37 research outputs found

    Optimisation jointe de la chaîne codage/débruitage pour les images satellite

    Get PDF
    National audienceIn this paper, we propose to study the problem of optimal noisy source coding/denoising. This problem can be formulated as an optimization problem where the criterion to minimize is the global distortion, that is the error between the noise-free image and the denoised image. This problem is challenging since a global optimization is usually difficult to perform as the global fidelity criterion needs to be optimized in the same time over the sets of both coding and denoising parameters. We show here how to express the global distortion in closed-form and we present an algorithm to minimize this distortion with respect to these parameters. We show results of this joint optimization algorithm on classical test images and on a high dynamic range image, visually and in a rate-distortion sense.Dans ce travail, nous proposons d'étudier le problème du codage/débruitage optimal d'une source bruitée. Ce problème peut se formaliser comme un problème d'optimisation où le critère à minimiser est la distorsion globale, c'est-à-dire l'erreur entre l'image d'origine non bruitée et l'image décodée débruitée. Ce problème est complexe à traiter car une optimisation globale est habituellement difficile à effectuer puisque le critère global doit être optimisé en même temps par rapport aux paramètres de codage et de débruitage. Nous montrons ici comment écrire analytiquement les différents termes de la distorsion globale et nous présentons un algorithme pour minimiser cette distorsion par rapport à ces paramètres. Nous montrons des résultats de cet algorithme d'optimisation jointe sur des images classiques et sur une image satellite haute dynamique, visuellement et d'un point de vue débit-distorsion

    Dithered GMD Transform Coding

    Get PDF
    The geometric mean decomposition (GMD) transform coder (TC) was recently introduced and was shown to achieve the optimal coding gain without bit loading under the high bit rate assumption. However, the performance of the GMD transform coder is degraded in the low rate case. There are mainly two reasons for this degradation. First, the high bit rate quantizer model becomes invalid. Second, the quantization error is no longer negligible in the prediction process when the bit rate is low. In this letter, we introduce dithered quantization to tackle the first difficulty, and then redesign the precoders and predictors in the GMD transform coders to tackle the second. We propose two dithered GMD transform coders: the GMD subtractive dithered transform coder (GMD-SD) where the decoder has access to the dither information and the GMD nonsubtractive dithered transform coder (GMD-NSD) where the decoder has no knowledge about the dither. Under the uniform bit loading scheme in scalar quantizers, it is shown that the proposed dithered GMD transform coders perform significantly better than the original GMD coder in the low rate case

    Evaluation of Measurement Performance in Averaging Quantization System with Noise

    Get PDF
    Statistical description of quantization process is common in the theory of quantization. For the case of nonsubtractive dither theoretical analyses of the dithered quantizer have been confronted with experimental results. As a quantization system one-chip microcomputer with the analog-to-digital converter on a chip has been used. Generally valid criteria for dithered system performance have been practically applied for Gaussian dither. Interaction of natural noise present in the signal with an added Gaussian noise of several different disperses and influence of differential nonlinearity of the converter has been observed

    Hardware reduction in digital delta-sigma modulators via error masking - part II: SQ-DDSM

    Get PDF
    In this two-part paper, a design methodology for reduced-complexity digital delta-sigma modulators (DDSMs) based on error masking is presented. Rules for selecting the wordlengths of the stages in multistage architectures are elaborated. We show that the hardware requirement can be reduced by up to 20% compared with a conventional design, without sacrificing performance. Simulation results confirm theoretical predictions. Part I addresses multistage noise-shaping DDSMs, whereas Part II focuses on single-quantizer DDSMs

    Streaming an image through the eye: The retina seen as a dithered scalable image coder

    Get PDF
    We propose the design of an original scalable image coder/decoder that is inspired from the mammalians retina. Our coder accounts for the time-dependent and also nondeterministic behavior of the actual retina. The present work brings two main contributions: As a first step, (i) we design a deterministic image coder mimicking most of the retinal processing stages and then (ii) we introduce a retinal noise in the coding process, that we model here as a dither signal, to gain interesting perceptual features. Regarding our first contribution, our main source of inspiration will be the biologically plausible model of the retina called Virtual Retina. The main novelty of this coder is to show that the time-dependent behavior of the retina cells could ensure, in an implicit way, scalability and bit allocation. Regarding our second contribution, we reconsider the inner layers of the retina. We emit a possible interpretation for the non-determinism observed by neurophysiologists in their output. For this sake, we model the retinal noise that occurs in these layers by a dither signal. The dithering process that we propose adds several interesting features to our image coder. The dither noise whitens the reconstruction error and decorrelates it from the input stimuli. Furthermore, integrating the dither noise in our coder allows a faster recognition of the fine details of the image during the decoding process. Our present paper goal is twofold. First, we aim at mimicking as closely as possible the retina for the design of a novel image coder while keeping encouraging performances. Second, we bring a new insight concerning the non-deterministic behavior of the retina.Comment: arXiv admin note: substantial text overlap with arXiv:1104.155

    Noise, Averaging and Dithering in Data Acquisition Systems

    Get PDF

    Implementacija digitalnog generatora obojenog šuma bez množila

    Get PDF
    Colored noise can be generated by filtering of the white noise. It is a simple task. However, it becomes challenging if high operating speed of the generator is required. The realization of digital filter generally requires one multiplication per coefficient. Therefore, a high operating speed is achieved only with the cost of several generalpurpose multipliers. In this paper, a multiplierless realization of the colored noise generator is proposed. It is based on the filtering of 1-bit random signal by a finite impulse response filter. The design of the generator is described and its implementation is considered. Furthermore, an application is described in which the proposed generator is used in mitigation of undesired effects caused by nonlinearities in an analog to digital converter.Obojeni šum može se generirati filtriranjem bijelog šuma. To je jednostavan postupak. Međutim, on postaje izazovan ako se od generatora traži velika brzina rada. Realizacija digitalnog filtra u pravilu zahtijeva jedno množenje po koeficijentu. Zato se velika brzina rada može postići samo uz cijenu većeg broja množila opće namjene. U ovom radu predložena je realizacija generatora obojenog šuma koja ne sadrži množila. Ona se temelji se na filtraciji 1-bitnog slučajnog signala pomoću filtra s konačnim impulsnim odzivom. Opisano je projektiranje generatora te je razmotrena njegova implementacija. Nadalje, opisana je primjena u kojoj je predloženi generator iskorišten za smanjivanje utjecaja nelinearnosti u analogno digitalnom pretvorniku

    Another look at the retina as an image dithered scalar quantizer

    Get PDF
    International audienceWe explore, in this paper, the behavior of the mammalians retina considered as an analog-to-digital converter for the incoming light stimuli. This work extends our previous effort towards combining results in neurosciences with image processing techniques [1]. We base our study on a biologically realistic model that reproduces the neural code as generated by the retina. The neural code, that we consider here, consists of non-deterministic temporal sequences of uniformly shaped electrical impulses, also termed as spikes. We describe, starting from this spike-based code, a dynamic quantization scheme that relies on the so-called rate coding hypothesis. We, then, propose a possible decoding procedure. This yields an original quantizing/de-quantizing system which evolves dynamically from coarse to fine, and from uniform to non-uniform. Furthermore, we emit a possible interpretation for the non-determinism observed in the spike timings. In order to do this, we implement a three-staged processing system mapping the anatomical architecture of the retina. We, then, model the retinal noise by a dither signal which permits us to define the retina behavior as a non-subtractive dithered quantizer. The quantizing/de-quantizing system, that we propose, offers several interesting features as time scalability as well as reconstruction error whitening and de-correlation from the input stimuli
    corecore