22 research outputs found

    Structured Compressed Sensing: From Theory to Applications

    Full text link
    Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.Comment: To appear as an overview paper in IEEE Transactions on Signal Processin

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined

    Steady state modelling of non-linear power plant components

    Get PDF
    This thesis studies the problem of periodic. waveform distortion in electric power systems. A general framework is formulated in the Hilbert domain to account for any given orthogonal basis such as complex Fourier. real Fourier. Hartley and Walsh.· Particular applications of this generalised framework result in unified frames of reference. These domains are unified frameworks in the sense that they accommodate all the nodes. phases and the full spectrum of coefficients of the orthogonal basis. Linear and linearised, non-linear elements can be combined in the same frame of reference for a unified solution. In rigorous waveform distortion analysis. accurate representation of non-linear characteristics for all power plant components is essential. In this thesis several analytical forms are studied which provide accurate representations of non-linearities and which are suitable for efficient. repetitive waveform distortion studies. Several harmonic domain approaches are also presented. To date most frequency domain techniques in power systems have used the Complex Fourier expansion but more efficient solutions can be obtained when using formulations which do not require complex algebra. With this in mind. two real harmonic domain frames of references are presented: the real Fourier harmonic domain and the Hartley domain. The solutions exhibit quadratic rate of convergence. Also, discrete convolutions are proposed as a means for free-aliasing harmonic domain evaluations; a fact which aids convergence greatly. Two new models in the harmonic domain are presented: the Three Phase Thyristor Controlled Reactor model and the Multi-limb Three Phase Transformer model. The former uses switching functions and discrete convolutions. It yields efficient solutions with strong characteristics of convergence. The latter is based on the principle of duality and takes account of the non-linear electromagnetic effects involving iron core, transformer tank and return air paths. The algorithm exhibits quadratic convergence. Real data is used to validate both models. Harmonic distortion can be evaluated by using true Newton-Raphson techniques which exhibit quadratic convergence. However, these methods can be made to produce faster solutions by using relaxation techniques. Several alternative relaxation techniques are presented. An algorithm which uses diagonal relaxation has shown good characteristics of convergence plus the possibility of parallelisation. The Walsh series are a set of orthogonal functions with rectangular waveforms. They are used in this thesis to study switching circuits which are quite common in modern power systems. They have switching functions which resemble Walsh functions substantially. Accordingly, switching functions may be represented exactly by a finite number of Walsh functions, whilst a large number of Fourier coefficients may be required to achieve the same result. Evaluation of waveform distortion of power networks is a non-linear problem which is solved by linearisation about an operation point. In this thesis the Walsh domain is used to study this phenomenon. It has deep theoretical strengths which helps greatly in understanding waveform distortion and which allows its qualitative assessment. Traditionally, the problem of finding waveform distortion levels in power networks has been solved by the use of repetitive linearisation of the problem about an operation point. In this thesis a step towards a true non-linear solution is made. A new approach, which uses bi-linearisations as opposed to linearisations, is presented. Bi-linear systems are a class of simple, non-linear systems which are amenable to analytical solutions. Also, a new method, based on Taylor series expansions, is used to approximate generic, non-linear systems using a bi-linear system. It is shown that when using repetitive bi-linearisations, as opposed to linearisations, solutions show super-quadratic rate of convergence. Finally, several power system applications using the Walsh approach are presented. A model of a single phase TCR, a model of three phase bank of transformers and a model of frequency dependent transmission lines are developed

    Compressive Acquisition and Processing of Sparse Analog Signals

    Get PDF
    Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), aim at alleviating some of these problems. In this thesis, we look into the ways the application of a compressive measurement kernel impacts the signal recovery performance and investigate methods to infer the current signal complexity from the compressive observations. We then study a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals in spectral, angular and spatial domains.Seit dem Aufkommen der ersten digitalen Verarbeitungseinheiten hat die Bedeutung der digitalen Signalverarbeitung stetig zugenommen. Heutzutage findet die meiste Signalverarbeitung im digitalen Bereich statt, was erfordert, dass analoge Signale zuerst abgetastet und digitalisiert werden, bevor relevante Daten daraus extrahiert werden können. Jahrzehntelang hat die herkömmliche äquidistante Abtastung, die durch das Nyquist-Abtasttheorem bestimmt wird, zu diesem Zweck ein nahezu universelles Mittel bereitgestellt. Der kürzliche explosive Anstieg der Anforderungen an die Datenerfassung, -speicherung und -verarbeitung hat jedoch die Fähigkeiten herkömmlicher Erfassungssysteme in vielen Anwendungsbereichen an ihre Grenzen gebracht. Durch eine alternative Sichtweise auf den Signalerfassungsprozess können Ideen aus der sparse Signalverarbeitung und einer ihrer Hauptanwendungsgebiete, Compressed Sensing (CS), dazu beitragen, einige dieser Probleme zu mindern. Basierend auf der Annahme, dass der Informationsgehalt eines Signals oft viel geringer ist als was von der nativen Repräsentation vorgegeben, stellt CS ein alternatives Konzept für die Erfassung und Verarbeitung bereit, das versucht, die Abtastrate unter Beibehaltung des Signalinformationsgehalts zu reduzieren. In dieser Arbeit untersuchen wir einige der Grundlagen des endlichdimensionalen CSFrameworks und seine Verbindung mit Sub-Nyquist Abtastung und Verarbeitung von sparsen analogen Signalen. Obwohl es seit mehr als einem Jahrzehnt ein Schwerpunkt aktiver Forschung ist, gibt es noch erhebliche Lücken beim Verständnis der Auswirkungen von komprimierenden Ansätzen auf die Signalwiedergewinnung und die Verarbeitungsleistung, insbesondere bei rauschbehafteten Umgebungen und in Bezug auf praktische Messaufgaben. In dieser Dissertation untersuchen wir, wie sich die Anwendung eines komprimierenden Messkerns auf die Signal- und Rauschcharakteristiken auf die Signalrückgewinnungsleistung auswirkt. Wir erforschen auch Methoden, um die aktuelle Signal-Sparsity-Order aus den komprimierten Messungen abzuleiten, ohne auf die Nyquist-Raten-Verarbeitung zurückzugreifen, und zeigen den Vorteil, den sie für den Wiederherstellungsprozess bietet. Nachdem gehen wir zu einer speziellen Anwendung, nämlich der Sub-Nyquist-Abtastung und Verarbeitung von sparsen analogen Multibandsignalen. Innerhalb des Sub-Nyquist-Abtastung untersuchen wir drei verschiedene Multiband-Szenarien, die Multiband-Sensing in der spektralen, Winkel und räumlichen-Domäne einbeziehen.Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. For decades, conventional uniform sampling that is governed by the Nyquist sampling theorem has provided an almost universal means to this end. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), have the potential to assist alleviating some of these problems. Building on the premise that the signal information rate is often much lower than what is dictated by its native representation, CS provides an alternative acquisition and processing framework that attempts to reduce the sampling rate while preserving the information content of the signal. In this thesis, we explore some of the basic foundations of the finite-dimensional CS framework and its connection to sub-Nyquist sampling and processing of sparse continuous analog signals with application to multiband sensing. Despite being a focus of active research for over a decade, there still remain signi_cant gaps in understanding the implications that compressive approaches have on the signal recovery and processing performance, especially against noisy settings and in relation to practical sampling problems. This dissertation aims at filling some of these gaps. More specifically, we look into the ways the application of a compressive measurement kernel impacts signal and noise characteristics and the relation it has to the signal recovery performance. We also investigate methods to infer the current complexity of the signal scene from the reduced-rate compressive observations without resorting to Nyquist-rate processing and show the advantage this knowledge offers to the recovery process. Having considered some of the universal aspects of compressive systems, we then move to studying a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals. Within the sub-Nyquist sampling framework, we examine three different multiband scenarios that involve multiband sensing in spectral, angular and spatial domains. For each of them, we provide a sub-Nyquist receiver architecture, develop recovery methods and numerically evaluate their performance

    Efficient algorithms and data structures for compressive sensing

    Get PDF
    Wegen der kontinuierlich anwachsenden Anzahl von Sensoren, und den stetig wachsenden Datenmengen, die jene produzieren, stößt die konventielle Art Signale zu verarbeiten, beruhend auf dem Nyquist-Kriterium, auf immer mehr Hindernisse und Probleme. Die kürzlich entwickelte Theorie des Compressive Sensing (CS) formuliert das Versprechen einige dieser Hindernisse zu beseitigen, indem hier allgemeinere Signalaufnahme und -rekonstruktionsverfahren zum Einsatz kommen können. Dies erlaubt, dass hierbei einzelne Abtastwerte komplexer strukturierte Informationen über das Signal enthalten können als dies bei konventiellem Nyquistsampling der Fall ist. Gleichzeitig verändert sich die Signalrekonstruktion notwendigerweise zu einem nicht-linearen Vorgang und ebenso müssen viele Hardwarekonzepte für praktische Anwendungen neu überdacht werden. Das heißt, dass man zwischen der Menge an Information, die man über Signale gewinnen kann, und dem Aufwand für das Design und Betreiben eines Signalverarbeitungssystems abwägen kann und muss. Die hier vorgestellte Arbeit trägt dazu bei, dass bei diesem Abwägen CS mehr begünstigt werden kann, indem neue Resultate vorgestellt werden, die es erlauben, dass CS einfacher in der Praxis Anwendung finden kann, wobei die zu erwartende Leistungsfähigkeit des Systems theoretisch fundiert ist. Beispielsweise spielt das Konzept der Sparsity eine zentrale Rolle, weshalb diese Arbeit eine Methode präsentiert, womit der Grad der Sparsity eines Vektors mittels einer einzelnen Beobachtung geschätzt werden kann. Wir zeigen auf, dass dieser Ansatz für Sparsity Order Estimation zu einem niedrigeren Rekonstruktionsfehler führt, wenn man diesen mit einer Rekonstruktion vergleicht, welcher die Sparsity des Vektors unbekannt ist. Um die Modellierung von Signalen und deren Rekonstruktion effizienter zu gestalten, stellen wir das Konzept von der matrixfreien Darstellung linearer Operatoren vor. Für die einfachere Anwendung dieser Darstellung präsentieren wir eine freie Softwarearchitektur und demonstrieren deren Vorzüge, wenn sie für die Rekonstruktion in einem CS-System genutzt wird. Konkret wird der Nutzen dieser Bibliothek, einerseits für das Ermitteln von Defektpositionen in Prüfkörpern mittels Ultraschall, und andererseits für das Schätzen von Streuern in einem Funkkanal aus Ultrabreitbanddaten, demonstriert. Darüber hinaus stellen wir für die Verarbeitung der Ultraschalldaten eine Rekonstruktionspipeline vor, welche Daten verarbeitet, die im Frequenzbereich Unterabtastung erfahren haben. Wir beschreiben effiziente Algorithmen, die bei der Modellierung und der Rekonstruktion zum Einsatz kommen und wir leiten asymptotische Resultate für die benötigte Anzahl von Messwerten, sowie die zu erwartenden Lokalisierungsgenauigkeiten der Defekte her. Wir zeigen auf, dass das vorgestellte System starke Kompression zulässt, ohne die Bildgebung und Defektlokalisierung maßgeblich zu beeinträchtigen. Für die Lokalisierung von Streuern mittels Ultrabreitbandradaren stellen wir ein CS-System vor, welches auf einem Random Demodulators basiert. Im Vergleich zu existierenden Messverfahren ist die hieraus resultierende Schätzung der Kanalimpulsantwort robuster gegen die Effekte von zeitvarianten Funkkanälen. Um den inhärenten Modellfehler, den gitterbasiertes CS begehen muss, zu beseitigen, zeigen wir auf wie Atomic Norm Minimierung es erlaubt ohne die Einschränkung auf ein endliches und diskretes Gitter R-dimensionale spektrale Komponenten aus komprimierten Beobachtungen zu schätzen. Hierzu leiten wir eine R-dimensionale Variante des ADMM her, welcher dazu in der Lage ist die Signalkovarianz in diesem allgemeinen Szenario zu schätzen. Weiterhin zeigen wir, wie dieser Ansatz zur Richtungsschätzung mit realistischen Antennenarraygeometrien genutzt werden kann. In diesem Zusammenhang präsentieren wir auch eine Methode, welche mittels Stochastic gradient descent Messmatrizen ermitteln kann, die sich gut für Parameterschätzung eignen. Die hieraus resultierenden Kompressionsverfahren haben die Eigenschaft, dass die Schätzgenauigkeit über den gesamten Parameterraum ein möglichst uniformes Verhalten zeigt. Zuletzt zeigen wir auf, dass die Kombination des ADMM und des Stochastic Gradient descent das Design eines CS-Systems ermöglicht, welches in diesem gitterfreien Szenario wünschenswerte Eigenschaften hat.Along with the ever increasing number of sensors, which are also generating rapidly growing amounts of data, the traditional paradigm of sampling adhering the Nyquist criterion is facing an equally increasing number of obstacles. The rather recent theory of Compressive Sensing (CS) promises to alleviate some of these drawbacks by proposing to generalize the sampling and reconstruction schemes such that the acquired samples can contain more complex information about the signal than Nyquist samples. The proposed measurement process is more complex and the reconstruction algorithms necessarily need to be nonlinear. Additionally, the hardware design process needs to be revisited as well in order to account for this new acquisition scheme. Hence, one can identify a trade-off between information that is contained in individual samples of a signal and effort during development and operation of the sensing system. This thesis addresses the necessary steps to shift the mentioned trade-off more to the favor of CS. We do so by providing new results that make CS easier to deploy in practice while also maintaining the performance indicated by theoretical results. The sparsity order of a signal plays a central role in any CS system. Hence, we present a method to estimate this crucial quantity prior to recovery from a single snapshot. As we show, this proposed Sparsity Order Estimation method allows to improve the reconstruction error compared to an unguided reconstruction. During the development of the theory we notice that the matrix-free view on the involved linear mappings offers a lot of possibilities to render the reconstruction and modeling stage much more efficient. Hence, we present an open source software architecture to construct these matrix-free representations and showcase its ease of use and performance when used for sparse recovery to detect defects from ultrasound data as well as estimating scatterers in a radio channel using ultra-wideband impulse responses. For the former of these two applications, we present a complete reconstruction pipeline when the ultrasound data is compressed by means of sub-sampling in the frequency domain. Here, we present the algorithms for the forward model, the reconstruction stage and we give asymptotic bounds for the number of measurements and the expected reconstruction error. We show that our proposed system allows significant compression levels without substantially deteriorating the imaging quality. For the second application, we develop a sampling scheme to acquire the channel Impulse Response (IR) based on a Random Demodulator that allows to capture enough information in the recorded samples to reliably estimate the IR when exploiting sparsity. Compared to the state of the art, this in turn allows to improve the robustness to the effects of time-variant radar channels while also outperforming state of the art methods based on Nyquist sampling in terms of reconstruction error. In order to circumvent the inherent model mismatch of early grid-based compressive sensing theory, we make use of the Atomic Norm Minimization framework and show how it can be used for the estimation of the signal covariance with R-dimensional parameters from multiple compressive snapshots. To this end, we derive a variant of the ADMM that can estimate this covariance in a very general setting and we show how to use this for direction finding with realistic antenna geometries. In this context we also present a method based on a Stochastic gradient descent iteration scheme to find compression schemes that are well suited for parameter estimation, since the resulting sub-sampling has a uniform effect on the whole parameter space. Finally, we show numerically that the combination of these two approaches yields a well performing grid-free CS pipeline

    Compressive Sensing in Communication Systems

    Get PDF

    Estimating Sparse Representations from Dictionaries With Uncertainty

    Get PDF
    In the last two decades, sparse representations have gained increasing attention in a variety of engineering applications. A sparse representation of a signal requires a dictionary of basic elements that describe salient and discriminant features of that signal. When the dictionary is created from a mathematical model, its expressiveness depends on the quality of this model. In this dissertation, the problem of estimating sparse representations in the presence of errors and uncertainty in the dictionary is addressed. In the first part, a statistical framework for sparse regularization is introduced. The second part is concerned with the development of methodologies for estimating sparse representations from highly redundant dictionaries along with unknown dictionary parameters. The presented methods are illustrated using applications in direction finding and fiber-optic sensing. They serve as illustrative examples for investigating the abstract problems in the theory of sparse representations. Estimating a sparse representation often involves the solution of a regularized optimization problem. The presented regularization framework offers a systematic procedure for the determination of a regularization parameter that accounts for the joint effects of model errors and measurement noise. It is determined as an upper bound of the mean-squared error between the corrupted data and the ideal model. Despite proper regularization, the quality and accuracy of the obtained sparse representation remains affected by model errors and is indeed sensitive to changes in the regularization parameter. To alleviate this problem, dictionary calibration is performed. The framework is applied to the problem of direction finding. Redundancy enables the dictionary to describe a broader class of observations but also increases the similarity between different entries, which leads to ambiguous representations. To address the problem of redundancy and additional uncertainty in the dictionary parameters, two strategies are pursued. Firstly, an alternating estimation method for iteratively determining the underlying sparse representation and the dictionary parameters is presented. Also, theoretical bounds for the estimation errors are derived. Secondly, a Bayesian framework for estimating sparse representations and dictionary learning is developed. A hierarchical structure is considered to account for uncertainty in prior assumptions. The considered model for the coefficients of the sparse representation is particularly designed to handle high redundancy in the dictionary. Approximate inference is accomplished using a hybrid Markov Chain Monte Carlo algorithm. The performance and practical applicability of both methodologies is evaluated for a problem in fiber-optic sensing, where a mathematical model for the sensor signal is compiled. This model is used to generate a suitable parametric dictionary
    corecore