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ABSTRACT

We explore, in this paper, the behavior of the mammaliarnisaet
considered as an analog-to-digital converter for the inogrtight
stimuli. This work extends our previous effort towards camitig
results in neurosciences with image processing techniddesve
base our study on a biologically realistic model that repoed the
neural code as generated by the retina. The neural codewéhat
consider here, consists of non-deterministic temporaliseces of
uniformly shaped electrical impulses, also termedspikes We
describe, starting from this spike-based code, a dynanantma-
tion scheme that relies on the so-caltate codinghypothesis. We,
then, propose a possible decoding procedure. This yieldsigimal
guantizing/de-quantizing system which evolves dynarhiciibm
coarse to fine, and from uniform to non-uniform. Furthermaove
emit a possible interpretation for the non-determinismeobed in
the spike timings. In order to do this, we implement a thregred
processing system mapping the anatomical architectuteogtina.
We, then, model the retinal noise by a dither signal whictmisrus
to define the retina behavior as a non-subtractive dithenedtiger.
The quantizing/de-quantizing system, that we proposeroffeveral
interesting features as time scalability as well as recaosbn error
whitening and de-correlation from the input stimuli.

1. INTRODUCTION

The human visual system conveys information as a set ofredalct
impulses called spikes. Spikes [2] appear very early in thanc
of treatment of the human visual system. At the retina leafter

a chain of internal treatments, ganglion cells convert alayous
signal into a series of spikes called spike trains formirgrikural
code. Spikes have the same shape and amplitude and whidk giel
binary-like neural code.

In order to experiment the behavior of the retina as a quamntiz
we implement a three-staged system based on a biologicly r
istic retinal model of introduced in [3]. The considered slator
is one of the most complete ones generating a spike-basedtout
which, furthermore, successfully reproduce actual newysiplogic
recordings. The model maps the anatomical structure ofetiear
This structure is strongly related to the retina functicarahitecture.
Indeed, the retina is a succession of layers. The outputatf eae
is the input of the following. The progression of light stitindrom
the outermost light receptors layer, to innermost ganglidayer,
involves several processing mechanisms.

The innermost ganglion cells layer of the retina emit spikes
convey information over the optic nerve [2]. By oppositioatinal
cells of the outer stages do note fire spikes. As the inputitipets
through these stages, the input signal is filtered, butr&tdlthe form
of a graded continuous electrical signal. These cells eve inner-
most to outermost, amacrine cells (in the inner plexiforyety, the
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Bipolar cells (in the outer plexiform layer), the horizointalls and
finally light receptors. Only the ganglion cells are resplolesfor
signal discretization. In the following we focus on the saif the
three deepest retina layers, involved in the generatiohefisual
neural code, namely bipolar, amacrine and ganglioon céllese
cells form the main stages responsible for the shaping o§piile
ing retina code. The paper is organized as follows: In Se@jove
present the model of the three-staged system. Then, incBeltive
specify the bioinspired quantization/de-quantizatiogoathm that
we implemented. Finally, in Section 4, we explore the ovesyd-
tem behavior and emit the hypothesis of non subtractiveedith
interpret the retinal noise.

2. ABIOLOGICALLY REALISTIC RETINA MODEL

We describe, in this section, the input/output map of the mafians
retina. In order to do this, we base our work on the biolodycad-
alistic retina model introduced in [3]. We restrain our stud the
temporal behavior of the retina, thus the spatial filteritacks are
ignored in the following description. Furthermore, onletthree
deepest retina layers in the model are considered, as teethar
main stages responsible for the shaping of the spikingaetode.
Although this model does not take into account some feabfrdse
biological retina, such as lateral connections, stillitders the main
biological properties of the actual retina. The three-asthgimpli-
fied model, as implemented in this work, is described thraBgb-
tions 2.1t0 2.3.

2.1. Bipolar cells layer: The gain control stage

Biological systems need, often, to adjust their operatioaage to
match the input stimuli magnitude range [4]. Interestinfdgt mag-
nitude adaptation mechanisms are largely observed in thaldbi
cells. Here, the bipolar cells rescale an input curfgn} to generate
an output potentiaVz(t).

Let us consider a time duratiah7" such that/ (¢) is constant across
[0, AT[. In the following, we define the stimulus signal:

I(t) = {

so that, we can study our system behavior in piecewise fashioe
gain control procedure, as introduced in [3], is defined by:

dVi(t)

dt @

whereg g represents a variable leakage term. The expressign of

I, if t € [0, AT
0 otherwise,

)

+95(t)Va(t) = I(t),

for a potential’s encompasses spatial filtering. As the spatial aspect

of the retina behavior is ignored in the current study, theiapfilter
is setto a Dirac impulse. Referring to [1], the gain contsgiression



is developed to get the following:
dVs(t)

dt
AB f ==
— Va(t —s)e™Bds | Va(t)
8 \Jo

whereg%, 75, and \p are constant scalar parameters. The outpu
bipolar voltageVis, as we defined it, is the input of the subsequent
inner plexiform layer stage (IPL).

2.2. Inner plexiform layer: The non-linear rectification stage

— g (77 —1) Va(t)+

1(t), (©)

We consider the signal, of voltagés, as generated by the bipolar
cells of the retina. This current is subject to a non-lineatification
by the amacrine cells in the IPL. The output of the IPL is aected
current/¢. A biologically realistic model of this rectification [3] is
given by:

I(t) = N (eTwa,ra(t) % VB(1)), 4)
whereT,, .-, is a linear transient filter (see [3] for a formal def-
inition), e, wa, andr4 are constant scalar parameters, ands a
function expressed as follows:

I3

Ia—Xa(v—"Va)’
In+Xa(v=Va), ifv>Va,

N(’U) _ ifv<Va

0.25 Fig. 1. Va(I): A one-to-
one map associating each
input current/ to a bipo-
lar output potential V.
Maps are shown for differ-
ent observation durations
tobs, ranging fromé,,s =
AT (thick line) totops =

5L (thin line).
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In this section, we specified the model transform that leadhe
generation of spikes, here restricted to the time transfdmSec-
tion 3, we introduce a bio-plausible coding scheme, andifypte
corresponding decoding procedure.

3. A QUANTIZATION/DE-QUANTIZATION ALGORITHM
BASED ON RATE CODING

In Section 2, we presented a biologically realistic thregsd model
for spike generation in the retina. Our aim, in this Sectisip spec-
ify the algorithm that we implemented in order to experimeat
bioinspired quantizer. In order to do this, we first studyhestage
transfer function separately, then we propose a possitiedieg
process to recover the initial input.

wherel4, Va4, and A4 are constant scalar parameters. Develop-

ing (4), we get the following expression fé¢: (see details in [1]):

N <s <V3(t) - i’—: /OtVB(t - s)e:_;ds)> ,

I is the current input of the last retina stage, namely the liyamg
layer, which produces the neural code of the retina.

2.3. Ganglion cells layer: The spike generation stage

IG(t)

The ganglionic layer is the deepest one tiling the retinae gan-
glion cells are the neurons that generate the spiking outpthe
retina. A formalization for spike generator neurons in teégna is
proposed in [3]. The model chosen is the widely used noiskylea
integrate and fire (nLIF) [5]I¢ (¢) is the input stimulus of this spike
generator layer, antf (¢) is its output voltage. We study (") be-
havior in the time bin0, AT[, which amounts studying the spike
emission timings7;):>o0. (T3):>0 are defined by the following:

{ V(Ty)

V(t)

whereJd is the integration threshold of the neuron, @fid; its re-
fractory time. In the following, the refractory time will beeglected
asT,.; < AT. Whenever the voltagé reached, the neuron fires
a spike, then reinitializes its voltage ¥, the reset potential. Once
the spiking mechanism is specified (cf. (5)), the model dsfihe
behavior ofV¢ () in the time bin[T;, T;+1[, asV(¢) obeys to the
following differential equation:

dv (t)

7 (6)

wheregq is a constant conductances is a constant capacitance,

0,Vi>0,T; €[0,AT],
VR, Vi 2 0,Vt € [T5,Ti + Trey.

©®)

+ g6V (t) = Ic(t) + n(t),Vt € [T;, Tiv1],

3.1. Coding pathway

An interesting feature, that we emphasize in this modeltsisly-
namics as it involves time& Our approach is to study each stage, for
a given observation time = ¢, then explore how this behavior
evolves ag,s varies.

3.1.1. The gain control stage

For each given stimulus maximum valdg (cf. (1)), we solve the
differential equation in (3) using the Runge-Kutta soh@&lr Exam-
ples of resulting solution¥z (¢, I;), for different values ofi;, are
shown in [1]. Thus, we estimatéz (t.ss, ) for all possible values
of I;. We, then, infer the one-to-one m&f (t.ss, I) by observing
the value of the potentidl, at a given observation ting,s, across
the solution(Vs(t, 1;)) ;- This leads to the mappings shown in
Figure 1. These results prove that, in the restrained dowfaiur
model assumptions correctness, the gain control in thddripells
layer is linear. The linear slop@;,,, of the gain is, obviously, de-
pendent on the observation timg.

3.1.2. The non-linear rectification stage

After the stimulus is rescaled in the gain control stagegetsgion-
linearly rectified in the second IPL stage. Computing thagfarm

in (4), we obtain the mappings shown in the Figure 2, each one ¢
responding to an observation tinig,s. It appears that, for short
observation times, input is quasi-linearly rescaled, e/fdr longer
observation times, non linearity is accentuated. This iespthat,
the instantaneous behavior of the IPL stage is a linear gaitra,
while as observation goes on, emphasize is made on the higliram
tude IPL inputs.

3.1.3. The spike generation stage: the rate coding approach

andn is a random noise which will be further discussed in Sec-

tion 4.2. Then, solving (6), we get:

1 [t 1gG=Ty) _9gC-T;)
Va(t) = (—/ (Ie¢ +n)(s)e cc ds+VR) e ¢,
T;

¢el

@)

The current/q, that is generated by the IPL stage, passes through
the ganglionic stage yielding a spike-based code. Here wsider

the so-calledrate codinghypothesis to interpret the coding mech-
anism of the retina. This is the most commonly used theorye Th
rate coding assumes that, in a given predefined timeMiih the



Fig. 2. I¢(Vg): Nonlinear
IPL rectification mapping
eachVp value into an out-
put current/. Maps are
shown for different expo-
sition durationst,ss, rang-

ing fromt,,s = AT (thick

line) to tops = 5L (thin

® line).

0.2

count of spikes convey the major part of the stimulus infdiamg[7].
Through the two preceding stages, input curréng rescaled by
a static gain control slopé&':_,, and corrected by a static non lin-

ear function. Thud¢ is supposed constant over the time interval

[0,tops] C [0, AT[. This assumption is bio-plausible for a suffi-
ciently restrained observation tinig,s, then, we get:

I +n

Ti+t gg(s—T4 _9g(t=Ty)
e
cG

)
VG(t) = ( el ds + VR) e el R

T

i

wheret € [T;, Ti+1]. V(1) is a periodic function of time, and find-
ing the firing timingT;+1, knowingT;, is equivalent to the deduction
of the periodP of V(¢). This yields the following formula for the
computation of the count of emitted spikds(see details in [1]):

AT
Vo= {?J
N g AT ®)
ce log <1+M)
Ic+n—gcé

We compute the function in (8) for different valueslef. The results
as shown in [1] demonstrate that the ganglion cell is a quagorm
scalar quantizer after a very short transitory stage araenal.

Based on a biologically realistic model of the retina, weehav
defined now a rate coding scheme for temporal signals. Weopeop
a possible decoding algorithm in Section 3.2.

3.2. Decoding pathway

Our aim, in this Section, is to recovér the estimation of the input

original I. This is due to the floor operator in the spike generation
mechanism (cf. (5)). The behavior of the coder/decoderesyss,
thus, analogous to a quantizer/ de-quantizer. We investte char-
acteristic behavior of the bioinspired quantizer, that wst pefined,

in Section 4.

4. THE OVERALL SYSTEM BEHAVIOR REGARDLESS TO
RETINAL NOISE

4.1. Case of a noiseless ganglion cell quqntizer

Let us cascade the three layers of our system. We aim at dgfinin
the characteristic behavior of the bioinspired quantizedefined in
Sections 3.1 and 3.2, and explore the evolution of it acrioss. tlt
appears that, as the observation time increases, our system goes
from coarse to fine, and from uniform to non-uniform.

The refining is intuitive and confirmed by actual neurophysio
logic experiments. Indeed the visual cortex perceivesallabpects
of the stimulus first, then as time goes acquire more infaonat
about sharp features.

Then the model quantizer is non-uniform. High magnitude sig
nals are mapped accurately, by a small quantization stdfg srhall
magnitude signals are coarsely rendered. This is due todhe n
linear rectification in the IPL stage. Indeed, this recttiima com-
presses the dynamic range of small magnitude signals arpenad
and span higher ones in a linear fashion, this before thergtoe
of spikes in the ganglion cells. This tendency to non-umifity is
accentuated as the gain control gets higher across time. _

Figure 3 shows an example map of a reconstructed in@sta
function of an input/, using the bioinspired quantizer, and this at two
different observation timings. Yet, telecommunicatiostsyns are

e o
o b N

reconstructed |
s
=

reconstructed |

!
o
N

-0.2 P 0.2 0.2

Fig. 3. Input signal/reconstructed signal characteristic: Baira
evolution of the cascaded three stages of the bioinspireteEm®n
the leftt,ps = 0.075 AT, on the rightt,,s = 0.27 AT.

I, knowing its rate codeV, and the model parameters. Though the ajready implemented for dynamic signal range compressiamely

coding scheme in Section 3.1 is strongly related to actudbgical
retina behavior, we do not claim that the proposed decodiggr a
rithm is the one that is actually employed in the visual carte

The decoding algorithm goes exactly the opposite way of taeng
one, from the reverse ganglionic layer to the reverse gairab
First, we recovetl¢, the estimation ofl (cf. (4)). For this, we
apply the following reverse mapping:

~ 6 —V
Ie = qu(i :ATR) + gao. ©)
e «eN —1

Second, we recovdrg, the estimation o/, knowingfc. For this,
we infer the reverse IPL stage mapping through a look up talsie
voltage Vg, corresponding to values df; that do not match the
table elements, are computed by spline interpolation.

Finally, we recover the input signdl, by the reverse bipolar
gain control. As the gain control in the first coding stagerigar,
the reverse gain control is a simple division.

Obviously, the recovered signl does not match exactly the

compandor circuits. Companding is a technique that is widsed
in telecommunication [8] making the quantization stepsquiaé, as
the IPL stage does in our case. It is also interesting to eethatt
companding is preceded, for audio recordings, by a varighie
amplifier, which is locally linear, in the same manner as tipolar
cells gain control loop described above.

4.2. Case of a noisy ganglion cell quantizer: Is the gangliocell
a non-subtractive dithered quantizer?

An issue that neuroscientists encountered, in the unchelisign of
the neural code, is the trial-to-trial variability of thetiral neural
code. Indeed, given a single visual stimulus, spikes tisiimgthe
retina output are not exactly reproducible across trialgereHwe
make the proposal that the retinal noise could be a randdnerdit
noise signal [9].

The hypotheses made to explain the phenomena underlyisgittes
timings irregularity yielded two different points of viewhe first is
that the precise timings of individual spikes convey a laageunt
of information [10], and the second assumes that such diaria a



random instantiation of a desired firing rate [7]. This imeglthat the
spikes timings variability convey either information orise[11].

In the following, we admit that the quantizing ganglion dslsub-
ject to a noise, and we give a possible interpretation obiesin the
stimuli coding/decoding process. Up to our knowledgelelittave
been done to explicit the probability distribution of suchase. In
the literature, it is generally and empirically assumed tha retinal
noisen is Gaussian [12]. Thus, we can suppose thlas a triangu-
lar probability distribution function (pdf) with no loss biological
plausibility. Furthermore, we suppose that the dynamigeaof n
is twice wider than the quantization step of the ganglioh. dgh-
der the restriction of these hypotheses correctness, weedahe

retinal noisen into a dither signal. As we do not subtract the dither

signal in the de-quantization process, we talk about ndmractive
dithered system (NSD) [9]. Although, not intuitive, addisgch a
random dither signal to the input stimulus allow the quagnttp have
interesting features. Mainly, the quantization ewet (I — I) and

the input stimulil are de-correlated. This feature is clearly demon-

strated when computing the cross correlation betweand I as
shown in the Figures 4(a) and 4(b).

Besides, quantization error is whitened so that error ifoumily
distributed over the stimulus spectrum. Figures 4(c) 4{dwsa
comparison between the spectra of the ganglion cell quamivith
and without NSD.

Spatial separation

3 2 El 0 1 2 3 3 2 El [ 1 2 3
Spatial lag Spatial lag

(a) Without dithering (b) With dithering

3,

3

Magnitude
Magnitude
n s o »

o
@
b
°

Frequency

(d) With dither

0
Frequency

(c) Without dither

Fig. 4. 4(a) 4(b) Cross correlation of the quantization error dred t
input stimuli. The abscissa represents the spatial lagrendrtinate
the cross correlation magnitude. 4(c) 4(d)Noise whitenistng a
dithered quantizing ganglion cell: A comparison of recanstion
error spectra between non-dithered and dithered quagtiinglion
cell. The testimage is Lena. The observation timg,js = 55ms.

The whitening and de-correlation features engenders degrea
reconstruction error in terms of mean squared error (sefo{gjir-
ther details). Though, the visual quality of the recongtarc! is
better when using a dithered system. Figure 5 shows theigmpatt
of an NSD ganglion cell quantizer when compared to a norecth
one, for the same observation timgs.

5. DISCUSSION

We presented a bioinspired quantizer/de-quantizer mgpbparetina
behavior. The model of the retina that we adopted, thoughaiesd
to its temporal aspect, reproduces many mechanisms ird/oivihe
actual biological system. Our quantizer behavior evolvgsath-
ically, and thus, it permits scalability as it goes from azato fine

(b) With dither

(a) Without dither

Fig. 5. Comparison of the reconstruction visual quality betweam-n
dithered and dithered quantizing ganglion cell. The tesigenis
Lena. The observation time is,; = 55ms.

across time. Interestingly, the quantizer evolves alsmfuaiform to
non-uniform, but in contradiction with traditional Lloydlax quan-
tizers, renders high magnitudes precisely while it maps hoag-
nitudes coarsely. Besides, we emitted a biologically ptdeshy-
pothesis that supposes the retinal noise distribution ¥e kpecific
characteristics, yielding the definition of a non-subikectlithered
system. We do not claim that the retinal noise is a ditherajgn
but still such a hypothesis is seducing by the noise whitgind
de-correlation features it allows. Our future work aims ddiag
several mechanisms of the retinal processing that are ke tato
account in the current model. Namely, spatial filtering aeterial
inhibitions are two important features that will be integin the
upcoming model. Our goal is to infer, starting from a suffitig re-
alistic model, a decoding algorithm that could decipheualateural
recordings.
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