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Hardware Reduction in Digital Delta–Sigma
Modulators Via Error Masking—Part II: SQ-DDSM

Zhipeng Ye, Student Member, IEEE, and Michael Peter Kennedy, Fellow, IEEE

Abstract—In this two-part paper, a design methodology for
reduced-complexity digital delta–sigma modulators (DDSMs)
based on error masking is presented. Rules for selecting the
wordlengths of the stages in multistage architectures are elabo-
rated. We show that the hardware requirement can be reduced
by up to 20% compared with a conventional design, without
sacrificing performance. Simulation results confirm theoretical
predictions. Part I addresses multistage noise-shaping DDSMs,
whereas Part II focuses on single-quantizer DDSMs.

Index Terms—Delta–sigma modulator, error masking, reduced
complexity.

I. INTRODUCTION

D IGITAL delta–sigma modulators (DDSMs) are often
found in consumer communications and entertainment

products. Popular DDSMs are based on two classes of delta–
sigma modulators (DSMs), called multistage noise-shaping
(MASH) DDSMs and single-quantizer (SQ) DDSMs [1].
MASH DDSMs employ a cascade of lower order blocks to
construct a high-order modulator. SQ-DDSMs typically incor-
porate a single nth-order discrete-time filter.

In Part I of this brief [2], we presented a design methodology
for a reduced-complexity (RC) MASH-DDSM [3], where the
wordlength is reduced from integrator to integrator along the
signal path. The errors resulting from interstage quantizers are
masked below the filtered quantization error of the last stage. In
this brief, we extend our design methodology to SQ-DDSMs.

II. SQ ARCHITECTURES

A. Conventional SQ-DDSM

Several topologies of SQ-DDSMs have been described in the
literature [1], [4], [5]. Fig. 1 shows the third-order topology
described in [4]; the quantizer Q3 is modeled as an addi-
tive noise source e3. The corresponding Z-transform repre-
sentation is

Y (z) = z−1X(z) +
[
(1 − z−1)3

B(z)

]
E3(z) (1)

= STF (z)X(z) + NTF (z)E3(z) (2)
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where Y (z), X(z), and E3(z) are the transforms of the input,
output, and quantization error, respectively, and

B(z) = (1 − z−1)3 + 2z−1(1 − z−1)2

+ 1.5z−2(1 − z−1) + 0.5z−3. (3)

In the SQ-DDSM, the wordlengths of the internal integrators
should be larger than the input wordlength in order to avoid
truncation errors. In the implementation considered in [4], the
wordlengths of the internal integrators are realized by adders,
and their wordlengths are three bits larger than the input. The
three-bit output of the DDSM is the three most significant bits
(MSBs) of the sum of the three integrators’ outputs; this is fed
back to the three MSBs of the first adder, as shown in Fig. 1.
The N least significant bits (LSBs) of the first adder’s output
only depend on the N -bit input signal, which is constant; they
are not affected by the feedback signal.

The three MSBs of the first adder’s output will be truncated
by the modulator and will not affect the output cycle length of
the SQ-DDSM. Compare this with the N -bit MASH DDSM,
as described in Part I [2], where there is no feedback signal and
the adder’s output only depends on the N -bit constant input.
The wordlength calculation for the MASH-DDSM [6] can be
adapted to SQ-DDSMs. The maximum output cycle length for
the first-, second-, and third-order SQ-DDSMs are 2N , 2N+1,
and 2N+1, respectively, where N is the effective wordlength of
the internal integrators.1

B. RC SQ-DDSM

An RC SQ-DDSM was proposed in [4]; this is shown in
Fig. 2. In order to reduce the power and area consumption, the
wordlengths of the integrators are reduced stage by stage. The
wordlength of the first stage is 17, whereas the wordlengths
of the second and third stages are 12 and 8, respectively. As
in the MASH DDSM case [2], interstage truncation quantizers
are inserted between the integrators; these can be realized in
practice by simply omitting the LSBs.

This system is described by

Y (z) = z−1X(z) +
[
(1 − z−1)3

B(z)

]
E3(z)

+
[
0.5z−2(1 − z−1) + z−1(1 − z−1)2

B(z)

]
E12(z)

+
[
0.5z−1(1 − z−1)2

B(z)

]
E23(z) (4)

where E3(z) is the Z-transform of the error introduced by the
3-bit quantizer in the third stage. Note that the first two terms

1The effective wordlength of an internal integrator equals the wordlength of
the integrator minus the wordlength of the output quantizer. In this example,
the effective wordlength is 17 − 3 = 14.
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Fig. 1. Block diagram of a third-order SQ-DDSM with identical integrators.

Fig. 2. Block diagram of the RC third-order SQ-DDSM [4]. Interstage quantizers Q12 and Q23 are introduced to reduce the wordlengths in successive
integrator stages.

are identical to (1). E12(z) and E23(z) are the Z-transforms
of the additional error signals introduced by the M + 3-bit and
L + 3-bit interstage quantizers between the first and second and
second and third accumulators, respectively. M = 9 and L = 5
in this example. We model these quantization effects as additive
white noise sources e12 and e23 [7].

Although it describes the architecture and wordlengths, no
design methodology is presented in [4]. In this brief, we show
how to apply our error-masking strategy [2], [8] in a systematic
way to select the wordlengths of the accumulators in this
structure.

III. DESIGN METHODOLOGY (DITHERLESS CASE)

Let us rewrite (4) in the form

Y (z) = STF (z)X(z) + N3(z) + N12(z) + N23(z) (5)

where N3(z) is the filtered noise contribution from the quan-
tizer Q3, and N12(z) and N23(z) are the filtered contributions
from the first and second interstage quantizers Q12 and Q23,
respectively.

The discrete power density spectrum Py[k] of the output y of
the DDSM is defined by

Py[k] = |Y [k]|2 (6)

where Y [k] is the discrete-time Fourier series [9] of the output
of the DDSM.

In this architecture, |STF (z)|2 = 1, and assuming e12, e23,
and e3 are all white and uncorrelated with each other and the
input (the so-called white-noise model (WNM) [1]), the power
density spectrum at the DDSM output can be expressed as

Sy ≈ Sx + S3 + S12 + S23 (7)

where Sy , Sx, S3, S12, and S23 are the power density spectra of
the output, the input, and the idealized outputs from the output
and interstage quantizers [7].2

Assuming a cycle of length Ls and additive uniformly
distributed white quantization noise e3, the idealized power
spectrum S3 of the shaped noise N3(z) is given as follows [10]:

S3 (f [k]) =
1

12Ls

∣∣∣∣ (1 − z−1)3

B(z)

∣∣∣∣
2

z=ej2πk/Ls

. (8)

2In the examples in this work, the cross correlations are less than 0.02.

Fig. 3. Masking power density spectra (dashed) S12 and (solid light) S23

below (solid heavy) S3. The lowest frequency tone in N23 is at f23 =
fs/2N−L; the lowest frequency tone in N12 is at f12 = fs/2N−M .

In the same manner, the idealized spectra S12 and S23

resulting from e12 and e23 can be expressed as

S12(f [k])=
Δ2

12

12L12

∣∣∣∣0.5z−2(1−z−1)
B(z)

+
z−1(1−z−1)2

B(z)

∣∣∣∣
2

z=ej2πk/L12

(9)

S23(f [k])=
Δ2

23

12L23

∣∣∣∣0.5z−1(1 − z−1)2

B(z)

∣∣∣∣
2

z=ej2πk/L23

(10)

where Δ3 = 1, Δ12 = 1/2M , Δ23 = 1/2L, L3 = 2N , L12 =
2N−M , and L23 = 2N−L.

The three noise terms are graphically illustrated in Fig. 3. Our
error-masking algorithm requires that the envelope of the error
spectra S12 and S23 due to the interstage quantizers should lie
below the S3 contribution. In order to mask the discrete spectra
N12 and N23, we require that

S12 < S3 at f12 (11)
S23 < S3 at f23 (12)

where f12 and f23 are the lowest frequency components in these
spectra.3

Recall that

|1 − z−1|2 = |1 − e−j2πf/fs |2 = |2 sin(πf/fs)|2 (13)
sin(πf/fs) ≈ πf/fs, for f � fs. (14)

3Because S is based on the WNM, this is a necessary, but not a sufficient,
condition.
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Therefore

S3(f) ≈ Δ2
3

12L3
· 26(πf/fs)6 ·

1
B(z)

(15)

at low frequencies, and at the boundary frequencies f12 and f23

S12(f12) ≈
Δ2

12

12L12
·
(

2 · π2

22(N−M)
+ 24 · π4

24(N−M)

)
1

B(z)
(16)

S23(f23) ≈
Δ2

23

12L23
· 23 · π4

24(N−L)
· 1
B(z)

. (17)

Note that B(z) appears in S3, S12, and S23. It acts as a nor-
malization factor and does not affect the comparison between
them. Therefore, we do not need to explicitly calculate 1/B(z)
when we apply the error-masking strategy.

By exploiting the approximations (15)–(17), the constraints
(11) and (12) for the SQ-DDSM can be rewritten as

1
22M

· 1
12 · 2N−M

·
(

2 · π2

22(N−M)
+ 24 · π4

24(N−M)

)

<
1

12 · 2N
· 26π6

26(N−M)
(18)

1
22L

· 1
2(N−L)

· 23 · π4

24(N−L)

<
1

2N
· 26π2

26(N−L)
(19)

which reduce to

24N−5M−5 + π2(22N−3M−2) < π4 (20)
2N − 3L − 3 < 2 log2(π). (21)

Based on (20) and (21), in order to design an RC SQ-DDSM
with the same cycle length and similar power spectrum as a
conventional (N0 + 3)-bit SQ-DDSM, where N0 is the effec-
tive wordlength of the conventional SQ-DDSM, the following
design procedure is used.

1) Choose N = N0 + 1 to ensure that the output cycle
length of the RC SQ-DDSM is the same as that of the
conventional (N0 + 3)-bit SQ-DDSM. Set the LSB of the
input to “1” to obtain the maximum output cycle length
[2], [3].

2) Choose M using 24N−5M−5 + π2(22N−3M−2) < π4

(20) to ensure that the power of the first tone of N12 is
less than S3 at the frequency f12 = fs/2N−M .

3) Choose L = ceil(2N − 3 − 2 log2(π)/3) [from (21)] to
ensure that the power of the first tone of N23 is less than
S3 at the frequency f23 = fs/2N−L, where ceil(x) means
the smallest integer greater than x.

IV. DESIGN EXAMPLE

In order to verify the design methodology in detail, we
present a design example in this section. We use a 20-bit
input for the SQ-DDSM, i.e., N0 = 19.4 Applying the design
equations (20) and (21), the required values of M and L are 14
and 12, respectively. Recall that we need to add three more bits
to each stage to avoid truncation errors. Applying the algorithm,

4In this case, the conventional structure would require 22 bits per
accumulator.

Fig. 4. Simulated PSD Py of a conventional 22-bit SQ-DDSM and the white
noise approximation S3; the input is 65.

Fig. 5. Simulated PSD of an RC 23–17–15-bit SQ-DDSM and the white noise
approximation S3; the input is 65 (compare with Fig. 4).

the wordlengths of the resulting SQ-DDSM stages are 23, 17,
and 15.

A. Simulations

The simulated power spectral densities (PSDs) overlaid with
the theoretical predictions for (a) a conventional 22-bit and
(b) an RC 23–17–15-bit SQ-DDSM with a 20-bit input are
shown in Figs. 4 and 5, respectively. We see that since we
hide the internal error signal, the resulting output of the RC
SQ-DDSM achieves comparable performance to the conven-
tional SQ-DDSM. Moreover, since the output cycle length of
the SQ-DDSM is guaranteed by the wordlength of the first
integrator, the spurious tones at low frequencies are negligible,
even without dithering. In addition, the spectrum of the RC
SQ-DDSM is closer to the ideal near fs/2 due to more effective
whitening of the quantization noise.

B. Simulated Hardware Consumption

The relative hardware consumption (RHC) of the RC
SQ-DDSM compared to the conventional SQ-DDSM can be
calculated using

RHC =
N + M + L + 9

3N0 + 9
(22)

once N , M , and L have been determined.
In order to avoid truncation errors, three additional bits have

been added to each stage, as described in Section II; this is
where the number 9 in (22) comes from. For the case N0 = 19,
the predicted reduction in hardware consumption is 17%.

The hardware requirements for a conventional 22-bit
SQ-DDSM (N0 = 19) and the 23–17–15-bit RC SQ-DDSM

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 12:16:38 EDT from IEEE Xplore.  Restrictions apply. 
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TABLE I
HARDWARE CONSUMPTION OF THE CONVENTIONAL 22-BIT SQ-DDSM

AND THE 23–17–15-BIT RC SQ-DDSM

are summarized in Table I. The hardware consumption is re-
ported as the number of flip-flops (FFs) and the number of four-
input lookup tables (LUTs). The total equivalent gate (TEG)
count for the design is given as well. These results are based
on the map report from the Xilinx ISE program [11]. The
simulated RHC is close to the 83% predicted by (22).

V. DESIGN METHODOLOGY (WITH DITHER)

Dithering can be used to break up short cycles in a deter-
ministic DDSM [12], [13]. The block diagram of a dithered RC
SQ-DDSM is shown in Fig. 6. With dithering, the minimum
cycle length of the DDSM is guaranteed to be at least as large
as that of the pseudorandom dither generator. Consequently,
the tone spacing is typically very small. When the tones are
sufficiently closely spaced, the discrete spectrum tends toward
a continuous spectrum. In this case, the discrete power spectrum
representation P [k] can be approximated by a PSD representa-
tion with L expressed in units of decibels relative to the carrier
per hertz (dBc/Hz) [2], [10].

Assuming e3, e12, and e23 are white, and comparing with
(8)–(10), the PSDs of the envelopes of the filtered error signals
N3, N12, and N23 can be written as

L3(f)=
1
12

∣∣∣∣ (1 − z−1)3

B(z)

∣∣∣∣
2

z=ej2πf/fs

(23)

L12(f)=
Δ2

12

12

∣∣∣∣0.5z−2(1 − z−1)
B(z)

+
z−1(1 − z−1)2

B(z)

∣∣∣∣
2

z=ej2πf/fs

(24)

L23(f)=
Δ2

23

12

∣∣∣∣0.5z−1(1 − z−1)2

B(z)

∣∣∣∣
2

z=ej2πf/fs

. (25)

In this section, we apply the error-masking idea in a slightly
different way for an SQ-DDSM with dither, where the goal is to
mask L12 and L23 below L3 above a target frequency f0. Thus,
we require that

L12 <L3 at f0 (26)

L23 <L3 at f0. (27)

We can set the specified frequency f0 as some fraction A of
the clock frequency, i.e., f0 = A · fs, where A is constant, and
fs is the clock frequency. In this case, L3, L12, and L23 at f0

can be expressed in the passband as

L3 ≈ 1
12

26 · A6 · π6 · 1
B(z)

(28)

L12 ≈ 1
12 · 22M

· (2π2 · A2 + 24π4 · A4)
1

B(z)
(29)

L23 ≈ 1
12 · 22L

· (23 · π4 · A4)
1

B(z)
. (30)

The methodology is graphically shown in Fig. 7. Applying the
design constraints (26) and (27) using (28)–(30), we require that

1
12 · 22M

·
(
2π2 · A2 + 24π4 · A4

)
<

1
12

26 · A6 · π6

1
12 · 22L

·
(
23 · π4 · A4

)
<

1
12

26 · A6 · π6 (31)

which reduce to

M >
log2(2A2 + 16π2A4) − log2(A6π4) − 6

2
(32)

L >
− log2(A2π3) − 3

2
(33)

respectively.
In order to design an RC SQ-DDSM with a similar power

spectrum to a conventional (N + 3)-bit SQ-DDSM with dither,
the design procedure based on (32) and (33) is given here.

1) Set the value for A so that L12 and L23 can be masked
below L3 beyond the specified frequency f0 = A · fs.

2) Choose M = ceil[(log2(2A2+16π2A4) − log2(A6π4)−
6)/2] [from (32)] to ensure that the PSD L12 is less than
L3 at the frequency f0, where ceil(x) means the smallest
integer greater than x.

3) Choose L = ceil(− log2(A2π3) − 3/2) [from (33)] to
ensure that the PSD L3 is less than L3 at the fre-
quency f0.

VI. DESIGN EXAMPLE (WITH DITHER)

In a typical fractional-N frequency synthesizer, the ratio
of the loop bandwidth to the reference frequency is usually
below 0.001. Therefore, we select A = 0.001. The frequency
resolution is chosen to be fref/220, which requires a 20-bit
input signal. In this case, the required wordlengths for each
stage of the SQ-DDSM using (32) and (33) are 23, 20, and 12.

A. Simulation Results

Figs. 8 and 9 show the simulated PSDs of (a) a conventional
23-bit and (b) an RC 23–20–12-bit SQ-DDSM with first-
order shaped additive input dither [13]. We can see that, since
the internal error has been masked beyond f/fs = 0.001, the
RC SQ-DDSM achieves almost identical spectral performance
compared to the conventional SQ-DDSM.

The noise floor due to the first-order shaped dither [14] is

Lnoisefloor =
1

12 · (2N )2
|(2 sin(πf0/fs))|2 (34)

where N = 20, and V (z) = 1 − z−1. In this example, the noise
floor is always significantly lower than the PSD for N3 in the
three decades above f0 and, therefore, has no effect on the simu-
lation results. If fewer bits were used, the effect of the noise
would be evident, but it could be masked, as outlined in Part I
of this brief [2].

B. Simulated Hardware Consumption

Neglecting the dither hardware, the formula for calculating
the RHC is the same in this case. For N = 20 and A = 0.001,
we predict a reduction of 20% in hardware consumption.
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Fig. 6. Block diagram of the dithered RC SQ-DDSM.

Fig. 7. Masking L12 and L23 below L3 above f0.

Fig. 8. Simulated PSD Py of a conventional 23-bit SQ-DDSM with a 20-bit
input and first-order additive input dither; the input is 65. The smooth curve is
L3. The dc term has been removed.

Fig. 9. Simulated PSD Py of an RC 23–20–12-bit SQ-DDSM with a 20-bit
input and first-order additive input dither; the input is 65. The smooth curve is
L3. The dc term has been removed (compare with Fig. 8).

The hardware consumption of the SQ-DDSM with dither is
shown in Table II. The 23–20–12 RC SQ-DDSM with first-
order dither achieves an almost identical PSD compared to
the 23-bit conventional SQ-DDSM with dither, but with 16%
less hardware. If we subtract the hardware consumption for the

TABLE II
HARDWARE CONSUMPTION OF THE CONVENTIONAL 23-BIT SQ-DDSM

WITH FIRST-ORDER DITHER AND THE 23–20–12-BIT RC SQ-DDSM
WITH FIRST-ORDER DITHER

dither block for both SQ-DDSMs, our RC SQ-DDSM has an
RHC of 80%, as predicted.

VII. CONCLUSION

In this brief, we have presented a design methodology for
SQ-DDSMs based on error masking. We have shown that, start-
ing with a conventional DDSM having identical accumulators,
it is possible to find an optimized wordlength for each stage
of the SQ-DDSM, which allows a reduction in the hardware
consumption by up to 20%, without degrading the spectral
performance.
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