347 research outputs found

    Non-pharmacological Treatment of Atrial Fibrillation

    Get PDF
    In selected patients with atrial fibrillation and severe symptoms, non-pharmacological treatment may be an alternative or supplement to drug therapy. Atrioventricular nodal radiofrequency ablation (requires pacemaker implantation), or atrial pacing for sick sinus syndrome, are established treatment modalities. All other non-pharmacological therapies for atrial fibrillation are still experimental. After the Maze operation, atrial depolarization has to follow one specific path determined by surgical scars in the myocardium. This prevents new episodes of atrial fibrillation, but at a cost of perioperative morbidity and mortality. Catheter-based "Maze-like" radiofrequency ablation is technically difficult, and thrombo-embolic complications may occur. Paroxysmal atrial fibrillation sometimes is initiated by spontaneous depolarizations in a pulmonary vein inlet. Radio frequency ablation against such focal activity has been reported with high therapeutic success, but the results await confirmation from several centres. For ventricular rate control, most electrophysiologists presently prefer ablation to induce a complete atrioventricular conduction block (with pacemaker) rather than trying to modify conduction by incomplete block. Atrial or dual chamber pacing may prevent atrial fibrillation induced by bradycardia. It remains to confirm that biatrial or multisite right atrial pacing prevents atrial fibrillation more efficiently than ordinary right atrial pacing. An atrial defibrillator is able to diagnose and convert atrial fibrillation. The equipment is expensive, and therapy without sedation may be unpleasant beyond tolerability

    Internship in arrhythmology

    Get PDF
    The arrhythmology focuses on the diagnosis and treatment of heart rhythm disorders and their complications, and has undergone a dramatic evolution over the past two decades. The widespread use of catheter ablation, the introduction of implantable cardioverter defibrillators for the prevention of sudden cardiac death and, finally, the development of cardiac resynchronization therapy led to a gradual loss of the impact of antiarrhythmic drugs as a therapeutic approach. This report was performed as a result of an internship performed in Cardiac Physiology with the duration of 400 hours. The main goal of the internship was to strengthen theoretical knowledge and acquire practical experience in the varied fields of arrhythmology, especially in the areas of Cardiac Pacing and Electrophysiology. During the internship were performed 41 electrophysiologic studies, where Atrioventricular Node Reentrant Tachycardia and Atrial Fibrillation were the most observed arrhythmias. New technologies such as three-dimensional mapping for electrophysiology studies are developing quickly and being use on a daily basis, as they prove to have safe and higher success rates. The proof is that in approximately half of the studies, one of the two mapping systems available, Carto or NavX, was used. In addition, were interrogated 283 pacemakers during the pacing clinics, being the dual chamber with DDD pacing mode the most encountered device. A large number of devices with Cardiac Resynchronization Therapy and/or Implantable Cardioverter Defibrillators were also observed. This report is divided into three chapters. Chapter I is constituted by a revision of the literature and includes concepts such as definition and mechanisms of cardiac arrhythmias; a brief description of the varied diagnostic tools and its recommendations; and a presentation of the different therapeutic approaches available and its indications. The second chapter is a descriptive drawing of the activity performed in the modules of Electrophysiology and Pacing. Lastly, the chapter III presents two clinical cases in Electrophysiology considered interesting from a clinical point of view

    2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias

    Get PDF
    Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias

    Catheter ablation in patients with atrial fibrillation : mapping refinements, outcome prediction and effect on quality of life

    Get PDF
    PhD ThesisChapter 1 presents a literature review, focused primarily on the pathophysiology and management of atrial fibrillation (AF). Chapter 2 examines correlations between the dominant frequency of AF - calculated using principal component analysis from a modified surface 12-lead ECG (which included posterior leads), a standard 12-lead ECG and intracardiac recordings from both atria. The inclusion of posterior leads did not improve correlation with left atrial activity because of the dominance of lead V1 in both ECG configurations. Chapter 3 explores whether acute and 12-month outcome following catheter ablation for AF can be predicted beforehand from clinical and surface AF waveform parameters. Multivariate risk scores combining these parameters can predict arrhythmia outcome following ablation, and could therefore be used to identify those most likely to benefit from this therapy. Chapter 4 examines the effect of catheter ablation on AF symptoms and quality of life (QoL). AF symptom and QoL scores improved significantly in patients who maintained sinus rhythm after ablation but did not change in those with recurrent AF. AF-specific QoL scales are more responsive to change and correlate better with ablation outcome. Chapter 5 examines inter-atrial frequency gradients in patients with persistent AF using multipolar contact mapping. A right-to-left atrial frequency gradient was found in a quarter of the patients studied, implying that their arrhythmia was being maintained by high frequency sources in the right rather than the left atrium. Chapter 6 examines whether targeting high frequency and highly repetitive complex fractionated atrial electrogram sites, identified using multipolar contact mapping during persistent AF, resulted in arrhythmia termination and maintenance of sinus rhythm long-term. The utility of administering flecainide to distinguish critical from bystander AF sites was also investigated. Flecainide did not help refine ablation targets and 12-month outcome after targeting these sites was not superior to other ablation strategies

    New Paradigm of Defibrillation: Towards Painless Therapy

    Get PDF
    Sudden cardiac death: SCD) causes approximately 300,000 - 400,000 deaths a year in the United States. It usually starts as ventricular tachycardia: VT) and then degenerates into ventricular fibrillation: VF). Implantable cardioverter defibrillator: ICD) therapy is the only reliable treatment of VT/VF and has been shown to effectively reduce mortality by many clinical trials. However, high-voltage ICD shocks could result in myocardial dysfunction and damage. The majority of patients receiving ICD therapy have a history of coronary disease; their hearts develop myocardium infarction, which could provide a substrate for reentrant tachy-arrhythmias. Other than lethal ventricular tachycardia, atrial fibrillation: AF) became the most common arrhythmia by affecting 2.2 to 5.6 millions of Americans. The complications of AF include an increased rate of mortality, heart failure, stroke, etc. In this dissertation, we explore mechanisms of sustained ventricular and atrial tachyarrhythmias and the mechanisms of defibrillation using the conventional high-voltage single shock. Through the use of novel fluorescent optical mapping techniques and several animal models of ventricular and atrial arrhythmias, we develop and validate several novel low-voltage defibrillation therapies for atrial and ventricular arrhythmias. Several important previous studies on mechanisms of arrhythmia maintenance and termination using mathematical and experimental models are overviewed in Chapter 2. A study on multiple monophasic shocks improving electrotherapy of ventricular tachycardia in rabbit model of chronic infarction is presented in Chapter 3. Ventricular arrhythmias and low-voltage defibrillation therapy are studied in a more clinically-relevent in vivo canine model of healing myocardial infarction in Chapter 4. Finally, Chapter 5 presents a novel multi-stage low-energy defibrillation therapy for atrial fibrillation in in vivo canine hearts

    New perspectives in catheter ablation for atrial fibrillation Towards a better treatment to reach better outcomes

    Get PDF
    The overall aim of the studies presented in this thesis is to elucidate whether there is still room for improvement in the field of catheter ablation for AF either paroxysmal and persistent, and the following chapters will guide the reader in a virtual path that addresses this issue

    Cardiac Arrhythmias

    Get PDF
    This book is useful for physicians taking care of patients with cardiac arrhythmias and includes six chapters written by experts in their field. Chapter 1 discusses basic mechanisms of cardiac arrhythmias. Chapter 2 discusses the chronobiological aspects of the impact of apnoic episodes on ventricular arrhythmias. Chapter 3 discusses navigation, detection, and tracking during cardiac ablation interventions. Chapter 4 discusses epidemiology and pathophysiology of ventricular arrhythmias in several noncardiac diseases, methods used to assess arrhythmia risk, and their association with long-term outcomes. Chapter 5 discusses the treatment of ventricular arrhythmias including indications for implantation of an AICD for primary and for secondary prevention in patients with and without congestive heart failure. Chapter 6 discusses surgical management of atrial fibrillation

    A Mechanistically Guided Approach to Treatment of Multi-Wavelet Reentry: Experiments in a Computational Model of Cardiac Propagation

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States today. However, treatment options remain limited despite the enormous magnitude of both AF prevalence and the associated economic cost. Of those treatment options that are available, ablation-based interventional methods have demonstrated the highest rates of long-term cure. Unfortunately, these methods have substantially lower efficacy in patients with heavier burdens of disease, thus leaving the most affected individuals with the least hope for successful treatment. The focus of this research is to develop a mechanistically guided approach towards the treatment of multi-wavelet reentry (MWR), one of the primary drivers of AF. For this purpose, we use a computational model of electrical propagation in cardiac tissue to simulate both episodes of fibrillatory activity and the ablative treatment thereof. We demonstrate that the probability of forming the reentrant circuits necessary for continuous electrical activity is a function of the shape and size of a tissue as well as its underlying cellular properties. Ablation at tissue sites with high probability of circuit formation more efficiently reduces the overall duration of fibrillatory episodes than ablation at sites with low probability. We then propose and validate in silico a parameter-based metric for predicting the propensity of an individual tissue to support fibrillation, which we term the fibrillogenicity index. Using this metric, we develop an algorithm for prospectively determining optimized, tissue-specific ablation patterns. Finally, we examine the relationship between multi-wavelet reentry and focal drivers, and demonstrate that MWR and fibrillatory conduction exist along a continuum. We examine the complex interplay between functional and structural substrates within fibrillating tissue and define the mechanisms by which they promote the perpetuation of AF. These findings present a novel theoretical framework for understanding treatment of multi-wavelet reentry driven AF and provide a set of testable predictions that can serve to guide the design of future experimental studies aimed at advancing the rational design of patient-specific ablation sets for treating AF
    corecore