highest speed quotient value. 

In regards to the aperiodic features, the following trends can be observed. Harsh and creaky 

voices exhibit the highest degree of aperiodicity, while falsetto and breathy voices exhibit the 

lowest perturbation level. The relative trend in Rd perturbation values, in relation to voice 

quality types, is similar to those of jitter and shimmer. Generally, results for all three measures 

are generally consistent. Perhaps the greatest degree of inconsistency was found in breathy 

voice, which displays the lowest jitter among the considered phonation types, second lowest Rd 

perturbation and the 4`h highest shimmer. The results in Table 4.8 confirm that the signal to 

aspiration noise ratio is an effective parameter in distinguishing between the individual voice 

quality types. The lowest SNR values are obtained for harsh and breathy voice. Conversely, 
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falsetto voice contains the lowest aspiration noise levels among all of the considered voice 
quality types. 

Although, all of the described measures are important voice quality correlates, we are 
particularly interested in studying the relationship between the glottal shape parameter Rd and 
voice quality. It has been shown that Rd is one of the most effective parameters for quantifying 
the shape of a glottal flow derivative waveform with a single numerical value [47]. Low Rd 

values indicate extremely tight, adducted phonations with low open quotient values and abrupt 
glottal closures, whereas high Rd values describe breathy and abducted phonations with higher 

Oq and RQ values. Figure 5.42 shows a plot of Rd values, arranged in the ascending order, 
against the corresponding voice quality types. The data is obtained from Table 5.8. 
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Figure 5.42. The glottal shape parameter, Rd, for various voice 
quality types 

For the lack of better alternative, we have displayed the individual voice quality types as being 

equidistant from each other. Figure 5.42 describes harsh and falsetto voices as the two 

extremes of the voice quality spectrum, whereas creaky voice and breathy voice appear to 

represent a slightly more moderate deviation from the neutral voice. The remaining two voice 

quality types, tense voice and lax voice, exhibit the least amount of deviation from modal 

voice. 
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In spite the fact that the assumption about the successive voice quality types being equidistant 
from each other is rather crude, Figure 5.42 displays a surprising amount of regularity and 
depicts a clear relationship between the Rd parameter and voice quality. Since the results of our 
informal listening tests are in accord with the illustrated relationship, we can conclude that the 

glottal shape parameter Rd, is indeed an effective parameter in quantifying the temporal glottal 
flow derivative structure and the perceptual characteristics of the voice source signals. 
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Hue-Ling Lu has investigated the extent of correlations between the LF parameters of glottal 

excitation model for baritone recordings of sustained vowels over a range of voice quality 

types [96]. She has reported that the glottal shape parameter Rd and the normalized glottal 

excitation strength, Ee are highly correlated, and has suggested that the glottal shape parameter 

can be approximated as an exponential function ofEe . 

We have made an attempt to extend her study on natural, read speech acoustic data. 

Unfortunately, we have very quickly reached a conclusion that the glottal shape parameter Rd. 
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is largely independent of glottal excitation strength. Figure 5.43 shows a scatter plot of Rd 

vs. Ee obtained for a male speaker of modal phonation over the voiced segments of the 

utterance "She had your dark suit in greasy wash water all year ". This data corresponds to an 

example where one of the highest correlation coefficients has been obtained in our 
investigation. Nevertheless, it is clear that even in this case, the glottal excitation strength 

could not be used to adequately predict the glottal shape parameter data. The exponential 
function saturates at low Ee values and the majority of Rd data is located at a very narrow region 

of the exponential function. Our study has also shown that there is even less correlation 
between the glottal shape and the glottal cycle duration. Figure 5.44 shows a scatter plot of 

glottal shape vs. frequency of vocal fold oscillations for the same speech file used in producing 

Figure 5.43. It is evident that the two parameters do not exhibit any observable correlation. 

Similar results are obtained for all the other investigated files. As such, we have deduced that 

the shape of the glottal flow derivative waveform can be considered, for all practical 

considerations, as being independent of both the frequency of vocal fold oscillations and the 

glottal excitation strength. 

We will conclude this section of the chapter by stressing the main advantages of voice quality 

profiling via the Characteristic Glottal Pulse Waveform Estimation approach. The glottal 

shape profiling requires only one glottal pulse waveform to be parameterized for each voice 

quality type. On the other hand, voice quality profiling in terms of aperiodic features and 

signal to aspiration noise ratio requires a single speech file for each phonation. As such, the 

profiling procedure allows processing of large databases in a very short amount of time. 

Furthermore, the profiling accuracy increases with the database size and the results of profiling 

can be controlled manually. 
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Table 5.9: 
R-parameters and frequency values and corresponding voice qualities obtained from: 1-18 

Karlsson and Liljencrants [83], 19-27 Childers and Lee [20], 28-33 van Dinther [33] 

R. [10-21 Rk [10-z] Ro [10-21 Fo [Hz] VOICE QUALITY 
1 2.0 37.7 54.0 126 NORMAL - male 
2 5.0 51.7 71.0 246 NORMAL - female 
3 2.6 42.5 61.0 102 LOW Fo - male 
4 5.1 41.9 76.0 190 LOW Fo - female 
5 1.5 45.0 56.0 131 MEDIUM Fo - male 
6 4.2 48.0 71.0 250 MEDIUM Fo - female 
7 9.9 32.1 87.0 288 HIGH Fo - male 
8 3.0 48.7 65.0 360 HIGH Fo - female 
9 2.7 40.7 69.0 129 LOW LEVEL - male 
10 10.5 57.1 81.0 249 LOW LEVEL - female 
11 1.9 45.0 57.0 127 MEDIUM LEVEL - male 
12 3.7 51.2 68.0 258 MEDIUM LEVEL - female 
13 1.6 37.7 49.0 132 HIGH LEVEL - male 
14 1.9 52.2 64.0 257 HIGH LEVEL - female 
15 4.6 51.0 65.0 131 BREATHY - male 
16 8.1 48.3 79.0 254 BREATHY - female 
17 1.3 39.5 41.0 128 PRESSED - male 
18 3.2 49.9 71.0 261 PRESSED - female 

///////////////////////////////////////////////////////////////////////1/////////////////////////////////////////////////////// 
19 
20 
21 
22 
23 
24 
25 
26 
27 

//////////////////////////////////////, 

28 
29 
30 
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5.5 Conclusion 

Characteristic Glottal Pulse Waveform Parameterization and Modeling offers a novel 
framework for voice source analysis, parameterization and reconstruction of voice source 
signals. The proposed method is not constrained to the idealized glottal waveform 
approximations (e. g. Liljencrants-Fant's model), but instead, relies on the estimates of the 
Characteristic Glottal Pulse Waveform to obtain the voice source parameters. It uses a set of 
modified LF parameters and the DTW algorithm to track the nonlinear evolution of CGPW in 

time. The constrictions of the optimal non-linear time alignment that are employed by DTW 

algorithm are also extended to voice source parameterization and as such, pathological 
parameterization is precluded. The design of the method is motivated by the fact that the 

parameterization performance is linked to the extent of similarity between the glottal model 

and the analyzed voice source signal. CGPWPM provides the means to model both, the course 

and the fine structural elements of the glottal flow derivative realizations. Thus, the proposed 

method enables a study of voice source signal features and their temporal behavior that could 

not be efficiently or accurately represented by a poorly deterministic glottal flow derivative 

model. Another useful characteristic of this method is that the parameterization of consecutive 

glottal pulses across the voiced source signal is referenced to a parametric description of a 

single glottal flow derivative realization. As such, CGPWPM method can be used very 

effectively in a semi-automatic manner, as well as in the fully automatic mode. The results of 

the synthetic dataset based experiments have shown that the performance of the Characteristic 

Glottal Pulse Parameterization is virtually insensitive to the inaccuracies in the glottal closure 
instant estimates. On natural speech, CGPWP exhibits a robust performance even for the 

significant presence of disturbances in the voice source signal estimates. Overall, CGPWP 

exhibits a superior performance over the standardfit estimation and direct estimation methods. 
The results of the voice quality profiling experiment were in a general agreement with those 

obtained by Karlsson and Liljencrants, Childers and Lee, and van Dinther. We have used the 

voice quality profiling results to derive a surprisingly simple relationship between the glottal 

shape parameter Rd, and voice quality. 



Chapter 6 

Voice Source Reconstruction with applications to 
Speech Synthesis and Voice Quality Conversion 

ABSTRACT 

In this chapter, the voice source reconstruction aspect of the Characteristic Glottal Pulse 
Waveform Parameterization and Modeling system is presented. The novelty of this 
voice source reconstruction method is that it provides effective means of modeling 
complex glottal flow derivative realizations. Unlike the Liljencrants-Fant's model, it is 
able to represent both, the course and the fine structure of the glottal flow derivative 
waveforms. The results of our speaker identification experiments have established that 
the fine structural elements of the glottal flow derivative waveforms contain a notable 
level of speaker-dependant information. CGPWPM is applied under the source-filter 
model of speech production to develop the speech synthesis and voice conversion 
methods. The quality of CGPWPM-based speech synthesis is formally evaluated via the 
Mean Opinion Scores and Degradation Mean Opinion Scores. The DMOS results, 
obtained for CGPWPM-based synthesis of pathological voices are very high, suggesting 
that CGPWPM is adaptable enough to cater for very complex and structurally rich 
forms of glottal flow derivative realizations. With the respect to healthy, modal 
phonations, the MOS values reveal that CGPWPM-based speech synthesis rates highly 
on the scale of absolute perceptual acceptability. The corresponding DMOS values 
confirm that the speech is faithfully reconstructed on consistent basis. Triadic listening 
tests are used to evaluate the performance of a CGPWPM-based voice quality 
conversion method. The results have shown that the proposed method is able to 
successfully modify the glottal shape parameters, aspiration noise characteristics, and 
the aperiodic features of a voice source signal and consequentially, to achieve the desired 

perceptual effects. 

6.1 Introduction 

6.2 Voice source reconstruction and speech synthesis 
6.3 Comparative evaluation: LF as. CGPWPM 

6.3.1 Subjective A/B listening tests 
6.3.2 Speaker identification 

6.4 Speech quality assessment for CGPWPM via MOS and DMOS 

6.5 Voice quality conversion 
6.5.1 Verification experiment 
6.5.2 Results and discussion 

6.6 Conclusion 
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Speech synthesis can be defined as a process of generating an acoustic replica of a speech 
signal or of a typed text. In 1791 a Wolfgang Von Kempelen invented a mechanical machine 
that could produce entire phrases in French and Italian. This was one of the pioneering speech 
synthesis attempts. With the development of the electronic instruments, such as the 
oscilloscope, the researchers began to gain more insight into speech acoustics. This 
knowledge enabled Dudley to produce a first electronic speech synthesizer, a 10-channel 

vocoder that was superior to the available mechanical synthesizers at the time [391. With the 
development of digital computers in the 1960, a computer software approach to speech 

synthesis was made possible. Since then, researchers have used computers to develop and 

evaluate a range of speech synthesis designs. However, it would be a fair assessment to say 
that much of the research effort has been focused on the spectral properties of the vocal tract 
filter, and less attention has been paid to the voice source signals. In the last decade, it has 
become evident that the development of an accurate and robust glottal excitation model is the 
key for obtaining a state of the art high quality speech synthesizer. A sophisticated glottal 

model and the high quality voice source reconstruction can be used under the source-filter 

model of speech production to enable an intuitive control of acoustic parameters and 

ultimately, to produce a high quality voice conversion and morphing systems. The following 

references provide extensive reviews of speech synthesis techniques and their corresponding 

applications: [7], [16], [122]. 

In Section 6.2, we will describe the voice source reconstruction aspect of the Characteristic 

Glottal Pulse Waveform Parameterization and Modeling (CGPWPM) system. A comparative 

assessment between the Characteristic Glottal Pulse Waveform model and the Liljencrants- 

Fant's glottal flow derivative waveform model is presented in Section 6.3. Subjective A/B 

listening test are used to establish which of the two models provides a perceptually more 

acceptable synthetic speech. These two models are also evaluated in the context of speaker 

identification. The aim of the speaker identification experiment is to determine whether the 

fine structural elements of the glottal flow derivative waveforms (which can be modeled by 
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CGPWPM system) contain speaker-dependant information, as we have initially claimed in 
Chapter 3. In Section 6.4, the quality of CGPWPM-based speech synthesis is formally 

evaluated via Mean Opinion Scores and Degradation Mean Opinion Scores. Voice quality 
conversion experiment is presented in Section 6.5. The experiment demonstrates that the 
CGPWPM can be used to modify the voice source parameters and to consequentially achieve 
the desired perceptual effects. Section 6.6 concludes the chapter. 

6.2 Voice source reconstruction and speech synthesis 

GM Parameters --º 

CGPW Parameters - *º 

CGPW matrix 

Aspiration noise matrix 

Aligned glottal matrix 

E, Trajectory 0.1 

Pitch 
Estimation 

GCIs 

Vocal Tract 
Coefficients 

f 

Voice 
Source 

Synthesis 

I- I 

Voice Source 

Figure 6.1: Schematic diagram of CGPWPM-based Speech Synthesis 

Convolution 
Speech 

Figure 6.1 shows a schematic diagram of CGPWPM-based speech synthesis system. The 

speech synthesis involves two stages, voice source reconstruction and voice source 

convolution with the vocal tract filter. Voice source reconstruction requires estimates of GM 

parameter trajectories, Characteristic Glottal Pulse Waveform, and aspiration noise envelope. 

Estimation of 
temporal alignment 

functions 

2-D alignment surface 

Non-linear 
Time Warping 

Glottal matrix 

L, 

The GM parameter trajectories and the parameters describing the Characteristic Glottal Pulse 

Waveform are used to synthesize a 2-dimensinal surface of alignment functions. The 
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estimated alignment functions represent the temporal relationships between the Characteristic 
Glottal Pulse Waveform and the consecutive glottal pulses in the glottal matrix. Let us 
remind that in Chapter 5, we have defined glottal matrix as a set of normalized (both in time 
and frequency) glottal flow derivative waveforms, arranged in a sequential order as they 
appear in the voice source signal. We have also shown that when a glottal matrix is aligned 
using the surface of alignment functions towards a Characteristic Glottal Pulse Waveform, it 

can be decomposed into the two parts, a repetitive sequence of the Characteristic Glottal 
Pulse Waveforms, and the additive aspiration noise matrix. In voice source synthesis, this 

process is reversed. Aspiration noise matrix is synthesized using the estimated aspiration 
noise envelope, and added to a repetitive sequence of the Characteristic Glottal Pulse 
Waveform to produce aligned glottal matrix. Aligned glottal matrix is subsequently non- 
linearly warped with a surface of synthesized alignment functions to obtain an approximation 
to an original glottal matrix. From this stage on, the process of voice source reconstruction 

and speech synthesis is rather straight forward. The normalized glottal pulses are extracted 
from the glottal matrix, temporally scaled according to pitch estimates, and arranged in a 
sequence according to GCI estimates. Subsequently, the glottal pulse sequence is scaled in 

amplitude with the synthesized excitation strength envelope to produce the reconstructed 

voice source signal. The excitation strength envelope is generated from GCI and Ep estimates 

via the monotone piecewise cubic interpolation. Finally, the speech signal is obtained by 

convolving the voice source signal with the vocal tract filter. It is important to note that 

CGPWPM is used for voiced speech, only. In this thesis, the unvoiced segments of speech 

are added from the original speech to complete the acoustic signal and thus, enable 

perceptually-based performance evaluation experiments. 

What follows is a description of two essential CGPWPM components, namely, estimation of 

temporal alignment functions and aligned glottal matrix synthesis. Since the other 

elements of CGPWPM-based synthesis are standard signal processing procedures, we deem 

that no further elaboration is required. Note that some examples of voice source estimates 

and the corresponding synthesized voice source signals are presented in Chapter 5, in the 

following figures, Figure 5.13, Figure 5.18, Figure 5.23, Figure 5.28, Figure 5.33, and Figure 

5.38. 
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In the process of voice source parameterization, DTW alignment functions are used to 

establish the temporal relationships between the Characteristic Glottal Pulse Waveform and 

the other glottal matrix pulses. Subsequently, the 2-D surface of alignment functions is used 

to map the voice source parameters from the CGPW to the other glottal pulses in the glottal 

matrix, and thus obtain a parametric representation for the non-linear temporal evolution of 

the CGPW through the glottal matrix. In the reverse process, the alignment functions are 

estimated from the GM parameter trajectories and the CGPW parameters using the monotone 

piecewise cubic interpolation. The following parameters define the interpolation process (1, 

d+1, tc, t0, t,,,, tp, te, L}. Note that the parameters. {1, L} are added to the GM parameter set to 

ensure that the boundary constraint that was originally imposed on Dynamic Time Warping 

algorithm is satisfied. Figure 6.2 and Figure 6.3 illustrate the process of alignment function 
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synthesis. Figure 6.3 shows a segment of alignment functions surface obtained via a DTW 

algorithm, together with its synthetic counterpart. The data corresponds to the first 100 glottal 
pulses of the utterance "We were away a year ago". The speech signal belongs to a male 
speaker (WSJCAMO database), sampled at 10 kHz. CGPWPM is performed for L=120, 

TN=100 and 6 =10. 

Visual inspection of the two figures, suggests that GM parameters are very effective in 
describing the temporal evolution of Characteristic Glottal Pulse Waveform through a glottal 

matrix. Only, minor differences between the synthetic and DTW-obtained alignment 
functions can be observed and it is unequivocal that the general structure of the DTW 

alignment surface is accurately represented by its synthetic counterpart. Figure 6.3 also 
demonstrates why it is necessary to include the maximum positive glottal flow derivative 

instant tm, in the set of glottal matrix (GM) parameters. Without the parameter tm, the 

alignment functions could not be adequately synthesized as there would not be a sufficient 

temporal resolution of the glottal flow derivative structure. 

Note that the voice source reconstruction procedure does not require a complete glottal 

matrix frame. In fact only the segments in-between GCI, =8+1 and GCI z=L-ö +1 are 

necessary to completely represent glottal pulse cycles, starting and ending with the glottal 

closure instants. In Figure 6.2 and Figure 6.3, we have also shown the "un-required" 

elements of the alignment functions in order to make the presentation of results more 

compatible with those in Chapter 5. In the actual CGPWPM-based speech synthesis, 

alignment functions are synthesized only for the interval bounded by the two glottal closure 

instants. The same applies for the aligned glottal matrix. 

In this chapter, we refer to the adjusted DTW alignment functions as simply DTW alignment functions. The 
prefix "adjusted" is omitted in order to avoid unnecessary confusion. DTW functions were adjusted in order to 
remove the effect of GCI estimation errors on the voice source parameterization performance. 
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Synthesis: aligned glottal matrix 
The aligned glottal matrix is synthesized as follows: 

G' (i, n) = A(i, n) -M cGPw (i, n) (6.1) 

where G' and A denote aligned glottal matrix and aspiration noise matrix, respectively. 
MCGPW is an N-by-L matrix containing N repetitions of CGPW. N and L signify the number 

of glottal matrix pulses and the glottal matrix frame length, respectively. Aligned glottal 

matrix synthesis is essentially a reverse process to that used in the waveform decomposition 

block, see Chapter 5. Aspiration noise matrix is generated in the following manner. An N- 

by-L matrix of random Gaussian noise with unit variance and zero mean is formed. 

Subsequently, each noise matrix frame is modulated by the estimated aspiration noise 

envelope to produce aspiration noise matrix. This aspiration noise model is conceptually 

identical to the one presented in Chapter 2, Figure 2.18. However, in CGPWPM, the 

aspiration noise is even further integrated with the glottal pulse waveforms. In fact, the 

energy distribution of the turbulent components over a glottal cycle is being treated in the 

same way as the glottal pulse waveform itself. They are both non-linearly warped on a cycle- 

by-cycle basis according to the estimated voice source parameter trajectories. 

6.3 Comparative evaluation: LF vs. CGPWPM 

In this section, we present a comparative assessment between the Characteristic Glottal Pulse 

Waveform model and the Liljencrants-Fant's glottal flow derivative waveform model. In 

Subsection 6.3.1, subjective A/B listening tests are used to establish which of the two models 

produces perceptually more acceptable synthetic speech. In Subsection 6.3.2, these two 

models are evaluated in the context of speaker identification. The speaker identification 

experiment is used to establish whether the fine structural elements of the glottal flow 

derivative waveforms (which can be modeled by CGPWPM system) carry speaker-dependant 

information. 
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We have conducted a subjective A/B test to establish which of the two glottal flow derivative 

pulse models, LF or CGPWPM, produces a more natural synthetic speech. In this instance, 

the term "naturalness" is simply defined as human sounding. The comparative evaluation is 

performed on a subset of the WSJCAMO database. The test data includes 20 read speech 
sentences sampled at 10 kHz, 10 of which are of male speakers, and 10 of female speakers- 
The test database is subsequent expanded with the corresponding 20 LF-based synthetic 
speech files and 20 CGPWPM-based synthetic speech files. In order to enable a fair 

comparison between the two models, the LF synthesis of voice source signals is based on the 

parameters obtained via Characteristic Glottal Pulse Waveform Parameterization. LF 

synthesis is based on the following set of equations (2.12) and (2.13). Note that the 
Characteristic Glottal Pulse Waveform Parameterization is performed for the following 

parameter values; L=120, TN=100 and 6 =10.40 listeners have participated in the test. 

For each speaker, the two synthetic speech files are compared with each other, and with the 

original speech file, excluding the same sentence comparison. This results in 3 possible pairs 

per speaker. Each pair is presented twice in forward and twice in reverse order. As such, the 

listening presentation contains a total of 3x4x 20 = 240 pairs. The order of pairs is 

randomized and the listening test is presented as follows. A 500 Hz tone is used to alert the 

listeners that the speech material is to follow. Each pair of sentences (A, B) is presented 

twice consecutively as {(A, B), (A, B)) with a pause of 2 seconds in-between repetitions. 
Also, a 1-second pause is inserted in-between each A and B. Prior to the presentation of a 

next pair, listeners are provided with a 4-second interval to form and report their preference 

scores. Undecided or equal scores were not available options. Halfway through the 

presentation, the listeners were provided with a 10 minute break. In order to ensure the 

validity of the collected data, the performance of each listener is graded. Based on the scores 

obtained for the forward and the reverse presentation of each pair, one can evaluate the ability 

of a listener to make the required discriminations in a consistent manner. Four listeners were 

found to have a consistency level in their preference choices below the threshold level of 
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75%. Since these four listeners were not able to discern adequetly the levels of naturalness in 

the presented speech tokenss, their results are not included in this study. The average 

consistency level among the remaining speakers is 85.8 %. Their results are summarized in 

Table 6.1. 

Table 6.1: 
Preference scores indicating how many times one type of acoustic data is 

preferred over another, in term of perceived levels of naturalness. 

Average Preference scores J%J 
CGPWPM vs. LF 66.7 33.3 
CGPWPM vs. Natural 47.2 52.8 
LF vs. Natural 25.0 75.0 

The average preference scores demonstrate that the subjective quality of the CGPWPM-based 

speech synthesis exceeds that of Liljencrants-Fant's model, and it is just below the natural 

speech itself. The fact that CGPWPM-based synthetic speech is at times preferred to natural 

speech is primarily attributed to the higher levels of regularity in the consecutive glottal flow 

derivative waveforms that is imposed by CGPWPM synthesis. This issue is further clarified 
in Section 6.4. In addition, we have found that 83.3 % of the inconsistencies in the listeners' 

choices involve the sentence pairs consisting of CGPWPM-based synthetic speech and the 

natural speech. This is a clear indication of the extent of difficulty that the listeners 

experienced in discriminating the natural and the CGPWPM-synthesized speech. 

Note that the results of the subjective A/B listening test do not significantly deviate between 

genders, and as such, we did not produce separate reports for male and female speakers. 
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6.3.2 Speaker identification 

In this section of the chapter, we want to ascertain whether the extra features in the 

CGPWPM-synthesized voice source signal contain any significant levels of speaker- 
dependant information. In relation to this objective, we will conduct an experiment using an 

established speaker identification system, rather than attempt to develop an optimal solution 

specifically for the voice source signals. 

Over the years, researchers have made some attempts to establish the levels of speaker- 

dependant information in the voice source signals, e. g. [64], [135]. However, these 

experiments were based on the LPC-residuals, rather than on the voice source estimates 

obtained via the pitch-synchronous deconvolution of voice source and vocal tract from 

speech. On the other hand, in [114], the authors have developed a parametric representation 

of the fine glottal flow derivative structure, which was together with the coarse glottal pulse 
features (LF-model), evaluated in the context of speaker identification experiments. 

However, they have made no attempt to include some of the fine structural elements of the 

glottal pulse waveforms in the process of voice source reconstruction. 

Preliminary evidence 
Before we describe the speaker identification experiment, we will present some preliminary 

evidence that suggests that speaker-dependant information is indeed carried by the voice 

source signals. The evidence is based on the distributions of voice source parameters and on 

the phase plane analysis of the Characteristic Glottal Pulse Waveform estimates. 

In Figure 6.4, we have presented a set of voice source parameter distributions for two female 

speakers. Parameters include open quotient, speed quotient, R -parameters of the glottal pulse 

model and the glottal pulse shape parameter Rd. The results were obtained on 2 seconds of 

voiced speech data, from each speaker. Characteristic Glottal Pulse Waveform 

Parameterization is performed for the following parameter values: L= 120, TN=100 and 6= 10. 

Visual inspection of the histograms in Figure 6.4 clearly indicates that two speakers produce 
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considerably different sets of voice source parameter distributions. The distributions related 
to Subject I are noticeably smoother than those of Subject 2. Withstanding the speed 
quotient, the parameters of Subject I also exhibit more symmetrical distributions. The glottal 

pulse shape parameter related to Subject I decays gradually on either side of median 
distribution value, whereas for Subject 2, Rd drops sharply on the left side and falls somewhat 
more gradually on the right side. Another obvious difference is that Subject 2 is able to 

maintain a constant RQ value for a range of vocal fold realizations, while Subject 1's R. 

exhibits quite strong deviations from its median value. Both speakers seem to have 

reasonably well defined and most importantly very characteristic voice source parameter 
distributions. 

In Figure 6.5, we have shown the results of phase-plane analysis for six female speakers. 
For each speaker, two Characteristic Glottal Pulse Waveforms (CGPWs) are obtained from 

two linguistically different read speech sentences. Subsequently, phase-plane plots of the two 

CGPWs are superimposed, to enable a visual comparison. As we have hoped, the phase- 

plane plots do not show significant variation with the respect to the different linguistic 

contents, but instead vary extensively across the speakers. It is important to note that the 

general shape of the phase-plane plots is strongly influenced by the fine temporal structure of 

the Characteristic Glottal Pulse Waveforms. The results in figure 6.5 would indicate that the 

fine glottal flow derivative structure contains speaker dependant information. As such, these 

results constitute compelling evidence that CGPWPM-based voice source synthesis might 

carry a significantly higher content of speaker-dependant information than the Liljencrants- 

Fant's model, which is only able to represent the coarse glottal flow derivative structure and 
leaves the fine glottal flow derivative structure unrepresented. 
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TARGET 

Figure 6.6: Schematic diagram of the GMM based speaker identification system 

Speaker identification experiment 

The speaker identification experiment is performed with a Gaussian Mixture Model (GMM)t 

illustrated in Figure 6.6.32 Gaussian mixtures are used. Each Gaussian mixture component 

is assumed to be characterized by a diagonal covariance matrix. Maximum Likelihood (ML) 

parameters are estimated using the Expectation-Maximization (EM) algorithm [31] with 10 

iterations. 

The speaker identification is evaluated on four types of acoustic signals: 

" Speech 

" Glottal flow derivative estimate 

" LF-Synthesized glottal flow derivative 

" CGPWMP - Synthesized glottal flow derivative 

The speaker identification experiments are performed on a subset of WSJCAMO database 

involving 80 male and 80 female speakers. A Gaussian Mixture Model is associated to each 

speaker. Segments of 15 and 5 seconds long data are used for training and testing of the 

t GMM is conceptually similar to the widely used Hidden Markov Model (IIMM). The main difference 
between the two systems is that GMM ignores the temporal information of the acoustic observation sequence. 
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system, respectively. A 23-mel-cepstra representation is used for each type of acoustic 
signal. The experiment setup is comparable to that used in [114]. The glottal flow derivative 

estimates are obtained via closed-phase, pitch-synchronous inverse filtering of speech signals. 
In the process of blind deconvolution, the vocal tract frequency response is modeled with 14 

coefficients obtained through a covariance based linear prediction analysis. In order to 

enable a fair comparison between the two glottal models, the LF synthesis of voice source 
signals is based on the parameters obtained via the Characteristic Glottal Pulse Waveform 
Parameterization. Note that the Characteristic Glottal Pulse Waveform Parameterization and 
Modeling is performed for the following parameters L=120, TN=100, and ä =10. The results 

of the experiment are summarized in Table 6.2. 

Table 6.2: 
The average speaker identification rate for speech signals, voice source estimates, LF-based 

voice source reconstructions, and CGPWPM-based voice source reconstructions 

Identification signal Male [%] Female [%] Average [%] 

Speech 100.0 % 100.0 % 100.0 % 

Voice source estimate 95.6 % 94.4 % 95.0 % 

Synthetic voice source - LF 54.4 % 53.3 % 53.9% 

Synthetic voice source - CGPWPM 65.6 % 62.2 % 63.9 % 

For us, the most significant result is that the average identification rate obtained for 

CGPWPM-based voice source synthesis is 18.6 % higher than the identification rate 

corresponding to the Liljencrants-Fant's glottal pulse model. Liljencrants-Fant's model can 

not capture any of the fine structural elements of the glottal derivative waveforms and at best, 

it is only able to describe a general shape of the glottal flow derivative realizations. Thus, the 

average speaker identification rate for LF model was the lowest among the considered 

acoustic waveforms. Nevertheless, the overall results demonstrate that the voice source 

signal contains a considerable amount of speaker-dependant information. We used the word 

"considerable" rather loosely here. We certainly do not mean to imply that the voice source 

signal has a comparable level of speaker-dependant information as the vocal tract features. 

Instead, the speaker identification rates are high enough to illustrate the importance of 
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adequate voice source representation in the source-filter based speech synthesis or any other 
relevant applications. 

The substantial differences in the identification rates between the CGPWPM-based voice 

source reconstruction and the actual voice source estimates indicate that there is still a large 

space for improvement in the modeling of voice source signal. However, the gap might not 
be as large as these experiments would suggest. Baring in mind that for speech signals, 100 

% identification rates are realized even for much larger databases than the one considered 

here. As such, it is entirely possible that the high identification rate obtained on the voice 

source estimates is to a large extent a tribute to the imperfect voice source deconvolution 

from vocal tract. The vocal tract artifacts in the voice source signal can give rise to 

significant improvements in the identification rates. On average, a slightly higher 

identification rates are achieved for male speakers than for female speakers. However, given 

that the discrepancy between the female and male identification rates is only marginal and 

that the results are obtained on a relatively small dataset, we do not think that we are in a 

position to form a valid judgment on gender dependency of speaker identification rates. 

Having established that CGPWPM is perceptually a more acceptable glottal flow derivative 

model, and having demonstrated that it is able to retain more of the speaker-dependant 

information from the voice source estimates, we will proceed with the formal evaluation of 

CGPWPM-based speech synthesis. 

6.4 Speech quality assessment for CGPWPM via MOS and 

DMOS 

In this section we will evaluate the absolute perceptual acceptability and the quality of the 

CGPWPM-synthesized speech. The performance evaluation is based on Mean Opinion 

scores (MOS) and Degradation Mean Opinion Scores (DMOS). 
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The speech quality assessment is performed on a subset of WSJCAMO database involving 10 

male read speech sentences and 10 female read speech sentences, sampled at 10 kHz. We 

have also evaluated the quality of speech synthesis on a database of 5 male and 5 female 

pathological speech files. Pathological files are listed in Table 6.3. Note that the evaluation 

of pathological speech synthesis is constrained to DMOS results, as MOS values are 
inherently unreliable for pathological voices. The Characteristic Glottal Pulse Waveform 

Parameterization and Modeling is performed for the following parameter values; L=120, 

TN=100 and 6 =10. 

Table 6.3: 
Pathological Speech database 

Index Diagnosis Gender 

I True vocal cords (TVC) contact ulcer Male 

2 Hoarse unilateral TVC carcinoma Male 

3 Vocal fry Male 

4 Bilateral Paralysis of TVC Male 

5 Hoarse Male 

6 Left TVC unilateral paralysis Female 

7 Pathologically breathy Female 

8 Hyper functional Female 

9 Enlarged vocalus muscle Female 

10 Right TVC unilateral paralysis Female 

Mean Opinion Score 

Mean Opinion Score (MOS) is the most widely used speech quality assessment method. It is 

based on the Absolute Category Rating (ACR). Listeners are asked to grade the overall 

quality of the acoustic signals using the five categories shown in Table 6.4. The MOS value 

is defined as the mean of rating values obtained from a group of listeners. Note that the 

listeners are not presented with the reference signals and the speech quality assessment is 

based exclusively on the listeners' perceptual impression of the speech quality. Since the 

individual scales of goodness are inherently varied [143], the unconstrained subjective 

assessment is prone to the listeners' bias. This bias can be minimized by collecting the 
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results from a large number of listeners. As such, we have asked 40 listeners to participate in 

the assessment of CGPWPM-based speech synthesist. 

Degradation Mean Opinion Score 

In Degradation Mean Opinion Score (DMOS) evaluation, listeners are asked to grade the 

level of degradation between the synthetic speech tokens and the corresponding original 
(reference) signals. As such, DMOS belongs to a group of Degradation Category Rating 

(DCR) measures. Unlike MOS results, DMOS results are not necessarily linked to the 

listeners' absolute acceptability of synthetic speech, but instead, they reflect the quality of 

speech reproduction. Thorpe and Shelton compared the MOS results with the DMOS results 

obtained for eight codecs with the dynamic background noise [136]. They have concluded 

that DMOS values are particularly useful in the instances when MOS results have a 

compressed range or/and are near the floor or ceiling value. For the same reason, CGPWPM 

is evaluated using the MOS and DMOS measures in conjunction. DMOS rating system is 

illustrated in Table 6.5. 

Table 6.4: 
MOS and the corresponding Speech Quality 

Table 6.5: 
DMOS and the corresponding Degradation Levels 

Rating Speech Quality Description 

I Bad 
2 Poor 
3 Fair 
4 Good 
5 Excellent 

Results 

Rating Degradation Level Description 

1 Very annoying 
2 Annoying 
3 Slightly annoying 
4 Audible but not annoying 
5 Inaudible 

Figure 6.7 shows the Mean Opinion Scores and Degradation Mean Opinion Scores for each 

of the 20 speech files in the test database (healthy voice). The average results are presented 

in Table 6.6. MOS values reveal that CGPWPM-based speech synthesis rates highly on the 

t This particular number of listeners is recommended by ITU-T [76]. 
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scale of absolute perceptual acceptability, while DMOS values suggest that the speech is 

faithfully reconstructed on consistent basis. The average MOS and DMOS values across the 

database are 4.45 and 4.55, respectively. Not a single speech reconstruction exhibits 

annoying degradation levels and only one speech file was judge below the second highest 

level of absolute perceptual acceptability. Overall, we can conclude that CGPWPM-based 

speech synthesis offers a high quality performance that is consistent across speakers and 

gender. Note that the MOS and DMOS results for LF-based speech synthesis are not 

presented as they were not comparable to those of CGPWPM-based speech synthesis, 

especially in terms of DMOS evaluation. 

D _7---r--T-T-T-T --TTT. -- .Il--I 1111 

... ... .. 

-- 123456789 10 11 12 13 14 15 16 17 18 19 

CGPWPJ Syntttec¢ed speech tokens 

rý 

ý 

ý 
i 

20 

MOS 
DMOS 

I legmd 

Figure 6.7: Mean Opinion Scores and Degradation Mean Opinion Scores for 

CGPWPM-Synthesized Speech. Speech tokens labeled 1-10 correspond to 
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Figure 6.8: Degradation Mean Opinion Scores for CGPWPM-Synthesized Pathological Speech. 
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Table 6.6: 
Gender dependant MOS and DMOS values for the normal and pathological speech 

CGPWPM synthesis MOS DMOS 

Male speech 4.44 4.54 
Females speech 4.46 4.55 
Pathological speech male NA 4.12 
Pathological speech female NA 4.17 
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Figure 6.9 Scatter plot of DMOS vs. MOS and the optimal linear fit obtained via 
regression analysis; the outliers are circled. 

The relationship between DMOS and MOS results is further examined in Figure 6.9, where a 

DMOS vs. MOS scatter plot and the optimal linear fit obtained via regression analysis are 

displayed. With respect to the outliers above the regression fit (speech tokens indexed as 3 

and 14 in Figure 6.7), the interviews* that were conducted after the listening test reveal that a 

vast majority of listeners would rate the original speech tokens between good and excellent 

quality. This explains why in spite of high quality reconstructions, lower MOS values were 

reported. On the other hand, the outliers below the regression fit (indexed as 11 and 16 in 

Figure 6.7) exhibit substantially lower DMOS than MOS values. On closer examination, we 

y=1.1191x-0.4357 
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I The entire speech data base was made available to listeners for more thorough examination. 
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have found that the two synthetic speech tokens are perceptually more acceptable than their 

natural counterparts, due to a higher degree of regularity in the CGPWPM-synthesized voice 

source signal. Note that in the process of voice source synthesis, each glottal pulse waveform 

is represented by CGPW that is temporally warped in a non-linear manner according to voice 

source parameters. Since the warping function is constrained by a range öf conditions, such 

as: monotonicity, limited extent of deviation from the diagonal form, etc., a relatively high 

level of regularity in the voice source signal emerges as an inherent property of CGPWPM- 

based synthesis. Some listeners perceived this type of speech enhancement as imperfect 

speech reconstruction, and correspondingly, they have reported lower DMOS scores. In the 

light of this investigation, we believe that the four outliers do not accurately reflect 

CGPWPM performance. When they are removed, the Pearson product-moment correlation 

coefficient, defined in (11), value increases, from 0.929 to 0.988. The latter value indicates a 

strong DMOS vs. MOS correlation, and correspondingly it validates the overall quality of 

experimental results. 

NN 

Ny X(i)Y(i) - X(i) Y(i) 
Iýý 

r= 
N2 Ji 

lN 
ýX(i)Z 

- X(i)lY(i)z -Y(i) I 
J 

r=ý ril C 
1/2 (6.2) 

The DMOS results corresponding to the pathological speech database are presented in Table 

6.6 and Figure 6.8. The level of pathological speech reconstruction was rated between 

slightly annoying and audible but not annoying. In most cases, CGPWPM enhanced the 

quality of pathological speech. Nevertheless, there were cases, such as Hoarse unilateral 

TVC carcinoma, where CGPWPM could not account for the extent of variation in the 

acoustic characteristics of the glottal flow derivative waveform realizations. We believe that 

at least two Characteristic Glottal Pulse Waveforms would be necessary to be able to 

adequately represent this particular voice source signal. Overall, DMOS results for 
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pathological voices are very high, suggesting that CGPWPM is adaptable enough to cater for 

very complex and structurally rich forms of glottal flow derivative realizations. 

Having described CGPWPM as a high quality voice source parameterization and synthesis 
system, in the following section, we will demonstrate that the proposed method can also 

provide an effective platform for voice source conversion and voice quality control. 

6.5 Voice quality conversion 

High quality voice source modification is a subject of considerable importance in a range of 

applications, such as: text-to-speech synthesis, psychoacoustics experiments, speaker 

normalization-based speech recognition, etc. In this section, we describe a technique, based 

on the Characteristic Glottal Pulse Waveform Parameterization and Modeling, for automatic 

conversion of one speaker's voice quality to another's. CGPWPM is used in the analysis of 

the source and target signals, and it is subsequently used to synthesize the modified speech. 

The text-independent voice quality conversion is accomplished by representing the voice 

quality as a multi-dimensional space that can be modified to produce the desired perceptual 

effects. The multi-dimensional space encodes the glottal pulse waveform and aspiration 

noise properties, the average frequency of vocal fold vibrations and aperiodicity features, 

namely shimmer and jitter. ' 

Let us remind that the voice source synthesis via CGPWPM is defined for the following 

parameters, Characteristic Glottal Pulse Waveform, aspiration noise envelope, GM parameter 

trajectories, gain contour, pitch contour and the corresponding glottal closure instants. 

In the proposed method of voice quality conversion, the following set of parameters are 

required from the target speaker: aspiration noise envelope, Characteristic Glottal Pulse 

Waveform and its parameters, the average frequency of vocal fold vibrations, and finally, the 

perturbation coefficient values for the pitch and glottal excitation strength contours. 
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Conversion of the glottal pulse waveforms and aspiration noise properties 
Since, the temporal relationship between the glottal matrix (GM) parameters and the 
parameters describing the CGPW is related through a surface of alignment functions, a new 
set of glottal matrix parameter trajectories for the modified voice source signal can be 
obtained via the following algorithm: 

PM = W. S (P c,,,, ) Pccpw -{tS+1, tc, to, Im, tp, te} (6.3) 

where P' denotes the GM parameters for the jib glottal pulse in the modified glottal matrix. 

W. S refers to the adjusted source alignment function relating CGPW to the irh glottal pulse in 

the source glottal matrix. PccPW corresponds to the parametric description of target's 

CGPW. As in the voice source synthesis, P,. M values are obtained through the monotone 

piecewise cubic interpolation of alignment functions. 

An example of glottal waveform conversion is given in Figure 6.10. In this example the 

source corresponds to a male voice with modal phonation. A male voice of tense phonation 
is used as the target. The voice quality parameters for the source and target speaker are 

presented in Table 6.7, under M1 and T1, respectively. Both, the source and the target data 

correspond to the utterance "We were away a year ago". In order to enable an effective 

visual comparison, the trajectories of the target speaker are uniformly compressed such that 

the beginning and the end points of the target trajectories precisely align with those of the 

source. 

Figure 6.10 shows that the modified GM parameters are actually somewhere in-between 

those of source and target speakers. To be more precise, the average values of the modified 
GM parameters correspond to the target speaker, whereas the nature of temporal evolution is 

retained from the source. Based on our experience, we believe that the temporal behavior of 

the voise sorce signal, with the respect to the general shape of glottal flow derivative 
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waveforms, is at least to some extent related to the linguistic layer of speech communication. 
As such, we have purposefully aimed to preserve this aspect of a voice source signal from the 
source speaker. In addition, our informal listening tests have shown that when the GM 

parameter trajectories are obtained in this manner, as opposed to using the GM parameter 
trajectories directly from the target speaker, a higher quality speech is obtained. 
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Figure 6.10: Glottal waveform conversion example; a) source: male modal voice (thin 
line); b) target: male tense: (thick line); c) modified: source to target (thick 
dashed line); The trajectories correspond to GM parameters., in increasing 
order, P= (8+1, tp to, t,,,, ip, ti). Both, the source and target data correspond 
to the utterance "We were away a year ago. " 

Conversion of glottal excitation strength and frequency of vibration 

When segment-by segment changes have been imposed on the voice source parameters, the 

perception of "business" or distortion can arise in the LPC speech as a result of 
discontinuities between the successive speech segments. In order to reduce the effect of these 

discontinuities, especially for the voiced/unvoiced transitions, a modified excitation strength, 

Ee contour is obtained, such that the original (source) energy envelope of the speech 

waveform is preserved. 



The pitch trajectory modification is performed by a simple procedure described by Childers 
in [24). The modified pitch period contour, T is essentially obtained from the original GCT 

instants. The original contour is shifted upwards or downwards to satisfy the average pitch 

value of the target specifications. For each voiced segment a new vector of glottal closure 
instants is obtained as: 

GCI; = GC1; 
_, + T(GCI; 

_, 
) (6.4) 

where, GCI; denotes the i`h instant of glottal closure. T corresponds to the modified pitch 

period envelope defined for each sample over the duration of the voice source segment. Note 

that the GCI1 value is initialized to the starting point of the voiced segment. 

Conversion of aperiodicity features: shimmer jitter 

The vocal tremor measures, jitter and shimmer are added to the pitch period and excitation 

strength contours, respectively, in form of a random Gaussian white noise with the standard 
deviation equal to the specified target perturbation coefficients. Prior to adding vocal tremor, 

the respective contours are preprocessed with the 5`h order median filter to remove the 

turbulent components belonging to the source speaker. Note that the perturbation of glottal 

shape parameter Rd, is not included in this voice conversion method as that would require 

prediction of voice source parameters from Rd values, which is not always accurate. 

6.5.1 Verification experiment 

In the following experiment we will evaluate the perceptual effectiveness of the proposed 

voice conversion method. The experiment is performed on a database of 6 female and 6 male 

speakers. Each gender is represented by 2 speakers of modal phonation, 2 speakers of lax 

phonation, and 2 speakers of tense phonation. All of the acoustic stimuli correspond to the 

utterance: "We were away a year ago". Parametric voice quality description for the female 

and male speakers is provided in Table 6.7 and Table 6.8, respectively. Note that Rd 
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perturbation values are included in the voice quality description for the sake of completeness, 

only. They are not used in this experiment. The test database is subsequently expended to 

include the modified stimuli. The modal voices were used as the sources, while lax and tense 

voices were used as the targets of voice quality conversion. In Table 6.7 and Table 6.8, 

M; denotes modal phonation, where iE {1,2} corresponds to speaker's index. The tense and 

lax voices are denoted as T; and L;, respectively. We will represent the modified stimuli as 

T, and L, where i corresponds to the source speaker's index (modal phonation always) and 

j denotes the target speaker's index (tense or lax phonation). As an example, f2, denotes the 

acoustic stimulus that is produced when M2 voice is modified according to the voice quality 

description of T, voice. 

Table 6.7: 
Voice quality correlates evaluated for 6 female speakers 

[10"2] [10-1] [10"2] 
Rd 

SNR 
[ý] 

RDPQ 
[%] 

Shimmer 
[%] 

Jitter 
[%] 

FO 
[Hz] 

MI 2.43 34.96 79.23 1.06 21.05 0.55 1.96 0.22 207.04 

M2 2.23 37.54 81.14 1.15 19.45 0.73 1.73 0.18 227.27 

T, 1.62 32.31 61.93 0.72 19.55 1.12 1.99 1.13 172.12 

T2 1.28 27.88 62.00 0.61 20.6 0.81 2.91 1.20 196.85 

Ll 2.59 50.92 90.31 1.80 21.02 0.48 1.85 0.19 204.75 

L2 4.21 42.06 80.43 1.47 20.08 0.72 1.92 0.82 247.95 

Table 6.8: 
Voice quality correlates evaluated for 6 male speakers 

[10-1] [10Rk "2] 
R. 

[10'2] 

I 
Rd SNR 

[ý] 
RDPQ 

[%] 
Shimmer 

[%] 
Jitter 
[%] 

FO 
[Hz] 

Ml 2.46 34.60 66.19 0.92 18 0.5 3.50 0.20 129.87 

M2 3.81 33.71 65.12 0.99 17 0.67 1.32 0.19 123.46 

T, 1.65 26.67 51.30 0.53 14 2.4 3.42 0.25 89.69 

T2 1.17 25.31 65.92 0.57 15.4 3.1 3.60 0.35 98.91 

L, 3.52 42.95 75.41 1.37 17.5 0.7 
- 

0.88 0.41 151.52 

L2 3.26 47.63 78.77 1.55 

f 

19 7± 1.27 2.47 0.58 141.64 
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The verification experiment is based on the subjective triadic comparison listening tests. 10 

listeners have participated in the experiment. The experiment is conducted under two 

settings, setting (1) and setting (II). In setting (I), the first two entries of a triplet {A, B, X} 

consist of one lax and one tense voice stimuli. The final entry could contain any voice 

stimuli other than modal voice and the stimuli that are already present in the triplet. In setting 

(II), the triplets consist of either tense and modal voices or lax and modal voices. As such, 

setting (11) examines smaller perceptual distances, while setting (I) examines larger 

perceptual distances. However, it is important to note that the perceptual distances between 

lax and tense voices are still small in relation to the size of the voice quality continuum, see 

Figure 5.42. Each triplet is presented twice, as {A, B, X) and {B, A, X}. The order of triplets 

is randomized and presented in a similar fashion as in the A/B preference test described in 

Section 6.3.1. The listeners were asked to report which one of the two acoustic stimuli, A or 

B, has a perceptually closer vocal texture to that of stimulus X. The majority of listeners had 

at least some experience with the subject of voice quality. Those that did not have any 

experience in this subject were briefed prior to the experiment. With the respect to each 

triplet, the results of the listening test are rated as a percentage, representing the number of 

times that the voice qualities were correctly matched in relation to the number of times the 

triplet was presented. The results are referred to as identification rates. The Characteristic 

Glottal Pulse Waveform Parameterization and Modeling is performed for the following 

parameter values: L=120, TN=100 and 6 =10. 

6.5.2 Results and discussion 

Setting (I) 

For each gender, there are 180 possible triplets under setting (I). The individual triplets are 

shown in Table 6.9. Generally, the listeners have performed the task with ease. Almost 

every listener was able to correctly distinguish between lax and tense phonations, across the 

triplets and gender. With the respect to the female test data, the identification error was 0.069 

%, while for the male test data, it was only slightly higher 0.111 %. Since the identification 
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errors are quite trivial, and apparently random, we believe that they are a result of listening 
fatigue. 

Setting (II): Female speakers 

The results of the listening test for female test data, under Setting (II), are shown in Table 
6.10. The table is organized in the following manner. The triplets containing tense voices 
are shown on the right hand side of the table, whereas the triplets containing lax voices are 
shown on the left hand side. The triplets are grouped according to the number of modified 
(synthetic) stimuli present in each triplet. Before we analyze the results of the listening test, 
it is important to note that the results do not only reflect the voice conversion performance, 
but also the abilities of the listeners to differentiate between the voice quality types and the 

perceptual voice quality distances. 

For female test data, the overall identification rate is 88.54 %. The average identification 

rates for tense triplets and lax triplets are 88.47 % and 88.61 respectively. The average 
identification rate for the triplets containing only natural voice stimuli is 90.63 %. On the 

other hand, the average identification rates for the triplets containing one and two modified 

voice stimuli are 89.50 % and 86.25 %, respectively. The small identification rate differences 

between the triplets containing only natural speech stimuli and those that contain at least one 

synthetic speech stimuli reflect two important characteristics of CGPWPM-based voice 

quality conversion. The proposed voice conversion method is evidently able to achieve the 

desired perceptual effects, and secondly the synthetic speech remains as intelligible and 
human sounding as the natural speech. The quality of synthetic speech is an important factor 

in any experiment that is based on the subjective listening tests, especially when the 

experiment involves the entire speech sentences and not just small speech segments or 

sustained vowels. Voice quality analysis and modification is performed in a controlled and 

systematic manner, and as such, no significant, perceptually undesired, artifacts are induced. 

However, we have to remind that the spectral characteristics of the vocal tract filter are also 

correlates of voice quality. As such, we believe that the exclusion of vocal tract filter in the 

voice quality analysis and conversion is the primary cause of the slight performance 
difference between the natural and the synthetic speech stimuli. 
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Upon further examination we have established that the identification rates with the respect to 

each triplet exhibit strong correlation with the Rd distances between the individual stimuli that 

constitute the triplet. To be more exact, the identification rate is largely dependant on the 

minimum Rd distance between the two voice quality types that need to be differentiated to 

ensure correct identification. 

For female test data, the two closest stimuli according to the glottal shape parameter are MI 

and L2 with dRd = 0.32. The average identification rate for the triplets containing M2 voice 

and either L2 voice or its corresponding synthetic versions 112 or 122 is ID = 82.67%. The 

second closest stimuli according to the glottal shape parameter are M, and T, with dRd = 0.34. 

The average identification rate for the triplets containing M, voice and either T, voice or its 

corresponding synthetic versions T� or T21 is ID = 86.00%. 

The two furthest stimuli according to the glottal shape parameter are M, and L, with dRd = 
0.74. The average identification rate for the triplets containing M, and either L, or its 

corresponding synthetic versions L� or 121 is ID = 92.00%. As far as the tense voice is 

concerned the furthest two stimuli according to the glottal shape parameter are M2 and T2 with 

dRd = 0.54. The average identification rate for the triplets containing M, and either L, or its 

corresponding synthetic versions T12 or T22 is ID =90.00%. 

As a final comment we want to say, that out of all the synthetic stimuli, only those that were 

converted according to T2 specifications exhibited at times slight "unnaturalness". After 

some analysis we have established that the main cause of "unnaturalness" is the relatively 

large shimmer value that describes T2 voice. In order to support our earlier argument that the 

quality of synthetic speech affects the results of the subjective listening tests, we have 

compared the average identification rates for the triplets containing i2 and/or f22 (ID = 

86.75 %) and those containing f,, and/orT21 (ID = 88.00 %). Even though T2 is perceptually 

further from modal phonation according to the glottal shape parameter, the triplets f, and 

7'21 attain higher identification rates because they do not have any undesired perceptual 
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artifacts. We believe that a better vocal tremor model, such as the one developed by Kreiman 

et al. in [89], would improve the quality of modified speech. 

Setting (II): Male speakers 
The results of the listening test for male test data, under Setting (II), are shown in Table 6.11. 

These results essentially draw the same conclusions as those of female test data. As such, 

only a brief summary of the results is presented in order to provide further support for the 

arguments made in the previous section. We will only note that none of the modified stimuli 

have exhibited any undesired perceptual artifacts, and they have all sounded perfectly natural 

and intelligible. For male speakers, the overall identification rate is 88.68 %, 87.92 % for 

tense triplets and 89.44 % for lax triplets. The average identification rate for the triplets 

containing only natural voice stimuli is 89.38 %. On the other hand, the average 

identification rates for the triplets containing one and two modified voice stimuli are 89.13 % 

and 87.71 %, respectively. 

For male test data, the two closest stimuli according to the glottal shape parameter are M, and 

T2 with dRd = 0.35. The average identification rate for the triplets containing M, and either T2 

or its corresponding synthetic versions T112 or j; 
22 is ID = 85.67%. With the respect to lax 

voices, two closest stimuli according to the glottal shape parameter are M2 and L, with dRd = 

0.38. The average identification rate for the triplets containing M2 and either L, or its 

corresponding synthetic versions L� or L21 is ID = 84.67%. 

The two furthest stimuli according to the glottal shape parameter are M, and L2 with dRd = 

0.63. The average identification rate for the triplets containing M, and either L2 or its 

corresponding synthetic versions 12 or L22 is ID = 93.67 %. With the respect to tense 

voices, the two furthest stimuli according to the glottal shape parameter are M2 and T, with 

dRd = 0.46. The average identification rate for the triplets containing M2 and either T, or its 

corresponding synthetic versions T� or T21 is 89.33 %. 
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Table 6.9: 
Triplets used for Setting (I) of the voice quality conversion experiment. All of the triplets 

consist of Tense and Lax voice stimuli. 

Triplets 
T1L1L2 7'L11L2 T141L2 Ti1L1L2 11L11L2 T1121L2 721L1L2 '21L11L2 521L21L2 

T L1L12 Ti111112 T L21112 T 
1L1L12 T 1L11L12 T 1L21112 T21L1L12 12111142 T21L21L12 

T1L1122 T1L11122 T1L21L22 T 111L22 
T11111L22 T 1L21L22 

T2111L22 T21111L22 T21L21L22 

TL2L12 T11L21 T1L1111 7j1L2112 T1L1L21 T1L1L11 T21L2L12 T21L1L21 T21L1111 

T L2L22 T 111L21 T I112722 T 1L2 L22 T 
1L11L21 T 111242 T21L2122 '214 

141 22142L22 

T2L2L1 T2L12L1 T2422L1 T12L2L1 T2L12L1 T2L22L1 T22L2L1 T22L12L1 7'22L2211 

T2L2L11 T2Lt2L11 T2122L11 'i2L2L11 T12L12L11 7'12L22111 T22L2L11 T22L12L11 T221.22111 

T2L2L21 T2L12L21 T2L22L21 T2L2L21 T12L12L21 T12L22L21 T22L2L21 T22L12L21 T22L22L21 

T2L2L12 T2L1Li1 T2L1L11 T 2L2L12 T2L1L21 '12L141 T22L2L12 T2211121 '22LiLf 
1 

12L242 T2L11L21 T2112'22 '12L242 T 2L11L21 T 2'12"22 T22L242 T22"11L21 '2242'22 

L1T1T2 L1T 1T2 L1T21T2 111T1T2 L11Ti1T2 L11121T2 L21T1T2 L21Tt1T2 L21T21T2 

L1T1Ti2 L1Ti1'iz L1Tz1Ti2 L11T1T12 L11T11T12 L11T21T12 L21T1T12 L21T11T12 L21T21T12 

L1Ti'iz L1T11T22 L1T21'22 41T1'22 L117'11T22 111T21T22 L21TT22 L21TIT22 Lz1Tz1T2z 

L1T2T2 11TT21 L1TT 1 L11T22I2 LI1TT21 111TT1 1J21T2T2 L21T121 Lz1rT 1 

111222 L11121 1172T22 L11T2T22 111T 1T21 "I1T2'22 'i1T2T22 L21T 
1T21 Lz1T 2'22 

L2T2T1 L2Ti2T1 L2T22T L12T2T1 L12T12T1 112T22Ti L22T2T1 112T127'I 
122722T1 

L2 T2 'l 1 L2 'l 2'i l L2'22 T1 L12 T2Ti1 L12 T12 T11 L12 '22 'l 
1 L22 T2 Ti 1 L22 T12 T11 112'22'i l 

L2T2721 L2T2'21 L2122'21 L1212T21 '12'12"21 "12122121 L22T27' 21 L22T12 721 42T22T21 

11T2 2 L2T T21 L2T T1 112TZT2 L12T21 42T T1 L22T2T 2 L22TT21 Lz2T T1 

11T2'22 L2T 1 '21 L2T2'22 112T2T22 L12T 1T21 112T2T22 L22T2T22 L22 TI 1T21 L22T 2'22 
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Table 6.10: 
Identification rates for female test-data under setting (II) 

Triplets ID rate [%] Triplets 
J 
ID rate [%] Triplets ID rate [%] Triplets ID rate [%] 

No. synthetic stimuli: 1 No. synthetic stimuli: 0 No. synthetic stimuli: 1 No. synthetic stimuli: 0 

MIT 1T 
90 M1T27'1 85 M1L11L1 100 MIL2L1 95 

M1TI2T1 85 M2T2T1 90 MIL12L1 85 M2L2Li 85 

MIT2ITI 90 T1M1M2 90 M, Z214 100 1-1M1M2 100 

M1T22T1 80 T2M1M2 100 M1Z22L1 85 L2M1M2 80 

MIT lIT2 
90 Group Average 91.25 M1LiIL2 85 Group Average: 90.00 

_ M1TI2T2 85 MIL12L2 90 

M1T21T2 85 
No. synthetic stimuli: 2 M1L21L2 85 No. synthetic stimuli. 

_ M1T22T2 90 MIL22L2 90 2 

M2 TiIT1 95 MITi2Tt1 80 M2LIILI 100 M1L12L11 85 

M2T2T 90 M1T21Ti1 90 M2L12L1 80 M1L21L11 100 

M2T21T1 95 MIT22T I 
85 M212IL1 100 MIL221-11 85 

M2T22Ti 85 MIT21TI2 85 M2L22L1 80 MIL21L12 90 

M2T1IT2 90 MIT22Ti2 85 M2LI1L2 85 M1L22L12 90 

M2TI2T2 100 M1T22T2I 85 M2LI2L2 90 M1L22L21 85 

M2T21T2 95 M2T12Ti1 80 M2L2)L2 80 M2LI2L1I 80 

M2Tz2T2 95 M2T21TiI 95 M2L22L. 85 M241111 100 

T? IMIM2 85 M2T22T 1 
85 LI1M1M2 100 M242LI1 80 

T21MIM2 85 M2T21Ti2 90 121M1M2 100 M2L21LI2 80 

Ti2MIM2 90 M2T22T12 80 112MIM2 85 M2L22LI2 90 

T22M1M2 95 M2722 11 85 L22M1M2 80 M2L22L21 80 

Group average 89.75 Group average 85.42 Group average 89.25 Group average 87.08 
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Table 6.11: 
Identification rates for male test-data under setting (II) 

Triplets ID rate [%] Triplets ID rate [%] Triplets ID rate [%] Triple D 

No. synthetic stimuli: I No. synthetic stimuli: 0 No. synthetic stimuli: I No. synthetic stimuli: 0 

M1T1T 85 M1T2T1 85 MILººL1 90 M1L2l1 90 

MIT2T1 90 M2T2T1 90 M1L12L1 90 M2L2L1 85 

M1T21T1 90 T1M1M2 90 MIL21L1 85 L1M1M2 90 

M1T22T1 80 T2M1M2 90 MºL22Lº 90 L2M1M2 95 

M1T 1T2 
85 Group Average 88.75 M1L º1L2 

95 Group Average: 90.00 

M1T12T2 90 _ M1L12L2 95 

21 T2 M1 T 85 
No. synthetic stimuli: 2 MºL21L2 95 

No. synthetic stimuli: 2 
_ M1T22T2 85 MºL22L2 100 

M2T11T1 100 M1T12T 1 
85 M212111-1 85 M1L12L º1 

90 

M2T2T 90 MºT21Tºº 95 M212Lº 90 _ M, LzºL ºº 
90 

M2T21T 100 M1T2zTºº 85 M2E21Lº 85 _ M1L22L11 85 

M2T2zTi 90 M1Tz1Ti2 85 M2L22Lº 85 M1L21L12 90 

M2T11T2 90 M1T22Tº2 85 M2L11L2 80 M1L22L12 100 

M2T2T2 90 MºT22T2º 90 M2Lº2L2 95 M1L22L21 95 

M2T21T2 85 M2Ti2Tº1 85 M2121L2 85 M2112111 80 

M2T2zTi 90 M2T21Tº1 90 M2L22L2 90 M2L2JLºº 85 

TººMºM2 85 M2TzzTº1 85 L11M1M2 85 M2L22Lº1 85 

T21MJM2 90 M221Ti2 85 L21MºM2 85 M2L21L12 85 

T12MºM2 85 M2'; 22! 
712 90 T12M1M2 100 M2L22L12 95 

T22MºMz 80 M2TzzTn 85 L22MIM2 95 M2L22L2º 80 

Group average 88.25 Group average 87.08 Group average 90.00 Group average 88.33 
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6.6 Conclusion 

In this chapter, the voice source reconstruction aspect of the Characteristic Glottal Pulse 
Waveform Parameterization and Modeling system is presented. In comparative evaluation of 
the CGPWPM and Liljencrants-Fant's model of glottal flow derivative waveform, we have 
demonstrated that the LF model does not provide enough degrees of freedom to adequately 
represent the structurally more complex examples of voice source realizations. On the other 
hand, the DMOS results obtained for the CGPWPM-based synthesis of pathological voices 
are very high, suggesting that CGPWPM is adaptable enough to cater for very complex and 
structurally rich forms of glottal flow derivative realizations. With the respect to healthy, 

modal phonation, the MOS values reveal that the CGPWPM-based speech synthesis rates 
highly on the scale of absolute perceptual acceptability, while the corresponding DMOS 

values suggest that the speech is faithfully reconstructed on consistent basis. The average 
MOS and DMOS values across the test database of 40 speakers are 4.45 and 4.55, 

respectively. Not a single speech reconstruction exhibited annoying degradation levels and 

only one speech file was judge below the second highest level of absolute perceptual 

acceptability. Overall, we can conclude that CGPWPM-based speech synthesis offers a high 

quality performance that is consistent across speakers and gender. The results of the speaker 
identification experiments have established that the fine structural elements of the glottal flow 

derivative waveforms, which are modeled through CGPWPM, contain a notable level of 

speaker-dependant information. The average speaker identification rate obtained for 

CGPWPM-based voice source synthesis is 18.6 % higher than the identification rate 

corresponding to the Liljencrants-Fant's glottal pulse model. Finally, the voice quality 

conversion experiments have shown that CGPWMP is able to successfully modify the glottal 

shape parameters, aspiration noise characteristics, and the aperiodic features of voice source 

signals and consequentially, to achieve the desired perceptual effects. 



Chapter 7. " 

Conclusion and Future Directions 
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Conclusion 

In this thesis, we have developed a novel framework for voice source analysis, 
parameterization and reconstruction which we refer to as Characteristic Glottal Pulse 
Waveform Parameterization and Modeling (CGPWPM. The proposed method is not 
constrained to the idealized glottal waveform approximations (e. g. LF, KLGLOTT88), but 
instead, relies on the estimates of the Characteristic Glottal Pulse Waveform to obtain the 

voice source parameters. It uses a set of modified LF parameters and the DTW algorithm to 
track the nonlinear evolution of the Characteristic Glottal Pulse Waveform in time. The 

constrictions of the optimal non-linear time alignment that are employed by DTW algorithm 
are also extended to voice source parameterization and as such, pathological parameterization 
is precluded. The design of the method is motivated by the fact that the parameterization 

performance is linked to the extent of similarity between the glottal model and the analyzed 

voice source signal. CGPWPM provides the means to model both, the course and the fine 

structural elements of the glottal flow derivative realizations. Thus, the proposed method 

enables a study of voice source signal features and their temporal behavior that could not be 

efficiently or accurately represented by a poorly deterministic glottal flow derivative model. 
Another useful characteristic of this method is that the parameterization of consecutive glottal 

pulses across the voiced source signal is referenced to a parametric description of a single 

glottal flow derivative realization. As such, CGPWPM method can be used very effectively 
in a semi-automatic manner, as well as in the fully automatic mode. The results of the 

synthetic dataset based experiments have shown that the performance of the Characteristic 

Glottal Pulse Parameterization is virtually insensitive to the inaccuracies in the glottal closure 
instant estimates. On natural speech, CGPWP exhibits a robust performance even for the 

significant presence of disturbances in the voice source signal estimates. Overall, CGPWP 

exhibits a superior performance over the standard fit estimation and direct estimation 

methods. In comparative evaluation of the CGPWPM and Liljencrants-Fant's model of 

glottal flow derivative waveform, we have demonstrated that the LF model does not provide 

enough degrees of freedom to adequately represent the structurally more complex examples 

of voice source realizations. Furthermore, the results of the speaker identification 
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experiments have established that the fine structural elements of the glottal flow derivative 

waveforms, which are modeled through CGPWPM, contain a notable level of speaker- 

dependant information. The average speaker identification rate obtained for CGPWPM- 

based voice source synthesis is 18.6 % higher than the identification rate corresponding to the 

Liljencrants-Fant's glottal pulse model. The results of the voice quality profiling experiment 

were in a general agreement with those obtained by Karlsson and Liljencrants, Childers and 

Lee, and van Dinther. We have used the voice quality profiling results to derive a 

surprisingly simple relationship between the glottal shape parameter Rd, and voice quality. 

We have also demonstrated that the glottal shape is for all practical considerations 

independent of both, the frequency of vocal fold oscillations and the glottal excitation 

strength. 

CGPWPM is applied under the source-filter model of speech production to develop the 

speech synthesis and voice conversion methods. The quality of CGPWPM-based speech 

synthesis is formally evaluated via the Mean Opinion Scores and Degradation Mean Opinion 

Scores. On the other hand, triadic listening tests are used to evaluate the performance of a 

CGPWPM-based voice quality conversion method. DMOS results obtained for the 

CGPWPM-based synthesis of pathological voices are very high, suggesting that CGPWPM is 

adaptable enough to cater for very complex and structurally rich forms of glottal flow 

derivative realizations. With the respect to healthy, modal phonation, the MOS values reveal 

that the CGPWPM-based speech synthesis rates highly on the scale of absolute perceptual 

acceptability, while the corresponding DMOS values suggest that the speech is faithfully 

reconstructed on consistent basis. The average MOS and DMOS values across the test 

database of 40 speakers are 4.45 and 4.55, respectively. Not a single speech reconstruction 

exhibits annoying degradation levels and only one speech file was judge below the second 

highest level of absolute perceptual acceptability. Overall, we can conclude that CGPWPM- 

based speech synthesis offers a high quality performance that is consistent across speakers 

and gender. The voice quality conversion experiments have shown that CGPWMP is able to 

successfully modify the glottal shape parameters, aspiration noise characteristics, and the 

aperiodic features of voice source signals and consequentially, to achieve the desired 

perceptual effects. 
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In this thesis, we have also considered a group delay approach to GCI estimation. 
Specifically, average group delay and energy weighted group delay measures are discussed 

in detail. We have proposed a GCI estimation method based on a group delay algorithm and 
the translation-invariant hard-thresholding of LPC residue. Thresholding is performed with 
the 6-coefficient Coiflet filter and a primary resolution level-7. The performances of the two 

group delay measures and the proposed method are evaluated for a range of fixed and pitch- 
synchronous group delay window lengths. We have found that in comparison to the energy 

weighted group delay measure with a fixed group delay window, the pitch synchronous 

energy weighted group delay measure with the wavelet-denoised LPC residue improves the 
identification rate and accuracy by 6.57 % and 0.158 ms, respectively. This represents a 

considerable improvement in the performance, especially if we consider that 6.57 % increase 

in the identification rate corresponds to 82.33 % reduction in the number of unidentified 

glottal excitations. In large, these results reflect a superior denoising performance of the 

wavelet thresholding method. The proposed method is based on a study where we have 

aimed to develop an optimal wavelet thresholding strategy for the glottal volume velocity 
derivative signals. The following methods have been considered: Universal thresholding, 

SureShrink thresholding, Hybrid-Sure thresholding, Translation-Invari ant thresholding, 

Hypothesis-Testing-based thresholding, Block thresholding, and Bayesian Adaptive Multi- 

resolution Smoother. We have systematically investigated the thresholding performance as a 
function of two thresholding parameters - the choice of wavelet basis function and the 

coarsest level of the wavelet decomposition. The main problem that we have encountered is 

the fact that the relationship between the thresholding parameters and the thresholding 

performance is highly non-linear. Furthermore, this relationship differs from one 

thresholding method to another. However, some rather crude trends were made apparent 

Short wavelet filters, i. e. wavelets with a small number of vanishing moments, tend to have 

inadequate approximation properties, and as such, the quality of the reconstructed signal is 

often poor. On the other hand, more regular wavelets, corresponding to higher filter orders, 

have better decorrelating properties at the expense of temporal compactness. In the vast 

majority of the considered thresholding methods, a reasonable compromise between these 

effects is found to exist for some moderate filter length. A choice of decomposition level is 
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also found to have a strong effect on the quality of the reconstructed signal. In most cases, if 

the decomposition level is too deep, the reconstructed signal is found to contain distortions 

around the instant of glottal closure (over-smoothing of glottal peak). The translation 

invariant thresholding performs better than other considered thresholding methods as it is 

able to minimize the thresholding artifacts associated with misalignments between the sharp 

changes in the signal and the features of the wavelet. When the TI-H thresholding is applied 

on a voice source estimate obtained from the natural speech via inverse filtering, the results 

were very pleasing. Turbulent components in the voice source estimate were almost 

completely removed. On the other hand, the rapidly varying components in the glottal flow 

derivative waveforms were clearly preserved. 

Future Directions 

One of author's interests is speech pathology diagnostics. Aperiodicity features and noise 

features are the two most important categories in describing the pathological features. Along 

with the standard aperiodicity features, such as: jitter, shimmer, glottal to noise excitation 

ratio, we have also used the perturbation of the glottal shape parameter in the voice quality 

analysis. Our informal tests show that glottal shape perturbation is a particularly important 

parameter in describing pathological voice. For instance, laryngeal cancer voice exhibits a 

particularly high degree of glottal shape perturbation, whereas a pathologically breathy voice 

commonly attains a high level of regularity in the temporal structure of the consecutive 

glottal flow derivative pulses. We also believe that the fine structural elements of the 

characteristic glottal pulse waveforms are, at least to some extent, correlated with the nature 

of voice pathology. It is important to stress that the performance of any measure used in the 

analysis of pathological speech is inherently sensitive to the accuracy levels of voice source 

parameterization. For example, the difficulties in tracking pitch contour can severely limit 

the ability of pitch perturbation measures to separate between the normal and pathological 

voices. In this thesis, we have shown that CGPWMP is robust enough to accurately 

parameterize and faithfully re-synthesize a range of pathological voices. As such, we believe 
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that the proposed method could be applied to speech pathology diagnostics, e. g. dysphonia 

analysis and forensic applications 

During the course of this research we have made some attempts to further tie up the formant 

modulation analysis with the Characteristic Glottal Pulse Waveform Parameterization and 
Modeling. We have gathered preliminary evidence that the onsets of formant modulation 

within a glottal cycle can be successfully tracked via CGPWPM, i. e. the estimate of the 
format modulation onset obtained for the Characteristic Glottal Pulse Waveform can be 

extended to the other glottal matrix pulses via DTW alignment functions. However, further 

research effort is required to conclusively establish the robustness and accuracy of this 

approach. In the immediate future we intend to employ CGPWPM in conjunction with the 

Hidden Markov Model to evaluate the extent of correlation between the temporal structure of 

voice source signals and the linguistic content, accent, etc... The results of this analysis 

might be particularly useful in text-to-speech research - this is a speech processing field that 

the author would like to further explore. 

Although, in this thesis, we have evaluated speech quality for un-quantized parametric 

reconstruction, the proposed method can be readily applied to low bit rate high quality speech 

coding. The reliance of CGPWPM on the DTW algorithm is the principal disadvantage of 
this method. We are currently working on improving the computational efficiency during 

the voice source analysis and parameterization. Two separate approaches are being 

developed and the preliminary results are encouraging. 
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Formant Trajectories 
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Figure A1. Formant trajectories over the utterance: "We were away ci year ago "for a male 
speaker with modal voice. The trajectories are obtained via the closed-phase pitch 
synchronous inverse filtering� 14`x' order covariance based linear prediction analysis, 
and a Viterbi search algorithm. Fs =10 kHz 
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Appendix B 

Translation Invariant Hard Thresholding Examples 

Tense Voice 

Figure B. 1: Tense Voice: Qualitative 
evaluation of the globally optimized TI-H 
performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean 
(dashed) and de-noised (solid) glottal 
excitation; c) synthesized turbulence noise; 
d) estimated noise. 

Lax Voice 
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Figure B. 2: Lax Voice: Qualitative 
evaluation of the globally optimized TI-H 
performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean 
(dashed) and de-noised (solid) glottal 
excitation; c) synthesized turbulence noise; 
d) estimated noise. 
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Vocal Fry 
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Figure B. 3: Modal Voice: Qualitative 
evaluation of the globally optimized TI-H 
performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean 
(dashed) and de-noised (solid) glottal 
excitation; c) synthesized turbulence 
noise; d) estimated noise. 
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Falsetto Voice 
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Figure B. 5: Falsetto Voice: Qualitative 
evaluation of the globally optimized TI-H 
performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean 
(dashed) and de-noised (solid) glottal 
excitation; c) synthesized turbulence noise; 
d) estimated noise. 
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Figure B. 4: Vocal Fry: Qualitative 
evaluation of the globally optimized TI-H 
performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean (dashed) 
and de-noised (solid) glottal excitation; c) 
synthesized turbulence noise; d) estimated 
noise. 
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Figure B. 6: Breathy Voice: Qualitative 
evaluation of the globally optimized TI-H 

performance: a) synthesized glottal 
excitation with SNR = 6dB; b) clean 
(dashed) and de-noised (solid) glottal 
excitation; c) synthesized turbulence noise; 
d) estimated noise. 
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Appendix C 

Phase-Plane Plot Analysis 

198 

The phase-plane plots provide the means to examine the residual resonance characteristics, 
and thus, objectively asses the quality of the glottal flow derivative estimates. What follows 
is a brief review of phase-plane analysis. 

Vocal tract can be modeled as a cascade of second order resonators. Let us consider the 
second order harmonic equation: 

d2x 

dt2 ,.. ., 
+ Y=0 

Using the substitutions x=x, and 
dx 

= x2 , eqn. C. 1 can be rewritten in vector form as: dt 

dx, 
dt 

dxz=-x 
dt ' 

= x, 

(CA) 

(C. 2) 

Eqn. C. 2 can be solved by integrating the first-order differential equation dx2 / dx, = -x, / x2 
to yield x; +x2 =K, where K denotes a constant. Therefore, the solution to a harmonic 

equation is a combination of the periodic functions cos(t) and sin(t). Furthermore, the phase- 
plane plot of x vs. dx/dt belongs to a family of concentric circles. After a time period T, 
periodic solutions, x and dx/dt, resume their initial values and thus a periodic solution yields a 
closed loop in a phase plane. 

We can extend this analysis to the vibratory motion of the vocal folds which has periodic 
solutions (with period T) of general form dx / dt =f (t, x), such that f (t, x) =f (t + T, x) . 
Periodic solutions corresponding to the vibratory motion of vocal folds produce a single 
closed loop in the phase plane, although they are not exactly circular. If the vocal tracts 
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resonances are present in the glottal flow estimates, than the phase plane loop will self- 
intersect to produce smaller loops within the large closed loop of driving solution. 

The phase-plane plots can be used to evaluate the quality of voice source deconvolution from 
the vocal tract filter. A successful inverse filtering would remove all the vocal tract 
resonance information from the glottal waveform estimates. Therefore, the phase-plane plot 
of the voice source estimates should produce a single closed-loop with no self-intersection. If 
the phase-plane plot exhibits more than one loop or displays self-intersections, it would be an 
indication that the vocal tract resonances are present in the voice source estimate. 
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