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Abstract

Along with the ever increasing number of sensors, which are also gen-
erating rapidly growing amounts of data, the traditional paradigm of
sampling adhering the Nyquist criterion is facing an equally increasing
number of obstacles.

The rather recent theory of Compressed Sensing (CS) promises to alle-
viate some of these drawbacks by proposing to generalize the sampling
and reconstruction schemes such that the acquired samples can contain
more complex information about the signal than Nyquist samples. The
proposed measurement process is more complex and the reconstruction
algorithms necessarily need to be non-linear. Additionally, the hardware
design process needs to be revisited as well in order to account for this
new acquisition scheme. Hence, one can identify a trade-off between
information that is contained in individual samples of a signal and effort
during development and operation of the sensing system.

This thesis addresses the necessary steps to shift the mentioned trade-
off more to the favor of CS. We do so by providing new results that make
CS easier to deploy in practice while also maintaining the performance
indicated by theoretical results. The sparsity order of a signal plays a
central role in any CS system. Hence, we present a method to estimate
this crucial quantity prior to recovery from a single snapshot. As we show,
this proposed Sparsity Order Estimation method allows to improve the
reconstruction error compared to an unguided reconstruction.

During the development of the theory we notice that the matrix-free
view on the involved linear mappings offers a lot of possibilities to render
the reconstruction and modeling stage much more efficient. Hence, we
present an open source software architecture to construct these matrix-
free representations and showcase its ease of use and performance when
used for sparse recovery to detect defects from ultrasound data as well
as estimating scatterers in a radio channel using ultra-wideband impulse
responses.

For the former of these two applications, we present a complete recon-
struction pipeline when the ultrasound data is compressed by means of
sub-sampling in the frequency domain. Here, we present the algorithms
for the forward model, the reconstruction stage and we give asymptotic
bounds for the number of measurements and the expected reconstruction
error. We show that our proposed system allows significant compression
levels without substantially deteriorating the imaging quality. For the
second application, we develop a sampling scheme to acquire the chan-
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nel Impulse Response (IR) based on a Random Demodulator (RD) that
allows to capture enough information in the recorded samples to reliably
estimate the IR when exploiting sparsity. Compared to the state of the art,
this in turn allows to improve the robustness to the effects of time-variant
radar channels while also outperforming state of the art methods based
on Nyquist sampling in terms of reconstruction error.

In order to circumvent the inherent model mismatch of early grid-
based compressive sensing theory, we make use of the Atomic Norm
Minimization (ANM) framework and show how it can be used for the
estimation of the signal covariance with R-dimensional parameters from
multiple compressive snapshots. To this end, we derive a variant of the
Alternating Directions of Multipliers Method (ADMM) that can estimate
this covariance in a very general setting and we show how to use this
for direction finding with realistic antenna geometries. In this context
we also present a method based on a Stochastic Gradient Descent (SGD)
iteration scheme to find compression schemes that are well suited for
parameter estimation, since the resulting sub-sampling has a uniform
effect on the whole parameter space. Finally, we show numerically that
the combination of these two approaches yields a well performing grid-
free CS pipeline.
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Zusammenfassung

Wegen der kontinuierlich anwachsenden Anzahl von Sensoren, und den
stetig wachsenden Datenmengen, die jene produzieren, stößt die konven-
tielle Art Signale zu verarbeiten, beruhend auf dem Nyquist-Kriterium,
auf immer mehr Hindernisse und Probleme.

Die kürzlich entwickelte Theorie des Compressed Sensing (CS) for-
muliert das Versprechen einige dieser Hindernisse zu beseitigen, indem
hier allgemeinere Signalaufnahme und -rekonstruktionsverfahren zum
Einsatz kommen können. Dies erlaubt, dass hierbei einzelne Abtastwerte
komplexer strukturierte Informationen über das Signal enthalten kön-
nen als dies bei konventiellem Nyquistsampling der Fall ist. Gleichzei-
tig verändert sich die Signalrekonstruktion notwendigerweise zu einem
nicht-linearen Vorgang und ebenso müssen viele Hardwarekonzepte für
praktische Anwendungen neu überdacht werden. Das heißt, dass man
zwischen der Menge an Information, die man über Signale gewinnen
kann, und dem Aufwand für das Design und Betreiben eines Signalverar-
beitungssystems abwägen kann und muss.

Die hier vorgestellte Arbeit trägt dazu bei, dass bei diesem Abwägen
CS mehr begünstigt werden kann, indem neue Resultate vorgestellt wer-
den, die es erlauben, dass CS einfacher in der Praxis Anwendung finden
kann, wobei die zu erwartende Leistungsfähigkeit des Systems theore-
tisch fundiert ist. Beispielsweise spielt das Konzept der Sparsity eine
zentrale Rolle, weshalb diese Arbeit eine Methode präsentiert, womit
der Grad der Sparsity eines Vektors mittels einer einzelnen Beobachtung
geschätzt werden kann. Wir zeigen auf, dass dieser Ansatz für Spar-
sity Order Estimation (SOE) zu einem niedrigeren Rekonstruktionsfehler
führt, wenn man diesen mit einer Rekonstruktion vergleicht, welcher die
Sparsity des Vektors unbekannt ist.

Um die Modellierung von Signalen und deren Rekonstruktion effizien-
ter zu gestalten, stellen wir das Konzept von der matrixfreien Darstellung
linearer Operatoren vor. Für die einfachere Anwendung dieser Darstel-
lung präsentieren wir eine freie Softwarearchitektur und demonstrieren
deren Vorzüge, wenn sie für die Rekonstruktion in einem CS-System ge-
nutzt wird. Konkret wird der Nutzen dieser Bibliothek, einerseits für
das Ermitteln von Defektpositionen in Prüfkörpern mittels Ultraschall,
und andererseits für das Schätzen von Streuern in einem Funkkanal aus
Ultrabreitbanddaten, demonstriert.

Darüber hinaus stellen wir für die Verarbeitung der Ultraschalldaten
eine Rekonstruktionspipeline vor, welche Daten verarbeitet, die im Fre-
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quenzbereich Unterabtastung erfahren haben. Wir beschreiben effiziente
Algorithmen, die bei der Modellierung und der Rekonstruktion zum Ein-
satz kommen und wir leiten asymptotische Resultate für die benötigte
Anzahl von Messwerten, sowie die zu erwartenden Lokalisierungsgenau-
igkeiten der Defekte her. Wir zeigen auf, dass das vorgestellte System
starke Kompression zulässt, ohne die Bildgebung und Defektlokalisie-
rung maßgeblich zu beeinträchtigen. Für die Lokalisierung von Streuern
mittels Ultrabreitbandradaren stellen wir ein CS-System vor, welches auf
einem Random Demodulator (RD) basiert. Im Vergleich zu existierenden
Messverfahren ist die hieraus resultierende Schätzung der Kanalimpul-
santwort robuster gegen die Effekte von zeitvarianten Funkkanälen.

Um den inhärenten Modellfehler, den gitterbasiertes CS begehen muss,
zu beseitigen, zeigen wir auf wie Atomic Norm Minimization (ANM) es
erlaubt ohne die Einschränkung auf ein endliches und diskretes Gitter
R-dimensionale spektrale Komponenten aus komprimierten Beobachtun-
gen zu schätzen. Hierzu leiten wir eine R-dimensionale Variante des Al-
ternating Directions of Multipliers Method (ADMM) her, welcher dazu in
der Lage ist die Signalkovarianz in diesem allgemeinen Szenario zu schät-
zen. Weiterhin zeigen wir, wie dieser Ansatz zur Richtungsschätzung mit
realistischen Antennenarraygeometrien genutzt werden kann. In diesem
Zusammenhang präsentieren wir auch eine Methode, welche mittels Sto-
chastic Gradient Descent (SGD) Messmatrizen ermitteln kann, die sich
gut für Parameterschätzung eignen. Die hieraus resultierenden Kompres-
sionsverfahren haben die Eigenschaft, dass die Schätzgenauigkeit über
den gesamten Parameterraum ein möglichst uniformes Verhalten zeigt.
Zuletzt zeigen wir auf, dass die Kombination des ADMM und des SGD
das Design eines CS-Systems ermöglicht, welches in diesem gitterfreien
Szenario wünschenswerte Eigenschaften hat.
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Chapter 1

Introduction

“To live is to risk it all; otherwise you’re just an inert chunk
of randomly assembled molecules drifting wherever the
universe blows you.”

Rick Sanchez

1.1 The Rise of Compressed Sensing

In recent years the number of sensing devices the we use to monitor a
plethora of quantities in virtually all areas of human life has grown rapidly.
We use sensors to monitor manufacturing processes in industrial appli-
cations [1], there are devices that capture a constant stream of images
with ever increasing resolution and frame rates [2], the number of an-
tenna ports in communications is steadily increasing [3] and our cars get
equipped with numerous capabilities to monitor their environment [4].

Often, these sensors are naturally scattered in the environment in a
distributed manner. Hence, the mainly digital post-processing of the ac-
quired data is moving further away both in location as well as time from
the point of acquisition. This means that the raw sensor data has to be
transferred first before it is available for evaluation and further process-
ing. In applications like structural health monitoring [5] the sensors are
installed in disconnected locations like the inside of a tunnel, or on crucial
points of a bridge. In these environments wired data transfer is not an
option and often the available radio channels only have a limited capacity
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for data transfer. This sparks the need for the reduction of data before the
costly and slow transmission.

Other applications pose a high demand on the operating speed of the
used Analog-to-Digital Converters (ADCs) that are employed during dig-
itization of the measured signal. In these high-bandwidth and -frequency
scenarios one has to pose restrictive assumptions on the signals in order
to guarantee successful representation without aliasing effects or adapt
the measurement process such that the sampling can be carried out at
a lower rate. This means that in these cases the requirements posed by
traditional Nyquist sampling lead to either unrealistic requirements on
the ADC or unpractical assumptions about the signal.

Summarizing, with the mentioned rise in sensors, frame rates and res-
olutions the amounts of data that have to be transferred to the processing
stage and converted by the ADCs are steadily increasing. The theory of
Compressed Sensing (CS) formulates the promise that some cheap and
most importantly data agnostic way of compression which operates in
analog domain can be moved very close to the sensors resulting in less
data to be transferred and converted. In fact the compression happens so
close that the sensor itself is perceived as the entity conducting the com-
pression – it is a compressive sensor. This offers the possibility to decrease
the demands on data conversion and transfer substantially.

At the same time, this promise also comes at a price. First, these Com-
pressed Sensing schemes have to be designed from scratch both theoret-
ically and practically. One has to redesign new and custom electronics –
often from the ground up – which have to implement this novel and more
complex sampling scheme in affordable and feasible hardware. Second,
due to the nature of this new sampling paradigm, the reconstruction of
the signal becomes a non-trivial task to which end new algorithms have
to be employed. That promise and these two interesting obstacles, namely
the compressed measurements and non-linear reconstruction have led to
a surge in research carried out by engineers and mathematicians alike,
since it involves development of new hardware concepts, new signal pro-
cessing schemes and also the discovery of interesting mathematical tools
in information theory, geometry, numerics and optimization. For a Com-
pressed Sensing based application to succeed all these tools have to be
developed in unison and balanced against each other.

Soon, a large collection of publications shaped the new theory of CS by
formulating it as an extension of the traditional sampling theory based on
the Shannon-Nyquist sampling theorem. The proposed and possible ap-
plications today are numerous including imaging in the form of Magnetic
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resonance imaging (MRI) [6], radar [7], or parameter estimation [8] for
source localization [9] as well as spectral estimation [10]. Recently, one of
the first proposed applications of CS for MRI[11] was incorporated into
most major MRI platforms by now1. However, for several other applica-
tions the additional overhead to develop the innovative signal acquisition
and reconstruction methods still outweighs the benefits.

Often, the reason for this additional overhead is the gap between re-
quirements posed by the developed theory and practical restrictions, like
hardware cost, calibration efforts, energy requirements or limits in com-
putational power. This is due to the fact that although the theory of CS can
be formulated in a very general fashion and as such seems to be readily
applicable to many existing scenarios which have traditionally struggled
with the limitations by Shannon-Nyquist sampling, the mentioned side
constraints in a specific application are usually unique to the desired
use case. Ultimately, every single application requires a lot of new and
advanced engineering effort applying the concepts of CS.

In other words: the aforementioned gap between theory and implemen-
tation has to be closed by carefully studying specific applications in terms
of their use case, side constraints and algorithmic aspects. The results
presented in this thesis aim at narrowing this gap for two applications in
imaging as well as a very general spectrum sensing setup.

1.2 Motivation and Contributions

Since the demands on a CS system heavily depend on the application, it
is by no means straightforward to incorporate it into an arbitrary target
system. This is supported by the fact that although the total number of
publications on the field seems very promising, actual products is still
lacking behind this initial drive. The obstacles during implementation
are numerous and during the development of this thesis we summarized
these into the following four distinct Areas of Interest (AOI). However, as
we argue, the problems in these categories cannot be considered indepen-

1See for instance the press releases in:

� https : / / www . radiologie-muenchen . de / ueber-uns / aktuelles /
compressed-sensing

� https : / / www . corporate . siemens-healthineers . com / de / press /
releases/pr-2016110086hcen.html

� https : / / www . philips . de / healthcare / resources / landing /
the-next-mr-wave/compressed-sense
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dently from each other. This thesis demonstrates how these categories’
inter-relation ultimately makes up the characteristics and performance of
a CS system.

Compression (AOI-C)

The theory of CS introduces a very different data acquisition scheme than
the traditional Nyquist sampling allowing a more complex sampling pro-
cess. These new degrees of freedom allow us to tailor the data capturing
and compression process to the requirements one might have with respect
to the complete CS system. So, these new degrees of freedom have to be
used well and carefully in order to account for structural assumptions
about the signal, limitations imposed by the hardware implementations
or requirements on the system with respect to stability and robustness. �

Hardware (AOI-H)

Possibly the largest obstacle is the design of suitable hardware that car-
ries out the compression step with satisfying accuracy, speed and energy
consumption. Initially, the proposed measurement schemes, which are
optimal with respect to theoretical metrics, have turned out to be imprac-
tical as soon as one aims at designing the necessary hardware – often
due to size, cost or calibration reasons. This sparks the need for alterna-
tive compression schemes, which approximate the behavior of theoreti-
cally optimal ones, while still being deployable in practice. Additionally,
economies of scale might hinder a CS-based solution. So, although an
innovative sensor would work but it might still be cheaper to employ
the massively produced classical solution with traditional Nyquist sam-
pling. �

Reconstruction (AOI-R)

As already mentioned, special care is in order during the signal recon-
struction stage. This is due to the fact that one generally has to solve a
non-linear optimization problem to recover the information from the pre-
viously compressed data. Depending on the application, one either still
has large amounts of data, desires a high accuracy during this recovery
stage or one aims at very fast runtime of this stage in the pipeline. In
any case these requirements spark the need for a careful analysis and fine
tuning of all algorithmic aspects related to signal recovery. �
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Models (AOI-M)

When using CS in a certain system one usually formulates a signal model,
which has direct influence on the design of rest of the CS system. The
more accurate the signal model, the more refined the compression and
reconstruction step can be. The feasibility of the whole CS pipeline in
terms of stability, robustness, runtime of its solvers etc. inevitably depends
on the specific model employed. So, this modeling stage needs special
attention in order to design a well performing CS system. �

The contribution of this thesis is to demonstrate that these four distinct AOI
have to be considered as highly intertwined aspects of CS. We exemplify this
union specifically for ultrasonic non-destructive testing, ultra-wideband radar
and direction finding.

For instance, we will demonstrate that the compression setup has to
obey the restrictions imposed on it by the available hardware. At the same
time the sampling process has to be tailored to the specific signal model
we are dealing with. Also, both the compression scheme and the signal
model directly influence the necessary efforts and obtainable accuracy
during the reconstruction stage.

To fill the above statement with more substance we outline the contri-
butions of this thesis explicitly below, where we also connect them to the
relevant publications and the previously mentioned four distinct Area of
Interest (AOI).

1.2.1 Application Agnostic Contributions

Some results in this thesis are not tailored to a single application, but can
be applied to a broader range of compressed sensing scenarios and we
briefly put them into context below.

As we will see, the so-called sparsity order plays a central role both in
practical considerations as well as in theoretical stability and robustness
results. Since it usually is unknown prior to reconstruction, but serves as
an indicator for the complexity of the signal, which in turn influences the
reconstruction and compression stage, in [O1] we propose a model order
selection scheme that does not involve reconstructing the signal and the
results are presented in Section 2.5 thus addressing AOI-M and AOI-C.

During the rapid prototyping stage when designing a compressed
sensing system one usually has to carry out large scale simulations, which

5



1.2. Motivation and Contributions

have to mimic and thus implement the whole processing chain. In order
to facilitate this process we developed a free library for lazily evaluated
linear transforms [O2, O3] that make use of matrix-free algorithms. This
allows to conveniently compile algorithms and whole pipelines running
close to optimality in terms of memory and runtime, while retaining much
of the convenience when working with regular matrices. This approach
is explained in more detail in Chapter 3 and as such it addresses AOI-R
and to some degree AOI-M as well.

When using CS for parameter estimation, the compression scheme has
to be adapted to the parametric model in order to achieve a measurement
setup that allows low variance estimates across the whole parameter
space of interest. To this end we propose a low complexity gradient
algorithm [O4] inspired by methods used in machine learning, which is
independent of the specific application at hand. We explain this approach
in Section 5.3 thus tackling AOI-C.

Since multi-dimensional spectrum estimation has many different appli-
cations in array processing, radar etc. we still consider this task as a very
generic problem. In order to employ CS in a practically relevant man-
ner one has to first alleviate the requirement for a parameter grid, which
turns the reconstruction method into a much more challenging problem.
Thus, we propose a very general approximate algorithm [O5] in order
to allow high resolution spectrum estimation from multiple compressed
measurements. This method is described in Section 5.2.3 and contributes
to AOI-R.

Some additional contributions are not presented in this thesis but still
address to the mentioned AOI. We studied compression schemes that
follow a Khatri-Rao-structure in [O6] addressing AOI-C. Additionally, to
allow efficient direction finding from compressive measurements realistic
antenna models are crucial and we deployed free software [O7] to provide
convenient methods to deal with these antenna data, thus tackling AOI-
M.

1.2.2 Application Specific Contributions

The previously mentioned algorithm to design well-behaved compressive
measurements for parameter estimation is specified for the task of direc-
tion finding with compressive antennas, where we study the proposed
algorithm in terms of expected estimation accuracy for arbitrary antenna
geometries. The results of [O4] are presented in Section 5.3.3, hence there
we address AOI-C.
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As another specific application, we present the problem of designing
a signal processing pipeline [O8], [O9], [O10], [O11] to find defects in
an specimen excited by ultrasound waves. We show how to define a
suitable measurement setup that uses samples in frequency domain and
we compose a parametric model that also allows efficient reconstruction
from very few samples. These concepts are explained in Section 4.1 where
we address AOI-C, AOI-H, AOI-M and AOI-R. Hence, in this case we in
fact cover the whole journey, down from a theoretic analysis, up until a
hardware-aware compression scheme that allows efficient reconstruction
afterwards.

In order to improve the signal energy collected by an ultra-wideband
system, we propose to employ a Random Demodulator (RD) [O12, P1] to
implement a CS system that uses linear feedback shift registers in order
to realize a practically feasible compressive sensor for wideband channel
impulse responses. As we show, the Doppler range in non-static scenarios
is increased substantially and reconstruction of the impulse response can
be carried out efficiently by using the proposed software for matrix-free
algorithm. So, we address AOI-C, AOI-H and AOI-R as described in
Section 4.2

As a last topic, we present an approach how to use the derived high res-
olution algorithm for spectral sensing for direction finding with arbitrary
antenna arrays. We combine the results in Section 5.3.3 and Section 5.2.3
to show how one can find optimized compression schemes and an effi-
cient algorithm for parameter estimation. These results tackling AOI-C
and AOI-R are presented in Section 5.3.4.

Additional contributions not detailed in this thesis touch compres-
sive channel sounding [O13] extending the concepts in [O4] to the much
more challenging and higher dimensional setting. Finally, the concept
of efficient matrix-free linear transforms was employed in ghost imag-
ing [O14] to turn the reconstruction process into a feasible method by
substantially decreasing the algorithmic complexity and also in [O15]
where we employed a sparse recovery step to recover a sparse wavefield
from subsampled tomography data.
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1.3 Overview

We would like to note that due to the range of different topics covered in
this thesis we do not present a state of the art for the whole manuscript
beforehand, but introduce the topics of interest in their respective sec-
tions. This will make the presentations of independent topics more self
contained, which allows to skip certain chapters entirely.

At a very high level, this thesis is split in to two main parts. The
Chapters 2 to 4 contain results concerning grid-bound CS, which deal with
the theory of CS, as it was initially developed. The later chapters extend
this theory to a much more general and as we call it grid-free setting.

Chapter 2 introduces basic notions, like the general data model, the
measurement setup and presents some key results concerning compres-
sion, recovery guarantees and reconstruction algorithms. Moreover, we
present a general method to estimate the unknown sparsity order at the
end of this chapter.

Motivated by these basic concepts, in Chapter 3 we introduce matrix-
free linear mappings in order to improve upon the runtime of the previ-
ously presented algorithms. We also describe the software package that
allows to easily work with these matrix-free linear mappings for modeling
and reconstruction for CS systems and beyond.

Next, Section 4.1 and Section 4.2 depict how to use the theory presented
beforehand applied to ultrasonic non-destructive testing and estimating
channel impulse responses from ultra-wideband data.

Afterwards, in Chapter 5 we introduce the concepts involved in grid-
free CS to allow high resolution parameter estimation. The results pre-
sented there derive a high-dimensional and efficient reconstruction al-
gorithm. Also we present a method to optimize the used measurement
kernels for the task of parameter estimation. This we apply to spectrum es-
timation and direction finding by presenting a pipeline that encompasses
these two mentioned algorithms.

Finally, in Chapter 6 we iterate back on the motivations and the stated
goal of this thesis in Section 6.1. Finally, in Section 6.3 we give an outlook
on further research hence concluding this work.
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Chapter 2

Grid-Bound Compressed
Sensing

“Would it save you a lot of time if I just gave up and went
mad now?”

Douglas Adams

This chapter first lays the foundation for notation, definitions and gen-
eral assumptions we make during the whole thesis. We start by modeling
our signals as elements in an appropriate function space and deduce a
finite dimensional representation of the considered signals. By doing so,
we provide a very short recap of conventional sampling based on the
Nyquist criterion, which later on allows us to compare the theory of CS
to it more easily.

Additionally, we outline a short way through the theory of grid-based
CS and we derive that CS can be considered as another sampling theory
besides Nyquist sampling. During the presentation of this alternative
signal processing paradigm, we describe measurement setups via random
projections, we present reconstruction guarantees for various approaches
and we study two recovery algorithms more closely. Further, we present
how measurement matrices can be evaluated in terms of the attainable
stability during reconstruction and how initially random guesses can be
optimized further.

Finally, we present a processing scheme that incorporates a novel
method for sparsity order estimation from a single snapshot into the

9



2.1. Introduction and Basic Concepts

reconstruction framework. This inference of the signal complexity prior
to reconstruction allows to decrease the model mismatch during signal
estimation and by virtue of that we provide new results for AOI-M.

2.1 Introduction and Basic Concepts

The following section gives a rapid and concise introduction to band-
limited signals, which are the basis for sampling based on the Nyquist
criterion. We shortly explain this theory in order to compare it to the state-
ments that can be inferred in the context of CS later on. The current and
the following chapters draw heavily from the comprehensive overview
of CS that can be found in [12] and [13].

2.1.1 Bandlimited Signals

We start by introducing a suitable space for the signals we want to study
in this thesis. First, we assume that the signals are in the separable Hilbert
space L2(R) of square integrable functions with sesquilinear inner prod-
uct 〈·, ·〉L2 and induced norm ‖·‖L2 [14, Ch. V]. This means that for each
f ∈ L2(R) with t 7→ f (t) ∈ C it holds that

‖ f ‖2
L2 = 〈 f , f 〉L2 =

∫
R

f (t) f (t)dt < ∞,

where x denotes the complex conjugate of x ∈ C. In a signal processing
context, one usually denotes the signals contained in this space as signals
of finite energy.

Additionally, we assume that the signals, or functions respectively,
we consider are band-limited. In order to coin this term, we define the
Fourier transform F : L2(R)→ L2(R) via

f 7→ F f =
1√
2π

∫
R

f (t) exp(−it·)dt.

At first, it is not directly clear why this transformation is well behaved on
the space L2, which in fact it is not. However, for functions f ∈ L2, which
are also absolutely integrable, which means that

∫
R

| f (t)|dt < ∞,

10



Chapter 2. Grid-Bound Compressed Sensing

we can indeed consider F to be a well behaved operator, see [14, Chapter
V] for more details. Continuing, we define the set LB of functions limited
to the band B ⊂ R with sup(B ∪−B) < ∞ as the set

LB =
¶

f ∈ L2(R) ∩ L1(R)
∣∣∣ (F f )(µ) = 0 for µ /∈ B

©
.

This means, the functions’ Fourier transform that we consider is only
non-zero on a bounded subset of R. It is worth noting that the properties
of L2 make this function space a very well behaved space, because it can
be shown to have an orthogonal basis. For the band-limited signals in LB
we are in a different and an even better situation. As we will see in the
following results, it allows for a finite dimensional representation.

But first, let us present and discuss the sampling theory that is con-
cerned with these band-limited signals, which is summarized in the fol-
lowing statement.

Theorem 2.1 (Shannon-Nyquist Theorem, [15] Thm 4.1). Let the function
f ∈ L2(R) be a band-limited signal in LB with sup(B ∪ −B) < π/T for
T > 0, then f can be reconstructed from the samples f (nT), with n ∈ Z using
the reconstruction formula

f (t) = ∑
n∈Z

f (nT) sinc
(

t− nT
T

)
,

where

sinc(t) =
sin(πt)

πt

denotes the sinc kernel or function. �

Remark 2.1. Let us discuss this theorem in light of the theory we are
going to develop in this thesis. First, we see that the sampling, or mea-
surement process, is described by direct sampling in the sense that we
acquire point evaluations of f given by the sequence ( f (nT))n∈Z ⊂ C.
Second, we see that the theorem states that the reconstruction process of
the complete signal f is linear in the samples f (nT), which here means
that it happens by merely forming the linear combination of appropriately
shifted sinc-functions. Finally, note that the "complexity" of the signal is
denoted by the size or extent of the band B, which contains the locations
of the non-zero values of the signals Fourier-transform. �

In Remark 2.4 we are going to come back to the above points after we
have developed similar statements for Compressed Sensing.
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A last constraint we put on our signals f , is to assume that they are
periodic in time-domain with period 0 < P < ∞, so that

f (t) = f (t + n · P) for n ∈ Z.

This together with all other assumptions we made and Theorem 2.1 allows
us to derive that the signals we consider are actually forming a finite-
dimensional subspace in L2. We summarize this in the following easy to
obtain result.

Theorem 2.2. Let SB,P ⊂ LB be the set of band-limited functions with band B,
which are periodic with period P and are also integrable. Then, SB,P is a finite
dimensional vector space. �

The proof can be found in Appendix A.1. The reasons why we went
through the above obstacles are twofold as explained below.

Relationship of Sampling and Reconstruction

First, the short glimpse on the traditional sampling theorem and its
direct ramifications on sampling and reconstruction dictates that the cru-
cial quantity in the above sampling theory is the bandwidth of the signal.
As such it determines the efforts we have to make in order to guarantee
satisfying reconstruction with the samples we have acquired. During
sampling the bandwidth determines the sample rate and during recon-
struction is specifies the basis functions we use to restore the previously
sampled signal. As we will see, CS will have similar albeit more involved
results that depend on the sparsity of the signal. �

Finite-dimensional Vector Spaces

Second, we can now justify, why in the rest of the thesis we are dealing
with finite dimensional vectors over the complex field in order to repre-
sent our signals. It is due to the result of Theorem 2.2 that for the signals
we consider, we do not need to deal with elements in L2 directly but can
make use of the finite number of discrete samples of these and hence
restrict ourselves to the tools of linear algebra, where matrices allow to
describe linear mappings between finite dimensional vector spaces very
conveniently. It is important to note that in expressions like

z = Φ · y,

we do not necessarily or implicitly assume that we have access to a sam-
pled version y of the signal, but we only use this discrete to model the
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Chapter 2. Grid-Bound Compressed Sensing

whole compressive sensing system, which does not impose any require-
ments on the actual hardware implementation. �

Now that we have introduced Nyquist-based sampling as a theory
that is centered around equidistant sampling of bandlimited signals, we
introduce the theory of compressed sensing and its ramifications in the
following sections.

2.1.2 The Linear Measurement Process

Since we have a convenient finite dimensional model for our signals, we
are in the position to describe the measurement process that is the first
corner stone of CS. Assume we are given a signal y ∈ CN and a set of
vectors ϕi for i = 1, . . . , m, where m < N. Then, instead of assuming we
have direct access to y we only have access to the values

zi(y) = ϕH
i · y for i = 1, . . . , m.

This can be interpreted as a sensing step, where each ϕi is a linear mea-
surement kernel that is evaluated at y. This is the linear and compressive
measurement process we are going to consider in its most general form.
We call it a compression step, since we choose m < N and also the evalu-
ation of the ϕ is linear in y, because we have that zi(λ · y) = λ · zi(y) for
any λ ∈ C. Due to this linearity we define the matrix Φ ∈ Cm×N via

Φ =


ϕH

1
...

ϕH
m


and we can concisely describe the observation vector z = [z1, . . . , zm]H

via

z = Φ · y. (2.1)

Summarizing, we have only indirect access to the signal of interest y by
means of the linear functionals encoded by the rows of the sensing matrix
Φ.

Example 2.1 (Single Pixel Camera). Consider the case that we have to
aquire samples of a W × H-sized image encoded by the vector y ∈ CN ,
where N = W · H. However, the image can only captured by a very
expensive sensor, since for instance we might be operating at an uncon-
ventional wavelength. In the extreme case we are only able to afford a
single sensor – a single pixel camera [16]!
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2.1. Introduction and Basic Concepts

This means that sampling each "pixel" of the image individually is a
too time-consuming process. With the above concepts this conventional
pixel-wise sampling would look like

zi = eH
i · y = yi for i = 1, . . . , N,

where ei denotes the i-th canonical basis vector. In other words we have
Φ = IN ∈ CN×N , where IN is the identity matrix of size N, so we have
m = N, which means no compression at all and each row of Φ only
acquires information from one of the N pixels.

A different idea we are going to study in detail later would be to draw
the entries in Φ independently and identically distributed from the uni-
form distribution on {−1,+1}. This way each sample zi of the image
contains a unique "finger print" about all pixels at once. As we will see
during the development of this chapter, there are means to recover y
from z efficiently, even if m� N. However, only given some additional
assumptions about y, resulting in substantially fewer evaluations at the
expensive sensor. �

Now that we have established the measurement process we are go-
ing to consider throughout this work, we must tackle the question of
reconstructing the signal y from the observations z, since due to the very
different nature of sampling, the result provided by Theorem 2.1 is of no
use anymore.

2.1.3 Sparsity Assumption

At first sight, the problem of recovering y seems impossible to solve, since
we directly see that due to the fact that Φ ∈ Cm×N with m < N, the ker-
nel ker(Φ) – the subspace of all vectors x such that Φ · x = 0 – of Φ is
non-trivial. So ker(Φ) has at least dimension 1, which means there are
infinitely many solutions y that solve Φ · y = z. Hence, without any
additional assumptions about the nature of the signal y and the measure-
ment process encoded by Φ, we have no uniqueness in terms of the signal
y that can explain our measurement z. However, in Example 2.1 the
image y is not just any element in the set of solutions to Φ · x = z, but
rather a very specific one, which we might need to model more carefully.
Summarizing, we are in need for additional assumptions.

To this end, we introduce a set of vectors {a1, . . . ,aM}, such that their
linear hull given by span({a1, . . . ,aM}) = CN , i.e. it spans the whole
space CN . Note that this implies M > N. If we form the matrix A =
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Chapter 2. Grid-Bound Compressed Sensing

[a1, . . . ,aM] ∈ CN×M, we can use it to represent the signal via

y = A · x (2.2)

for some not necessarily uniquely defined x ∈ CM.
The crucial assumption we now make, is that there is a vector x ∈ CM

such that it satisfies (2.2) and simultaneously has only S � M non-zero
entries. We say that x is S-sparse and y has an S-sparse representation
with respect toA. This sparsity assumption will turn out to be the second
corner-stone in the theory of CS. Finally, we can introduce our complete
observation model as

z = Ψ · x = Φ ·A · x, (2.3)

where we callA ∈ CN×M the sparsifying dictionary, or in the special case
M = N the sparsifying basis. In order to access the sparsity pattern of x,
we define supp(x) ⊂ [M] as the set containing the non-zero entries of x,
such that S = |supp(x)|. Here, [n] denotes the integers {1, . . . , n}.

This means, we can transform the problem of finding a unique y satis-
fying (2.1) to finding a sparse x that satisfies (2.3) and again we can ask
the question of uniqueness, but now for the sparse vector x.

Remark 2.2 (Uniqueness via the Spark). In order to get a first impression
what the assumption of sparsity can do for us, we formulate another
criterion for Ψ ∈ Cm×M. For a given matrix Ψ the spark is the smallest
number spark(Ψ) = k ∈N such that there are k columns of Ψ which are
linearly dependent. The dual to the spark is the Kruskal-rank rk ∗(Ψ) ∈
N, which is the largest number k such that every subset of k columns of
Ψ is linearly independent. So, we have that rk ∗(Ψ) + 1 = spark(Ψ).

Now, assume that spark(Ψ) > 2K for some K in N, hence no 2K
columns of Ψ are linearly dependent. In other words, every submatrix
M ∈ Cm×2K consisting of 2K columns of Ψ has full rank. Of course, this
can only be the case, if 2K 6 m. Next, we consider a y that has an S-sparse
representation with respect toA, where S 6 K and we assume that y has
no unique representation with respect toA.

So, there are two distinct x1 and x2 such that z = Ψx1 = Ψx2. This
on the other hand implies first that 0 6= x1 − x2 has at most 2S 6 2K
non-zeros entries and that 0m = Φ(x1 − x2). But this contradicts the
assumption that all 2K-columned submatrices of Ψ have full rank. Hence,
we derived that there is a unique x satisfying (2.3). �

Remark 2.2 gives a first insight, how to derive a simple result on the
uniqueness of the vectorx. Additionally, it already shows that the relation
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between the measurement strategy Φ, the dictionaryA and the possibility
to recoverx uniquely is not simple to characterize and we will iterate back
to this relationship multiple times. It is worth noting that the process of
estimating x from z under this sparsity prior is usually called Sparse
Signal Recovery (SSR).

Additionally, to guarantee of uniqueness of x and hence of y, it can
also be of interest to recover a specific x from z instead of being satisfied
with any x that is able to reconstruct y. To this end, we present the
following example, where the locations of the non-zero entries encode
the information we would like to retrieve from the observation z. This
example [17] also serves as the blueprint for the applications considered
in Section 4.1 and Section 4.2 as well as Chapter 5.

Example 2.2 (Delay Estimation). As a simple yet instructive example, we
consider the problem where we receive a periodic signal y : R → C,
which is formed by the superposition of a few shifted copies of a known
and periodic waveform a : R→ C, i.e.

y(t) =
S

∑
i=1

xi · a(t− τi).

In this case, we would like to estimate the unknown amplitudes xi ∈ C

and normalized delays τi ∈ [0, 1) under the assumption that y has a sparse
representation in terms of a. As such we have encountered a parameter
estimation problem (or inverse problem) under a sparsity prior.

Since we assume as in Theorem 2.2 that a and hence also y occupy only
a finite frequency band, we can discretize above equation to

y =
S

∑
i=1

xi · aτi ,

where aτi ∈ CN is the vector of discrete samples of a(t− τi). Further, we
define the matrixA ∈ CN×M for some pair N 6 M via

A =
[
a0,a1/M, . . . ,a(M−2)/M,a(M−1)/M

]
Effectively, we have defined a parameter grid that contains the wave-
forms we expect to observe given the shifts on the set of grid points
G = {0, 1/M, . . . , (M− 1)/M}. The key idea now is to assume that y can
be represented as a superposition of shifts residing on the grid G, which
means there is a sparse vector x ∈ CM such that

y = A · x.
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In this case, a non-zero entry xi would result in a(i−1)/M contributing
to the observed signal y weighted with amplitude xi. Hence, if we can
estimate x from y we are able to recover the unknown xi and the time-
shifts τi solely from the sparse vector x. �

Example 2.2 already sparks many interesting questions that are ad-
dressed in this thesis. What happens if we additionally employ compres-
sion by means of Φ ∈ Cm×N? How exactly should we choose Φ in this
case? What happens for N � M? How can we deal with the case when
the true and unknown τi are not in the set G? Also note, how in this sim-
ple example we implicitly addressed AOI-M in the sense that the known
waveform directly yields the structure of the sparsifying dictionaryA.

Next, we outline how specifically the assumption of sparsity helps us
to efficiently recover the signal y and the sparse vector x.

2.1.4 Exploiting Sparsity

In order to proceed, we first define the so called `0-norm, albeit not being
an actual norm as ‖·‖0 : CM →N0 via

x 7→ ‖x‖0 = |{i ∈N : xi 6= 0}|.

The `0-norm simply counts the non-zero entries in a given vector – as such
it directly measures the complexity of x in terms of its sparsity. Naturally,
it violates the homogeneity property of the norm, since for λ 6= 0 we have
that ‖λx‖0 = ‖x‖0 for all x ∈ CM.

Although, we now know that sparsity can help to reocver x uniquely,
we have no algorithmic means of approaching the search for this sparse
vector. As stated in [12][Chapter 2.2] we can observe the equivalence of
the following two statements:

1. The vector x is the unique S-sparse solution to Ψx = z, so

{u ∈ CM : Ψu = z, ‖u‖0 6 S} = {x}.

2. The vector x can be reconstructed as the unique solution of

min
u∈CM

‖u‖0 subject to Ψu = z. (2.4)

The equivalence of these statements gives us a first hint on how to for-
mally recover the unknown x. We can use the optimization problem
in (2.4) as long as we can guarantee uniqueness of x beforehand, for in-
stance by means of Remark 2.2. The approach of solving (2.4) is called
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`0-minimization. As we also see above, unique recovery by means of
this technique depends on the sparsity S, the measurement Φ and the
sparsifying dictionaryA.

Remark 2.3 (Balancing the System). As we can already guess from Re-
mark 2.2 the unique recovery of x becomes less likely for larger sparsity-
levels S, since intuitively the conditions on Φ and A are geometrically
harder to be satisfied. There are two strategies one can exploit in order to
still guarantee unique recovery.

First one could increase the performance of Φ. Here two strategies
exist. For given m and N, one can try to find a good instance of Φ. In
Section 2.4 we deal with the problem of evaluating and improving upon
the performance of a given measurement matrix Φ ∈ Cm×N . On the other
hand, one can also increase m allowing more degrees of freedom for Φ

and hence intuitively better performance. However, we would like to
keep the measurement effort indicated by the magnitude of m a small as
possible – the reason why we employ CS in the first place. This resulting
trade-off between the performance of Φ and the magnitude of m directly
translates to the motivation AOI-C outlined in Section 1.2.

Second, one could find a better sparsifying dictionary A. Here, we
consider A1 to be better than A2 if we have that for every y there exist
x1 and x2 with y = A1x1 = A2x2 that satisfy ‖x1‖0 < ‖x2‖0. This is
one aspect of motivation AOI-M as described in Section 1.2. Usually, A
is derived from assumptions about the physical circumstances or other
aspects of the specific system. We will come back to the design ofA for a
specific example in Section 4.1. �

In the following section we study the problem of `0-minimization in
(2.4) more closely, since it is our first hope in designing a signal recon-
struction method from an algorithmic perspective.

2.2 Sparse Reconstruction

Currently, we expect ourselves to be in a favorable situation. Given some
observation model as in (2.3), we simply solve (2.4) and recover x and
thus y. But, as shown in [12][Theorem 2.17] the optimization problem
one has to solve to carry out `0-minimization is NP-hard, rendering it an
impractical approach for already moderately sized problems in terms of
m, N and M.

In the following, we will present two approaches in circumventing this
unpractical computational effort under additional assumptions about the
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CS scenario. As a first remedy, we formulate an appropriate substitute
problem that can be solved efficiently and which allows to recoverx under
additional assumptions. A second approach would be to only approxi-
mate a solution for the `0-minimization in (2.4) by using the Orthogonal
Matching Pursuit (OMP) algorithm. As such, it offers a greedy approach
for iteratively increasing the sparsity of the solution until satisfaction. It
is studied in more detail in Section 2.3.1.

2.2.1 Just Relax

Given the NP-hardness of (2.4) one can justify to look for a substitute opti-
mization problem to accomplish the signal reconstruction. The geometric
reason for the intractability of `0-minimization is the fact that the `0-norm
has no convex unit-norm balls. So the sets

Br
0 = {x ∈ CN : ‖x‖0 6 r}

for any r > 0 are not convex. In fact, Br
0 is the (set) union of all subspaces

spanned by at most brc coordinate axes. Note additionally that we can
consider the `0-norm as the point-wise limit of

‖x‖0 = lim
p→0+

(
N

∑
i=1
|xi|p

)1/p

= lim
p→0+

‖x‖p.

For 0 < p < 1 the sets Br
p defined analogously as Br

0 above are not convex.
This can be inferred from the fact that the function t 7→ tp is not convex
for p < 1. However, for p > 1 the balls Br

p are convex and the function
‖·‖p is in fact a norm on CN .

The special case we now consider is the borderline case p = 1 resulting
in

‖x‖1 =
N

∑
i=1
|xi|

as the convex relaxation of ‖·‖0. Due to this convexity, the following so
called `1-minimization problem, or Basis Pursuit (BP),

min
u∈CM

‖u‖1 subject to Ψ · u = z. (2.5)

has substantially better properties than the one in (2.4). In the case when
we only consider a real valued scenario, where x, y and Ψ are real valued,
it can be equivalently recast as a linear optimization program [13, Sec. 1.5],
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whereas in the complex case it is equivalent to a second order cone prob-
lem [12, Eq. (P′1,η)]. In both cases, theoretically efficient algorithms exist
for solving the substitute problems, rendering `1-minimization a problem
that can be solved in polynomial time with general purpose methods.

We would now like to use (2.5) as a proxy to solve (2.4), since the
former promises efficient and fast reconstruction. However, we already
deduced that `0-minimization is NP-hard. This means, in the general case
the approach of `1-minimization cannot reproduce the same solution as
`0-minimization. This means, we need to pose additional side constraints
on the CS scenario if we wish for our proxy to succeed.

Hence, we ask the following question: What are the conditions on Ψ

and x such that the solution x∗0 of (2.4) coincides with the solution x∗1 to
(2.5)?

One main focus of many publications on CS [18, 19, 20] lies in deriving
these conditions for various settings. In order to keep it short and con-
nected to the rest of the thesis, we will focus on the two most important
notions involved in these conditions.

2.2.2 The Restricted Isometry Property

The spark defined in Remark 2.2 of the matrix Ψ has been introduced as a
quantity that indicates whether Ψ preserves sparsity of a sparse vector x
in the sense that the set of S-sparse vectors sharing the same support set
S are resided in an S-dimensional subspace. However, this is not enough,
since this S-dimensional subspace could be almost S− 1-dimensional in
the sense that the basis vectors used to describe it form a matrix with
large condition number. Due to the fact that the spark does not evaluate
how much exactly the original x is preserved when being transformed
as Ψ · x, we need a more elaborate way to phrase the behavior of Ψ. The
geometric idea can be visualized in 2 spatial dimensions, where a perfect
circle is distorted by Ψ to a very flat ellipse, hence almost degenerating
it to a line. Although it might still be enclosing some space, we cannot
claim that Ψ is well behaved in this case.

Hence we give the following definition that presents a refinement of
the concept of the spark, see [12, Def. 6.1].

Definition 2.1 (Restricted Isometry Property). The S-th Restricted Isom-
etry Constant (RIC) δS(Ψ) of the matrix Ψ ∈ Cm×M is the smallest δ > 0
such that

(1− δ)‖x‖2
2 6 ‖Ψ · x‖2

2 6 (1 + δ)‖x‖2
2 (2.6)
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holds for all S-sparse vectorsx ∈ CM. We say that Ψ satisfies the restricted
isometry property, if δS is small for some reasonably large S. �

If it is clear from context, we usually omit the specification of the matrix
Ψ. The geometric idea behind this definition is that for small δS and
vectors up to sparsity order S the linear mapping Ψ almost is an isometry,
since the norm of the image Ψ · x may only deviate slightly from ‖x‖2.
This entails that only small values for δS are interesting. Note for instance
that δ2S < 1 yields that Ψ is injective on all S-sparse vectors, since for two
different S-sparse x1 and x2 we have

‖Ψ(x1 − x2)‖2
2 > (1− δ2S)‖x1 − x2‖2

2 > 0.

Additionally, if we reconsider the condition on Ψ in terms of the spark that
is posed in Remark 2.2, we see that δ2K < 1 is equivalent to spark(Ψ) >

2K. The next result show us, how the Restricted Isometry Property (RIP)
can help us with SSR.

Theorem 2.3 ([12] Thm. 6.9). Suppose that the 2S-th restricted isometry
constant of Ψ ∈ Cm×M satisfies

δ2S 6
1
3

.

Then every S-sparse x ∈ CM is the unique solution of (2.5). �

This entails that we have formulated a condition on Ψ and x in or-
der to answer the question when `1-minimization is a viable proxy for
`0-minimization. Hence, our original question about the equality of `0-
and `1-minimization got transmuted into: When does a matrix Ψ satisfy
δ2S(Ψ) < 1/3? We answer this question in Section 2.4. The conclusion we
can draw from (2.19), is given in the following statement.

Remark 2.4 (A Sampling Theorem for CS). Given the sampling process

z = Φ · y,

where y has an S-sparse representation via y = Ax, then if we choose Ψ =

Φ ·A according to Theorem 2.3 we can use the solution u∗ of

min
u∈CM

‖u‖1 subject to Ψ · u = z.

to recover x = u∗. As such we have derived a statement in the spirit of
the Nyquist-Theorem 2.1, since we have given conditions on the signal
y in the form of sparsity, we have specified the sampling process by
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2.2. Sparse Reconstruction

giving conditions on Ψ in terms of the RIP and we determined an efficient
method that is able successfully recover the signal from the compressive
measurement process. Hence, we have presented a sampling theorem
that is valid for compressive sensing scenarios. �

The steps we have taken to derive the statement in Remark 2.4, can be
repeated for other criteria we pose in terms of the measurement process,
signal properties or means of reconstruction. Hence, the results in the
following sections that conduct statements about these criteria allow to
formulate additional, usually more specific or refined sampling theorems.
For instance, the following section allows to exchange the condition on Ψ

in terms of the RIP with the notion of the coherence of Ψ.

2.2.3 Coherence

As we argue in Section 2.4 the RIC is hard to estimate for a given Ψ and
reasonably large 2S. So again – similar to the relation between `0- and
`1-minimization, a valid proxy is needed in order to assess the quality or
performance of a given Ψ in a simpler manner than dictated by the RIP. In
contrast to the RIP, the coherence µ(Ψ) only inspects the relation of pairs
of columns of Ψ, which makes it easy to compute and also to interpret.

Definition 2.2 (Coherence). Let A ∈ Cm×M be an arbitrary matrix. Its
coherence µ : Cm×M → R+ is defined as

A 7→ µ(A) = max
16i<j6M

∣∣∣aH
i aj

∣∣∣
‖ai‖2‖aj‖2,

(2.7)

where xH denotes the Hermitian transpose of x. �

The coherence has some easy to verify properties. First, one can show
with the Cauchy-Schwartz inequality [15, Eq. (2.10)] that 0 6 µ(A) 6 1.
The special case µ(A) = 0 is equivalent to the fact that A is orthogonal,
so AH ·A = IM. If additionally m = M holds A is an orthogonal basis
of CM. If we assume that A ∈ Rm×M and we only consider real valued
signals and rewrite the definition of the coherence as

µ(A) = max
16i<j6M

∣∣∣∣∣∣
(

aj

‖aj‖2

)T (
ai
‖ai‖2

)∣∣∣∣∣∣,
we get a geometric intuition for µ. It is equal to the cosine of the smallest
angle between two one-dimensional subspaces spanned by any pair of
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Chapter 2. Grid-Bound Compressed Sensing

two columns ofA. This idea is further developed in [O6] and exploited
to use packing bounds in this so-called projective space in order to derive
coherence bounds for matrices.

Clearly, for given Ψ the quantity µ(Ψ) is computable in O(mM2),
which allows conditions on Ψ in terms of the coherence to be verified
in a computationally efficient manner. Indeed, one can show the follow-
ing result on the equivalence of `1- and `0-minimization.

Theorem 2.4. If the inequality

µ(Ψ) <
1

2‖x‖0 − 1
(2.8)

holds, then x is the unique solution to (2.4) and can be uniquely recovered by
solving (2.5). �

It is instructive to compare both Theorems 2.3 and 2.4 to Theorem 2.1
as they both make the same kind of statement. All three results give
conditions on the signal (the former in terms of bandwidth, the latter two
in form of sparsity) under which a certain type of sampling (traditional
digitizing in the former case, compression with Ψ in the latter) allows
efficient signal reconstruction (linear sinc-interpolation in the former and
non-linear `1-minimization in the latter) afterwards.

Additionally, considering (2.8) we can infer that the maximum com-
plexity (read: sparsity) of the signals we are able to successfully recover
with `1-minimization is determined by the coherence of Ψ, since (2.8)
entails that

‖x‖0 <
1
2

(
1

µ(Ψ)
+ 1
)

(2.9)

has to hold true. Hence, in order to recover less sparse signals, we need
to ensure that the sampling by means of Ψ delivers a low coherence. As
such this gives the first optimization criterion that we can use in order to
address AOI-C.

Again, we can iterate back to Remark 2.2, which relates the spark to
uniqueness of the sparse solution. Interestingly, one can show that the
coherence and the spark of a matrix are related [13, Lem. 2.1] via

spark(Ψ) > 1 +
1

µ(Ψ)
or rk ∗(Ψ) >

1
µ(Ψ)

. (2.10)

In fact, the above relation together with Remark 2.2 directly yields a proof
for Theorem 2.4.
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2.2. Sparse Reconstruction

To conclude, we draw a connection between the simple coherence and
the more involved RIP constant. One can show that

δS 6 (S− 1)µ(Ψ)

holds for any S ∈N. This implies that the coherence can serve as a proxy
in order to construct matrices that have a low RIP constant and we will
exploit this in Section 2.4.3.

In principle, most criteria for successful and efficient sparse recovery
revolve around the notion of the RIP and the coherence. Another popular
concept is the so-called nullspace-property [12, See Ch. 4.1], which is
closely related to both of the here treated concepts. Since it will serve our
purpose for later sections, we will treat a more general RIP in Section 2.2.5.

2.2.4 Measurement Noise

As another generalization of our CS setup, we also need to account for
measurement noise in our observation model. Since in applications noise
cannot be avoided, we have to take it into consideration when evaluat-
ing the performance of the measurement matrices or the validity of the
approaches for reconstruction. Hence, we extend (2.3) to

z = Φ ·A · x+n, (2.11)

where n ∈ Cm accounts for zero-mean additive measurement noise. Nat-
urally, we cannot expect perfect recovery of the signal or the sparse repre-
sentation when the measurements are not perfect. We must be satisfied
with the error in reconstruction scaling well behaved in terms of the noise
level, usually measured by means of E‖n‖2

2. First, we reformulate our
prior recovery approaches (2.4) and (2.5) to account for the noise term as

min
u∈CM

‖u‖0 subject to ‖Ψ · u− z‖2 6 η (2.12)

and

min
u∈CM

‖u‖1 subject to ‖Ψ · u− z‖2 6 η (2.13)

as generalizations of the former versions, since we can just set η = 0
to recover the original problems for the noiseless case. We call these
approaches quadratically constrained `0,1-minimization. Note that it is
usually not trivial to optimally choose η, since the value depends on the
possibly unknown distribution of n.

In order to demonstrate that `1-minimization still recovers practically
relevant solutions, we cite only one representative result [12, Thm. 6.12].

24



Chapter 2. Grid-Bound Compressed Sensing

Theorem 2.5. Suppose that the 2S-th RIC of the matrix Ψ satisfies

δ2S < 0.6246.

Then, for any x ∈ CM and z ∈ Cm with ‖Ψ · x− z‖ 6 η a solution x∗ of the
problem in (2.13) approximates the vector x with error

‖x∗ − x‖1 6 CσS(x) + D
√

Sη,

where

σS(x) = inf
u∈CM

{‖x− u‖1 : ‖u‖0 = S}

is the smallest S-sparse approximation-distance to x, i.e. the smallest possible
distance any S-sparse vector can have to x. �

At first, we notice that Theorem 2.5 is not only a generalization to
Theorem 2.3 but also a result that needs a weaker condition, since in the
noise-free case η = 0 Theorem 2.5 guarantees perfect recovery with `1-
minimization for δ2S < 0.6246 instead of δ2S < 1/3. Second, we see that
the error degrades gracefully in terms of η, which is a desirable property.

Naturally, these properties of sparse recovery have been of great in-
terest in the previous years and again [12, See Chs. 4, 6] provides a well
balanced overview what can be derived.

2.2.5 Coherent Dictionaries

So far, we have mostly dealt with the whole system matrix Ψ = Φ ·A
directly. However, in practice the sparsifying matrix A is fixed, since it
usually originates from physics or other inherent properties of the system
that cannot be altered. In cases whenA is invertible or even orthogonal,
we can simply replace Ψ in the above statements with Φ, since as a sensing
matrix we could employ Φ ·A−1, which yields Ψ = Φ. However, in cases
whenA is not stably invertible one has to resort to different methods.

In order to introduce a last concept involved in recovery guarantees,
we revisit Example 2.2. There, the matrix A is completely determined
by the waveform a and the number of columns of A is determined by
the resolution of the grid for the normalized delay parameter. Intuitively,
on would increase the number of grid points for the normalized delays
until the resolution is satisfactory for the intended use of the estimation.
However, if we take the grid-density in Example 2.2, namely M−1 and
calculate for M > N that

max
16i<j6M

∣∣∣aH
(i−1)/M · a(j−1)/M

∣∣∣ = ∣∣∣∣∣ M

∑
k=1

exp
(

2π
k
M

)
‖a0‖2

2

∣∣∣∣∣ M→∞→ ‖a0‖2
2,
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2.2. Sparse Reconstruction

where  ∈ C is the imaginary unit, we see that the coherence of A ap-
proaches 1 for increasing number of grid points. As a consequence, none
of the previous recovery conditions in terms of the coherence or the RIP
will be satisfied, if we strive for a high resolution in the estimated delays.
The geometric interpretation is that columns of the sparsifying dictio-
nary that are close in terms of the underlying delay parameter become
harder to distinguish. Similar phenomena also occur in imaging with
overcomplete wavelet or curvelet dictionaries [21].

One way to adapt for this observation is to taylor the RIP to the sparsi-
fying dictionary at hand as done in [21, Def. 1.3].

Definition 2.3 (A-RIP). Let US be the union of all subspaces spanned by
all subsets of S columns ofA ∈ CN×M. A measurement matrix Φ ∈ Cm×N

obeys the restricted isometry property adapted toAwith constant δ, if

(1− δ)‖y‖2
2 6 ‖Φ · y‖2

2 6 (1 + δ)‖y‖2
2 for all y ∈ US.

We call the smallest δ for which above chain of inequalities holds the
restrictedA-isometry constant (A-RIC) δAS . �

The intuition behind this definition is that we require the matrix Φ to
satisfy the standard RIP on the image of k-sparse vectors under A. As
such it can be considered an extension of Definition 2.1. Similarly to
Theorem 2.3 one can derive a reconstruction guarantee of the following
form [21, Thm. 1.4].

Theorem 2.6. Let Φ be a measurement matrix that satisfies the A-RIP with
δA2S < 0.08, then the solution x∗ to (2.13) satisfies

‖x∗ − x‖2 6 Cη + D
‖Ax− (Ax)S‖1√

S
,

where (x)S ∈ CN is the vector having set all entries except the S largest ones in
magnitude to 0. Also the constants C and D do not depend on δA2S. �

Interestingly, the statement Theorem 2.6 claims the unknown sparse x
can still be recovered robustly depending on the intensity of the noise as
quantified by η and how well behaved the sparsifying dictionaryA is. As
such it will serve us as a tool to motivate the sampling scheme employed
in Section 4.1. Also it poses the most general reconstruction guarantee
based on sparsity we present in this thesis.
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Chapter 2. Grid-Bound Compressed Sensing

2.2.6 Summary

Summarizing, we have developed several results that give insight in
recovery from compressed measurements and under which conditions
this can happen by means of an efficient algorithm in the form of `1-
minimization. Often, it is not obvious that a given matrix Ψ satisfies
the conditions that are imposed on it. Most of the presented results still
depend on upper bounds of the usually unknown sparsity S of the signal
of interest. Much like traditional Nyquist sampling has to impose a priori
assumptions on the bandwidth

It remains to be shown how specific methods for solving the problems
in (2.12) and (2.13) look like and what additional conditions they require
in order to succeed. This is the subject of the next section.

2.3 Algorithms

The previous Section outlines how (2.12) and (2.13) can help us to re-
cover a sparse vector from compressed measurements. There we have
made first steps in deriving conditions under which the deployment of a
Compressed Sensing scheme yields theoretically tractable optimization
problems. However, these problems also need to be solved by specific
algorithms. Although we have shown that in the real-valued case `1-
minimization can be cast as a linear program, the general purpose solvers
do not take into account the structural knowledge we have about our
problem.

One key property of the signals that are to be reconstructed in our case
is sparsity with respect to the dictionary A. To account for the special
structure of the problems that arise in CS, a plethora of algorithms has
been developed [22]. In the following, we focus only on two prominent
examples, which can be considered a baseline for further refinements [23,
24, 25].
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2.3. Algorithms

2.3.1 Orthogonal Matching Pursuit

If we revisit the model in (2.3), we see that our observation z is the linear
superposition of a few columns of Ψ. Hence, we have that

z = ∑
i∈S

xi ·ψi +n

for some index set S ⊂ {1, . . . , M} = [M]. Assume now for a moment, we
already have knowledge of the set S . In this case, we know the non-zero
entries of x and by virtue of that also the columns of Ψ that contribute
to z. If we collect these columns into the matrix Ψ·,S and the non-zeros
entries of x into xS , we could simply solve a least squares problem

min
xS∈C|S|

‖Ψ·,S · xS − z‖2
2

by means of

x̂S = Ψ†
·,S · z,

where A† denotes the pseudo-inverse of A. This is the reason for the
orthogonal in the algorithms name, since for any S it holds that

〈Ψ·,S x̂S , Ψ·,S x̂S − z〉2 = 0.

Additionally in case of Gaussian noise n ∼ N (0, IM) the estimator x̂S is
the best linear and unbiased estimator for xS , see [26, Chp. 9].

The key idea of OMP is to iteratively build up the set S by a greedy
approach. Assume that we already already completed k iterations and
have the set Sk for some k ∈N and the respective x̂Sk . We are looking for
the next column in Ψ that matches the so called residual

rk = x̂Sk − z

best in terms of correlation. To this end, we calculate

ci =
|〈ψi, rk〉2|
‖ψi‖2

for i = 1, . . . , M

in order to find the index i ∈ N such that ci is maximized. Then we
simply set Sk+1 = Sk ∪ {i} and continue with the next step until we have
reached some iteration k = Smax. Finally, OMP returns an Smax-sparse
vector xwith non-zero entries xS at indices S .

In Algorithm 2.1, we give a formal representation of the described
procedure. There are many flavors and variants of this basic approach [27,
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Chapter 2. Grid-Bound Compressed Sensing

Data: Observed measurement vector z, Maximum sparsity order
Smax ∈N;

[1] Set S0 = ∅;
[2] k = 0;
[3] r0 = z;
[4] x̂0 = 0;
[5] while k < Smax do
[6] ci =

|〈ψi ,rk〉2|
‖ψi‖2

for i = 1, . . . , M;

[7] Sk+1 = Sk ∪ argmaxi ci;
[8] x̂k+1 = Ψ†

·,Sk+1
· z on the set Sk+1;

[9] rk = z −Ψx̂Sk+1
;

[10] k = k + 1;
[11] end
[12] return x̂Smax ;

Algorithm 2.1: OMP iteratively increases the sparsity and applies least-squares. –
Iteration scheme of the Orthogonal Matching Pursuit Algorithm.

28, 29]. Some introduce the ability to deal with multiple snapshots at
once, others use a different stopping criterion based on rk, others enforce
a certain structure on Sk.

If we consider the algorithmic complexity of the steps in Algorithm 2.1,
we might stumble into the pitfall of assuming that one needs to actually
calculate the numerically involved pseudo-inverse of Ψ·,S in each step or
that the residual rk has to be calculated from scratch for every k. However,
with some additional analysis these steps can be avoided. Due to these
subtleties, we defer the discussion of the computational complexity to
Section 3.2.1.

When it comes to the algorithmic recovery performance, we can di-
rectly infer that for Ψ it has to hold that µ(Ψ) < 1, since in the case
µ(Ψ) = 1 there would be two distinct columns ψp and ψq in Ψ such that
there is a λ ∈ C \ {0} such that ψp = λψq. This directly implies that

cp =

∣∣∣〈ψp, rk
〉

2

∣∣∣∥∥ψp
∥∥

2
=

∣∣∣〈λψq, rk
〉

2

∣∣∣∥∥λψq
∥∥

2
=

∣∣∣〈ψq, rk
〉

2

∣∣∣∥∥ψq
∥∥

2
= cq

for every step k of OMP. If now xq 6= 0 or xp 6= 0, at some iteration k
we would have {p, q} ⊂ argmaxi |ci|, which would directly produce a
non-unique solution x̂Sk .

Luckily, there exist reconstruction guarantees in terms of the notions
from Section 2.2 that determine the recovery performance of OMP. To
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this end we present one result [12, Prop. 6.24] involving the RIP.

Theorem 2.7. Consider the model in (2.3) for some S-sparse x. Let xk be the
iterate of Algorithm 2.1. If

δ13S <
1
6

,

then there is a constant C > 0 depending only on δ13S such that

‖z −Ψ · x12S‖2 6 C‖n‖2.

�

As we can see, although the algorithm technically produces a k-sparse
vector after k iterations, in order to guarantee that the greedy strategy
actually finds the true columns of Ψ needed to represent z, one has to
run Algorithm 2.1 for 12S steps to exactly recover an S-sparse vector in
the case n = 0. As such it can be viewed as an approximate solver of
the problem in (2.12), since usually one employs some early stopping
criterion to detect sufficiently accurate reconstructions before reaching
12S steps.

Due to its simplicity in terms of the implementation, it usually serves as
a good gateway algorithm to get started in a compressed sensing system.
Additionally, the fact that it produces exactly k-sparse solutions makes it
a popular choice, when a certain sparsity level is desired.

2.3.2 Fast Iterative Shrinkage Thresholding Algorithm

The previously described OMP algorithm is very intuitive and also has
good runtime properties if implemented correctly. However, due to the
greedy approach which is adding one column of Ψ in each step it only
acts locally on the sparse vector x. Hence, it is not possible to run OMP
just for “a few” iterations and get a globally reasonable estimate for x.
However, in some cases it might be beneficial if one can make use of an
algorithm that is able to update all entries of its estimate for the sparse
vector x in each step. As we will see in Section 4.1 especially in imaging
applications this property helps to achieve reconstructions that rapidly
show a good approximation of the true image. In the following, we
present a prominent example for such a global algorithm.

An in-depth analysis of the algorithm described in this chapter can be
found in [30]. To tackle the problem in (2.13), we wish to employ iterative
methods of convex optimization in order to recover the sparse vector x.
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To demonstrate convexity, we can reformulate (2.13) as

min
u∈CM

‖Ψ · u− z‖2
2 + λ(η)‖u‖1, (2.14)

which means for given η > 0 there is some λ > 0 such that (2.5) and (2.14)
have the same solution, see [31, Ex. 5.2 to Ex. 5.4] for the case η = 0 or
[12, Thm B.28] for the more general case η > 0. Now, since the sum of
two convex functions is convex, the objective in (2.14) is convex as well.
Hence, more generally we are confronted with an optimization problem
of the form

min
u∈CM

f (u)

for which we can simply rely on the iteration

uk+1 = uk + αk∇ f (uk), (2.15)

where the operator ∇ is the complex Wirtinger-gradient, which reads as

[∇ f (u)]Mi=1 =

(
∂

∂<ui
− 

∂

∂=ui

)
f (u) ∈ CM.

Here, <z denotes the real part of the complex number z ∈ C whereas =z
denotes the imaginary part respectively. See Appendix B.2 for details on
this derivative for functions depending on complex variables.

In order to derive the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) scheme we notice that uk+1 in (2.15) can also be found by virtue
of

uk+1 = argmin
u

ß
f (uk) + 〈u− uk,∇ f (uk)〉+

1
2αk
‖u− uk‖2

2

™
,

which can be rewritten to

uk+1 = argmin
u

ß
1

2αk
‖u− (uk − αk∇ f (uk))‖2

2 + λ‖u‖1

™
,

and in the special case of (2.14) reads as

uk+1 = τλ·αk

(
uk − αkΨH(Ψuk − z)

)
. (2.16)

Here, τs : CM → CM denotes the shrinkage (or soft-thresholding) opera-
tor defined via

u 7→ τs(u) = max {|u| − s, 0}^(u),
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Data: Observed measurement vector z, Maximum number of steps
Kmax ∈N;

[1] k = 0, t0 = 1, v0 = u0 = 0M ∈ CM;
[2] while 1 6 k 6 Kmax do
[3] uk+1 = τλ·αk

(
vk − αkΨH(Ψvk − z)

)
;

[4] tk+1 =
1+
√

1+4t2
k

2 ;

[5] vk+1 = uk+1 +
(

tk−1
tk+1

)
(uk+1 − uk);

[6] end

Algorithm 2.2: A momentum-based first order method converging rapidly. – Iteration
scheme for Fast Iterative Shrinkage-Thresholding Algorithm.

where all functions in this expression are acting pointwise on u. Here
^(z) denotes the argument of the complex number z ∈ C. Also, we used
that

∇‖Ψu− z‖2
2 = ΨH(Ψu− z).

This can be derived with the results in Appendix B.2. Interestingly, the
iteration in (2.16) constitutes the Iterative Shrinkage-Thresholding Algo-
rithm (ISTA) scheme, see [30, Sec. 3] or [32], which is a predecessor of
FISTA. To derive FISTA from ISTA we not only consider the current it-
erate uk but also the previous uk−1 by forming a linear combination of
these via vk = µ1uk + µ2uk−1. The original idea comes from the so-called
Nesterov-momentum [33], where a specific calculation for µ1 and µ2 is
employed, which is thoroughly derived in [30].

In Algorithm 2.2 we have given the procedure for FISTA in a very
simple form, where we just stop the iteration after a fixed number of steps.
Note that far more elaborate stopping criteria can be given, for instance
depending on the norm of ∇‖Ψuk − z‖2

2.
The most notable property of FISTA is the speed of convergence, which

can be derived [30, Thm. 4.4] as

F(uk)− F(u∗) 6
L‖u0 − uk‖2

2
(k + 1)2 ,

where F is the objective function in (2.14) and L ∈ R+ is an upper bound
on the Lipschitz constant of u 7→ ‖Ψu− z‖2

2. This convergence rate
assumes that we have chosen the stepsize according to αk = L−1. Summa-
rizing, the gap between the objective values generated during the FISTA
iteration and the true optimal value decreases quadratically with respect
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to the number of steps taken, although we only use first-order derivatives
of the objective function.

However, in order to demonstrate that FISTA is a viable algorithm
for sparse recovery, we are more interested in the convergence of uk and
not F(uk), since for in Example 2.2 we have to retrieve the unknown x
instead of Ψ · x. To this end [34, Thm. 3] states that the sequence (uk)k
generated by FISTA satisfies

lim
k→∞
〈uk,y〉 = 〈u∗,y〉 for all y ∈ CM. (2.17)

This states at least weak convergence of uk. However, in practice one
usually observes strong convergence in the sense that

lim
k→∞
‖uk − u‖ = 0.

However, theoretical results supporting this observation have not been
derived yet.

The result in (2.17) is different than the one in Theorem 2.7 in the sense
that it does not pose any additional requirements on the CS setting in
order to ensure convergence. It is enough the we satisfy the conditions in
Theorem 2.3 or Theorem 2.4 and then FISTA provides a suitable algorithm
to solve (2.12) by means of (2.14).

To conclude, we refer to some notable variants of FISTA. The Soft-
Thresholding with Exact Line Search Algorithm (STELA) [23] uses suit-
able pseudo-convex approximations of the objective function to find more
efficient step-directions and -sizes.

Two-step Iterative Shrinkage-Thresholding Algorithm (TWISTA) pre-
sented in [35] uses an operator splitting method to improve upon the
convergence rate for ill-conditioned problems.

Also, we again postpone the discussion of the computational complex-
ity to Section 3.2.2, where we present a more efficient variant of FISTA.

2.3.3 Summary

To wrap up, we note that OMP and FISTA are two popular examples for
SSR algorithms, which also serve as baseline for many variants [36, 27],
derivations and also as benchmarks. This is due to the fact that theoretical
guarantees exist and efficient implementations are – as we will see – rather
straightforward.

Now that we have two options for recovery at our disposal, we turn
to the evaluation and design of the measurement process Φ, which as

33



2.4. Measurement Matrix Design

we have seen in in the recovery guarantees, is a crucial step during the
design of a well performing CS system.

2.4 Measurement Matrix Design

The sections above have introduced requirements on the matrix Ψ such
that we can guarantee successful recovery by means of an optimization
problem that can be solved efficiently. Also, we gave conditions for OMP
which were also formulated in terms of Φ or Ψ respectively that ensure
convergence. The goal of the following section is to give an overview
of various known approaches in constructing matrices that satisfy these
conditions. This way we present some approaches and methodology how
to design and hence possibly optimize the sampling process in CS. As
such, this seection gives a general overview of the methods that can be
used to tackle AOI-C.

2.4.1 The RIP for Random Matrices

If we reconsider Definition 2.1 for the Restricted Isometry Constant, one
can show [fou] that we can reformulate it to

δS = max
S⊂[M],|S|6S

σmax

(
ΨH
SΨS − IS

)
, (2.18)

where σmax(A) denotes the largest singular value ofA. Hence, to deter-
mine the restricted isometry constant one has to compute the singular
values of ΨH

SΨS − IM of for all possible subsets of [M]. This is reminiscent
of the condition in Remark 2.2, but in a refined way, since the RIP not only
evaluates if the projections of sparse vectors always retain the rank of the
transformed subspace, but also how much the basis of the subspace gets
distorted during the transformation.

There currently is no efficient method to determine δS(Ψ) or a non-
trivial upper bound for a general Ψ[37]. This is why the theoretical results
that involve statements when a matrix satisfies the RIP resort to proba-
bilistic approaches. These consider Ψ as a realization of a random variable
Ψ : Ω → Cm×M for some suitable probability space Ω. In the following,
we will outline two prominent examples in the form of Gaussian matrices
and random Fourier matrices, which we will also reuse in the applications
to follow.

34



Chapter 2. Grid-Bound Compressed Sensing

102 103 104

0.
12

0.
14

drawn samples

es
ti

m
at

ed
δ S

Figure 2.1 The RIP constant is lower than the bounds suggest. – The maximal ob-
served value for σmax
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)
for the case N = 4000, S = 5. �

2.4.1.1 Gaussian Ensemble

For the results presented here, we use slightly less technical variations of
statements given in [12]. Given the desired matrix sizes m, M ∈ N we
define a sample from the Gaussian ensemble as the matrix

Ψ = [ψi,j]
m,M
i,j=1,

where the ψi,j ∼ N (0, 1) are independent and identically distributed (iid)
random variables drawn from a zero-mean complex valued Gaussian
distribution with variance 1. For these matrices we have the following
result [12, Thm. 9.6].

Theorem 2.8 (RIP for the Gaussian ensemble). Let Ψ ∈ Cm×M be drawn
from the Gaussian ensemble. If

m > Cδ−2
(

s ln(eM/S) + ln(2ε−1)
)

,

then the restricted isometry constant of m−1/2Ψ satisfies δs < δ with probability
at least 1− ε. �

If we combine this result with the statements in Theorem 2.3 or Theo-
rem 2.7, we can derive conditions on m by setting δS to the required values.
This way, one can derive probabilistic bounds on m such that recovery
with `1-minimization or approximate `0 minimization is successful.

However, we would like to stress the fact that this bound is very pes-
simistic in terms of the constant C. To showcase this, we carry out some
simple numerical simulations. If we determine the constant accurately as
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Figure 2.2 The RIP behaves better than we think. – Left: the RIP constant for S = 5 for
given number of rows m of Ψ together with the critical value δ = 0.6246 and the
upper bound stated in (2.19); Right: The RIP constant for varying S for m = 3646,
where S = 5 and the critical value δ = 0.6246 are marked. �

in [12, p. 293], we get

m > 50
(

2s ln(eM/(2S)) + ln(2ε−1)
)

(2.19)

if we want to ensure δ2S < 0.6246. In order to check this empirically
we have set M = 4000 and S = 5 and 1 − ε = 0.9. Then the bound
above yields m = 3646! Which means in order to recover all 5-sparse x
from z via `1-minimization with probability 0.9, we have to take 3646
measurements, since then δ2S < 0.6246. For our numerical experiment,
we draw η = 104 trials by forming subsets Si of 2S columns of a Gaussian
Ψ ∈ C3646×4000 for i = 1, . . . , η and calculate

σi = σmax

(
ΨH
Si

ΨSi − ISi

)
.

In Figure 2.1 we see the running maximum σmax,k = max(σ1, . . . , σk),
which we expect to converge against δ2S. The actual δ2S seems to be
significantly lower than 0.6246. Ultimately, this means that the bound as
in Theorem 2.8 can merely serve as a scaling law, which indicates how
the quantities M, ε and S influence the behavior of the system if they are
changed.

To demonstrate this, we conduct the experiment of Figure 2.1 again for
varying values of m, while keeping M and S fixed, as well as for varying
S while keeping m and M fixed. In both cases we average over 5 trials of
random matrices. These results can be found in Figure 2.2. We marked
the critical value for δ and also the theoretical lower bound for m, given
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Figure 2.3 The RIP constant is conservative. – Monte Carlo simulations for success-
ful recovery by means of `1-minimization. �

the previous values for M and S. These experiments suggest that in fact
the bounds clearly paint a too pessimistic picture and in practice we can
expect better performance from this kind of random matrix ensemble.

2.4.2 The RIP is Conservative

Before studying the bounds which we can achieve for the RIP constant,
we would like to put the results in Theorem 2.3 or Theorem 2.7 to the
empirical test by carrying out simulations that evaluate how realistic the
requirements on Ψ in terms of the RIP constant are. We show that they
are very conservative and hence pessimistic.

In Figure 2.3 we carry out Monte Carlo simulations by drawing ma-
trices from the ensemble defined in Section 2.4.1.1 for various values of
m and S and for fixed N = 256. We average over 50 trials, where each
consists of a randomly drawn matrix Ψ ∈ Rm×N and a random S-sparse
vector x. We use the optimization problem in (2.5) which we solve for
some u∗ by means of an exact general purpose solver. Since we carry out
the simulations without any measurement noise, we simply record the
empirical probability that x = u∗ up to machine precision. As we can see,
successful recovery by means of `1-minimization exposes a very sharp
phase transition over m. Additionally we see that at least in the noise-free
case, the requirement that δS < 0.6246 is very pessimistic. This is due to
the fact that the maximum in (2.18) of course also must contain the worst
case situation in terms of the support set S .

Together with the analysis carried out in Figure 2.2, we can conclude
that the bound derived in (2.19) that defines the means of sampling and
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reconstruction in the spirit of Theorem 2.1 and Remark 2.4 is overly pes-
simistic for practical considerations. Not only does the RIP constant often
behave better than expected, but also recovering the sparse signals typi-
cally can succeed more reliably than the theory suggests.

2.4.2.1 Subselected Fourier Matrices

The Gaussian matrices have nice and preferable properties when it comes
to their reconstruction guarantees, since they provide a sampling scheme
that has provable performance. However, when it comes to practical
implementations in some cases one has to build the sampling hardware
in the analog domain, where random and unstructured matrices pose a
problem from a hardware point of view. Usually the compression step is
implemented by a network of amplifiers and phase shifters [38, Fig. 1]. In
some cases this architecture might be too cumbersome to implement and
calibrate, such that the benefits of CS do not outweight these efforts.

Additionally, when it comes to the reconstruction algorithms we will
see in Chapter 3 that the computational effort required for the recovery
also depends on the degrees of freedom of the measurement matrix. Due
to the random nature of the scheme in the previous section, there is no
structure one can assume about them to reduce the demands in terms of
memory or computation speed during recovery.

In order to overcome these implementational and computational, ob-
stacles one can resort to random matrices that originate from structured
orthogonal matrices. In our case, we will focus on randomly subselected
Fourier matrices. An analysis of a broader class of subselected bases can
be found in [39] and another approach mostly tailored to Fourier matrices
in [40]. These random and structured matrices might be able to unify the
properties of Gaussian matrices when it comes to reconstruction perfor-
mance together with easier implementation in terms of hardware or better
reconstruction speed. Naturally, we have to expect worse performance in
terms of recovery due to the fewer degrees of freedom than completely
random matrices.

In the following, we use the so called Fourier matrix Fn ∈ Ck×k (or
Discrete Fourier Transform (DFT) matrix), which is defined as

Fk =

[
exp

(
−2π

i · j
k

)]k,k

i,j=1
.

Additionally we define the subselection matrix SR
C for two sets R, C ⊂

N, which is derived from the identity matrix by keeping only the rows
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indexed by R and only the columns indexed by C. If either C or R are
missing, we do not carry out any subselection along the columns or rows
respectively.

In order to keep the presented results short, we only use one statement
about randomly subselected Fourier matrices, which bounds the number
of rows needed such that the RIP constant is lower than a given threshold.

Theorem 2.9 ([40]). For sufficiently large M and S and some sufficiently small
δ, the following holds. For some

m > C log2(1/δ)δ−2 · S · log2(S/δ) · log(M)

we define the set R such that it has magnitude m and is selected randomly from
all subsets of [M] according to the uniform distribution. Then, if we define

Ψ = m−1/2(FM)R ∈ Cm×M,

the matrix Ψ satisfies the RIP with constant δ and with high probability. �

Note that the constant C is not explicitly known as of yet, so a specific
bound on the number of measurements such that `1-minimization can
recover the solution of `0-minimization by means of Ψ cannot be given in
terms of hard numbers. This means, a specific scenario is even less pre-
dictable in terms of the expected performance of the subselected Fourier
matrices and we are again mostly left with empirical studies of the matter
and we defer an in depth study of these matrices in Section 4.1.

To shed some light on the scaling behavior of the Fourier matrices
we conduct the same numerical experiments as in the previous section
(see Figures 2.1 and 2.2) and they are presented in Figure 2.4. We again
use M = 4000, S = 5 and m = 2000 for the first plot. As we see, even
the more structured Fourier matrices behave better than suggested by
the theory and we can have hope that although the bounds seem rather
pessimistic in a practical setup, the system behaves better than predicted
by the theory.

2.4.2.2 The A-RIP for Random Fourier Matrices

In Section 2.2.5, we introduce the extension of the RIP to the case when the
sparsifying matrixA is not invertible. Here, we would like to address the
question if and how randomly selected Fourier matrices can also satisfy
the requirements in Theorem 2.6 for some givenA.

In case of random Gaussian matrices and orthonormalA, this is easy
to answer, since the proofs of the results like the one in Theorem 2.8 also
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of the results in Figures 2.2 and 2.1. �
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hold if we consider Ψ = Φ ·A, which makes the rows of Ψ zero-mean
Gaussian random vectors with covariance AH ·A = IM if we choose Φ

from the Gaussian ensemble as presented in Section 2.4.1.1.
However, the case when A is not orthonormal, or even not provably

invertible is more challenging and it will be interesting in Section 4.1. The
approach we are taking to address this is geometrically rather interesting.
Since we already showed in Theorem 2.9 that subselected Fourier matrices
can satisfy the RIP, we can use this result to show that it is a so-called
Johnson-Lindenstrauss-embedding.

Definition 2.4 (Johnson-Lindenstrauss-Embedding). A compression ma-
trix A ∈ Cm×M is a so-called Johnson-Lindenstrauss-Embedding with
constant δ > 0, if for all xi,j ∈ S ⊂ CM it holds that

(1− δ)
∥∥∥xi − xj

∥∥∥2

2
6
∥∥∥A(xi − xj)

∥∥∥2

2
6 (1 + δ)

∥∥∥xi − xj

∥∥∥2

2
,

where S is a fixed subset of CM. �

If we compare this to the statement given in Definition 2.1, we see that
the Johnson-Lindenstrauss-Embeddings are a generalization of the RIP,
since for the latter we only consider the set S to be the set of S-sparse
vectors, rendering the differences xi − xj then 2S-sparse vectors. The
striking observation now is that a converse observation can also be made,
as we see below.

Theorem 2.10 ([41] Thm. 3.1). Fix η > 0 and ε ∈ (0, 1), and consider a finite
set S ⊂ CM of cardinality |S| = p. Set S > 40 log(4p/η), and suppose that
Ψ ∈ Cm×M satisfies the RIP of order S with constant δ 6 ε/4. Let ξ ∈ RM be
a Rademacher sequence, i.e., uniformly distributed on {−1,+1}M. Then with
probability exceeding 1− η,

(1− ε)‖x‖2
2 6 ‖Ψ diag(ξ)x‖2

2 6 (1 + ε)‖x‖2
2

for all x ∈ S . �

The interpretation of the above result is that matrices which satisfy the
RIP, so wich are not changing the norm of S-sparse vectors significantly,
can be turned into Johnson-Lindenstrauss-Embeddings by means of pre-
multiplying them with a so called mixing matrix diag(ξ). Finally, we
show an easy to obtain corollary about the RIP of Fourier matrices.

Corollary 2.1. LetA ∈ CM×N be an arbitrary matrix. Suppose the subselected
Fourier matrix SCFM is chosen such that the requirements of Theorem 2.9 and
Theorem 2.10 are satisfied, namely the RIP for constant δ. Then the matrix

SCFM diag(ξ)
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satisfies theA-RIP of order δ/4. �

Summarizing, we have taken the route from the general RIP for Gaus-
sian matrices, over the RIP for subselected Fourier matrices until we show
in Corollary 2.1 that suitably modified these also satisfy the A-RIP for
coherent sparsifying dictionaries. This serves as a motivation for the
sampling scheme proposed in Section 4.1.3.

This is as far as theoretic results can carry us, where explicit bounds
and constructions exist in terms of variants of the RIP. However, two
main drawbacks originate from considering the RIP. First, it is compu-
tationally infeasible to evaluate δS(Ψ) and together with its unpleasant
geometrical interpretation as suggested by (2.18) it is rendered a quan-
tity that is hard to optimize for. Second, the random ensembles have
the disadvantage that when being implemented in practice they show
a too unpredictable behavior in terms of estimation performance, when
considered for different signals form the space of interest. In order to
address these issues, we present some (semi-)deterministic methods to
construct measurement matrices with uniformly good performance in the
following Section 2.4.3 as well as later in Section 5.3.

2.4.3 Coherence – A Proxy for the RIP

As we have seen, the RIP constant δS(Ψ) has a direct influence on the re-
covery performance but it is hard to to analyze analytically and explicitly.
Hence, research soon turned to valid proxies to study the recovery per-
formance of a specific Ψ much like one strives to replace `0-minimization
with `1-minimization. As we have seen, there exist results like Theo-
rem 2.4 that determine wether `1-minimization is a valid approach in
terms of the coherence µ(Ψ). Similarly to the RIP there is an alternate
way to calculate µ via

µ(Ψ) =
∥∥∥ΨHΨ− IN

∥∥∥
∞

(2.20)

for a columns normalized matrix Ψ ∈ Cm×M, where ‖A‖∞ denotes the
maximum absolute value of the entries in the matrixA.

Intuitively, we would like to find a good measurement matrix by means
of

min
Ψ∈Cm×N

∥∥∥ΨHΨ− IN

∥∥∥
∞

. (2.21)

The desire to solve this optimization problem is not unique to CS. In
fact, there are already many iterative construction methods like in [42]
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Figure 2.5 Coherence is a valid proxy for the RIP. – We consider the case N = 50 and
study the influence of optimization via spring embedding on the coherence, the
RIP constant and rates of recovery. �

and in coding theory this problem arises in constructing good spherical
codes. An overview of theory and algorithms for code design can be
found in [43]. Additionally, the connection to the restricted isometry
constant can easily be made by

µ(Ψ) = δ2(Ψ).

Moreover, one can show [12, Prop. 6.2] that higher order RIP constants
are bounded by

δS(Ψ) 6 (S− 1)µ(Ψ).

This means, minimization of the coherence has an influence on the RIP
constant as well.

In Figure 2.5 we show that this indeed is the case. To construct the
results depicted there, we construct real valued random Gaussian matri-
ces as in Section 2.4.1.1 and then apply a spring embedding algorithm as
outlined in [O6]. We use Gaussian random matrices as initializations and
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compare the coherence before and after optimization as well as the RIP
constants together with the recovery rate of random S-sparse vectors in
the noise-free case. This is done for various values of m, while keeping
N = 50 fixed. In the results one can notice first that although random ma-
trices already have good recovery properties in terms of the RIP constant
as well as the coherence, by means of optimization one can still make sig-
nificant improvements to the measurement process. Additionally, even
in the noise-free case recovery rates can be improved slightly by means
of optimization.

The mentioned spring embedding algorithm as developed in [O6]
cannot deal with the case, when the dictionaryA is not invertible. In the
case of full-rank but rectangular A one has to modify the optimization
routine for the coherence. As outlined in [44] in this case one has to resort
to a modified version of (2.21) in order to account for an over-complete
dictionary by means of

min
Φ∈Cm×N

∥∥∥AHΦHΦA−H
∥∥∥2

F
, (2.22)

where H ∈ CM×M is a so-called target matrix and ‖A‖F =
√

tr(AHA)

denotes the Frobenius norm. There are many flavors of the above problem
and an overview can be found in [45]. The authors in [44] use a gradient
algorithm to optimize the convex objective function in (2.22) to find an
optimal Φ and a projection onto a suitable convex set to determine the
targetH on the fly during the optimization. One should notice that the
replacement of ‖·‖∞ with ‖·‖F does not directly optimize the coherence
anymore, but rather all elements of the so-called Gram matrixAHΦHΦA

jointly.
The authors in [46] show how to directly optimize the objective in (2.22)

explicitly and how to exploit the remaining degrees of freedom. How-
ever, the approach is based on the singular value decomposition (SVD)
of A. For large scale dictionaries (think of Example 2.2) this becomes
increasingly unfeasible and unstable. In the grid-free CS setting treated
in Chapter 5 this is even more extreme where one deals with infinite
dictionaries. Hence, it motivates us to modify the approach in (2.22) to
find good measurement matrices for Direction of Arrival (DoA) estima-
tion in Section 5.3 by means of a stochastic and computationally low-cost
optimization.

Additionally, we first want to note that there are many different paths
one can take in order to construct matrices that have an improved co-
herence. The manifold of the k-dimensional subspaces of CN is studied
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in [42] where the authors study suitable packing problems in this man-
ifold. In [47] Fourier matrices are used to construct structured matrices
with low coherence. Since coding theory is related to the design of Ψ in
[43] the authors take this path to construct well behaved measurement
approaches.

Finally, we would like to mention that one can even extend above
approach of coherence optimization to the case where Ψ or Φ have to
obey some structural constraints. We refer to Section 2.5.5.2 where we
construct Vandermonde matrices that have a low coherence and to [O6]
where we treat the case that Ψ is a Khatri-Rao product.

2.4.4 Performance for Parameter Estimation

To introduce anther tool that evaluates the quality of the sensing matrix
Φ we borrowed some concepts from estimation theory, see for instance
[26, Ch. 6] for more details. Assume, we are given noisy observations
similarly to Example 2.2 in the form

z = Φa(θ) +n ∈ Cm,

where n follows a complex zero-mean Gaussian distribution and covari-
anceR. Also, we assume the parameter θ is unknown. This implies that
z ∼ N (Φa(θ),R) and we wish to estimate the parameter of its mean
Φa(θ) given the observation z. In probability terms, the density of the
now modeled as random variable z has an unknown parameter θ ∈ Rp

we want to estimate.
To this end, the principle of maximum likelihood formulates the search

of θ as an optimization problem via solving

max
θ∈Rp

ln pθ(z)

for θ∗, where p is the density of the normal distribution with mean Φa(θ)

and covarianceR. Since z is random, the values of ln pθ(z) are random
as well, and hence also θ∗. Since the density of the normal distribution is
differentiable, we can define the score function

s(θ, z) =
∂

∂θ
ln pθ(z)

if the model function a is differentiable.
If we consider θ∗ as a random variable, we can ask for this random

variable’s mean E(θ∗). If we are in the lucky situation that we can show
that in our scenario E(θ∗) = θ holds, we may call the estimator that
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delivers θ∗ unbiased. If we still consider z as random, we can also study
the covariance of the score function, namely

J(θ) = E
(
s(θ, z) · s(θ, z)H

)
, (2.23)

where J is called Fisher Information Matrix (FIM). If we now consider
the covariance of the zero-mean random variable θ∗, we have that

E
(
(θ− θ∗)(θ− θ∗)H

)
< J(θ)−1, (2.24)

which is called the Cramér-Rao (lower) Bound [26, Eq. 6.73]. HereA < B
means that the matrix A−B is positive definite. So in this sense, the
inverse of J(θ) serves as a lower bound for the error covariance of any
unbiased estimator θ∗.

For our initial example the expression for the FIM J(θ) can be derived
from the Slepian-Bangs formulation [48] and reads as

J(θ) = 2<
®

∂a

∂θ

H
ΦHR−1Φ

∂a

∂θ

´
. (2.25)

Now in order to assess the performance of Φ, also in a CS setting, one
can randomly draw realizations of θ, calculate J(θ)−1 and take a suitable
average over these values. This gives an indication how Φ might perform
on average over the parameter space θ resides in, if one had access to an
unbiased estimator. Also, the Cramér-Rao (lower) Bound (CRB) allows to
detect parameter configurations θ whose estimation is an inherently ill-
posed problem and one might be tempted to take measures to account for
this during the design of Ψ, which we will showcase for a single example
in Section 5.3.3.

In some sense, this is an algorithm independent way of evaluating the
measurement process, since it does not depend on the optimization prob-
lem employed to recover θ or a(θ) respectively. Usually, the resulting
estimates of a(θ) or θ are biased due to the recovery method and only be-
come effectively unbiased in the high-Signal-to-Noise Ratio (SNR) regime.
Hence, the findings using the CRB generally cannot be used directly to
infer the performance of a complete CS system. However, in Section 4.1
we present a system whose behavior can be predicted reasonably well by
the CRB.
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2.4.5 Conclusion

After having worked through this chapter, it should be clear that the quest
for constructing the optimal sensing strategy in terms of the measurement
matrix Ψ in a given scenario has no single path to the princess’ castle. In
fact, depending on the requirements on the systems, the results may vary.

If one desires fast reconstruction with decent performance, one should
resort to randomly sub-sampled Fourier matrices, since they obey prov-
able bounds for their quality and also offer the possibility for a fast matrix-
vector product, which as we will see in Section 3.2 is a beneficial property.
In case of parameter estimation and when the estimation performance
should be the same over the parameter regime, several non-linear opti-
mization methods should be employed to improve upon randomly drawn
matrices. However, as we have argued, these pose some obstacles when
implemented directly in the analog domain.

As we have seen, the results that infer lower bounds on the necessary
number of measurement m, always depend on the complexity of the sig-
nal in terms of the sparsity S = ‖x‖0, which hence has to be known
before being able to estimate a bound for m. Motivated by the fact that
the previous sections greatly emphasize the importance of sparsity, the
next section proposes an estimator for the sparsity prior to the reconstruc-
tion of x, in order to make more educated decisions that depend on the
complexity of the scenario at hand.

2.5 Single-Snapshot Sparsity Order Estimation

In this chapter, we study the problem of estimating the unknown degree
of sparsity from compressive measurements without the need to carry
out a sparse recovery step. This is useful, since many steps in the recon-
struction and measurement pipeline depend on the sparsity of the signal.
Which is why it would be advantageous, if the sparsity of the signal was
known as early as possible during the processing pipeline.

Given the model in (2.3) as

z = Ψ · x = Φ ·A · x,

we wish to estimate S = ‖x‖0 directly from z before reconstructing x.
It is shown that specially designed measurement matrices allow to

rearrange the measurement vector z into a matrix such that its effective
rank coincides with the effective sparsity order. In fact, it is proven that
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matrices which are composed of a Khatri-Rao product of smaller matrices
generate measurements that allow to infer the sparsity order. Moreover,
if some samples zi are used more than once, one of the matrices needs to
be Vandermonde. These structural constraints reduce the degrees of free-
dom in choosing the measurement matrix which may incur a degradation
in the achievable coherence. Thus, we also address suitable choices of
the measurement matrices. In particular, Khatri-Rao and Vandermonde
matrices are analyzed in terms of their coherence and a new design for
Vandermonde matrices that achieves a low coherence, which also is com-
putationally cheap, is proposed.

2.5.1 Introduction

As we have seen in Section 2.4 the number m of measurements required to
efficiently reconstruct x depends on its sparsity order S, which is typically
not known when acquiring a signal. Therefore, one usually determines m
according to some upper bound S 6 Smax which must be known a priori
in order to design the measurement as indicated by (2.19).

However, since S may vary quite significantly for a fixed CS scenario
but different x currently observed, such an approach can lead to systems
that are too conservative, i.e., they take more measurements than neces-
sary. Therefore, being able to estimate and monitor the sparsity order of
a signal would be an attractive feature of a CS system. It would allow to
adjust the number of measurements to the current sparsity of the signal
which might vary in time (e.g., with the number of transmissions in cog-
nitive radio [49] or with the complexity of an image in CS-based image
acquisition [50]).

In some applications of CS one can acquire multiple measurement
vectors (MMV) which enjoy a joint sparsity in a given basis. In this case
the observation model for K ∈N snapshots reads as

Z = Ψ · [x1, . . . ,xK] = Ψ ·X ,

where Z ∈ Cm×K andX ∈ CN×K. Also one assumes that all columns xk
ofX have the same support S = supp(x1) and the matrixX has Kruskal
rank > S.

In order to estimate |S| one can use an estimator for the rank of Z,
given some simple assumptions about Ψ. However, we do not want to
treat this case, since such a setting is more the exception than the rule.
It is for instance true in scenarios where we observe modulated signals
that enjoy sparsity in some domain. Examples for this setting include
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DOA/TDOA estimation (see Examples 2.2 and 5.1), where sparsity is in
the angular/delay domain and the signal modulation at the transmitter
provides the amplitude variations.

The MMV case is also prominent in certain image processing appli-
cations where patches of images may enjoy a sparse representation in
the same basis. However, in this case, the support is not constant across
snapshots, which renders a sparsity order estimation over several vectors
relatively meaningless. That said, in an MMV setting, the sparsity order
estimation is much simpler since we can infer the sparsity order directly
from the effective rank of the observation matrix. As we discuss in this
chapter, this case has been treated in earlier publications, like [51] and [52,
53, 54].

Below we address the much more challenging single measurement
vector (SMV) case. Note that this is much more common, as in most
applications we only have one set of observations of the phenomenon.
Taking another set of observations at another time may either be too time-
consuming or it may not provide a linearly independent sparse represen-
tation as the coefficients do not change unless the source applies some
modulation.

From this discussion it becomes clear that MMV techniques are not
applicable to the SMV setting. The proposed framework will show that
by applying Khatri-Rao structured measurement matrices it is possible to
transform the challenging SMV case into a virtual MMV case where then
rank estimation schemes can be applied, similar to a MMV setting. More-
over, knowing the sparsity order ‖x‖0 allows to improve reconstruction
algorithms by tuning algorithm-specific parameters such as the regular-
ization parameter λ in (2.14) of the necessary number of steps for running
OMP as indicated by Theorem 2.7.

2.5.2 Related Work

Due to the prominent role the sparsity order plays in sparse signal re-
covery, the lack of knowledge of the sparsity order has been recognized
as a fundamental gap between theory and practice [55, 56]. Early pa-
pers on this subject have proposed to employ sequential measurements
[56] and cross-validation type techniques [36, 55] where sequential re-
constructions of the signal are considered. Similarly, [10] shows that the
sparsity order can be estimated from the reconstruction, stating bounds
on the number of measurements that are required for this step. However,
the bounds are only found numerically, and the reconstruction process

49



2.5. Single-Snapshot Sparsity Order Estimation

involves cumbersome optimization problems. As the following results
show, this can be avoided by estimating the sparsity order directly based
on the compressed observations.

A different approach is taken in [57], where the authors show that a
specifically tailored measurement procedure which consists of a Cauchy
and a Gaussian distributed measurement matrix allows to estimate a
continuous measure of sparsity given by the ratio of squared one- and
two-norm of the signal. However, this measure is not equal to the sparsity
order. In fact, it is continuous and hence needs to be rounded to an integer
number (which is not discussed in [57]). Moreover, the measurement pro-
cess is very restrictive since the distribution of the measurement matrices
is pre-specified. Finally, according to the authors one parameter of these
distributions should be chosen with respect to the noise variance, which
might be unknown, whereas the results presented here do not require the
noise’s variance to be known.

The authors in [58] propose to use sparse sensing matrices since these
allow to infer the degree of sparsity of a signal from the degree of sparsity
of the measurement. The resulting estimator has a very low complexity.
However, it is only approaching the true sparsity in the large system limit
and hence not applicable to lower-dimensional problems. Moreover, the
proposed measurement matrices incur a certain performance degradation
at the reconstruction stage due to the somewhat higher coherence, which
is imposed by the restriction to sparse matrices.

A link between sparsity order estimation and rank estimation was
put forward in [51] for the MMV setting, which has also been studied
both for the stationary case [52, 53] as well as the case of time-varying
support for block-stationary signals [54]. However, these approaches
require the already mentioned stationarity in the support pattern of X
ins the MMV case as well as a temporal variation in the coefficients of the
sparse representation to create linearly independent observations. This
limits their applicability in many practical problems.

2.5.3 Contributions in this Thesis

We introduce a method for estimating the sparsity order of a signal from
a single snapshot of the compressive measurement. In particular, rear-
rangements of the observation vector into a matrix are considered and it
is shown under which conditions the rank of this matrix coincides with
the sparsity order of the unknown signal. Thereby, the sparsity order can
be estimated by applying any known rank estimation scheme [59]. Since
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there exist many efficient algorithms which estimate the model order in
presence of perturbations such as noise, this approach allows us to handle
noisy measurements as well as the case of approximate sparsity. By doing
so, we contribute to the AOI-M aspect of CS.

The proposed approach only requires the measurement matrix to pos-
sess a Khatri-Rao structure, which leaves considerable room for optimiz-
ing their choice. Moreover, in the case of overlapping blocks, one of the
factors needs to be a Vandermonde matrix. Therefore, the second part of
this chapter discusses the design of measurement matrices in presence
of these structural constraints. To facilitate the sparsity order estimation
as well as the sparse reconstruction, the factors need to possess a low
coherence, as we have outlined in (2.8). Moreover, in the presence of
a Khatri-Rao structure, it is best to optimize the factors of the Khatri-
Rao product independently. Therefore we investigate the coherence of
Vandermonde matrices and a new design algorithm is proposed, which
efficiently constructs Vandermonde matrices with low coherence. Ad-
ditionally, simple upper and lower bounds for the resulting coherence
of this algorithm are derived. Summarizing, these results contribute to
AOI-C as defined in Section 1.2.

2.5.4 Sparsity Order Estimation Algorithm

In this section, we consider a special form of (2.3), which reads as

z = Φ ·A · x+n, (2.26)

where x ∈ CN is S-sparse, A ∈ CN×N is a sparsifying basis, and Φ ∈
Cm×N with m� N is the measurement matrix as before. This means we
assume explicitly thatA is invertible. So for the exposition presented here,
it suffices to consider the case A = IN without loss of generality, since
Φ can be chosen freely and can always be replaced by Φ̄ = Φ ·A−1 to
account for anA 6= IN . Moreover, for clarity the noise-free case n = 0 is
considered first. The role of additive noise is discussed in Section 2.5.4.3.
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2.5.4.1 Sparsity order estimation for non-overlapping blocks

In order to estimate the sparsity order S directly from z, we propose to
consider rearrangements of z into a matrix. Specifically, divide z into
k ∈N blocks zi of length ` ∈ N where the i-th block is given by

zi =
[
z1+p·(i−1), z2+p·(i−1), . . . , z`+p·(i−1)

]T
∈ C` (2.27)

for i = 1, 2, . . . , k, where p ∈N specifies by how many samples consecu-
tive blocks are advancing. It is clear from Equation (2.27) that for p = `

the blocks zi do not overlap whereas for p < ` the overlap grows with
decreasing p, up to the case of maximum overlap without producing the
same column twice for p = 1. Moreover, since m samples are available,
the parameters `, p, k, m should satisfy `+ p · (k− 1) = m.

The blocks zi can be used to form the columns of a matrix

Z =
[
z1, z2, . . . , zk

]
∈ C`×k.

Moreover, define submatrices Φi by selecting the corresponding rows
from Φ such that

zi = Φi · x. (2.28)

The main idea of the proposed approach is to show that for a suitably
chosen Φ, it holds that rkZ = S for any S-sparse x and therefore, the
sparsity order can be inferred from the rank of Z.

The following theorem summarizes the conditions on Φ to facilitate the
Sparsity Order Estimation (SOE) for the case of non-overlapping blocks
(p = `).

Theorem 2.11. For k blocks of the measurement z of length ` = m/k and any
r 6 min(k, `) the following statements are equivalent.

1. For all s 6 r and all x with |supp{x}| = s it holds that rkZ = s.

2. Φ = U �W for some U ∈ Ck×N , W ∈ C`×N with rk∗U > r and
rk∗W > r.

�

Note that rk∗A is the Kruskal-rank of the matrixA. The proof for this
result can be found in Appendix A.2.1. In other words, Theorem 2.11
states that in the case of non-overlapping blocks, the sparsity order S
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can be obtained from the rank of Z ∈ C`×k if and only if the measure-
ment matrix Φ possesses a Khatri-Rao structure. Moreover, the theo-
rem also shows that the highest sparsity order possible to estimate is
given by Smax = min(rk∗(U ), rk∗(W )) 6 min(k, `). In the case of
non-overlapping blocks it follows that k · ` = m which means Smax 6
min(k, m

k ) 6
√

m and one should choose k and ` close to
√

m to maximize
Smax.

2.5.4.2 Sparsity order estimation for overlapping blocks

As has been shown for non-overlapping blocks, in the case where Φ is a
Khatri-Rao product of two matrices of equal size, the maximum sparsity
order that can be estimated is Smax 6

√
m. This bound is tight, iff m is a

square number m = q2; then set k = ` = q. For overlapping block the size
of the matrix B grows, which allows to estimate larger sparsity orders
Smax. However, depending on the overlap, additional constraints on Φ

have to be posed.
One of these constraints is that one factor has Vandermonde structure,

which are defined below.

Definition 2.5. Let Vn×m(C) be the space of n×m Vandermonde matrices.
Then it holds that the non-linear mapping

νn : Cm → Vn×m with v 7→


v1 . . . vm

v2
1 . . . v2

m
...

...
...

vn
1 . . . vn

m

 (2.29)

is bijective. So a Vandermonde matrix V it completely defined by its first
row. In the following, the vi are called the generating elements of V . �

Now, we can formulate the following theorem for the procedure of
SOE for overlapping blocks, whose proof can be found in Appendix A.2.2.

Theorem 2.12. For k overlapping blocks of length `, block advance p and any
r 6 min(k, `) the following statements are equivalent:

1. For all s 6 r and all s-sparse x it holds that rkZ = s.

2. Φ consists of the first m rows of V �W withW ∈ Cp×N being arbitrary,
V ∈ Cdm/pe×N being a Vandermonde matrix such that the matrix Φ̂
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originating from restricting Vd`/pe �W to its first ` rows has Kruskal
rank r and the matrix V restricted to its first k rows also has Kruskal rank
r.

�

The assumptions in 2 in Theorem 2.12 on V andW seem rather strict
and technical. The following will show that they are fulfilled given some
simple criteria. In case when the Vandermonde matrix V is considered it
is enough to require that the generating elements v1, . . . , vN are pairwise
distinct for V to have maximal Kruskal rank. For a square Vandermonde
matrix V ∈ Cn×n with generating elements v1, . . . , vn the determinant
reads as

det(V ) = ∏
16i<j6n

(vi − vj).

This means that a Vandermonde matrix with more rows than columns
and pairwise distinct generating elements always has full column rank.
Moreover, if the matrix has more columns than rows, and pairwise distinct
generating elements, every square submatrix has full rank and as such
the whole matrix has full Kruskal rank.

Now turning to the arbitrary factor W ∈ Cp×N , choose it in general
position and the following reasoning shows that this is sufficient for the
requirements of Theorem 2.12. To this end, fix some r-sparse x ∈ CN

with support set S , a Vandermonde matrix V ∈ Cm×N which has full
Kruskal rank and consider the Khatri-Rao product V �W ∈ Cm·p×N .
Now assume that

m = (V �W ) · x = 0.

If the vector m is reshaped according to the block construction in Theo-
rem 2.12 to

M =W diag(x)V T =›WV T,

which is a rank decomposition ofM and this implies that for non-zero x
the matrixM is non-zero.

Note that the special case p = 1 in Theorem 2.12 implies that the entire
sensing matrixA is a Vandermonde matrix with rescaled columns. In the
context of harmonic retrieval, the mapping from b toB is also known as
spatial smoothing [60] and is applied as a preprocessing step for subspace-
based estimators in order to decorrelate coherent signals.
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Remark 2.5 (On the choice of k, ` and p). Regarding the choice of the
parameters observe that Smax 6 min(k, `) where k and ` satisfy (k− 1) ·
p + ` = m. Therefore, for a given block advance p, the number of blocks
k is equal to k = (m− `)/p + 1. This means that to maximize Smax one
should choose ` as the closest integer to (m + p)(p + 1), which leads to
k ≈ `. Obviously, larger amounts of overlap (corresponding to smaller
values of p) lead to a higher maximum sparsity order Smax where the
maximum overlap case p = 1 corresponds to Smax = b(m + 1)/2c. This
shows that there is a fundamental tradeoff between the SOE stage and the
SSR stage: while a larger amount of overlaps improves the SOE capability,
it leads to a more rigidly structured measurement matrix with a higher
coherence, which is detrimental to the SSR step. The achievable coherence
is analyzed in more depth in Section 2.5.5. �

2.5.4.3 Sparsity Order Estimation in the presence of noise

In the presence of additive, say Gaussian, noise as in equation (2.26) the
entries of the matrix Z are disturbed with a Gaussian noise matrixN as
well, i.e.

Ẑ = Z +N . (2.30)

It is easy to see that the rank of Ẑ is maximal with probability 1. It is still
possible to determine the “effective” rank for a model like (2.30) if the
statistics of the additive noise are known. Interestingly, althoughN is a
reshaped version of the vector n in (2.26) with possibly the same noise
sample at multiple positions (depending on the overlap), it can be shown
that if the noise samples inn are i.i.d., the noise matrixN is “white” in the
sense that E

(
NNH) = C · I`. To this end, let us assume the elements in

n have zero mean and variance 1 and let us define the selection matrices

Ji =
[
0`×p(i−1), I`×`, 0`×(N−`−p(i−1))

]
∈ R`×m,

which satisfy Ji · JH
i = I`×`. Then one can rewrite the measurement and

noise vectors as

zi = Ji · z and ni = Ji ·n,

where i = [k]. Now calculate

E
(
N ·NH

)
= E

(
k

∑
i=1
Ji ·n · (Ji ·n)H

)
=

k

∑
i=1
Ji · E

(
n ·nH

)
· JH

i
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=
k

∑
i=1
Ji · JH

i = k · I`. (2.31)

Summarizing the rank of the matrix Z has to be determined in presence
of noise according to (2.30) (here, the additive noise is white). This task
is known as model order selection and a number of efficient algorithms
are available. Examples include information-theoretic criteria such as
MDL, AIC, BIC (see [59] for a survey), the Eigenvalue Threshold Test
(ETT) [52] or the Exponential Fitting Test (EFT) presented in [61]. Here,
the latter is used for the numerical experiments in Section 2.5.6, because
it is derived specifically for models disturbed by additive white Gaussian
measurement noise.

2.5.5 Sensing Matrix Design

As derived in the last section, sparsity order estimation can be achieved
via rank estimation of a matrix obtained by rearranging the measure-
ment vector, provided that the sensing matrix obeys certain structural
constraints. Firstly, it has to be a Khatri-Rao product of two smaller matri-
ces and secondly, in the case of overlapping blocks, one of the blocks has
to be a Vandermonde matrix.

In this section, the implications of this particular sensing matrix struc-
ture for the design of the measurement matrix are analyzed, with a par-
ticular focus on the Vandermonde matrices.

2.5.5.1 Khatri-Rao structured measurement matrix optimization

The results in Theorem 2.11 show that in the case of no overlap one
is able to recover the sparsity order by using a Khatri-Rao structured
sensing matrix, whose factors have to fulfill the condition of having a
high Kruskal rank. This condition is difficult to optimize for, since the
Kruskal rank is hard to compute. However, the inequality in (2.10) links
it to the coherence defined in (2.7). Therefore, for the Kruskal rank of the
factors to be high, one should make use of matrices with low coherence.
These are desirable also from the viewpoint of the subsequent SSR step,
which in general works better the lower the coherence of the sensing
matrix is. In fact, we have presented Theorem 2.4 which states that the
under-determined system of equations z = Ψ · x has a unique solution
for S-sparse vectors x if S < Smax with

Smax =
1
2

(
1 +

1
µ(Ψ)

)
. (2.32)
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Note that BP(see (2.5)) as well as OMP(see Algorithm 2.1) are able to
achieve this bound in the sense that they can recover any S-sparse x in
the noise-free case as long as S < Smax. For these reasons we aim at
minimizing the coherence of the measurement matrix Ψ.

Since in the case of SOE as presented here Ψ is a Khatri-Rao product,
it might seem advantageous to take this structure into account when
optimizing the coherence of the sensing matrix using the two factors.
In the real valued setting, one can use packing arguments in projective
matrix spaces of rank 1 to optimize the coherence of Khatri-Rao products,
as developed in [O6] or [42]. As a result one obtains that the best coherence
of a Khatri-Rao product Φ = U �W ∈ Rm×N is achieved if U ∈ Rm1×N

andW ∈ Rm2×N contain repeated columns according toU = Û ⊗ 11×N2

and W = 11×N1 ⊗ Ŵ where Û ∈m1×N1 , Ŵ ∈m2×N2 with m = m1 · m2
and N = N1 · N2. This case yields Φ = U �W = Û ⊗ Ŵ so that Φ is
actually Kronecker structured.

Due to the repeating columns, this implies that both U and W have
Kruskal rank equal to 1, i.e. Khatri-Rao products of minimal coherence
have factors that are not suitable for SOE when done as proposed in
Theorems 2.11 and 2.12. Instead, one should optimize the coherence of
the factorsU andW independently in order to ensure the highest Kruskal
rank possible.

This also has a positive effect on the coherence of Φ since the trivial
upper bound

µ(Φ) = µ(U �W ) ≤ µ(U ⊗W ) = µ(U )µ(W )

holds. Therefore, the remainder of this section discusses the minimization
of coherence of the matrices U andW .

In the case of no overlap during the construction of Z these matrices
can be arbitrary as there are no further structural requirements from the
SOE method. One can therefore apply any method for coherence mini-
mization from Section 2.4. This means that the only regime where any
improvement upon existing results is possible is in the case of overlap
during the construction of the matrix Z as in Theorem 2.12. Here, one
factor obeys a Vandermonde structure. As long as the generating ele-
ments of the matrix V are pairwise different it is well known that this
matrix has maximal Kruskal rank. But since a low coherence is crucial
for efficient recovery to happen, the following section contains a more
thorough analysis of this problem.
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2.5.5.2 Coherence minimization for Vandermonde matrices

In case of overlap of the blocks zi to form Z we have seen there appears
the strong requirement of the Vandermonde structure for one of the Khatri-
Rao factors. However, this structure also allows us allow us to derive
an explicit term for the inner product of two columns of a Vandermonde
matrix that does not involve any summation and just depends on the
amplitudes and phases of the generating elements vi. This is key, because
of the definition of the coherence µ(A) of a matrix given in (2.7).

Theorem A.1 in Appendix A.2.3 allows us to derive a construction for
orthogonal Vandermonde matrices, which can be considered a generaliza-
tion of the fact that the Fourier matrix is orthogonal. The Fourier matrix
is, depending on the definition, a scaled Vandermonde matrix, where
the generating elements are placed on a regular grid on the unit circle,
i.e. exp(2πik/n), k ∈ [n− 1]. The corollary below additionally allows a
uniform phase shift of the generating elements.

Corollary 2.2. Let v1, . . . , vn be chosen with absolute value 1 such that

arg
(

viv∗j
)
=

(i− j)2π

n
for 1 6 j < i 6 n.

Then for the matrix V = νn(v1, . . . , vn) it follows that

µ(V ) = 0.

�

But in the scenario typical for compressed sensing the involved matri-
ces have more columns than rows and thus it is impossible for them to be
orthogonal. Hence one should minimize the coherence as far as possible
in this case as well. The following algorithm, which is also one of the
central novelties in this work, makes use of Theorem A.1 to achieve this.

The general geometric idea is twofold. First, the upper envelope κ,
see Theorem A.1, for the absolute value of inner product of two columns
of a Vandermonde matrix in Theorem A.1 suggests that a large angular
distance between generating elements yields a lower inner product, since
it is monotonically decreasing on (0, π). To maximize the mutual angular
difference between each pair of generating elements, place them on a reg-
ular angular grid on [0, 2π]. Second, facts 3 and 5 in Theorem A.1 suggest
that the inner product of two columns is minimized if their generating ele-
ments have amplitudes that are reciprocals of each other or, geometrically
speaking, are reflections on the unit circle in C of each other.
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Data: Dimensions n and m, Positive constant c;
[1] Set m̂ = 2dm/2e, c1 = c and c2 = 1/cy.;
[2] Set φk = 4π k−1

m̂ and zk = c1 · ei·φk for k ∈ [m̂/2].;
[3] Set φk = 4π k−1

m̂ + 2π 1
m̂ and zk = c2 · ei·φk for k ∈ {m̂/2 + 1, . . . , m̂}.;

[4] Return the Vandermonde matrix V = ν(z1, . . . , zm) ∈ Cn×m.;

Algorithm 2.3: Vandermonde matrices with low coherence can be constructed explic-
itly. – Algorithm to construct Vandermonde matrices with low coherence that
obey the coherence bound in Theorems 2.13 and 2.14.

Combining the above two observations yields the method as outlined
in Algorithm 2.3. Loosely speaking, it places the angularly nearest neigh-
bors among the generating elements on different sides of the complex unit
circle and the ratio between the amplitudes is the parameter c > 0. The
algorithm above still depends on the input parameter c, but the optimal
value can be computed with a simple bisection algorithm and depends
only on n and m. This allows it to be stored in a persistent lookup table.

Additionally bounds on the coherence are necessary to evaluate the
performance of compressed sensing algorithms. The bounds exploit the
fact that the above algorithms output is deterministic and thus the upper
and lower envelope κ and η from Theorem A.1 can be made use of. The
following two Theorems deal with the upper and lower bounds respec-
tively.

A lower bound on the coherence can be used together with equation
(2.32) to derive lower bounds on the number of measurements required
in order to achieve a recovery guarantee for a given sparsity order Smax.

Theorem 2.13. Given n, m > n, c ∈ (0, 1), κ as in Theorem A.1 and the
output V of Algorithm 2.3 for inputs n, m and c it holds that

µ(V ) > max
{»

κ(c, c, 4π/m),»
κ(c, 1/c, 2π/m)

}
. (2.33)

�

Conversely equation (2.32) and upper coherence bounds can be used
to derive upper bounds on the number of measurements required to
guarantee successful recovery in scenarios with a certain level of sparsity.
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Theorem 2.14. Define the function u : (0, 1]×N→ R by

u(c, m) =



max{η(c, c, 4π/m), η(1/c, c, 2π/m)}
for m < 2n,

max{η(c, c, 4π/m), λ(1/c, c, 2π/m)}
for 2n 6 m 6 4n,

max{λ(c, c, 4π/m), λ(1/c, c, 2π/m)}
for m > 4n,

and call Algorithm 2.3 with parameters n, m and c, then for its output V it
follows that

µ(V ) 6
»

u(c, m),

where η and λ are defined as in Theorem A.1. �

Summarizing, it is possible to derive an algorithm for Vandermonde
matrices with proveable behavior in terms of the coherence. Up to this
point we have presented theoretical considerations that outline the theo-
retic framework for the proposed SOE methodology. Next, we would like
to put this approach to a test.

2.5.6 Testing the Sparsity Order Estimation Procedure

This chapter is dedicated to empirical investigations for showcasing the
performance of the proposed methods. To this end, consider measure-
ment scenarios as in (2.26). In order to generate the ground truths x, the
amplitudes on the support of x ∈ CN for N = 512 are drawn i.i.d. from
the set {±1± i,±1∓ i} according to a uniform distribution. All simula-
tions are carried out with m noisy measurements where the components
of the additive noise vector n ∈ Cm were drawn independently from
a zero mean circularly symmetric Gaussian distribution with variance
σ2. Depending on the situation at hand, the construction of Φ changes
accordingly, which is chosen once for each scenario and kept fixed when
sampling the ground truths for a certain scenario type and size. Moreover,
2000 trials for each scenario and level of noise variance were simulated.
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[1] Choose the number of measurements m and the overlap parameter p.;
[2] Select k and ` according to Remark 2.5.;
[3] Depending on the value of p construct Φ ∈ Cm×N according to the

requirement in Theorem 2.11 and Theorem 2.12.;
[4] For each acquired measurement z, arrange its entries in matrix Z as

described in (2.27).;
[5] Estimate the rank of Z using the EFT or ETT algorithm to estimate the

sparsity order of the signal resulting in the measurement z, where in
both algorithms a singular value decomposition of Z has to be
calculated.;

Algorithm 2.4: Summary for the proposed process of SOE

2.5.6.1 Sparsity Order Estimation

To depict the performance of the proposed method for SOE as summa-
rized in Algorithm 2.4, the procedure is simulated for various combina-
tions of parameters m and p. Here, the sparsity order of the ground truth
x ∈ CN is set to 8. After setting the number of measurements m and the
overlap p, select k and ` in order to maximize the size of the reshaped
matrix Z for optimal performance according to Remark 2.5. The Vander-
monde factors in the columnwise Kronecker product are constructed by
Algorithm 2.3 and the unstructured factors are drawn once from a Gaus-
sian ensemble, which means that all elements are drawn independently
from a Gaussian distribution with variance 1. Both factors in each of the
occurring instances of a columnwise Kronecker product have normalized
columns, resulting in the product having normalized columns as well.

To study the influence of the overlap the parameter p is varied for
fixed signal size N and number of measurements m while adapting k
and ` appropriately. For the estimation of the effective rank of Z, the
ETT [52] applied to the described scenario with a target false rejection
rate of 0.005. The training stage of this model order selection method is
the computationally most time consuming part, but this procedure only
has to be done once in advance and one has to make sure that enough
training data is generated such that the actual false rejection rate during
application is close to the one imposed during the training stage. If the
training data were insufficient, one would significantly deteriorate the
estimation performance of the proposed SOE method.

Figure 2.6 displays the empirical mean of the estimated sparsity order
across all trials for a varying levels of the noise variance for the method
proposed here and the one in [57]. The performance metric employed
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Figure 2.6 The block overlap during the construction of Z has substantial influence on
the performance of SOE – Overlap p vs. sparsity order estimation performance with
m = 121 measurements. �

here allows to detect a possible phase transition with respect to the noise
variance and also allows to detect possible a bias present for the analyzed
estimation routines.

The algorithm in [57] also provides means to estimate the sparsity or-
der from a single snapshot, where the measurement matrix Φ ∈ Rm×N

consists of m1 = dm/2e rows with zero mean and scale γ Cauchy dis-
tributed entries and m2 = m−m1 rows with centered Gaussian entries of
variance γ, where γ is set to 0.5. As expected for the pure task of SOE the
case p = 1 displays the best performance, because min{k, `} is maximal.
For increasing p > 2, including the case p = `, the phase transitions
happens at an increasing level of noise variance and the transition itself
is not as sharp as in the cases of overlap. In comparison to the method of
[57], which displays a similar phase transition, but also saturates into a
too low region around 6 instead of the true value 8.

To examine a more realistic processing pipeline where the true spar-
sity order is not known in advance but just a more or less sharp upper
bound, the process of SOE is carried out in advance of the reconstruction.
This preprocessing step can be used to provide information about the
underlying signal’s sparsity. Then one can carry out the actual reconstruc-
tion. As a means of reconstruction OMP, see Section 2.3.1, is used. If one
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Figure 2.7 As soon as SOE works, the SSR step is also improved substantially. – In-
fluence of SOE on reconstruction quality when using estimated sparsity order as
parameter for OMP in case of m = 169. �

makes use of this algorithm, one has to provide a useful stopping crite-
rion, for instance, in form of a maximum number of iterations to be run,
which in our case is the estimated sparsity order Ŝ from the preprocessing
step. This approach is compared to an “unguided” OMP reconstruction,
where only rough upper bounds SMax = 40 and SMax = 20 are known
and used as stopping criteria. Here, the `2-norm error ‖x̂− x‖2

2 between
reconstruction x̂ and ground truths x is measured and averaged of the
trials.

This error metric is chosen, because first it is the most widely used and
second many of the performance guarantees for various reconstruction
algorithms in compressed sensing are formulated with respect to it, as
in Theorem 2.7. Moreover, to include comparable results obtained by
another method, the algorithm in [57] is applied to this scenario as well.

As one can see in Figure 2.7, where the success rate of SOE and the
resulting `2 error after reconstruction are displayed in a combined plot,
as soon as SOE starts to work, the reconstruction error decreases signifi-
cantly below the one of the “unguided” reconstruction. So in this case the
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2.5. Single-Snapshot Sparsity Order Estimation

additional computational effort for SOE results in a significant increase in
reconstruction precision. Additionally, the results of the method proposed
in [57] show that the measurement process imposed by it does not deliver
comparable results, since for increasing noise variance the reconstruction
precision does not improve anymore and is saturated very quickly. This
might seem surprising at first, but the authors of [58] made the same
observations. The reason for this is that part of the measurement matrix
consists of Cauchy distributed entries, which influence the behavior of the
system with respect to the noise level in the observed fashion. Moreover
the probability of estimating the correct support size is also very low and
does not improve with decreasing noise variance.

As a last study, the reconstruction performance of the matrices that
obey the structural constraints imposed by the proposed means of SOE
are investigated. To this end, a scenario with a priori known sparsity
order is simulated to remove the influence of the SOE procedure on the
reconstruction process. Here one should expect differing performance
since for decreasing p, the highly structured Vandermonde block in the
sensing matrix becomes more dominant thus increasing the overall coher-
ence of Φ. The results are depicted in Figure 2.8. Here one can see that
the case of no overlap p = ` comes close to the Gaussian measurement
matrices despite the imposed columnwise Kronecker structure. Moreover,
one notices that the Vandermonde factor in the columnwise Kronecker
product for the case of p < ` is the reason for a worse reconstruction
performance.

Taking Figures 2.6 and 2.8 into account, one can see that the choice of
the parameter p is crucial and a trade-off between the performances of re-
construction and SOE has to be maintained according to the requirements
given by the specific application at hand. When precice reconstruction
is neccessary, one should choose p = ` and lower values, if one is more
interested in carrying out SOE.

2.5.6.2 Vandermonde Matrices

As derived before, in the case of block overlap the proposed method of
SOE requires that one of the factors has a Vandermonde structure and
motivated by that Algorithm 2.3 provides matrices which deliver good
reconstruction performance even with these rigid structural constraints.
The numerical investigations are concluded by a presentation of results
that display the gain achieved through Algorithm 2.3 compared to several
other methods for constructing Vandermonde structured sensing matri-
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Figure 2.8 The lower the overlap defined by p the better the reconstruction performance. –
Influence of overlap p on the reconstruction stage using OMP with m = 100
measurements. �

ces and also compared to unstructured matrices drawn from a Gaussian
ensemble as a baseline, since they are well known for their good perfor-
mance during reconstruction as outined in Section 2.4.1.1. Again OMP is
used as a means of reconstruction, because it is known that the coherence
of the involved sensing matrix determines the performance and stability
of OMP.

In the following, reconstruction results are presented which assess the
performance of various ways to construct Vandermonde structures as
compression matrices where no Khatri-Rao product is present; these re-
sults are of course not related to sparsity order estimation but the purpose
of those simulations is to isolate the effects of the different construction
methods for Vandermonde matrices by analyzing their performance when
used as compression matrices in a very synthetic CS scenario.

For comparison, Gaussian sensing matrices are constructed by draw-
ing each entry identically and independently from a complex zero mean
circular symmetric distribution. Then each column is normalized to unit
length. This ensemble is compared with three types of Vandermonde
matrices: (a) independently drawing their generating elements v1, . . . , vN
from Y ∼ exp(2πU), where U ∼ Unif[0, 1]; (b) deterministically con-
structing the generating elements by placing them on a regular grid on
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2.5. Single-Snapshot Sparsity Order Estimation

the complex unit circle, so vk = exp(2π(k− 1)/N); (c) according to Al-
gorithm 2.3. As in the case of the Gaussian matrices, each column of the
Vandermonde matrices is scaled to unit length.

The support sets of the underlying signals x are restricted such that
the minimum distance between nonzero elements is larger than a certain
quantity. To motivate this structural assumption, note that Vandermonde
matrices have highly correlated columns, if their generating elements’
projections on the complex unit circle are closely located. This has already
been established in Theorem A.1, where it is shown that

λ(c1, c2, arg(v1 − v2))→ 1 for |arg(v1 − v2)| → 0.

Clearly, if one increases the number of generating elements for the men-
tioned methods (b) or (c) and fixes one arbitrary generating element, the
distance with respect to the adjacent generating elements’ arguments de-
creases and thus the coherence of the resulting V gets closer to 1. In terms
of recovering a sparse vector x in this context means that if two distinct
i, j ∈ supp(x) are close to each other in the sense that |i− j|/m 6 ε(n),
then stably recovering this vector becomes impossible. This drawback
originates from the structural impositions on V and as such cannot be
circumvented.

In the context where the argument of the generating elements cor-
respond to a parameter ϑ ∈ [0, 2π) and the columns of V are atoms
described by this parameter, e.g. [9], one can think of the number of
columns m of V as a granularity on [0, 2π). So increasing m yields a finer
grid on the parameter set, or in terms of the function λ a finer discrete
sampling. However, this does not decrease ε(n) from above and as such
does not reduce the distance between two parameters that are present in
x and one still can resolve during reconstruction.

To include these observations in the simulations, the set of possible sup-
ports of the underlying signals x is restricted. This is done by considering
a Vandermonde matrix V ∈ Cn×m with its m generating elements regu-
larly placed on the unit circle. Then support patterns are sampled such
that the resulting ground truth x only contains columns such that their
generating elements’ distances with respect to their arguments exceeds
2π/n. This corresponds to making an assumption about the structure of
the occurring signals and is known under the notion structured sparsity
[62].

The results in Figure 2.9 display the effect of Algorithm 2.3 on the rate
of correct support detection during reconstruction. This is a valid perfor-
mance measure for reconstruction schemes that produce exactly sparse
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Figure 2.9 Algorithm 2.3 can substantially improve the performance of Vandermonde
matrices when used during reconstruction. – Comparison of correct support detec-
tion during reconstruction using various Vandermonde algorithms against the
Gaussian ensemble with m = 96 measurements. �

results, like the OMP algorithm does, since it chooses the amplitudes on
the detected support from the solution to the least squares problem on the
span of the selected columns. The proposed method yields matrices that
improve on the performance of the Vandermonde matrices with elements
placed on a uniform grid on the complex unit circle. It is also clear why
not all supports are correctly detected, since some of them have non sepa-
rable elements due to the small distance of the corresponding generating
elements of the Vandermonde matrices, which in the presence of noise
results in reconstruction errors.

As a second performance metric the error in the `2-norm between
reconstruction x̂ and ground truth x is measured. These results can be
found in Figure 2.10. Here, the numerical findings correspond to those
above and the proposed method displays a lower reconstruction error
than the other two means of constructing Vandermonde matrices. As
expected, no instance of these highly structured matrices can compete
with the performance displayed by matrices from the Gaussian ensemble,
which do not have to fulfill any structural requirements.

Finally, Figure 2.11 illustrates the performance of the matrices proposed
by [57] when just used for sparse reconstruction by means of OMP. In this
case one can see that these matrices run into a lower error. This means
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Figure 2.10 Also for the `2-distance Algorithm 2.3 delivers good results. – Compar-
ison in terms of the `2 norm between the ground truth and its reconstruction
for various Vandermonde algorithms and the Gaussian ensemble with m = 96
measurements. �

that despite their possible use for SOE they cannot be recommended for
the SSR step afterwards to estimate x.

2.5.7 Conclusions

To conclude, it is indeed possible to reliably estimate the sparsity order
from a single compressed measurement vector. Hence, we successfully
contributed to AOI-M. As we show the performance of this estimation
process depends on the coherence of the matrices involved in the Khatri-
Rao structured sensing matrix. Additionally, the procedure allows a
trade-off between estimation accuracy of the sparsity order reconstruction
quality via SSR algorithms by means of the overlap parameter p. A larger
amount of overlap allows a higher sparsity order to be estimated but also
leads to more stringent structural constraints on the measurement matrix.

The Khatri-Rao and Vandermonde constraints on the compressed sens-
ing measurement motivate us to analyze the suitable choice of the mea-
surement matrices that allows the proposed sparsity order estimation and
yet achieves a low coherence. As we have shown, these two goals go
hand in hand. In particular, the achievable coherence of Vandermonde
matrices can be optimized by the proposed procedure compared to a ran-
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Figure 2.11 The matrices proposed by [57] do not deliver estimation errors that scale
well with the noise level. – The reconstruction performance of the matrices, which
are proposed by [57] for SOE using OMP. �

dom approach and the intuitive deterministic approach. These results
establish an improvement with respect to AOI-C.

The presented numerical results demonstrate the trade-off between the
maximal sparsity order that can be estimated and the coherence of the
corresponding measurement matrices. Moreover we show that the usage
of SOE as a pre-processing step to some SSR algorithm can substantially
improve upon the reconstruction error compared to an unguided recon-
struction with unknown sparsity order. Concluding, these results directly
address AOI-R. Finally, they clearly show the benefit of the proposed
low-coherence Vandermonde matrix design.

2.6 Summary

The first parts of this chapter outline how Compressed Sensing can be
viewed as an alternative sampling theory in addition to the traditional
and well known Nyquist sampling and we show how to design a pro-
cessing pipeline from compressed signal acquisition over reconstruction
methods to evaluation metrics to determine the performance of a given
CS system. We have outlined how plentiful the possibilities are when
choosing the measurement and estimation procedures compared to con-
ventional Nyquist sampling and also that these degrees of freedom have
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implications on the signal recovery guarantees one can provide as well.
As such we have already outlined the relation of the four AOI introduced
in Section 1.2.

Due to the increased complexity in terms of non-linear reconstruction
the metrics that allow to infer successful signal estimation seem at first
inaccessible, since the RIP constant is equally hard to compute as the
solution to `0-minimization. This motivates the search for viable proxies.
As we show these can be found in terms of the coherence µ as a perfor-
mance metric and `1-minimization or approximate `0-minimization for
substitute reconstruction approaches.

This diversity for sampling and reconstruction that is enabled by CS
is the reason for the wide range of applications that can be addressed
with it. For instance, we have seen the freedom that is allowed during
the sampling allows to estimate the model order of a signal prior to recon-
struction, while the proposed sampling scheme still enables efficient and
reliable signal estimation afterwards.

In the next chapter we focus on one approach to significantly speed
up the reconstruction process of the acquired signal and bring ease to the
modeling step of the whole CS system by means of a library to efficiently
handle linear mappings.
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Chapter 3

Matrix-Free Sparse Signal
Recovery

“It’s very hard to find your own words – and you don’t
actually exist until you have your own words.”

Jordan B. Peterson

Chapter 2 has shown that a crucial step during the processing of a CS
pipeline is the reconstruction of the signal y or the sparse vector x which
were acquired by means of

z = Ψx = ΦAx = Φy.

Not only do Φ and Ψ determine the accuracy and robustness of the re-
construction procedure but as we have seen in Algorithm 2.1 and Algo-
rithm 2.2, they are heavily involved in the actually used algorithm for
estimating x or y. The following chapter is devoted to first presenting
an alternative representation for linear mappings in general. Secondly,
we show how this representation facilitates the development of even
more efficient reconstruction schemes in terms of computational effort
by extending Algorithm 2.1 and Algorithm 2.2 to make use of this more
efficient representation.

Finally, we present the architecture of a free software package, which
makes the definition, and usage of this alternative representation very
convenient. Hence, it make these concepts readily available for very
efficient and flexible Sparse Signal Recovery and beyond.
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3.1 Motivation and Introduction

If we remember Example 2.2, concerning delay estimation for another
time, we see that the dimension of A ∈ CN×M depends on the number
of parameter grid points M in the delay domain as well as the number
of frequency samples N. Both quantities increase when one strives for
higher estimation accuracy or a higher bandwidth during measurements.
Likewise, the size of the compression matrix Φ ∈ Cm×N also increases
according to the scaling laws derived in Section 2.4. Although this specific
and still quite simple example will most likely not scale to a point where
modern computers exhaust their memory or computation capabilities,
this easily happens when acquiring volumetric data as in Section 4.1 or a
lot of samples per second as in Section 4.2.

Such large scale linear models are not a new phenomenon, since they
arise when solving partial differential equations [63] or when studying
large graph structures [64]1. Often, they are also derived from models
of physical processes [65, 66] or arise in day to day signal processing
tasks [67].

Additionally, these types of problems have already been solvable for
several decades despite the large size of the involved matrices. The reason
for this is that for these algorithms the occurring matrices are not required
to be represented as 2D arrays. Instead, one only needs access to the linear
action of the matrices to arbitrary vectors, which is usually tailored to
the specific properties of the matrices and represented by a specialized
algorithm.

To facilitate the introduction of this alternative representation of linear
mappings, the following paragraphs takes the converse direction of what
we plan to do in this chapter. As such, it demonstrates why and how
matrices are able to encode linear mappings between finite dimensional
spaces.

1See https://sparse.tamu.edu/
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Where do matrices come from?

Consider two vector spaces U and V over the complex field C. Note that
this not (yet) means that elements in U and V are denoted by tuples of
complex numbers. This is indicated by the fact that elements in U and V
are not bold-faced. Due to the vector space structure, both in U and V,
we can form so-called linear combinations

u = λ1u1 + · · ·+ λkuk ∈ U

for a finite number of scalars λi ∈ C and vectors u1, . . . , uk ∈ U. Likewise
for V. In other words, the spaces U and V are closed with respect to
these linear combinations. Additionally, there is one special vector in U
(as well as one in V) which we denote as 0U , which satisfies u + 0U = u
for every u ∈ U – the zero-vector. Now, we consider a set of vectors
BU = {u1, u2, . . . } ⊂ U linearly independent, if

0U = ∑
i

λiui

can only hold, if 0 = λ1 = λ2 = ... is satisfied.
Next, we say that span(BU) is the set of all possible finite linear combi-

nations of the form

u =
Nu

∑
k=1

λkuik for uik ∈ BU ,

where Nu ∈ N. If BU is linearly independent and span(BU) = U, we
call BU a basis of U. One can show that the cardinality of all bases of a
vector space is the same, which allows us to define the dimension of U
as |BU | for some arbitrary basis BU of U. We assume from here on that
|BU | = DU < ∞ and |BV | = DV < ∞. Continuing, a linear mapping
f : U → V has the property that

f (λ1u1 + λ2u2) = λ1 f (u1) + λ2 f (u2).

This means that the image of linear combinations of vectors is the linear
combination of these vectors’ images. As such, linear mappings fit to the
linear vector space structure. Assume further, we are given two bases BU
and BV in U and V respectively. Now, we can write any vector u ∈ U as

u = λ1bU,1 + · · ·+ λmbU,Du ∈ U.

The vector λ ∈ CNU (!) is called the coordinate vector of u with respect to
the basis BU . If we now apply f to u we get due to the linearity of f that

f (u) = λ1 f (bU,1) + · · ·+ λDU (bU,DU ) ∈ V.
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Since we also have a basis in V, we can express every f (bU,i) in the
coordinates with respect to the basis in V via

f (bU,i) = t1,ibV,1 + · · ·+ tDV ,ibV,DV ,

which we can plug back into the expression for f (u) and after collecting
the summand coefficients for each bV,i we get

f (u) =

(
NU

∑
i=1

λit1,i

)
bV,1 + · · ·+

(
NU

∑
i=1

λitn,i

)
bV,n ∈ V.

If we define µ ∈ CNV to be the coordinate vector in V of f (u) with respect
to the basis BV we can now simply write

µ = T · λ, (3.1)

where the 2D array T ∈ CNV×NU contains the entry in the i-th row and
the j-th equal to ti,j and we make use of the conventional matrix-vector
product.

In other words, we can encode the linear mapping f by means of the
matrix T as soon as we have fixed BU and BV . This means that we can
identify T with f as long as we are clear about the chosen bases. Many
tools from linear algebra now allow us to infer properties of f based on
properties of T . �

This concludes our detour into basic linear algebra and we are now
able to easily formulate our alternate representation for linear mappings,
which does not follow the reasoning above.

How to not use Matrices

As we have seen by now, it is generally not necessary to encode a
linear mapping by means of a suitable matrix. Alternatively, one can use
a matrix-free representation of the linear operator at hand. For a given
linear mapping f : Cn2 → Cn1 , this is achieved by not storing the dense
representation (3.1) T in as the 2D array that generally uses O(n1 · n2)

memory, in terms of the big O notation. Instead, we only provide two
linear functions

φT : Cn2 → Cn1 and βT : Cn1 → Cn2 (3.2)

such that the equalities x 7→ φT (x) = T · x and y 7→ βT (x) = TH · x
hold, if we had access to T . Here we call φ the forward transform and β
the backward transform.
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It is important to notice that we only requireφT to reproduce the action
of T on a vector x, but we do not specify how this has to be achieved. This
means that the function φT can – and usually should – be implemented
differently than simply calculating

yi = φT (x)i =
n2

∑
k=1

bi,k · xk. (3.3)

This is the reason why this representation is matrix-free, since the calcu-
lation of the forward and backward transform does not depend on the
explicit knowledge of the encoding matrix T to represent a linear map-
ping f . It is clear that φT = c ◦ f ◦ c−1, where c denotes the mapping
between the vector space and its coordinate space. Additionally, we also
require independent definition and implementation of βT , since many
numerical algorithms depend both on the forward and the backward
transform of T or f respectively.

Additionally, we note that we slightly abuse notation when applying
these transforms to matrices, where we naturally demand that

φT (C) = T ·C

This way we can argue that both representations are equivalent, since
we can recover T from φT by means of T = φ(In2) and given T one
can simply define φT by means of (3.3). In order to further motivate this
additional and seemingly unhandy representation of matrices, we give a
short example below.

Example 3.1 (Fast Fourier Transform). A prominent and certainly one
of the most important examples is the DFT, which transforms periodic
discrete signals into the respective frequency domain. As such it has a
plethora of applications in spectral analysis, radar, array processing and
beyond. Given the canonical standard basis in Cn, the corresponding
matrix elements are expressed as

Fn =
[

fi,j
]n

i,j=1 =

[
exp

(−2π

n
· i · j

)]n

i,j=1
. (3.4)

As we can see, the matrix Fn ∈ Cn×n is highly structured, essentially only
needing the integer value n ∈ N in order to define it completely. Note
that sometimes, we drop the index n if it is clear from context. As such
the DFT matrix has very few, in fact just one, degree(s) of freedom, since
the size n of the involved vector space already defines its elements.
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It is well known that one should in fact not use (3.3) in order to multiply
the matrix in (3.4) to a vector. Instead one should make use of the Fast
Fourier Transform (FFT) algorithm to calculate y = F · x with runtime
complexity O(n log n) [68]. This runtime complexity is one of the reasons
why modern signal-processing is possible and practically feasible. It
is due to this that the DFT is one of the most fundamental transforms,
which sparked the need for many different efforts to deduce efficient
implementations [69], [70], [71] in terms of memory, speed and accuracy.

Summarizing, we have φF (x) = fft(x) and βF (x) = ifft(x) as the
two matrix-free representations of F . �

Example 3.1 illuminates that as soon as one can exploit structure in
the involved linear mapping, one can indeed improve upon the dense
representation in terms of runtime and required memory.

When it comes to numerical algorithms for linear algebra, there are
methods to solve systems of linear equations using matrix-free represen-
tations like the method of conjugate gradients [72] or there are efficient
methods to calculate eigenvalues and eigenvectors using deflation tech-
niques as outlined in [73]. In optimization, one can also make use of
matrix-free representations when describing the set of feasible points [74].
Nowadays, the field of deep learning is also exploiting structured neu-
ral net components, where convolutional layers [75] are one prominent
example.

In the following sections, we outline how this structural knowledge
about the linear transform the can be exploited in CS when implementing
the SSR algorithms using matrix-free representations.

3.2 Application to Compressed Sensing

In this chapter, we want to make use of the previously defined representa-
tion for linear mappings to render the algorithms presented in Section 2.3
more efficient in terms of memory consumption and runtime. This means
that the algorithms are not only derived specifically for sparse reconstruc-
tion, but they are also able to account for the specific linear structure of the
CS scenario one is dealing with. Hence, we can expect that these modifi-
cations render OMP and FISTA and possible derivatives well performing
algorithms.
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3.2.1 Matrix-free Orthogonal Matching Pursuit

A first and simple approach for SSR is presented in Algorithm 2.1 and we
wish to reformulate it such that the computationally most intensive steps
are represented by matrix-vector products. In the previously given naïve
formulation, there are two seemingly computationally intensive parts.
The calculation of the correlation values ci in Line 6 and the calculation of
the values of x on the estimated support set Sk by means of the pseudo-
inverse matrix of ΨSk in Line 8. We wish to address both of these steps
and find more refined computation steps to replace them.

Fast Correlation

Assume we are in step k of OMP. In order to find the next index, where
the sparse x – we are in search of – has a non-zero entry, we calculate the
correlation values by means of

ci =
|〈ψi, rk〉2|
‖ψi‖2

for i = 1, . . . , M.

when resorting to matrix-vector products this can be rephrased as

c =
∣∣∣diag([‖ψ1‖−1

2 , . . . , ‖ψN‖−1
2 ]) ·ΨH · rk

∣∣∣,
where rk is the residual vector in step k and the absolute value is taken
entry-wise. Additionally, we can decompose the action of ΨH further and
we get

c =
∣∣∣diag([‖ψ1‖−1

2 , . . . , ‖ψN‖−1
2 ]) ·AH · ΦH · rk

∣∣∣,
which is an expression that retains the fact that Ψ is a product of two
matrices. If we define

DΨ = diag([‖ψ1‖−1
2 , . . . , ‖ψN‖−1

2 ]),

we can make use of the matrix-free representations introduced in Sec-
tion 3.1 such that we finally end up with

c =
∣∣φDΨ

(βA(βΦ(rk)))
∣∣ (3.5)

as a replacement for the calculation of the ci in Line 6 in Algorithm 2.1.
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Fast Pseudo-Inverse

Next, we continue with the replacement of the pseudo-inverse, which is
used to update all non-zero entries of x by means of

x̂Sk+1
= (Ψ•,S )

† · z.

What we have not been considering so far is the fact that the matrix Ψ•,S
is only growing by one single column in each iteration. Furthermore,
we have already seen that Ψ•,Sk · x̂k is the orthogonal projection onto the
subspace spanned by Ψ•,Sk . Suppose we define the matrix

Bk = Ψ†
•,Sk

.

As we will show, it is indeed possible to iteratively – and hence cheaply –
updateBk. As a starting point we have in step k = 1 that

B1 =
ψH

j∥∥∥ψj

∥∥∥2

2

∈ C1×m,

if j = argmaxi ci was selected by the correlation in the first step of the
algorithm. Now suppose we are in step k + 1 and have already computed
Bk. We wish to add a non-zero at index j and hence define

uk = (Ik −Ψ•,Sk ·Bk) ·ψj.

Then we can find the updated pseudo inverse by means of

Bk+1 =

 Bk

(
Im − ψj ·uH

k

‖uk‖2
2

)
uH

k
‖uk‖2

2
∈ C1×m

 ,

which is based on the idea that we identify the parts in ψj which are or-
thogonal to the sub-space spanned by Ψ•,Sk . The geometric interpretation
here is to remove the orthogonal complement of the subspace spanned
by uk that is already contained in Bk, which constitutes the calculation
of the first k rows of Bk+1 based on the previous Bk. This is outlined in
Figure 3.1.

As a summary for the above considerations, Algorithm 3.1 presents a
reformulation of Algorithm 2.1, which operates matrix-free and without
the need to explicitly calculate the pseudo-inverse in each iteration.

Finally, we want to analyze the computational complexity of Algo-
rithm 3.1 in order to get an understanding how a practical implementa-
tion scales in terms of problem size. Clearly, line 7 is hard to quantify,
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Figure 3.1 Pseudo Inverse Bk can be found iteratively. – Iteration process and geo-
metric relationships of the quantities involved in calculatingBk. �

since it depends on the complexity of βΨ = βA ◦ βΦ. If we assume that
this calculation scales as T : N3 → R, where (m, M, N) 7→ T(m, M, N)

such that β ∈ O(T(m, M, N)) and we store Ψ•,Sk in a dedicated variable,
we can conclude that the runtime of step k is of the orderO(T(m, M, N) +

km + m2), where the second summand stems from Line 10 and the last
summand from the update of Bk+1 in Line 11. Which means we finally
have a runtime ofO(SmaxT(m, M, N) + S2

maxm+ Smaxm2). Usually, when
the system requirements demand to implement this matrix-free scheme,
the cost for βΨ is dominating this expression and then the runtime scales
proportional to the number of steps Smax.

In Figure 3.2 we carry out a numerical investigation, where we com-
pare the performance of Algorithm 3.1, a dense version of Algorithm 3.1,
which only makes use of the more efficient pseudo-inverse and a naïve
dense representation as given in Algorithm 2.1. We use a ciruclant matrix
Ψ = Γ(c), see Section 3.3.2.1, for c ∈ CM and we set S = b0.1 ·Mc as the
sparsity level. Each algorithm instance is hence run for Smax = S steps
and we average the runtime over 25 runs. As such, we only simulate
a sparse recovery setup without any compression. The runtime in Fig-
ure 3.2 is the total runtime of each algorithm divided by Smax in order to
only account for the algorithms performance depending on the involved
transform sizes.

As we can see, the purely matrix-free implementation easily outper-
forms the other two realizations of OMP, which also happens already
for moderately sized problems. And even if we use the less efficient
dense matrix-vector product in Line 7 the improved update of the pseudo-
inverse matrix in Line 10 allows for another substantial improvement
compared to the implementation in Algorithm 2.1.
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3.2. Application to Compressed Sensing

Data: Observed measurement vector z, Maximum sparsity order
Smax ∈N;

[1] S0 = ∅;
[2] k = 0;
[3] r0 = z;
[4] B0 = 0 ∈ C0×m;
[5] x̂0 = 0;
[6] while k < Smax do
[7] c = |φDΨ

(βA(βΦ(rk)))|;
[8] j = argmaxi ci;
[9] Sk+1 = Sk ∪ {j};
[10] uk+1 = (Im −Ψ•,Sk ·Bk) ·ψj;

[11] Bk+1 =

 Bk

(
Im − ψj ·uH

k

‖uk‖2
2

)
uH

k

‖uk‖2
2
∈ C1×m

;

[12] x̂k+1 = Bk+1 · z on the set Sk+1;
[13] rk+1 = z −Ψ•,Sk · x̂Sk+1

;
[14] k = k + 1;
[15] end
[16] return x̂Smax ;

Algorithm 3.1: The OMP algorithm has a fast matrix-free variant. – Matrix-free
version of Algorithm 2.1 using rank-1 updates for the pseudo-inverse matrix
and matrix-free correlation.

3.2.2 Matrix-free Fast Iterative Shrinkage-Thresholding Algorithm

As another popular choice of algorithm we presented a simple variant of
FISTA given by Algorithm 2.2 in Section 2.3.2. Based on what we have
developed for OMP, it is straightforward to apply the same matrix-free
approach here. We simply exchange the matrix-vector products involv-
ing Ψ with the respective matrix-free functions that carry out the linear
transforms without resorting to the dense representation of Ψ.

As we will see, this slight modification renders Algorithm 3.2 a viable
approach in ultrasonic imaging as outlined in Section 4.1. This is due
to the fact that a single step of the algorithm is in O(T(m, M, N)). Con-
sequently, the whole iteration is in O(KmaxT(m, M, N)), which similarly
to OMP renders the computational effort proportional to the number of
iterations carried out.

Finally, we would like to note that the stepsize αk used in Line 3 must
be chosen in adaption to Ψ in order to achieve rapid convergence and to
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Figure 3.2 The matrix-free representation substantially decreases the runtime per itera-
tion step of OMP. – Comparison of the different approaches for OMP in terms of
runtime per iteration: Algorithm 3.1 (blue), Algorithm 3.1 where a dense matrix-
vector product is the used instead of β (green), Algorithm 2.1 (red). �

avoid divergence of the iteration scheme. Usually one chooses αk depend-
ing on the largest singular value of Ψ. Since in the matrix-free setting
we do not have access to direct methods to calculate a singular value
decomposition directly, one has to resort to methods for estimating and
approximating this quantity. In Section 4.1 we will present various ways
to address this issue for the specific scenarios considered there. As we will
see, the matrix-free representation facilitates this process tremendously.

In Figure 3.3 we carry out similar simulations as in Figure 3.2, but
instead we compare two types of structures here, which are Circulant
matrices and Hadamard (see Section 3.3.3 [76]) matrices. Also, we only
compare the execution times for the dense and the matrix-free cases, since
there are only these two variants of Algorithm 3.2. We average the run-
times of the algorithms over 64 trials. As we can see again, the matrix-free
version have a substantially better scaling behavior in terms of depen-
dency on the problem size. Obviously, this improvement in performance
only stems from the usage of φ and β, as given in Algorithm 3.2. Inter-
estingly, the dense representation of the Hadamard matrices does out-
perform the dense representation of the Circulant matrices. This is due
to the fact that the software framework, depicted in Section 3.4, allows
to handle data types very efficiently and we can retain the information
that a Hadamard matrix can be represented using integers only, which
allows us to take advantage of this when using a standard matrix-vector
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3.2. Application to Compressed Sensing

Data: Observed measurement vector z, Maximum number of steps
Kmax ∈N;

[1] k = 0, t0 = 1, v0 = u0 = 0M ∈ CM;
[2] while 1 6 k 6 Kmax do
[3] uk+1 = τλ·αk (vk − αkβΨ(φΨ(vk)− z));
[4] tk+1 =

1+
√

1+4t2
k

2 ;

[5] vk+1 = uk+1 +
(

tk−1
tk+1

)
(uk+1 − uk);

[6] end

Algorithm 3.2: FISTA can easily be adapted to a matrix-free iteration. – Matrix-
free Fast Iterative Shrinkage-Thresholding Algorithm, where we exchange
matrix-vector products with the matrix-free counterparts.
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Figure 3.3 The performance of FISTA is mainly influenced by the performance of φ and
β. – Comparison of the runtimes of Algorithms 2.2 and 3.2 for the esitmation of
x ∈ CM averaged over 64 trials. �
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product.
To conclude we wish to note that similar comparisons can be made

in terms of memory consumption and the conclusions would also match
those derived for the runtime.

3.3 Deriving Matrix-free Representations

Since in the previous Section 3.2 we depict how to use matrix-free repre-
sentations in Compressed Sensing we now present methods how to derive
these matrix-free representations for various types of matrices that we use
in later chapters. We are aware of the fact that the explanations are more
excessive than needed, since especially fast convolution algorithms are
well known for many years. However, the more detailed derivations help
us when motivating certain design decisions for the developed software
package which is described in Section 3.4.

3.3.1 Products of Matrices

In order to gain some intuition with respect to the concept of matrix-free
representations, we start with some simple examples involving two kinds
of matrix-matrix-products.

Regular Matrix-Matrix-Product

Assume we have two matricesA ∈ Cn×k andB ∈ Ck×m. In virtue of the
previous chapter we also have access to φA,φB and βA,βB respectively.
Based on these, we want to derive φA·B . Since the linear transform
associated withA ·B is simply the concatenation (in the function sense)
of the linear transform associated withB andA. So, we have

φA·B = φA ◦φB , (3.6)

which means that φA·B : Cm → Cn with x 7→ φA(φB(x)). Due to the
fact that (A ·B)H = BH ·AH we can also reason that

βA·B = βB ◦ βA.

Note that this product can be extended to more than two factors by mak-
ing use of the fact that the regular matrix-matrix-product is associative.

At first it might seem inefficient to conserve the information that C =

A ·B is a product of two matrices. However, consider the case when
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3.3. Deriving Matrix-free Representations

B is a DFT matrix and A is a diagonal matrix. Then explicitly forming
the product of A and B yields a matrix that generally has no efficient
matrix-free representation, however if we retain the information, we can
still exploit the individual matrices’ fast transforms. By doing so one
preserves the structure of the linear mapping.

Kronecker Matrix-Matrix-Product

Assume we have two matricesA ∈ Cn1×m1 andB ∈ Cn2×m2 . Then the
Kronecker Product ofA andB is defined via

A⊗B =


a1,1 ·B . . . a1,m1 ·B

...
. . .

...

an1,1 ·B . . . an1,m1 ·B

 ∈ Cn1n2×n1n2 .

This implies that the dense representation of C uses O(n1n2m1m2) mem-
ory and hence a single matrix-vector product is in O(n2

1n2
2m2

1m2
2) opera-

tions. However, similarly to the derivation for the regular matrix-matrix-
product we can retain the fact that C is a Kronecker-Product ofA andB.
This implies that the memory consumption is only in the order needed to
storeA andB.

As outlined in [77], one can rewrite the Kronecker-product as

C = (A⊗ In2) · (In1 ⊗B), (3.7)

where the authors make the assumption that n1 = m1 and n2 = m2, so
A and B are square matrices. Then, they show how to efficiently apply
a matrix with the structure in (3.7) to a vector, which yields an efficient
algorithm for φA⊗B as well as for βA⊗B .

However, this squaredness assumption can be dropped if we imagine
C as a linear transform on a 2D input array X ∈ Cm1×m2 . Note that
here we do not consider X as a matrix encoding a linear transform, but
rather a 2D array, where each dimension in turn is associated with a
vector space – in this case Cm1 and Cm2 . This means that here the term
"dimension" denotes the number of independent indices used to account
for the structure of the input X .

Hence, the fact that C is a Kronecker-product means thatA is applied
along one dimension ofX andB along the other one. This means we can
simply write for some x ∈ Cm1·m2 and its reshaping bmX (x)) ∈ Cm1ṁ2

that

x 7→ φC(x) = vec((B · (A ·X (x))T)T) = vec((φB(φA(X (x)))T)T).
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This means, we apply φA along the columns ofX and φB along the rows
of X . Naturally, this can be generalized to more Kronecker-factors that
make up C. As such we have provided a slight but useful generalization
to the results in [77], since we have shown that the assumption of square
A and B is not necessary. Moreover, we have shown that retaining the
information that C is a Kronecker-product, reduces its memory and run-
time consumption to the complexity of φA and φB respectively. Also
note that this can easily be generalized to higher dimensions and also for
the definition of βc.

3.3.2 Convolution Matrices

In the application presented in Section 4.1 we make use of translational
invariance present in 3D ultrasound data aligned in a synthetic aper-
ture. This allows us to derive efficient matrix-free reconstruction schemes
and it is why the following section is dedicated to efficient forward and
backward projections of multilevel circulant and Toeplitz matrices, where
the first two Sections 3.3.2.1 and 3.3.2.2 revise the procedure to derive
efficient implementations for circulant and Toeplitz matrices acting on
vectors representing 1D data.

3.3.2.1 Circulant Matrices

We define the mapping Γ : Cn → Cn×n for given n ∈N and c ∈ Cn via

c 7→ Γ(c) =


c1 cn . . . c2

c2 c1
. . . c3

...
. . . cn

cn cn−1 . . . c1

 .

Now in order to derive φΓ(c) and βΓ(c) we make use of the well known
fact that for any c ∈ Cn it holds that

Γ(c) =
1
n
FH

n · diag(Fnc) ·Fn, (3.8)

where Fn is the DFT matrix as introduced in Example 3.1. This means we
can derive for the forward transform φΓ(c) via

φΓ(c)(x) = ifft(ĉ� fft(x)), (3.9)
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Figure 3.4 Circulant Matrices have a fast matrix-free representation. – Comparison
of the runtime between the dense and matrix-free implementation for Γ(c) · x for
x ∈ Cn×m. �

where we can also precompute and store ĉ = fft(c) and � denotes the
elementwise product, i.e. the Hadamard product, of two vectors. This
also shows that it is possible to represent Γ(c) memory-efficiently as Fnc,
reducing the memory complexity to O(n), compared to O(n2) in the case
of its dense representation. This is illustrated in the runtime comparison
results in Figure 3.42.

However, the key idea behind the FFT algorithm is also its greatest
caveat, because it only achieves reasonable performance if the transform
size n factors into many small prime factors. In the extreme case where n
is prime on the other hand, the FFT is not faster than a standard matrix-
vector multiplication. To circumvent this shortcoming one has to employ
suitable zero-padding as outlined in Appendix B.1.

2Results are obtained on Intel(R) Core(TM) i7-8565U CPU with 1.80GHz, 32GiB SODIMM
DDR4 Synchronous 2400 MHz Memory and 256KiB/1MiB/8MiB L1/L2/L3 cache.
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3.3.2.2 Toeplitz Matrices

The concepts of Section 3.3.2.1 can be extended to the more general case,
where the matrix is not circulant, but has Toeplitz structure instead. For
n ∈N and t ∈ C2n−1, we define a mapping Θ : C2n−1 → Cn×n via

t 7→ Θ(t) =


t1 t2n−1 . . . tn+1

t2 t1
. . .

...
...

. . . . . . t2n−1

tn tn−1 . . . t1

 .

The idea behind the derivation of φΘ(t) is to embed Θ(t) into a suitable
circulant matrix. To derive the defining vector of this circulant matrix, we
conjure a mapping ϑk : C2n−1 → C2n−1+k, as

ϑk(t) = [t1, t2, . . . , tn, 0k, tn+1, . . . , t2n−1]
T.

Note that z is just an auxiliary vector, which can be discarded after the
computation. With this definition at hand it is clear that for t ∈ C2n−1,
x ∈ Cn and z ∈ Ck+n−1 the relationΘ(t) · x

z

 = Γ(ϑk(t)) ·
 x

0k+n−1

 (3.10)

holds for any k > 0. This implies that Toeplitz matrices also have an
efficient forward and backward transform by means of the algorithm
provided for circulant matrices in (3.9). This is illustrated in the runtime
comparison results in Figure 3.5. For the zero-padding step in (3.10), we
need to find a suitable k > 0, such that the FFT calculations in (3.10) (or
(3.9)) are most efficient. To this end we again refer to Appendix B.1, where
this zero-padding is discussed in more detail.

3.3.2.3 Multilevel Circulant Matrices

As a next generalization, we define so called multilevel circulant matrices,
which are not circulant by themselves, but consist of multiple nested levels
of circulant structures as illustrated in Figure 3.6. They can be considered
as matrices that apply a convolution to higher dimensional data structures
represented by vectors. Here, the convolution separates along the data,
which first allows us to treat the different convolutions separately and
ultimately allows for a recursive formulation of the matrix-structure.
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Figure 3.5 Toeplitz Matrices have a fast matrix-free representation. – Comparison of
the runtime between the dense and matrix-free implementation for Θ(t) · x for
x ∈ Cn×m. �

To formulate the algorithm precisely, let d > 1 represent the number
of nested levels, n = [n1, . . . , nd] ∈ Nd represent the respective levels’
sizes, n1− = [n1, . . . , nd−1] ∈ Nd−1 and n−1 = [n2, . . . , nd] ∈ Nd−1.
Additionally, we are given a d-dimensional complex sequence c = [ck]
for the multi index k ∈ Nd. This means that we have a d-dimensional
array c ∈ Cn1×···×nd that is supposed to define the d-level circulant matrix
Cn,d recursively via

Cn,d =


C1

[n−1],d−1 C
n1
[n−1],d−1 . . . C2

[n−1],d−1

C2
[n−1],d−1 C1

[n−1],d−1 . . . C3
[n−1],d−1

...
...

. . .
...

C
n1
[n−1],d−1 C

n1−1
[n−1],d−1 . . . C1

[n−1],d−1

 .

In order to illustrate this recursion for two levels we set n = [2, 2] and
c ∈ C2×2, from which we get

C[2,2],2 =

 C1
[2],1 C2

[2],1

C2
[2],1 C1

[2],1

 =


c1,1 c1,2 c2,1 c2,2

c1,2 c1,1 c2,2 c2,1

c2,1 c2,2 c1,1 c1,2

c2,2 c2,1 c1,2 c1,1

 .
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Figure 3.6 For 2-level Circulant matrices we have two ways of being ciruclant. – Visu-
alization of the fact that multi-level circulant matrices have a circulant structure
along all dimensions of the defining array c. �

It is worth noting that we stick with c containing all defining elements as
the representation of a circulant matrix even in the d-level case, where c
then is a d-dimensional array, as a natural extension to the circulant case
for d = 1. To clarify how the elements in c are placed into Cn,d, we note
that

C[n1,...,nd−1,k],d−1 = Γ
(

c[n1,...,nd−1,k]

)
for all k = 1, . . . , nd and we again refer to Figure 3.6.

Fast Multiplication

In spirit of the sections before, we aim at providing efficient means
of representing Cn,d and deriving its matrix-free forward and backward
transforms φCn,d and βCn,d respectively. To this end, we exploit the mul-
tilevel structure, by means of the diagonalization of multilevel circulant
matrices [78], which reads as

Cn,d =
d⊗

i=1

1
ni
FH

ni
diag

(
d⊗

i=1

Fni · vec c

)
d⊗

i=1

Fni . (3.11)

This expression directly yields an algorithm to efficiently multiply Cn,d
or CH

n,d to a vector, because Fourier matrices allow a fast matrix-free
representation as illustrated in Example 3.1. Additionally, (3.7) based
on [77] describes how to efficiently compute the forward and backward
transform of a Kronecker product, which also only makes use of the
forward and backward transform of the factors involved. The resulting
gain in computational efficiency is depicted in Figure 3.7. Note that the
maximum k such that k3 = 213 is only around ≈ 20, so the problem size
is fairly small compared to practically relevant scenarios.
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Figure 3.7 Multilevel Circulant Matrices have a fast matrix-free representation. – Com-
parison of the runtime between the dense and matrix-free implementation for
C[k,k,k],3 · x for x ∈ Ck3×m with k3 = n. �

3.3.2.4 Multilevel Toeplitz Matrices

Similar to the previous section, we can also efficiently handle the more
general multilevel Toeplitz case, which represent non-circular multidi-
mensional convolutions that separate along these dimensions.

Let d > 1 represent the number of nested levels, n = [n1, . . . , nd] ∈Nd

represent the respective levels’ sizes, n1− = [n1, . . . , nd−1] ∈ Nd−1 and
n−1 = [n2, . . . , nd] ∈ Nd−1. Additionally, we are given a d-dimensional
complex sequence t = [tk] for the multi index k ∈ Nd. This means
that we have a d-dimensional array t ∈ C2n1−1×···×2nd−1 which is used to
define the d-level Toeplitz matrix T(n,d) recursively via

T(n,d)(t) =


T 1
[n−1],d−1 T

2n1−1
[n−1],d−1 . . . T

n1+1
[n−1],d−1

T 2
[n−1],d−1 T 1

[n−1],d−1 . . . T
n1+2
[n−1],d−1

...
...

. . .
...

T
n1
[n−1],d−1 T

n1−1
[n−1],d−1 . . . T 1

[n−1],d−1

 . (3.12)

For example, setting n = [2, 2] as in the multi-level circulant case and
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t ∈ C3×3 yields

T[2,2],2 =

 T 1
[2],1 T 3

[2],1

T 2
[2],1 T 1

[2],1

 =


t1,1 t1,3 t3,1 t3,3

t1,2 t1,1 t3,2 t3,1

t2,1 t2,3 t1,1 t1,3

t2,2 t2,1 t1,2 t1,1

 .

We also retain the notation t for the defining elements of T(n,d) when it
naturally becomes a d-dimensional array in the case d > 2.

As in Section 3.3.2.2 we describe how a d-level Toeplitz matrix can be
embedded into a larger d-level circulant matrix such that one can use
the efficient methods available for those to implement φT(n,d)

and βT(n,d)

respectively. To this end, we have to correctly treat the recursive nature
of the definition of T(n,d). We do this by considering single levels first. A
given block Toeplitz matrix Tn,m ∈ Cnm×nm consists of matrices that are
aligned as blocks in a Toeplitz-fashion and it reads as

T =


T1 T2n−1 . . . Tn+1

T2 T1
. . .

...
...

. . . . . .
...

Tn Tn−1 . . . T1

 .

So it consists of 2n− 1 arbitrary matrices Ti ∈ Cm×m. Next, we define the
actual embedding mapping Gn,m : Cnm×nm → C(2n−1)m×(2n−1)m, which
extends the block Toeplitz matrix to a block circulant matrix by

T 7→



T1 T2n−1 . . . Tn+1 Tn . . . T2

T2 T1
. . .

... T3
...

. . . . . .
...

Tn Tn−1 . . . T1 T2n−1
...

Tn+1 Tn . . . T2 T1
...

...
. . .

T2n−1 T2n−2 . . . T1


.

As such, it works as the embedding step for a single level. This means that
for given block matrices aligned in a Toeplitz-fashion, we embed those
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same blocks in a block circulant matrix, such that the original blocks Ti
form the original block matrix T . It is worth noting that for each n it holds
that Gn,1(T ) = Γ

(
Θ−1(T )

)
for all single-level Toeplitz matrices T , so

we recover the original embedding of a single-level Toeplitz matrix into a
circulant matrix.

To finalize the embedding of the matrix T(n,d) into a multilevel circu-
lant matrix, we iteratively apply the appropriate Gni ,mj via

T1(T(n,d)) = Gn1,K




T`(T

1
[m],`) . . . T`(T

n1+1
[m],` )

T`(T
2
[m],`) . . . T`(T

n1+2
[m],` )

...
. . .

...

T`(T
n1
[m],`) . . . T`(T

1
[m],`)



 , (3.13)

where K = n2 · · · · · nd. The matrix is by design d-level circulant and can
be diagonalized as in (3.11). Also, for an appropriately chosen index set S

Td(T(n,d))S,S = T(n,d) (3.14)

holds. The set S subselecting the resulting matrix can be constructed
iteratively by keeping track of inserted spurious columns and rows into
Td(T(n,d)) during the above embedding procedure, compared to the orig-
inal T(n,d). The resulting gain in computational efficiency is depicted in
Figure 3.8. Again note that the problem size is not large in terms of k
and already the matrix-free implementation can deliver several orders of
magnitude better performance.

3.3.2.5 Block Multilevel Toeplitz Matrices

Here, we treat a special linear transform structure which turns out to be of
great importance in Section 4.1, since it allows to formulate a matrix-free
representation for the involved dictionary. Also, in Section 4.1.4.2 we
present a more direct approach to this matrix structure, which also allows
the implementation on a GPU.

Consider a matrix H which has a block structure, where each block
Hi,j for i, j = 0, . . . , M − 1 is a d-level Toeplitz matrix, which is why in
general one could call the matrixH block multilevel Toeplitz. Here, we
consider the special case d = 1. Hence, we can collect the unique defining
elements ofH in h ∈ RM×M×2N1−1×2N1−1 and then set

Hi,j = T([N1,N1],2)(hi,j).
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Figure 3.8 Multilevel Toeplitz Matrices have a fast matrix-free representation. – Com-
parison of the runtime between the dense and matrix-free implementation for
T[k,k,k],3 · x for x ∈ Ck3×m with k3 = n. �

With the methods of the previous section in (3.11) we can diagonalize
each Hi,j. To this end, we use (3.13) to embed each Hi,j into a 2-level
circulant matrix

T2(H0,0) . . . T2(H0,M−1)
...

. . .
...

T2(HM−1,0) . . . T2(HM−1,M−1)

 =KH ·D ·K. (3.15)

Here, we have defined F = F2N1−1 ⊗ F2N1−1 essentially denoting a 2D
Fourier transform,K = IM ⊗F s and

D =


diag(F vec h̃0,0) . . . diag(F vec h̃0,M−1)

...
. . .

...

diag(F vec h̃M−1,0) . . . diag(F vec h̃M−1,M−1)

 ,

where each h̃i,j for i, j = 0, . . . , M− 1 is chosen such that they contain the
defining elements of the corresponding 2-level circulant matrix T2(Hi,j).
The decomposition in (3.15) states that the block 2-level matrix H can
be decomposed into a product consisting of two Fourier transforms by
means of K and KH respectively and the block diagonal matrix D. So,
both K and D allow for efficient φK and φD such that by means of
(3.6) the matrix H also allows to derive φH . The results in terms of
performance are given in Figure 3.9.
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Figure 3.9 Block Multilevel Toeplitz Matrices have a fast matrix-free representation. –
Comparison of the runtime between the dense and matrix-free implementation
forH · x for x ∈ Ck3×m with k3 = n. �

3.3.3 Further Examples for Matrix-Free Representations

To further motivate the development of a software package in Section 3.4
we argue that quite a substantial amount of matrices occurring in practice
have an efficient matrix-free representation. Some trivial examples are
the identity matrix In ∈ Rn×n, where in fact φIn = βIn = id, where id
is the identity mapping on Rn, holds. Also, the zero matrix 0n×m has as
matrix-free representation simply the respective zero-mapping on Rn or
Rm respectively.

Harmonic Analysis

When it comes to harmonic analysis several examples come to mind, like
the Fast Hadamard Transform (FHT) [76] for spectral analysis over finite
fields, the Discrete Cosine Transform (DCT) [79] or various versions of
Wavelets [80] being the bridge between spectral and time analysis.
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Sparse Matrices

When dealing with graph structures containing few edges, the incidence
and adjacency matrix are naturally sparse and their eigenvalues and eigen-
vectors are of interest to derive properties of the graphs under study,
see for instance [81]. Also, when discretizing the domain for solutions
of partial differential equations [63] one usually has to solve (general-
ized) eigenvalue problems in order to derive solutions to these equations,
which involve matrices with only a few non-zero entries. Hence, the
efficient treatment of sparse matrices has sparked the development of
various data structures for sparse matrices.

Inverse Matrices

If one is confronted with calculating expressions likeM−1x one usually
is inclined to fall into despair, since the computational cost of calculating
M−1 is expected to be too high or numerical unstable. However, this is
not necessarily the case, since one can also apply a suitable numerical
algorithm to solveMy = x for y, as it satisfies y =M−1x. Additionally,
for solving a system of linear equations, there are many specialized and
well studied numerical algorithms [72, 82], which only rely on φM and
βM . Thus, these algorithms can leverage the performance of the matrix-
free representation.

Although the above approach is quite clear, it usually is not well known
that a similar fact holds for the pseudo-inverse matrix M †. In order to
calculateM †x, one can solve

min
y
‖My − x‖2

2

for instance by means of the algorithm presented in [83], which again
only relies on φM and βM . Once the solution y∗ is obtained one has that
y∗ =M †x and the explicit calculation ofM † is avoided.

In addition, Figure 3.10 indicates that the numerical error, when calcu-
lating φM−1 by solving a system of linear equations is lower compared to
explicitly invertingM and then using the regular matrix-vector product.
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Figure 3.10 Solving a system of linear equations can be more accurate than inverting
the system matrix. – Comparison of the numerical error of solving the system of
linear equations (green) or first invertingM and then usingM−1x (blue). �

3.3.4 Conclusion

As we have seen, the matrix-free representation of linear transformations
allows the derivation of efficient algorithms for various types of matrices
and even compositions of these representations can be considered as an
efficient representation for these. If applied carefully, these representa-
tions allow faster algorithms that are based on matrix-vector products
and as such can yield memory and time efficient implementations in these
scenarios.

However the reason why the dense representations often still are the
initial approach is largely due to the fact that software and libraries used
in scientific computing are designed around the use of the representa-
tion of linear transforms by 2D data structures. So, from a researcher’s
perspective the overhead in designing the algorithms for the presented
matrix-free representations is a road paved with obstacles in the form of
implementation complexity, bugs, maintenance issues and testing.

To address these obstacles we describe a software architecture for the
construction and composition of linear transforms that use the matrix-free
representation in the following section.
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3.4 fastmat: A Library for Matrix-free Operators

In this chapter we outline the design principles, features and performance
of an openly available software package called fastmat [O2, O3]. This
is sparked by the insights gained in the previous sections which indicate
that many practically relevant linear mappings have an efficient matrix-
free representation and result in direct benefits for CS when employed in
practice.

We first give some reasons why a coherent software framework for this
alternative representation can come in handy. Based on these and the
previously given motivations we derive some design criteria we adhered
to when building the architecture and finally we present and benchmark a
short and simple toy example for efficient SSR used in CS. More elaborate
examples for the use of fastmat in practice are given later in Chapter 4.
Finally, we conclude with comparing the proposed software to other
similar implementations and even show how to combine it with other
libraries in the Python [84] ecosystem.

3.4.1 Motivation

After we have dealt with the handling of the two representations of a
matrixM – by means of referring toM and φM or βM – it is clear that
depending on the situation either one of the two representations is more
convenient or better reflects the intention of the author. For example, (3.9)
and (3.8) differ in their transported meaning although they reflect the
same concept of a fast convolution based on the Fourier transform. In
other words, Γ(c) · x and φΓ(c)(x) reflect the same thing with different
connotations on what the author would like to express. However, the
notation relying on φ and β quickly becomes cumbersome and unintu-
itive to work with, due to the lack of freedom in defining these mapping
and the missing flexibility of the rules to manipulate algebraic expression
involving matrices.

This means that at this point the scientific notation necessarily deviates
from the implementation that one resorts to when carrying out simula-
tions or other numerical experiments, since the matrix-free representation
allows for faster code and less memory usage. The more complicated the
structure of the involved linear mappings becomes, the greater the divide
between notation and implementation.

In other cases, one might be aware of the structure of the matrices but
the adaption of existing code to this representation is too cumbersome, or
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the programming skills of the scientist are not advanced enough to dare
such an error prone endeavor in the first place. Then, one usually sticks
with the inefficient implementation, which quickly limits the treatable
problem size and hence the accuracy of the numerical evaluation.

Even existing implementations, aiming at a matrix-free representation,
are often hard to maintain. Since not all corner cases can and will be con-
sidered, implementing tests poses too much work, code is often written
in an ad-hoc-fashion for a single purpose, or the underlying design is
not flexible enough to adapt for slightly different structural assumptions,
which naturally pop up during scientific exploration.

This motivated us to design an open source3 package called fastmat
for the Python programming language that aims at providing a remedy to
the previously described problems. This is achieved by providing a set of
routines to build up lazily evaluated linear operators based on structural
knowledge, which on the other hand can be treated like general matrices
in order to facilitate code that comes close to the scientific notation used
in publications. When providing this flexibility, we aim at maintaining
most of the speedups and memory efficiencies facilitated by the matrix-
free representation, while also designing the whole architecture for easy
extendability. The following sections describe the main aspects in terms
of design principles, architecture and resulting features.

3.4.2 Architecture

In this section we highlight only some aspects of the provided package
and we refer to the documentation4 or the respective software publica-
tion [O3] for a complete overview on the matter. Also note that the pre-
sented code examples do not reflect the actual implementation but rather
give insights in the general approach one should take.

3Released under the rather permissive Apache-2.0 license, see https://www.apache.
org/licenses/LICENSE-2.0.

4See https://fastmat.rtfd.io.
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Main Dependencies

In order to allow an easy integration into the rest of the Python ecosystem
for scientific computing we rely on the Numpy [85] library, which pro-
vides a multi-dimensional data structure and a vast amount of operations
involving this data structure. These operations are often implemented
in Fortran [86] or C [87] in order to avoid the costly influence of the
Python interpreter during these array calculations, hence one can make
use of very efficiently running algorithms with the convenience that is
provided by the high-level features of Python. In addition to Numpy,
there is SciPy [88] that provides even more algorithms for advanced lin-
ear algebra, optimization and signal processing. Finally, we depend on
Cython [89] to statically compile most Python(-like) code into C, which
allows to partially circumvent the Python interpreter and hence the as-
sociated overhead. Especially for small transforms the runtime is mostly
affected by said interpreter, which drives the need to reduce its influence.

Objected Oriented Design

The concept of Object Oriented Programming (OOP) allows to naturally
reflect the hierarchical structure of linear transforms in the codebase itself.
As a starting point, we define a base class fastmat.Matrix, which repre-
sents a linear transform with no structural assumptions. As such it has
two functions: First, it represents the Application Programmable Interface
(API) provided by fastmat to define linear operators and the associated
functionalities that are available for these. Second, it also implements a
linear transform that is in fact represented by a matrix, which is stored as
a 2D numpy.ndarray, so that

φM (x) =M · x and βM (x) =MH · x,

where · represents the conventional matrix-vector product. These two
functions are accessible to the user via fastmat.forward(x) and also via
fastmat.backward(x). Then, any other linear transform making struc-
tural assumptions that results in more efficiently running computations
simply defines a new class that is derived from fastmat.Matrix and re-
places fastmat.forward and fastmat.backward. This process is outlined
in Listing 3.1. One can proceed similarly for other methods, like for the
calculation of the eigenvalues or eigenvectors, which would be straight-
forward in the example given in Listing 3.1.

This approach allows the developer to decide which methods he deems
worth of overriding and which he reuses from the base class implemen-
tation. Hence, one can focus on the methods that are needed for the
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from fastmat.matrix import Matrix

class Doubler(Matrix):
def forward(self, x):

return (2 + 2j) * x

def backward(self, x):
return (2 - 2j) * x

def __init__(self, numRow:int, numCol:int):
self._initProperties(
self, numRow, numCol, np.int8

)

Listing 3.1 It is easy to implement classes that derive from fastmat.matrix. – Ex-
ample for the definition of custom class derived from fastmat.matrix. The
_initProperties method internally sets the minimum properties of the Ma-
trix instance. �

implementation at hand without the need to completely implement all
existing parts of the API provided by fastmat.Matrix.

Other Architecture Aspects

Each fastmat.Matrix has an associated data type, which for instance
allows linear transforms with integer-valued matrices to operate very
efficiently on integer valued vectors. Both in terms of runtime and also in
terms of required memory.

Additionally, through calibration we are able to roughly infer if it is
more efficient to use the matrix-free or the dense representation of a given
transform. Hence, we have means of internally determining what in a
certain case is the optimal execution path, which can be handled without
major intervention by the user.

In order to provide a basic interface for algorithms that depend on
fastmat.Matrix, we also defined a small API for those in order to facili-
tate easy monitoring during execution and other conveniences. Further,
there is a tool called (worker)-bee that is able to automatically carry out
tests of all class implementations for various data types and matrix sizes.
Additionally it allows the convenient generation of benchmarking results.
All these features are also easily accessible by the user.
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from fastmat.matrix import Matrix
import numpy as np

class Fourier(Matrix):
def forward(self, x):
return np.fft.fft(x)

def backward(self, x):
return np.fft.ifft(x)

Listing 3.2 Fourier matrices use the fft and specialize fastmat.matrix. – Simpli-
fied example for the implementation of the Fourier matrix. �

3.4.3 Implemented Matrices

Conceptually, one can differentiate between three different types of linear
transforms that we provide. We shortly outline them and give some
examples by means of the already implemented transforms. Note that
these are not fixed definitions and depending on the view taken with
respect to a certain transform, one can put some of them into different or
multiple of the provided categories.

Explicit Structures

In Example 3.1 we already encountered an explicit structure in the form of
the DFT matrix. These structures usually are not composed of other struc-
tures, but are often depending only on the definition of the size, like the
Fourier (fastmat.Fourier) matrix, or the Hadamard (fastmat.Hadamard)
matrix. Otherwise, they can also depend on vectors or arrays, like diago-
nal matrices (fastmat.Diag). We also consider sparse (fastmat.Sparse)
matrices or permutation (fastmat.Permutation) matrices to be members
of this structure type. See Listing 3.2 for a sketch of an implementation of
Example 3.1.
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from fastmat.matrix import Matrix

class Hermitian(Matrix):
def forward(x):
return self._M.backward(x)

def backward(x):
return self._M.forward(x)

def __init__(self, M):
self._M = M

Listing 3.3 Hermitian transposition simply switches fastmat.backward and fast-
mat.forward. – Simplified example for the implementation of the Hermitian
transpose of a matrix. �

Expression Structures

Once one has some explicit structures at ones disposal, one often would
also like to combine them to more involved expressions. Usually, one
forms various products (fastmat.Product, fastmat.Kron) of matrices
(see Section 3.3.1), sub-selects some columns or rows (fastmat.Partial),
wants to access the inverse matrix or its Hermitian transpose (see Equa-
tion (3.8)). In Listing 3.3 we show how one could implement the Hermi-
tian transpose of a given matrixM .

Note that due to the fact that the resulting composite matrices are
all instances of a common base-class, one can combine these compos-
ite instances easily in other compositions. See for instance Listing 3.4,
where also the provided operator fm.Matrix * fm.Matrix for the matrix-
matrix product is demonstrated.

Composite Structures

With these compositions at hand, one can also save a lot of implemen-
tational overhead, because some matrix structures expose their efficient
transform by means of a smart factorization. For instance, if we consider
the decomposition of multi-level circulant matrices in (3.11), which reads
as

Cn,d =
d⊗

i=1

1
ni
FH

ni
diag

(
d⊗

i=1

Fni · vec c

)
d⊗

i=1

Fni . (3.16)
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import fastmat as fm

C = fm.Circulant(c)
T = fm.Toeplitz(t)
M = fm.Matrix(m)

P = fm.Inverse(fm.Kron(C * T, M))

Listing 3.4 Easy compositions of compositions. – We form a matrix-matrix product
of a circulant and a Toeplitz matrix, which is contained in a Kronecker-product
with an unstructured matrix and this Kronecker-product is inverted. �

This formula motivates us to not implement it explicitly as above, but
rather as outlined in Listing 3.5.

There we make use of fastmat.Kron and fastmat.Fourier to define a
derivation of fastmat.Product to implement fastmat.Circulant with-
out the need to explicitly define the forward and backward. Instead we
have maximized the reuse of code already provided in the package. From
an implementational point of view, this is preferable as long as one does
not need more performance than what is provided by the classes that
make up the circulant class.

These few concepts should suffice to present the general idea behind
the architecture of the package and the implementations that this archi-
tecture allows. The next section briefly mentions some more features that
are not explained in detail.

3.4.4 Additional Features

Due to the imposed structure of the individual classes often additional
quantities can be calculated easily. The API allows to provide efficient
methods for the calculation of column norms, row norms, singular values
and vectors as well as eigenvalues and the respective vectors.

Since the authors are mostly concerned with CS as an application of
fastmat in practice, we provide some compressed sensing algorithms that
can exploit fast matrix multiplication, namely ISTA, FISTA, STELA and
OMP. Hence, we explictily implemented OMP and FISTA according to
Algorithm 3.1 and Algorithm 3.2, respectively. For the algorithms we also
chose an OOP based approach to provide basic functionality like testing,
benchmarking and logging during the execution for all derivations from
a specifically for this purpose designed Algorithm base class.
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import fastmat as fm

class Circulant(fm.Product):
def __init__(self, c: np.ndarray):
self._c = c
self._F = fm.Kron(c.ndim * (fm.Fourier, ))
self._chat = self._F * c.flat

factors = [
self._F.H,
fm.Diag(self._chat.flat),
self._F

]
super()__init__(self, *factors)

Listing 3.5 Circulant matrices are just a fastmat.Product with specifically struc-
tured factors. – Based on the defining vector c we derive fastmat.Circulant
from fastmat.Product and just explicitly define its factors. �

3.4.5 A Simple Representative Example

In order to illustrate how conveniently one can work with fastmat
matrices to implement a CS scenario, we give a complete example in List-
ing 3.6. There we construct a signal that consists of S = 3 superpositioned
and shifted xi · cos(2t− τi) for unknown τi and xi. Hence,A ∈ R512×512

has circulant structure and we compress this sampled signal additionally
with a random Gaussian matrix Φ ∈ R256×512 to get z ∈ R256 from which
we aim to reconstruct x̂ using Algorithm 3.1 running for 12S steps as
indicated by Theorem 2.7.

The code already highlights the fact that it would be easy to employ
a different dictionary A, a different compression scheme Φ or another
reconstruction algorithm. All these building blocks can be exchanged
independently, while the whole processing pipeline still performs well,
since the matrix-free representation can be upheld.
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import numpy.linalg as npl
import numpy as np
import fastmat as fm
import fastmat.algorithms as fma
# define the dimensions and the sparsity
n, S = 512, 3
# define the sampling positions
t = np.linspace(0, 20 * np.pi, n)
# construct the convolution matrix
c = np.cos(2 * t)
A = fm.Circulant(c)
# create the ground truth
x = np.zeros(n)
x[npr.choice(range(n), S, replace=0)] = 1
# compression as unstructured fm.Matrix instance
Phi = fm.Matrix(
np.random.randn(256, 512)

)
y = A * x
z = Phi * A * x
# reconstruct it
omp = fma.OMP(Phi * A, numMaxSteps=36)
xhat = omp.process(b)
# check reconstructed signal
print(npl.norm(A * xhat - y))

Listing 3.6 fastmat makes SSR for CS very convenient. – A complete example for
a CS scenario, whereA is a circulant matrix and Φ is a random Gaussian matrix
and we use OMP to recover x̂. �

3.4.6 Relation to other Software and Libraries

Since matrix-free representations have been around for several decades
now, especially in high performance scientific computing, the SciPy [88]
library has implemented a LinearOperator class, which works quite sim-
ilar to fastmat in the sense that the LinearOperator class also provides
the forward and backward routines. This allows many algorithms in
scipy.sparse.linalg to take these linear operators as an input instead
of a dense system matrix. Recently, this approach has been ported to the
Graphical Processing Unit (GPU) by means of CuPy [90], adopting similar
features.

The algorithms for solving a system of linear equations and the algo-
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rithm for least-squares, as they are offered by SciPy, are used to imple-
ment fastmat.Inverse and fastmat.PseudoInverse respectively. How-
ever, what is missing in SciPy and Cupy is the possibility to conveniently
generate these instances of fastmat.LinearOperator. To address this,
the fastmat.Matrix class allows to generate a matrix-free representation
that is used by SciPy in the form of scipy.LinearOperator directly, in
order to make the algorithms in SciPy readily available to users aiming
to implement their transforms in fastmat. This allows a tight integration
with the rest of the computing ecosystem in Python.

Finally, there are also similar libraries that make use of the present
matrix-free approach. A path similar to ours has been taken by the Py-
Lops [91] developers, which directly instantiate from the already men-
tioned scipy.LinearOperator and provide methods to combine these in-
stance to new linear operator represented by SciPy, hence allowing a more
tightly integrated experience to SciPy. For more low-level programming
languages, like C++, there also exist tool boxes to generate matrix-free
representations, like the library provided by the Rice university [92].

3.5 Conclusion

The presented software has already been used successfully in several
publications, where [O10], [93], [O8], [O9], [O11], [94] are mostly con-
cerned with ultrasonic non-destructive testing. Additionally, in [O6] we
used the implementation of the OMP algorithm for the sparse recovery
step. In [O12] we also employed the OMP algorithm together with the
provided circulant matrix structure origination from a Linear Feedback
Shift Register in order to quickly carry out the simulations. Very recently,
the flexibility of fastmat was exploited in a tomography technique [O15]
using a sparse reconstruction step. Also, the software is used by the free
Pygpc [95] package for the sparse reconstruction stage5. Additionally, [96]
exploits the provided fastmat.Kron and fastmat.Toeplitz structures
for their matrix-free computations on (for instance) high-resolution radar
weather data6.

Hence, the described fastmat library can readily be applied in a prac-
tical context and as such presents a viable option when matrix-free com-
pressive sensing has to be made use of in order to avoid unnecessary
computational overhead. The following chapter, which focuses on two

5See https://github.com/pygpc-polynomial-chaos/pygpc
6See: https://github.com/ymohit/fkigp/
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different applications also draws heavily from the provided software,
when producing numerical simulation results.

There are also several ways how to extend the current architecture.
First, with the recent advances in computing power available on GPUs,
one should take into consideration to allow that computations can be
carried out on this very different hardware. In this case the CuPy library
ise of high value, due to its similarity to the Numpy package in terms
of its API. Second, there are already many Python libraries that imple-
ment specific linear transforms matrix-free, like the Radon transform7

or Wavelets8. If one would provide a thin wrapping layer around these
libraries, the number of available transforms could be increased easily.

7See https://scikit-image.org/docs/dev/auto_examples/transform/
plot_radon_transform.html

8See https://pywavelets.readthedocs.io/en/latest/
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Chapter 4

Imaging Applications

“Es ist alles eine Frage des Ursprungs. Wo ist der Anfang?
Wann ist der Anfang? Gibt es überhaupt einen Anfang? Die
Welt ist voll von solchen Paradoxen. Wir entschließen uns
nur, die meiste Zeit wegzusehen.”

Dark

Up until this point we have presented known and developed some new
theoretical results for CS. We have derived CS as an alternative signal pro-
cessing approach to traditional Nyquist sampling and have theoretically
treated the aspects of signal acquisition, reconstruction guarantees and
algorithmic concepts of this advanced sampling paradigm. Additionally,
we now have software at our disposal that can handle large CS scenar-
ios very easily. Hence, we are in the position to put the presented and
newly developed theory to work in the sense that we tackle two different
applications that make use of these previous results.

First, we present the problem of estimating the locations of material
defects by means of ultrasonic non-destructive testing. For this example
we will outline a comprehensive processing pipeline by conceptualizing
an acquisition scheme based on a volumetric model for the observation,
determining the resulting estimation accuracy and dealing with algo-
rithmic aspects of a feasible implementation for the reconstruction step.
Ultimately, we show that by means of the proposed architecture one gains
a flexible system that can deliver better imaging quality than previously
established processing schemes while the proposed sensing procedure
also considers the possibility to implement. Summarizing, we contribute
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to AOI-M, AOI-C, AOI-R and AOI-H and the presented results have been
published to a great extend in [O11].

Second, we develop a compressive Ultra-Wideband (UWB) radar sys-
tem that extends a state of the art UWB radar system by means of a
random demodulator to realize compressive measurements directly in
the analog domain. We demonstrate the expected reconstruction perfor-
mance and also show how to make use of matrix-free representations to
speed up the reconstruction step. As we derive, this proposed system
allows to increase the allowed Doppler-shift during the acquisition stage
compared to the previous state of the art. This renders it more robust to
the effect of time varying channels. Hence, we make significant contribu-
tions to AOI-C and AOI-H and the results have been published in [O12]
and also in the form of a patent application [P1].
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4.1 Ultrasonic Non-Destructive Testing from a few
Fourier Samples

In Ultrasonic Non-destructive Testing (US-NDT), a widespread approach
is to take synthetic aperture measurements from the surface of a speci-
men to detect and locate defects within it. Based on these measurements,
imaging is usually performed using the Synthetic Aperture Focusing
Technique (SAFT). However, SAFT is sub-optimal in terms of resolution
and requires oversampling in time domain to obtain a fine grid for the
Delay-and-Sum (DAS) implementation. On the other hand, parametric
reconstruction algorithms give better resolution, but their usage for imag-
ing becomes computationally expensive due to the size of the parameter
space and the large amount of measurement data in realistic 3-D scenarios
when using oversampling.

In the literature, the remedies to this are twofold: First, the amount of
measurement data can be reduced using state of the art sub-Nyquist sam-
pling approaches to measure Fourier coefficients instead of time domain
samples. Second, parametric reconstruction algorithms mostly rely on
matrix-vector operations that can be implemented efficiently by exploit-
ing the underlying structure of the model.

In this chapter, we propose and compare different strategies to choose
the Fourier coefficients to be measured as outlined in Section 2.4.2.1 and
hence we contribute to AOI-C. Their asymptotic performance is com-
pared by numerically evaluating the CRB for the localizability of the
defect coordinates. These sub-sampling strategies are then combined
with `1-minimization scheme by means Equation (2.14) to compute 3D
reconstructions from the low-rate measurements. Compared to conven-
tional DAS, this allows us to make use of a physically motivated forward
model matrix, which contributes to AOI-M. To enable this, the projection
operations of the forward model matrix are implemented matrix-free by
exploiting the underlying block 2-level Toeplitz structure as introduced
in Section 3.3.2.5. Finally, we show that high resolution reconstructions
from as low as a single Fourier coefficient per A-scan are possible based
on simulated data as well as on measurements from a steel specimen
where we also compare two different reconstruction approaches based on
Algorithm 3.1 and Algorithm 3.2 respectively, hence we address AOI-R.
We also show that the employed compression scheme can be readily im-
plemented in the analog domain, which hence takes into account AOI-H.

Summarizing, based on the publications [O9, O11, O16, O17, O10, O8]
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dx

dy

x

y
z (depth)

Figure 4.1 Creating a synthetic aperture by moving a transducer – Visualization how
a regular 2D synthetic aperture is acquired by means of a transducer. �

we present a modular processing pipeline, where we demonstrate how
to attain different realizations of this pipeline and discuss the respective
advantages and drawbacks. Additionally, we give certain design criteria
which building blocks for the processing to use.

4.1.1 Introduction

4.1.1.1 State of the art

In ultrasound Nondestructive Testing (NDT) defects are detected and
localized by inserting an ultrasonic pulse into a specimen and collecting
the resulting echo signals [97]. A typical measurement setup consists of a
single transducer or transducer array that is used both as transmitter and
receiver. In the single channel case the transducer is moved on the speci-
men surface and measurements are collected at each scanning position to
form a so-called synthetic aperture, see Figure 4.11.

The measurements in these setups are usually acquired in time domain
and sampled at a frequency much higher than the Nyquist frequency to
create a dense time grid that the subsequent DAS can use to achieve a
well-resolved reconstruction. An image of the specimen interior is then
commonly computed based on the SAFT [98] or its multi-channel exten-
sion [99]. More recently, model based approaches have been introduced,
where the main idea is to treat the reconstruction as an inverse problem
based on a physically derived model matrix that is solved using standard
tools from linear algebra [100]. This enables us to include more complex
mechanisms of wave propagation that cannot be captured by simple DAS
such as attenuation and temporal dispersion [101] or acoustic shadow-

1I thank F. Krieg for the TiKZ code that produces this graphic.
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ing [102]. Additionally, one can account for the pulse shape or elementary
signature [103], which is usually modeled as the real part of a Gaussian
windowed sinusoid [104].

The mentioned oversampling in time domain leads to a large amount of
measurement data, which in some cases may result in a computationally
expensive reconstruction, especially when it comes to 3D imaging [O9].
However, parametric models can be combined with CS techniques [11]
to reduce the amount of measurement data. Initially, mostly random
Gaussian measurement kernels as introduced in Section 2.4.1.1 have been
investigated [105] for this compression step, since for those, theoretical
guarantees like those in Equation (2.19) can be established ensuring that
the reconstruction is robust and stable. However, as we argue in Sec-
tion 2.4.2.1, the design of a generic CS hardware that implements these
Gaussian measurements is a challenging task [106].

To reduce the amount of measurement data per incoming echo signal,
prior work has shown that highly structured signals such as ultrasonic
recordings can be completely recovered in frequency domain from sam-
ples taken at rates significantly below the Nyquist-rate as given in Theo-
rem 2.1, provided that they are measured with an appropriate sampling
architecture [15]. Based on the recovered Fourier coefficients, different
reconstruction strategies can be employed. One approach is to use beam-
forming in frequency domain [107]. Another approach is to formulate
the reconstruction as an inverse problem based on a physically motivated
forward model and extend this model by the compression scheme. In
the CS context, sub-sampled Fourier measurements can guarantee stable
and robust reconstruction since a randomly generated partial Fourier ma-
trix fulfills the D-RIP [21, 41, 40] as we have outlined in Theorem 2.9. It
has been shown that high quality 3D images based on synthetic aperture
measurements can be reconstructed from only a small number of Fourier
samples collected at each measurement position [O10]. Additionally, the
acquisition of Fourier coefficients is an attractive choice, as hardware ar-
chitectures to measure them directly already exist [108, 109, 110, 111]. In
multi-channel setups, the compression is often realized by sub-sampling
the channels of a large array [112, 113, O16], which exploits the same
subsampling principles as they are used in sparse array design.

Often, the sparsity is assumed in the parameter domain as the number
of defects inside the specimen is small [114]. Hence, compressed obser-
vations can be post-processed by means of SSR to solve the parameter
estimation problem at hand using methods like those in Algorithm 3.1
or Algorithm 3.2. These techniques have proven to produce images with
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superior quality [103] and better resolution of closely spaced defects [115]
compared to images using only DAS.

To reduce the computational effort that arises when aiming for high
estimation quality, efficient implementations exploiting the structure of
the involved linear mappings need to be employed [116]. Often these
structure exploiting algorithms allow a high degree of parallelization so
that further speed-ups are possible by the use of a GPU [O9, 117].

Additionally, a parametric model allows to analyze the influence of
the parameters on the measurements. One way to do so is to study the
estimation variance by means of the CRB [118], which we introduced in
Section 2.4.4. In the ultrasound field, the CRB has been used to quantify
time delay estimation jitter and the impact of the choice of bandwidth
and center frequency of ultrasound pulse-echo measurements [119, 120],
and the achievable resolution when locating single point-scatterers [121].
Moreover, the CRB has been used as a criterion for array design and
sensor placement [122, 123] as well as to optimize spatial sub-sampling
patterns in CS [O17].

4.1.1.2 Motivation

For data acquisition we focus on synthetic aperture ultrasound measure-
ments in NDT. A single transducer is placed on the planar surface of a
specimen and moved to different positions on a regular 2-D grid, see Fig-
ure 4.1. Specifically, we are interested in scenarios where a high resolution
3D reconstruction based on these measurements is required, for example
to resolve closely spaced scatterers. Since the goal is to detect defects,
we need to scan the whole region of interest leading to a large number
of measurement positions and therefore a large amount of measurement
data.

A Three-Stage Model for Inspection Measurements

In order to link our signal processing architecture with the task of in-
spection from acquired measurement, we introduce an abstract model
that distinguishes the data processing into several steps. Inspection mea-
surements can be described using a three-stage model, comprised of (1)
data management (collection and storage of measurement data), (2) sense
making (data analysis, analytics and feature extraction) and (3) decision
making [124]. From stage to stage, data volume reduces while data value
increases.
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For manual inspections, a trained technician usually performs tasks
of all model stages in full during inspection. However, expertise is only
required for decision making in the final stage, leaving the (on-site) data-
management and (off-site) sense-making stages up for automation. As a
result, the required effort for on-site inspections can be reduced greatly.
However, since expertise is no longer involved prior to the final deci-
sion making stage, data filtering also can no longer be applied in earlier
stages. This not only leaves an overwhelming amount of unfiltered data
to handle, but also clogs the computationally intense processes of the
sense-making stage. To illustrate the amount of data gathering required,
a small example size with a scanning grid of 100× 100 locations and an
A-scan time-length of 1000 samples is already sufficient. With 16 bit data
quantization, one full synthetic aperture measurement requires 20 MB of
data. Further assuming 100 different measurement positions for a single
inspection, a total volume of 2 GB of data accumulates. To reduce the
amount of measurement data, a natural approach in this scenario is to
minimize the amount of measurement samples per scan position without
losing relevant information. Instead of measuring on a dense grid in time
domain (sampling frequencies above 100 MHz are common, although the
ultrasound pulse rarely exceeds a bandwidth of, say, 10 MHz), we can
and should use existing hardware architectures [109, 111] to sample the
data more efficiently. Based on Corollary 2.1 obtain Fourier coefficients
from samples taken at a much lower rate.

The adoption of CS enables the modification of the three-stage model
on the hardware side so that it mimics the tasks of the technician. Com-
plex post-processing routines are only necessary as a final step prior to
decision making, meaning the operations performed by the sensors can
be simplified and hence streamlined. Reducing the data rate directly at
the measurement stage has the added benefits of diminishing power re-
quirements and enabling data streaming to a possibly remote processing
unit [125] at much lower rates than without the compression step. Further,
progression toward the so-called NDE4.0 [126] increases the attractiveness
of embedded sensors for Structural Health Monitoring (SHM) [127] sce-
nario in which power consumption severely constrains active sensors. �

A naturally arising question is: how many and which measurements
are necessary for a given sub-sampling methodology to result in robust
and stable reconstruction? This question is a specific version of the setting
in Remark 2.4. Considering the pulse-echo of a single volume-element
within the specimen, an answer to this question is already indicated by the
observation that the echo caused by said volume-element is systematically
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represented in a large number of adjacent A-scans. Describing the linear
measurement model in all three spatial dimensions reveals a structure
presenting large amounts of spatial redundancy between A-scans.

In [O8], this time-domain model is extended by sub-selecting only a
few Fourier coefficients in frequency domain from each A-Scan, effectively
representing a compression of the measurement data. The parameter es-
timation problem of finding defect positions based on these compressed
measurements is formulated as an SSR problem, hence a specific version
of (2.5) or (2.4). As this exhibits a high dimensional parameter space, it
quickly becomes computationally expensive or even intractable. Standard
linear algebra solvers that rely on explicit representations of the system
matrix, already break down on moderate problem sizes, since dense or
even sparse representations of the operator matrix quickly become infea-
sibly large. As illustration, for the given example the operator matrix
is of size (1000 · 1002)2, even exceeding the memory capabilities of cur-
rent mainframe systems. Instead, it is possible to derive a matrix-free
representation of the operator, which exploits the embedded structure of
the matrix in a computationally- and memory-efficient way such that the
methods in Section 3.2 become applicable. The proposed implementation
is designed to be flexible in terms of modeling parameters (e.g. pulse
shape, dimensions of the specimen, grid dimensions of the Region of In-
terest (ROI)) as well as the measurement strategy (different compression
strategies, and/or uncompressed measurements).

In addition, most of the existing algorithms which rely only on matrix-
vector products and which are similar to those in Section 3.2 usually have
side constraints that implicitly require more knowledge about the matrix.
Therefore, implementations need to be tweaked to account for this. To
give an example, the FISTA requires the largest singular value of the
system matrix in order to select the correct step size, which has to be
obtained also in the case of the matrix-free representation. Although an
approximation using ARnoldi PACKage (ARPACK) is possible in our
framework, this adds a large computational overhead that in some cases
can and should be omitted. Lastly, the implementation should be easily
usable with different computation setups available, e.g. likewise on a
GPU or Central Processing Unit (CPU). In order to accomplish this, one
can rely on the architecture presented in Section 3.4.

In order to precisely quantify the effects of our estimation procedure,
we investigate the proposed methodology based on the asymptotic and
real-world performance. The asymptotic performance is given in terms
of the CRB, as introduced in Section 2.4.4, of the resolution of locating
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single point-scatterers. This is helpful, as the CRB directly quantifies how
parametrizing the measurement setup, e.g. how many Fourier coefficients
are measured, influences the parameter estimation. The real-world per-
formance is evaluated based on the reconstruction of simulated as well
as real ultrasound measurement data.

4.1.1.3 Main contributions

We develop and investigate a complete framework for high resolution
ultrasound imaging based on a small number of Fourier measurements
and a 3D data model representing the propagation of the sound waves in
the medium. To obtain these measurements, we propose several sampling
strategies and compare their performance.

We first derive a theoretic scaling law for synthetic aperture ultrasound
measurements using the strategy of sampling uniformly at random based
on Theorem 2.9 as introduced in Section 2.4.2.2. Specifically, we show
that the required number of Fourier coefficients in this case only depends
on the worst case sparsity of all scans, i.e. the scanning position that
sees the maximum number of echoes, arguing that it does not exploit the
correlation between adjacent scans. In comparison, the novelty of the
sampling strategies proposed in our work is twofold. First, we propose
to incorporate prior knowledge about the spectrum of the inserted pulse
into the design of the sampling pattern.

This sparks two possible strategies, which we term maximal and ran-
dom energy-based sampling. They alleviate the need for additional random
sign-flips prior to the Fourier sampling as dictated by Theorem 2.9 and
therefore simplify the hardware requirements when implementing the
Fourier subsampling in the analog domain. Second, we exploit the de-
scription of the data in form of the proposed 3D model by varying the
sampling pattern at each scan position using the random energy-based strat-
egy. The strong spatial correlation between the measurements at adjacent
scan positions leads to a trade-off between temporal and spatial mea-
surements. However, since we need to scan the specimen at a certain
minimum density to ensure defect detection, this can mainly be exploited
to reduce the number of temporal samples. In fact, we show numeri-
cally that when the number of spatial scanning positions is large, only
taking one but varying Fourier coefficient per A-scan position does not
substantially decrease the CRB compared to the uncompressed case in a
single defect scenario (or a scenario where the distance between defects
is sufficiently large).
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The ultrasound measurements are modeled using a parametric for-
ward model that conveys both the ultrasound propagation as well as the
received pulse shape. The analytic signal is used instead of only modeling
the real-valued RF signal.

The matrix-free implementation for the reconstruction is achieved by
exploiting the block-wise 2-level Toeplitz structure of the forward model.
This enables to implement the effect of both the subsampling and the
model in the reconstruction using only FFTs and indexing operations.
The implementation is done in Python using the fastmat package from
Section 3.4. The reconstructions are carried out via the matrix-free version
of FISTA as given in Algorithm 3.2. The resulting matrix-free operator
can not only be used for high resolution parametric reconstruction but
also, by applying its adjoint on the measurements, yields a single-step
“compressed SAFT“ reconstruction that considers our assumptions about
the model and the compression scheme.

With this implementation at hand, using simulated as well as measure-
ment data it is shown that the spatially randomized strategies allow to
produce 3D images from a single Fourier coefficient per A-scan allowing
precise localization and sizing of several test defects.

The remainder of this chapter is organized as follows: In Section 4.1.2
we derive the ultrasound propagation model used throughout this paper.
In Section 4.1.3, we introduce the novel Fourier acquisition schemes and
derive a theoretic scaling law based on CS theory. In Section 4.1.4, we
discuss the reconstruction process and provide concrete matrix-free algo-
rithms for the implementation of the model and compression operator.
Using FISTA as our example algorithm, we discuss practical solutions to
approximate the required largest singular value based on a matrix-free
software implementation. In Section 4.1.6, we compare the hardware
requirements as well as the computation complexity of the proposed CS
architecture compared to state of the art systems. In Section 4.1.5, we de-
rive the single-scatterer CRB for the model and investigate the influence
of the compression on the localization capability of the measurements
asymptotically. Then, in Section 4.1.7, we provide example reconstruc-
tions from numerical simulations as well as using realistic measurement
data to back up the theoretic claims. Finally, Section 4.1.8 concludes the
paper.
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4.1.2 Observation Model

4.1.2.1 Ultrasound data model

We consider a pulse-echo setup, where a single transducer is used to
insert an ultrasonic pulse p : R → R into the specimen, which we also
assume to be the received pulse. This means we assume dispersion in the
medium to be negligible. The specimen is considered to be homogeneous
and isotropic with constant speed of sound c ∈ R+ and to possess a
flat surface. It contains D ∈ N point-like defects located at unknown
positions (xd, yd, zd) ∈ R3 for 1 6 d 6 D that are to be localized. Note
that now the sparsity S has been turned into D representing the number
of defect. We assume that we can omit reflections from known features
of the specimen (such as the back wall) by appropriate windowing while
multiple scattering is ignored, such that only the D reflections stemming
from the interaction of the incident field with the defects remain.

We first introduce a continuous model for the observations. In order to
circumvent the limitations of real-valued band-pass signals that are prone
to amplitude modulation due to phase offsets in the carrier, analytic
signals are employed instead. Although such offsets can be handled
even when working with real-valued signals, this choice serves the dual
purpose of allowing the estimation and compensation of phase offsets
more naturally, as will become evident in the following definitions. If we
define f (a) as the analytic signal of a function f via

f (a)(t) = f (t) + H{ f (t)}, (4.1)

where H{·} is the Hilbert transform of f , the analytic noiseless signal
b(a)

x,y : R→ C received by the transducer from position (x, y) ∈ R2 can be
modeled as

b(a)
x,y(t) =

D

∑
d=1

αd · gx,y(xd, yd, zd) · p(a)(t− τx,y(xd, yd, zd)). (4.2)

Here, αd ∈ C are the complex reflectivities and for each (x, y) τx,y : R3 →
R+ is the function modeling time of flight from the transducer at sample
position (x, y) ∈ R2 to the d-th reflector at position (xd, yd, zd) ∈ R3 and
back. It can be computed as

(xd, yd, zd) 7→ τx,y(xd, yd, zd) =
2
c

»
(x− xd)2 + (y− yd)2 + z2

d. (4.3)

Additionally, gx,y : R3 → R+ represents the transducer characteristic,
which models its directivity of the transducer at position (x, y) towards
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the direction of (xd, yd, zd). In frequency domain, we obtain

Bx,y(ω) =
D

∑
d=1

αd · gx,y(xd, yd, zd) · P(ω) · e−ωτx,y(xd ,yd ,zd)), (4.4)

where the function P : R → C is the Fourier transform of the pulse
function p. To simplify the notation we introduce the atomic functions
hx,y(xd, yd, zd, t) : R4 → C as

hx,y(xd, yd, zd, t) = gx,y(xd, yd, zd)p(a)(t− τx,y(xd, yd, zd)) (4.5)

and we can now write concisely

b(a)
x,y(t) =

D

∑
d=1

αd · hx,y(xd, yd, zd, t). (4.6)

Next, we transform the continuous model into a discrete one. This con-
sists of several steps. First, we naturally have to assume a discrete and
finite set of observation locations. Second, we discretize the received sig-
nals by means of Nyquist rate sampling. Note that this does not mean
we actually need to have access to this sampled observation, but instead
we use it as a discrete and finite, hence convenient, representation of the
continuous signal. As outlined in Section 2.1.1 it allows us to write linear
transforms on the signal as matrices. Finally, we also make the same
assumptions about the reconstructed signal. It is composed of defects
residing on the same grid as we used for the observations. These regular-
ity assumptions about the grid are necessary for efficient recovery to be
possible as we see later on.

To define the observation grid we take synthetic aperture measure-
ments at positions (x, y, z = 0) ∈ R3 located on the surface of the speci-
men lying on an equidistant grid defined as

G2D = {(x, y)|x = nx · ∆x, nx ∈ {0, . . . , Nx − 1} ,

y = ny · ∆y, ny ∈
{

0, . . . , Ny − 1
}},

where ∆x = ∆y is the grid spacing and Nx ∈ N and Ny ∈ N are the
number of samples in each spatial dimension.

After discretizing the observations b(a)
x,y : R → C with a sampling

rate ts = f−1
s to vectors bx,y ∈ CNt , resulting in Nt samples, the full set of

Nx × Ny measurements can be combined into a single vector b ∈ CNx Ny Nt .
The same discretization process as for the observation and reconstruc-

tion locations as well as the sampling of the functions along time can be
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applied to the atomic functions hx,y and we define a matrix

Hi,j = hnx,i∆x,ny,i∆y(nx,j∆x, ny,j∆y, nz,j∆z, nt,its), (4.7)

where i = nt,i · Nx · Ny + ny,i · Nx + nx,i and j = nz,jNx Ny + ny,jNx + nx,j
realize the same vectorization of hx,y as with b(a)

x,y . In other words, the col-
umnH·,j contains the vectorized and discretized volumetric observation
of a single reflector at (vectorized) position j. This is expressed in discrete
time domain concisely via

b =Ha (4.8)

and as such it is the basis for the following introduction of the sampling
scheme. Note that compared to (4.6) the vector a ∈ CN now contains D
non-zero elements with values αd at unknown positions.

4.1.2.2 Data Acquisition

The vector b ∈ CN contains the discrete time samples of A-scans from all
different measurement positions stacked on top of each other. However,
we wish to consider compressed observations of the A-scans. So, instead
of measuring b directly, we employ a compression step and measure a
subsampled version of it. Following (2.1) in Section 2.1.2 the compressed
measurement is given by

y = Φ · b+n = ΦHa+n. (4.9)

Here, n ∈ CN represents measurement noise with currently unspecified
distribution. If we consider a single A-scan we consequently have

ynx ,ny = Φnx ,nybnx ,ny +nnx ,ny .

For the compression matrix we assume it has the structure

Φnx ,ny = Snx ,nyFNt Σnx ,ny

where FNt is the DFT matrix, Snx ,ny ∈ Rn f×Nt is a selection matrix select-
ing n f out of the Nt Fourier coefficients, so S is a row-subselected identity
matrix. Moreover, Σnx ,ny is a full rank diagonal matrix, a so called mixing
matrix as outlined in [40], [41] and already presented in Section 2.4.2.1.
Summarizing, the compression consists of first mixing followed by a DFT
and then finally subselecting a few of the thereby computed Fourier coef-
ficients. This merely depicts the mathematical model and we deal with
possible hardware implementations in Section 4.1.6.
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Considering the full vectorized, discretized and compressed observa-
tion, we can write

y = blkdiag{Φ1,1, . . . , ΦNx ,Ny} · b+n (4.10)

as a linear model for the compressed observations. Here blkdiag denotes
the block diagonal operator, which aligns the matrices in its argument as
blocks on the diagonal of a matrix containing zeros for all other entries.

Remark 4.1. We would like to stress the fact that the following three sec-
tions on the data acquisition, algorithms, and hardware implementations
are independent on some parts of the specific model presented above.
It would be straightforward to use a frequency dependent transducer
characteristic g, adopt to a slightly altered geometric setup by defining
a different time of flight τ or define different grids for the sampling and
reconstruction positions.

However, the structure of H we derive in Section 4.1.4 depends on
the sampling and reconstruction positions defined via G3D. For different
acquisition schemes one would have to study the altered properties ofH
in order to derive efficient reconstruction algorithms.

We assume that the pulse shape p follows a known model. Estimating
it by a measured pulse shape (e.g. from a backwall echo) from a reference
measurement is another valid option. Further, the choice p(t) = δ(t) leads
toH becoming a discrete DAS-operator (cf. Section 4.1.4.1). Still, already
the “simple” model of this section represents realistic measurement data
reasonably well, as validated in Section 4.1.7.2.

The spectrum of any realistic p(t) decays exponentially for | f | → ∞.
For that reason, the DFT is a valid proxy to model the Fourier coefficients,
since no (practically relevant) aliasing can occur.

The matrix Σnx ,ny is necessary for some of the later presented sampling
strategies. In some sense it results in the vectors Σnx ,nybnx ,ny entries being
centered random variables, which allows proofing reconstruction results
in this setting, which are based on concentration of measure results from
probability, see Section 2.4.2.1 for further details. �
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4.1.3 Fourier Subsampling

Based on the proposed data acquisition scheme, we can distinguish differ-
ent subsampling strategies, which we will discuss in the following. Here,
we first focus on the mathematical formulation and an analysis from the
signal processing perspective. Hardware considerations are deferred to
Section 4.1.6.

4.1.3.1 Strategies

Random Sampling

Classically, the theory of compressed sensing started out by deriving re-
construction results for random matrices [11] as outlined in Section 2.4.1.1.
In the proposed Fourier subsampling approach this translates to the diag-
onal entries of Σi following an independent Rademacher distribution, so
Σi = diag{ξi} for a Rademacher vector ξi ∈ {−1, 1}Nt . For a Rademacher
vector, the entries are drawn independently from the uniform distribution
on {−1, 1}.

This mixing matrix can be justified several ways. First, by invoking
the results in Corollary 2.1, which show that the matrices Σx,y allow to
derive that the matrix Φ has favorable geometric properties. Second, in
cases where the spectrum of the received signal cannot be determined
beforehand reliably enough, the mixing converts the signal into a ran-
dom sequence which uses the whole bandwidth such that each Fourier
coefficient contains roughly the same information about the signal.

Adding to the randomness, each Snx ,ny selects from the uniform dis-
tribution on all subsets of {1, . . . , Nt} with magnitude n f . If we select
this subsampling strategy, we indicate it with a subscript of the complete
compression matrix via Φrnd.

Maximal Sampling

The random sampling approach neglects any prior knowledge one has
about the inserted pulse and its spectrum. One way to improve this would
be to consider p̂ ∈ CNt as the DFT of the inserted pulse and to define

Jq = argmax
q,n

{|p̂n|}

as the index set of p̂ that refers to the q entries with largest amplitude.
Now we set Σnx ,ny = I for all i 6 Nx · Ny and each Snx ,ny such that it
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subselects the entries in Jn f . This subsampling strategy is denoted as
Φmax.

Random Energy-based Sampling

The choices Φrnd and Φmax represent two very different approaches. The
first focuses entirely on randomness and does not assume prior knowl-
edge about the pulse, whereas the latter assumes perfect spectral knowl-
edge about the pulse only and as such does not need to make use of
random subsampling and can resort to a deterministic selection of the
Fourier samples. However, in reality one mostly has approximate knowl-
edge of the pulse. So the former approach would be too pessimistic and
the latter too optimistic.

As a trade-off between the two strategies, we impose a random sam-
pling based on the frequency power distribution of the inserted pulse.
This is achieved by selecting a subset of Fourier coefficients by means
ofSnx ,ny in such a way that the probability that the ith frequency bin is
contained in the subset is proportional to the power of the pulse in that fre-
quency bin. Since we are drawing from all possible Fourier bins without
replacement, this has to be an iterative process.

Let qi for i 6 Nt be the normalized power of the pulse in the i-th
DFT-coefficient, so we have

qi = |p̂i|/‖p̂‖1.

Now, we iteratively construct a set of indices J based on q ∈ RNt . Assume
we have already drawn n < n f indices from the set {1, . . . , Nt} into
the set Jn. Then we set qJn = 0 and then normalize q such that the
remaining entries sum up to 1. Then we draw another index jn+1 and
set Jn+1 = Jn ∪ {jn+1} and iterate until n = n f . We again set Σi = I and
denote the compression matrix selected according to this strategy with
Φnrg.

Independent A-Scans

First, one notices that during the treatment of the individual A-scans it is
possible to choose Snx ,ny = S0 for all nx, ny. This implies that we collect
the same Fourier coefficients for all A-scan positions. In case we do not
keep them fixed, we add a subscript to the compression matrix as Φ..., f .
The same distinction can be made for the choice of the mixing done by
Σnx ,ny . If we vary them across A-scans we indicate this via Φ...,m. Note
that Φ...,m, f is also possible. In case of the same mixing and subsampling

124



Chapter 4. Imaging Applications

Snx ,ny = S0

yes no

Σnx ,ny = Σ0
yes Φmax, Φnrg, Φrnd Φnrg, f , Φrnd, f

no Φrnd,m Φrnd,m, f

Table 4.1 Different aspects of the sampling strategies can be combined freely – Sampling
strategies considered in this work �

for each A-scan, we can also write Equation (4.10) more concisely

Φ = (SFNt Σ)⊗ INx ⊗ INy ,

where ⊗ defines the Kronecker product, to describe the compression ma-
trix. In Table 4.1 we summarized all possible and discussed combinations.

4.1.3.2 Analytic vs. Real Representations

Generally, we assume p̂ in case of maximal sampling and energy-based
sampling to be the DFT of the analytic signal, hence only the positive half
of the spectrum is nonzero and therefore [p̂]n = 0 ∀n > bNt/2c. Under
this assumption, the selection matrices Si will only pick from the first
bNt/2c rows of F . In [O8], we used a real-valued model forH and there-
fore symmetrized the sampling patterns by additionally choosing Nt− Jn f

such that in total 2n f Fourier coefficients are sampled. The symmetrized
sub-sampling matrices are denoted via Φ(Re).

4.1.3.3 Performance Guarantees for Random Subsampling

Now we study the ramifications of the proposed Fourier subsampling
strategies. In fact, we are able to establish some analytic results for one
of the presented approaches. In this chapter we focus on the case where
Φ = Φrnd, so each A-scan is pre-multiplied with the same Σ and we pick
the same Fourier coefficients by means of S, so that

Φ = (SFNt Σ)⊗ INx ⊗ INy .

As we have seen in Section 2.2.2, the recovery performance of sparsity
exploiting algorithms and the employed compression strategy can be mea-
sured in terms of the RIP, if a signal b is sparse in an orthonormal basisH ,
which means that in b =Ha the vector a is sparse. If on the other hand
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a is sparse, butH is not a basis anymore, but an overcomplete dictionary
as in our case, then the so-calledA-RIP introduced in Section 2.2.5 yields
the natural framework for reconstruction guarantees, which we make use
of in the following by considering theA-RIP forA =H .

If we consider a single A-scan vector bnx ,ny recorded at an arbitrary but
fixed measurement position (x, y) the pulse-echo model in Equation (4.2)
results in bnx ,ny being a linear superposition of shifted versions of the in-
serted pulse p. Hence, it follows that bnx ,ny = Gαnx ,ny , where the columns
of G are the discretized and shifted versions of the inserted pulse, ren-
dering G = Γ(p) a circulant matrix (see Section 3.3.2.1), when p is the
sampled pulse waveform. In other words: the matrixG is the sparsifying
dictionary for individual A-scans. Now, according to our compression
scheme, we have ynx ,ny = SFNt ΣGαnx ,ny for our compressed observa-
tions at a single scanning position x, y.

Since the total number of defects in the specimen is assumed to be small,
i.e. a in Equation (4.2) being D-sparse, we have that each αnx ,ny is sparse
as well. This implies that each bnx ,ny is sparse in the dictionary G. Let
now dmax = maxnx ,ny ‖αnx ,ny‖0 be the maximum encountered sparsity-
level over all A-scans. However, the sparsity is not prevalent with respect
to a basis but to the overcomplete dictionaryG. This sparks the need for
a modified reconstruction guarantee presented in the next definition.

The following result calculates theH-RIC of the matrixA = C⊗ INx Ny

for an arbitrary Kronecker factor C and as such it delivers necessary con-
ditions for efficient, stable and robust recovery to happen when compress-
ing signals with C ⊗ INx Ny and when the signals are sparse with respect
to the dictionaryH in (4.7).

Theorem 4.1. For each k ∈N it holds that theG-RIC δGk of the matrixA and
theH-RIC of C = A⊗ INx Ny are equal. �

Proof. From the definition of δGk and the vectors αnx ,ny we have for every
(nx, ny) that

(1− δGdmax
)
∥∥∥αnx ,ny

∥∥∥2

2
6
∥∥∥Aαnx ,ny

∥∥∥2

2
6 (1 + δGdmax

)
∥∥∥αnx ,ny

∥∥∥2

2
.

Together with the definition of G and ynx ,ny and the properties of the
Kronecker product the statement directly follows. �

The theorem above illuminates how, given the proposed sensing sce-
nario, only the properties of the A-scans and their sparse representation
influence the recovery performance. Additionally, only the most complex
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A-scan in the sense that it is the least sparse one determines the worst
case performance. Now, since randomly sub-selected Fourier matrices are
known to have a low G-RIC (as outlined in Corollary 2.1), Theorem 4.1
shows how to asses the recovery performance and infer the number of
necessary measurements. Moreover, one is able to determine the number
of Fourier coefficients n f such that the G-RIP of the appropriate order
holds with a high probability, which delivers stable, robust and efficient re-
covery if we employ `1-minimization as given in Equation (2.14). This we
already formalized in Theorem 2.6, where it is shown that δGdmax

< 0.08 is
a sufficient condition for stable recovery to happen in every A-scan. Com-
bining the requirements in Theorem 2.6 with the results in Section 2.4.2.2
we can finally state that n f has to satisfy

n f > Ĉ log Ntdmax log(dmax) log2(50dmax). (4.11)

We would like to stress the fact that in the above analysis we derived a
performance bound for the 3D reconstruction process, while only dealing
with the restricted isometry constants associated to the dictionary of the
single dimensional A-scans. In other words, since we are only compress-
ing / subsampling in one dimension, this dimension alone determines the
reconstruction performance. Further, the choice of n f in a practical setup
can be based on a worst-case number of defect echoes that are expected
to appear in a single A-scan.

Remark 4.2. On average Φrnd selects around n f /Nt parts of the energy
that is contained in the reflected waves. As such of the strategies con-
sidered in this work, it has the worst SNR. However due to the random
mixing done by the Σnx ,ny it maximizes the bandwidth of the measure-
ment, since it is approximately the same as the inserted pulse.

The strategy using Φmax maximizes the SNR, since it collects the most
energy from the pulse by sampling at the around the peaks in the spec-
trum. However, due to the typical shape of an ultrasound pulse in time-
and frequency domain, the resulting samples are closely spaced, which
directly results in a low bandwidth of the acquired signal.

As we see in Section 4.1.7, the two strategies discussed above perform
as expected and a trade-off between the two is represented by Φnrg. So
depending on the goal during reconstruction in terms of depth-resolution,
the different strategies cover the whole range from high SNR and poor
bandwidth to poor SNR and high bandwidth.

The problem of estimating the model order dmax to set n f before carry-
ing out the reconstruction is hard to overcome in a CS setting. There is a
large literature on sparsity order estimation with various advantages and
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drawbacks, see [O1], [53], [54], [58] and we outline one specific approach
in Section 2.5. Often a satisfactory method for model order selection de-
pends very much on the specific applications’ side constraints. In our
case, for instance, on the size of a typical defect, the number of defects
and their shape.

Note for the recovery guarantees that they only represent scaling laws
and not explicit bounds on the number of measurements due to the fact
that there is a (here) unspecified constant factor involved as we already
indicated for instance in Figures 2.1 and 2.2. However, even if one would
compute it explicitly using the results in [40] and [41] these estimates
would be too conservative for practical considerations. In case when one
has empirical evidence that for a certain sparsity order dmax, problem
size N and number of measurements n f the recovery is satisfactory, one
can infer the necessary number of measurements if the problem size or
sparsity change. �

4.1.4 Reconstruction

Due to the more involved sampling process compared to traditional
Nyquist sampling we have already argued in Section 2.2 that the recon-
struction step is similarly more complex and especially non-linear. Due
to the large problem size usually encountered in US-NDT we have to take
several additional measures to render the reconstruction stage an efficient
process.

4.1.4.1 Algorithms

Now that we have established the data model and studied the compres-
sion schemes, it first is necessary to formulate viable algorithms in order
to reconstruct a in Equation (4.9) for all discussed compression strategies.
Due to the size of ΦH , we resort to the matrix-free representations as
introduced in Chapter 3 in the form of φΦH and βΦH . In the following
we present three different approaches for the imaging process based on
the compressed data.
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Synthetic Aperture Focusing Technique

As a first simple strategy we apply the backward projection to the obser-
vation data which yields the estimate aSAFT = βΦH(y) which is tradi-
tionally called SAFT when Φ is the identity matrix and h(t) = δ(t) (cf. for
example [128]). However, our approach in formulating the data model
and compression scheme directly in terms of matrix vector products yields
a more general implementation that can also cope with compressed data
and more involved physically motivated forward models. As another spe-
cial case, our formulation also yields a (compressed) synthetic aperture
formulation of the excitelet reconstruction [103].

Sparse Signal Recovery

Since SAFT does not exploit sparsity, we will see in Section 4.1.7 that the
imaging can substantially be improved by sparsity aware algorithms. In
Section 2.2 we essentially presented two strategies for estimating sparse
vectors from compressed measurements. If we reformulate (2.12) and
(2.14) to our problem at hand, we get

min
a∈CM

‖a‖0 subject to ‖ΦHa− b‖2 6 η,

which can be solved by means of Algorithm 3.1 using the matrix-free
representation of ΦH and

min
a∈CM

‖ΦHa− b‖2
2 + λ(η)‖a‖1,

which can efficiently solved by Algorithm 3.2 respectively also resorting
to the matrix-free representation.

In the following we will focus on FISTA as a representative example for
many so-called proximal gradient algorithms used in compressed sensing,
since it provides a good trade-off between simplicity and performance.
However, we would like to stress that in general the following consid-
erations provide a blueprint on how to apply matrix-free reconstruction
algorithms that use forward and backward projections to the problem at
hand.
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4.1.4.2 Fast Transforms

To devise efficient implementations for φΦH and βΦH it is necessary to
consider the structure of the matrices Φ andH in order to make the soft-
ware presented in Chapter 3. We will treat both matrices separately and
then make use of Section 3.3.1 to get an efficient matrix-free representation
for the complete system.

As it turns out, we can show thatH in Equation (4.9) is a block Toeplitz
matrix as defined in Section 3.3.2.5. The key observation is that moving
any scatterer in the x-y-plane while also displacing the measurement
position by the same amount, does not change the data captured by the
transducer up to some boundary effects. This is formalized in the next
result.

Theorem 4.2. The matrix H ∈ RNz Nx Ny×Nt Nx Ny from Equation (4.9) is
block 2-level Toeplitz, where for the generating elements h it holds that h ∈
RNz×Nt×2Nx−1×2Ny−1. �

Proof. We consider a column Hz,x1,y1 of H with (x1, y1, z) ∈ G3D. If we
now pick an arbitrary (x2, y2, ct) ∈ G3D, we see that

[Hz,x1,y1 ]t,x2,y2 = γ(z, t, x1 − x2, y1 − y2),

for some function γ depending on the transducer characteristic g and
the time of flight τ. And due to the specific structure of τ we have that
τx,y(xd, yd, z) = τ0,0(xd − x, yd − y, z), soH is 2-level Toeplitz because of
the translational invariance with respect to x, xd and y, yd. Finally, the
asserted structures ofH and h follow easily. �

Note that above result implicitly also states how the defining array
h ∈ CNt×Nz×2Nx−1×2Ny−1 to generate the block 2-level Toeplitz MatrixH
should be computed. Now, by accounting for the block Toeplitz structure
and explicitly calculating the influence of the 2-level Toeplitz blocks in
Equation (3.15), we get φH and in a similar fashion βH by noticing that

φH(a) =H · a =

[
Nt

∑
j=1
Hi,jaj

]Nz

i=1

=

[
Nt

∑
j=1
φHi,j(aj)

]Nz

i=1

, (4.12)

where theHi,j are 2-level Toeplitz and each aj is a subvector of a of size
Nx Ny.

However, consider the specific example from Section 4.1.1.2 where we
take measurements on a scanning grid of size 100× 100 and measurement
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Data: Input data x ∈ CNz×Nx×Ny

Result: Transformed data φΦH (x) = y ∈ Cn f×Nx×Ny

[1] Zeropad x to x0 ∈ CNz×2Nx−1×2Ny−1;
[2] Apply a 2D-FFT along dimensions 2 and 3 to x0 to get x̂0;
[3] Set ŷ0 = 0 ∈ CNz×2Nx−1×2Ny−1;
[4] for it = 1, . . . , Nt do
[5] for iz = 1, . . . , Nz do
[6] Calculate hit ,iz ∈ C2Nx−1×2Ny−1;
[7] Apply a 2D-FFT to hit ,iz to get ĥit ,iz ;
[8] ŷ0,it += ĥit ,iz � x̂0,it ;
[9] end

[10] end
[11] Apply a 2D-iFFT to ŷ0 along dimensions 2 and 3 to get y0;
[12] Revert the zero-padding on y0 to get y ∈ CNz×Nx×Ny ;
[13] for ix = 1, . . . , Nx do
[14] for iy = 1, . . . , Ny do
[15] y·,ix ,iy ← ξix ,iy � y·,ix ,iy ;
[16] end
[17] end
[18] Apply a 1D-FFT along the first dimension to get ŷ ∈ CNz×Nx×Ny ;
[19] for ix = 1, . . . , Nx do
[20] for iy = 1, . . . , Ny do
[21] y·,ix ,iy ← Six ,iy ŷ·,ix ,iy ;
[22] end
[23] end
[24] Return y.

Algorithm 4.1: The computation of φΦH can be more memory efficient at the cost
of more computations – An explicit version Equation (3.15), which also does
on-the-fly calculations of the generating elements ofH .

has 1000 time samples. Then, assuming that the reconstruction grid is
identical to the measurement grid, the 10002 generating elements each
have size 199× 199, which would require ≈ 158 GB. So, even for moder-
ately sized problems and while exploiting the inherent Toeplitz structure,
we usually cannot fit the generating sequences of eachHi,j into memory
at once. In these cases the generating elements have to be recomputed
during each transformation step. To this end, we propose to recalculate
each hi,j on the fly only when needed in (4.12) during the multiplication
ofH . This modified version of Equation (3.15) is given in Algorithm 4.1.
The hereby reduced memory footprint at the cost of more computations is
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especially beneficial when Algorithm 4.1 is realized on a GPU as depicted
by Listing 4.1.

Next, we proceed with the analysis of the structure of the compression
matrix Φ in order to devise φΦ and βΦ. In its most general form we have
by Equation (4.10) that

Φ = blkdiag{Φ1,1, . . . , ΦNx ,Ny},

i.e., the matrix Φ is a block-diagonal matrix, where each block consists of
a product

Snx ,nyFNt diag(ξnx ,ny).

In terms of matrix vector products, this means that multiplication with
Φ is a blockwise procedure, where each block is processed first by a
pointwise multiplication (�) with ξi, an DFT and lastly a subselection of
the vector in the frequency domain. Thus, it is trivial to implement these
matrix vector products efficiently. Finally, we invoke (3.6) to get φΦH =

φΦ ◦φH and βΦH = βH ◦ βΦ, where ◦ denotes function concatenation.
So given two distinct implementations for the matrix vector products for
Φ andH we only have to concatenate them by applying them one after
another.

Algorithm 4.1 schematically displays how to carry out the multiplica-
tion with ΦH efficiently. The algorithm for (ΦH)H can be derived in a
similar manner.

Remark 4.3. It is worth noting that Algorithm 4.1 should be implemented
in a blocked manner. This means that the loops for ix and iy should
be replaced with loops over blocks containing several ixi , . . . ixi+b and
iyi , . . . iyi+b at once, since most high-level programming languages allow
for faster processing of these blocks, especially when working on a GPU.
This also steers the amount of system memory the transformation occu-
pies and can be tuned to the system specifications at hand. In the extreme
case when one has enough system memory available to store h entirely,
one should do so in order to maximize performance.

Additionally, the problem dimensions Nx and Ny do not influence
the FFT performance that much, since for badly conditioned FFT sizes in
terms of prime factors, once can exploit Bluestein’s algorithm [129], which
expresses the Fourier transform as a cyclic convolution where one can
use zero-padding. Most modern FFT implementations have heuristics in
place to decide whether to use this alternative approach or not.

Finally, we refer to Listing 4.1 that outlines how to use the fastmat
API to move the fast transforms to the GPU. In this snippet we use
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import fastmat as fm
import cupy as cp
import numpy as np

class FourierGPU(fm.Matrix):
def _forwardGPU(x: cp.ndarray) -> cp.ndarray:
# this does the FFT on the GPU by using CuPy
return cp.fft.fft(x)

def forward(x: np.ndarray) -> np.ndarray:
# copy to the GPU
x = cp.array(x)

# call the GPU routine
y = self._forwardGPU(x)

# copy back to CPU and return
return y.get()

Listing 4.1 fastmat classes can easily wrap GPU code – How to move the DFT GPU
as an isolated calculation. �

CuPy [90] that supplies an array data structure for GPUs that is exposed
to regular Python code. The essential idea is to copy the input vector x
to the GPU, where the transform is carried out and the result is copied
back to the CPU memory. This way the GPU calculations are isolated
to the transform only and the rest of the computing path is not affected.
Naturally, this introduces a substantial overhead if the memory transfer
has to happen too often. But, as Figure 4.5 and Figure 4.6 in Section 4.1.6.2
indicate, as soon as the transform size is large enough, the overhead can
be compensated for by the substantially decreased runtime. �

4.1.4.3 The Largest Singular Value

As we see in Algorithm 3.2 it is necessary to compute or at least estimate
σmax for the matrix ΦH . When estimating the singular value, one should
take care that it is not underestimated, because in this case one expects
the objective function minimized by FISTA to be smoother than it actually
is. This in turn leads to more aggressive (and in this case unjustified so)
iteration steps, which ultimately result in divergence of the algorithm.
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Figure 4.2 Wrong estimates of σmax can have detrimental on the estimate and lead
to divergence – Reconstruction error vs. number of FISTA steps using different
stepsizes. �

Consequently it is better to overestimate σmax to avoid divergence at the
cost of slower convergence.

To illustrate the influence of the stepsize, we carry out a numerical
simulation where a Toeplitz matrix H and a sparse vector a are gen-
erated randomly, FISTA is run to recover a and we study the effect of
over/underestimating σmax of H . In particular, we chose H ∈ RN×N ,
N = 100, and the sparse vector a to have 10% of its entries non-zero,
with random positions for the non-zero elements in a and random am-
plitudes. Figure 4.2 shows the reconstruction error of FISTA as given in
Algorithm 3.2 with λ = 1 over 50 steps, where we over- and underesti-
mate the largest singular value ofH by 10%, 20% and 30%, respectively.
Each stepsize configuration is averaged over 100 trials. The reconstruc-
tion error is measured as ‖a− â‖2, where â is the estimate of FISTA at
each step.

It can be seen that already slightly underestimating σmax, therefore,
chosing the stepsize too large, leads to divergence and a bad reconstruc-
tion. This behavior can be weakened by increasing λ, i.e., enforcing a
sparser solution. On the other hand, FISTA converges slower for stepsizes
smaller than the optimum.

Figure 4.3 shows the largest singular value ofH and the corresponding
upper and lower bound for it computed for varying Nz as well as the
approximation defined in (4.14) (dashed red line). The approximation is
shown as a dashed green line in Figure 4.3.

However, in a matrix-free setting this is no trivial endeavor, since
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Figure 4.3 The geometric mean seems to be a valid proxy for σmax – Largest singular
value vs. Nz forH computed using the parameters in the table �

algorithms that rely on having the whole matrix in system memory cannot
be used.

Backtracking

A first approach would be to use a simple backtracking version of
FISTA [30, p. 194], which does not need the singular value as an input,
but rather a crude lower bound σlow together with a scaling parameter
η > 1. Then, in each step one determines an appropriate stepsize based
on a local estimate σloc within

σlow 6 σloc 6 η · σmax.

Ultimately, η influences the speed of convergence such that higher values
of η result in slower convergence due to the overestimation of the singu-
lar value. Additionally, this comes at the cost of evaluating the objective
function and a suitable quadratic approximation numerous times during
the iteration, leading to an impractical amount of computations that are
necessary for convergence, since we have to call φΦH twice per back-
tracking step. Hence, in large scale scenarios it might be advantageous to
have means for acquiring the largest singular value. In the following we
present two alternatives.
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Estimation

Another approach would be to find a suitable estimate σ̂max that is
cheap to compute and which still allows proper convergence [O9]. In
this case one has to ensure that the estimated singular value is bounded
from below by the true σmax. For the product ΦH at hand we proceed as
follows.

A simple bound for the largest singular value is given by

1√
N
‖ΦH‖F 6 σmax 6 ‖ΦH‖F, (4.13)

which would imply to estimate σ̂max = ‖ΦH‖F, which in terms of conver-
gence provides poor results, since it forces FISTA to take too conservative
steps. As such, we propose to use the geometric mean of the upper and
lower bound

σ̂max =
‖ΦH‖F
N(1/4)

, (4.14)

for which it is necessary to compute ‖ΦH‖F. However, since we have no
direct access to the entries of ΦH we need to estimate this as well. To this
end, we first notice that

‖ΦH‖2
F = ∑

zd

∑
xd

∑
yd

∥∥ΦHzd ,xd ,yd

∥∥2
2.

this means we are summing over the squared norms of all atoms, where
each atom belongs to a single defect position (xd, yd, zd). Now, neglecting
boundary effects within the individual atoms we can simplify to

‖ΦH‖2
F ≈ Nx Ny ∑

zd

∥∥∥ΦHx0
d ,y0

d ,zd

∥∥∥2

2

for some representative target position (x0
d, y0

d, ·). This leaves us with
calculating the innermost summand for which we have

∥∥∥Φh(x0
d, y0

d, zd)
∥∥∥2

2
≈

Nx

∑
nx=1

Nx

∑
nx=1

gnx∆x,ny∆y(x0
d, y0

d, zd)
2

∥∥∥Φnx ,nyhnx ,ny(x0
d, y0

d, zd)
∥∥∥2

.

Finally, depending on the actual subselection strategy employed by Φ we
can approximate the largest singular value by the above estimate of the
Frobenius norm.
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Iterative Approximation

To circumvent possible problems from an inaccurate estimate of the
singular value, iterative algorithms [73] to approximate it have been de-
veloped and finally implemented in ARPACK [130]. These again only
rely on φΦH and βΦH and for a specific scenario ΦH one can cache
this approximate result. However one cannot guarantee that the singular
value is not under-estimated in magnitude.

Remark 4.4. In cases where the evaluation of φΦH takes up to several
minutes it is not advisable to use a backtracking scheme in FISTA. Instead
one should use these additional projections during an Arnoldi iteration
and approximate and store the largest singular value directly. Although
one cannot guarantee that ARPACK estimates σest > σmax it provides a
tolerance δσ > |σest − σmax|. So ultimately one can ensure that σmax 6
σest + δσ, which can in turn be used in FISTA safely.

Additionally, the approach we took for the estimation of σmax using
Equation (4.14) can easily be generalized and altered to account for differ-
ent data and compression models. �

4.1.5 Asymptotic performance

As one of the main questions in NDT is how accurately we can local-
ize a defect within a specimen, we investigate this accuracy in terms of
the CRB from Section 2.4.4 for a single scatterer. In particular, we in-
vestigate the loss in localization accuracy as a function of the number
of Fourier coefficients per A-scan n f in order to compare the proposed
sub-sampling strategies. To this end, we now have to shift our perspec-
tive from (4.10), which has consumed the parameters of interest into a
matrix-vector product, we go back to the original parametric model in
(4.2), since this formulation allows us to directly model the influence of
certain parameters on the observed measurements.

The CRB as defined in Section 2.4.4 is computed by means of the FIM,
which in turn depends on our assumed noise statistics, which we specify
now. Let n in Equation (4.9) be zero-mean circularly symmetric white
complex Gaussian noise with variance σ2. Then, it follows that y ∼
CN (Φb, σ2I). The measurements depend on the set of parameters

u = [pT, α, ϕ, σ2
n ]

T ∈ R6

where p = [x1, y1, z1]
T ∈ R3 comprises the scatterer location, α is the

scatterer amplitude and ϕ is the scatterer phase, such that in Equation (4.2)
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we would get α1 = αeϕ. We further assume a Gaussian pulse with

p(t) = exp
(
−ξ2(t− τx,y)

2 + ωc(t− τx,y)
)

,

and a transducer directivity of the form

g(xd, yd, zd) = exp

(
− (xd − x)2 + (yd − y)2

tan2(θ)z4
d

)
,

where we assume that the center wave number ωc, bandwidth ξ and
opening angle θ are known and hence do not have to be estimated. Since y
follows a Gaussian distribution and together with the above specifications
of u, p and g, we specify (2.25) to our scenario and get

J(u) =
2
σ2

n
<
®(

∂b

∂uT

)H
ΦHΦ

∂b

∂uT

´
∈ R5×5. (4.15)

In Appendix C.1 we present a detailed derivation of explicit formulas for
(4.15).

A direct observation from (4.15) is that if for a given measurement
strategy encoded by Φ the total number of samples resulting from this
strategy is too small, the FIM becomes singular. However, due to the
strong spatial correlation of neighboring A-scans, we can distribute the
minimum number of Fourier coefficients over the complete set of spa-
tial scan positions, which is usually much larger in magnitude than the
required Fourier samples.

Further, neighboring A-scans are highly correlated, since the physi-
cal phenomena are rather smooth on this scale. Due to this, measure-
ments at position (x, y) also yield a certain amount of information about
(x± ∆x, y± ∆y) for small ∆x and ∆y. Hence, choosing different mixing
patterns σnx ,ny or subselections Snx ,ny yields more information about the
specimen for closely spaced sampling positions. Figure 4.4 shows c for
varying n f , normalized by the CRB obtained by sampling the full spec-
trum, CNt,·. Since subsampling can only increase the CRB, we have that
CNt,· 6 C·.

Simulations are performed using the parameters in Table 4.3 placing
a single point source at a depth of 33.30 mm beneath the center of the
scanning grid. The randomized strategies each were averaged over 50
realizations of Φnrg and Φrnd respectively. The transparent areas repre-
sent the range between the lowest and highest CRB values obtained from
(4.15) for the randomized strategies. From Figure 4.4, the following can be
noted. For larger n f , the knowledge based sampling performs better than
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Figure 4.4 The number of collected Fourier coefficients n f has more influence on the
estimation accuracy of the defects position in z-direction than in x- or y-direction. –
Asymptotic performance of the different sub-sampling strategies for varying n f . �

using Φrnd, since the bandwidth of the pulse is exhausted completely
after a certain value for n f . Further, Φmax provides a lower bound to Φnrg

in the considered scenario. This is due to the assumed Gaussian pulse
shape, which leads to sampling more energy being better than sampling a
higher bandwidth. For small n f , the loss in performance is the highest for√

Cz, which is expected since the compression along individual A-scans
deteriorates the delay estimation of the echoes the most. This in turn
influences the estimation of the scatterers’ depths the most. Varying the
coefficients for each scan position leads to a significant performance gain
when using Φrnd, f or Φnrg, f and reduces the overall loss compared to
CNt,· to a factor of 2-3.
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4.1.6 Implementation considerations

In the following section, we analyze the proposed sampling and modeling
strategies from Section 4.1.2 and Section 4.1.3 in terms of their hardware
implementation effort in hardware as well as their computational com-
plexity. Aside from the final measurement quality, implementation effort
is a crucial aspect when choosing an architecture for a particular mea-
surement application. The three-stage model introduced in Section 4.1.1.2
offers an intuitive abstraction, well suited for the following discussion:

To recap, the first Data management stage comprises of the acquisition
frontend, generating a raw data stream of digital representations for the
analogue pulse-echo signals followed by the interfaces for Data handling
and storing into non-volatile memory. Representing the sense making
stage, an off-site computation unit analyzes the stored raw data and dis-
tills it into interpretable information, which is usually the data of interest
that motivates the deployment of the system. In our case, this is consti-
tuted by the scatterers’ positions and their respective amplitudes. The
final Decision making stage will not be discussed, since it bears no rele-
vance to implementation aspects.

Based on a common example scenario, Table 4.2 summarizes key de-
sign parameters and performance indications when comparing the fol-
lowing three measurement architectures:

(I) A state-of-the-art system based on oversampling and SAFT, see
Section 4.1.4.1.

(II) A critically sampling system using the physically motivated for-
ward modelH defined in this work, see Section 4.1.2.

(III) A sub-Nyquist sampling system extending Item (II) by the sub-
Nyquist sampling strategies Φ from Section 4.1.3.

A single architecture, satisfying the widely diverse and often conflict-
ing requirements for the set of all measurement applications, usually
cannot be found. Some handheld measurement units require battery op-
eration on mobile network connections, while other units, irreplaceably
built into long-lasting structures, deliver their raw data over wired data
transmission networks. These conflicting scenarios and hence demands
require making compromises between cost, size, power- and energy us-
age, ruggedness, data path or accuracy.

Notably, the major benefit of our proposed compressive architecture
over common SAFT-based implementations (aside from imaging quality)
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is that it allows trading the amount of collected raw data against compu-
tation complexity later in the process. In choosing the number of obtained
Fourier coefficients per A-scan (in Section 4.1.7 we show that already a
single one can be sufficient), our proposed compressed architecture re-
lates the raw data rate to the actual amount of relevant signal information,
rather than some artificial grid constraint (as is the case for oversampling
SAFT). This makes it especially useful for applications suffering from data
handling bottlenecks [124].

4.1.6.1 Effort for data acquisition

For the implementation of the signal acquisition, multiple strategies exist,
where each has individual benefits and drawbacks which also depend on
the application. Following, a general overview is provided to allow for
good architectural decisions.

Direct Time-Domain Sampling

A standard ADC linearly represents the time-domain pulse-echo response
signal as a digital vector. To fully represent all signal information in the
raw data stream, the sampling rate fs must be at least the critical rate
fcrit = 2 fmax, where fmax is the highest signal frequency component as
stated by Theorem 2.1. To keep computation cost low, a simple delay-
based SAFT model (disregarding more complex propagation effects) is
commonly chosen. By using an oversampling factor kO = fs/ fcrit, good
depth-resolution with acceptable visual artifacts is achieved [128]. For
common choices like kO = 16 the amount of added redundant data is
immense.

This work’s generalized matrix formulation H adds an improved
physical propagation model, increasing visual quality considerably at
the price of higher computation cost during the sense making stage (see
Section 4.1.6.2). However, data amount is reduced substantially, since
choosing kO = 1 does not negatively affect the resulting imaging quality
as we see in Section 4.1.7.

Albeit very poor information efficiency and high demands on the ADC
frontend and data handling stage, oversampling SAFT may still be ad-
vantageous when available computation resources are limited, i.e. for
battery-powered on-site inspection systems.
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Sc
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Volume Surface all methods 100×100 Points
Max. round-trip-time all methods 25 µs

Pulse bandwidth all methods 10 MHz

Implemented system (I) (II) (III)
SAFT H ΦH

D
at

a
M

an
ag

em
en

t

ADC (16 bit) rate [S/s] kO · 20 M 20 M 620 M∗

ADC data stream [bit/s] kO · 320 M 320 M 6320 M∗

Samples per A-scan Nt kO · 500 500 >1

A-scan data size∗∗ kO · 1 kB 1 kB 8 B

Volume data size∗∗ kO · 10 MB 10 MB 0.08 MB
. . . as normalized ratio∗∗∗ ≈ 103.3 ≈ 102.1 1

Se
ns

e
m

ak
in

g Computation Complexity + ◦ −
. . . as normalized ratio∗∗∗ 1 ≈ 102.8 ≈ 104.8

Depth-axis resolution fixed variable variable
Considers physical model no yes yes

Approximates inverse problem no no yes
Point focus quality − + (◦ . . .+)

kO = Oversampling factor ; kF = FISTA iterations

∗ equal to when using FFT on raw samples, < when employing [111]
∗∗ Data storage, complex single-precision float (8 byte)
∗∗∗ Relative, given for kO = 16 and kF = 50 and ∆z = ts · c.

Table 4.2 Depending on the application at hand the compression and reconstruction
schemes perform differently. – Implementation effort and performance of the sys-
tem (III) proposed in this work compared to the two example systems (I) and (II).
�

Digital Fourier Coefficient Sampling

Additionally, we show how to extend (II) by a sub-sampling/compression
matrix to form the CS system (III), allowing for source-compression by
keeping only a few Fourier coefficients of each A-scan. In reconstruct-
ing the signal describing the 3D volume from all A-scans jointly, spatial
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redundancy is exploited such that keeping as low as one coefficient per
A-scan is sufficient in scenarios, when sampling locations yield correlated
information. While this greatly improves data handling, the computation-
intense algorithms from Section 4.1.4 must now be applied during the
sense making stage. If one has access to the sampled values produced by
the transducer, the Fourier coefficients can be computed directly from the
ADC output using the FFT or the Goertzel [131] algorithm. In this case
the implementation effort up to the ADC is identical to the critical sam-
pling case in “Direct Time-Domain Sampling”. This approach works best
when collected data is processed off-site, where bulk computation power
is readily available, and the measurement device can afford to compute a
few Fourier coefficients on-the-fly.

Analogue Fourier Coefficient Sampling

Retrieving the Fourier coefficients for system (III) can also can be imple-
mented using sub-Nyquist sampling, as proposed in [111, Sec. 3]. This
requires the signal to be filtered by a Sum-of-Sincs filter in analog domain,
which is sparsely sampled with an ADC operating below the critical sam-
pling rate, since if we wish to acquire n f samples in frequency domain,
the authors of [111] show that then also only n f appropriately filtered sam-
ples in time-domain suffice. This approach allows a "true" Compressed
Sensing implementation, since we do not need direct access to a sampled
version of the signal acquired by the transducer, but rather we directly
implement the compression as modeled by (2.1). From the collected sam-
ples, the desired Fourier coefficients (denoted as the setKn in [111, Sec. 3])
are retrieved by solving a system of linear equations.

Multi-channel setups, such as [O16], may easily be supported by mov-
ing from sparse- to interleaved sampling of multiple analogue channels
by combining a single ADC with a multiplexer. This makes this approach
attractive for low-power single- or multichannel applications. Further
combined with integrated Complementary Metal Oxide Semiconductor
(CMOS) technology, low-cost and low-footprint multi-channel frontends
can be achieved. This allows for the measurement strategies Φnrg and
Φmax to be implemented. To realize Φrnd the multiplication of Σi addi-
tionally needs to be implemented in the analog domain.
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4.1.6.2 Effort for Data Processing (Computation Complexity)

In the Sense making stage, the raw data is condensed to interpretable in-
formation by a processing unit, where computation effort is a crucial
quantity of interest. Since the main computing effort for SAFT, FISTA
and ARPACK lies in φΦH and βΦH , we study the complexity of Algo-
rithm 4.1 in relation to the spatial grid sizes Nx, Ny and Nt = Nz. The cost
of φΦ is dominated by the cost of the Nx · Ny executed FFTs, yielding a
complexity of O(Nt log(Nt)Nx Ny). For H , we see that we have to com-
pute the generating elements2 in O(N2

t Nx Ny) and then compute all 2D
convolutions in O(NtNzNy log(Ny)Nx log(Nx)). The total computation
complexity for the SAFT (cf. Section 4.1.4.1) matrix-free matrix-vector
product φH(x), which also is equal to the complexity of the product
φΦH(x), is O(S) = O(NtNzNy log(Ny)Nx log(Nx)). Calculating σmax

requires kA ARPACK iterations yielding a complexity of O(kAS) for a
single execution of the routine. Since σmax may be reused, the complexity
for one reconstruction is O(kFS), scaling only with the kF iterations of
FISTA.

We carried out an empirical study on the influence of the grid sizes
in z-direction independently from x and y in Figure 4.53. As expected,
the transform scales quadratically with Nz and Nt. Varying Nx or Ny
influences the FFT size, exhibiting some ripple in the run-time plots of
Figure 4.5, depending on the prime factorization of 2Nx − 1 and 2Ny − 1.

The comparison in Figure 4.64 makes use of a previous “raw” CUDA-
C [132] implementation and this already shows the advantage of exploit-
ing structure inH to get a matrix-free formulation in terms of computa-
tion time. Hence, implementing this matrix-free algorithm naïvely on a
GPU allows to carry out the reconstruction in even larger SSR scenarios
on standard work station hardware.

In case of the simple delay-based oversampling system (I) , which
required no convolutions, as outlined in Section 4.1.6.1, a very low com-
putation complexity of O(kONzNyNx) can be attained. This is due to the
fact that only the echo delays are considered in the model, as is often used
for the analysis of oversampling SAFT data (see section on "Direct time-

2Note that this can be pre-computed if H fits into the memory. If they need to be
computed on-the-fly, the computation complexity of the generating elements using the
model from Section 4.1.2.1 is neglibible compared to the computation of the actual matrix-
vector product.

3The benchmark is performed on a PC equipped with a Intel Xeon E5-1620 v4 CPU
3.50 GHz, 32 GB of memory, and a Nvidia GeForce GTX 980 GPU.

4The benchmark was performed on an NVIDIA Titan XP, an Intel(R) Core(TM) i7 CPU
975 at 3.33 GHz was used as a CPU.
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Figure 4.5 The GPU-based implementation substantially outperforms the CPU-based
one. – Empirical study of the influence of the scene dimensions on the run-time
of φΦH . For varying Nz we choose Nx = Ny = 100, for varying Nx,y we choose
Nz = 5. �
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Figure 4.6 At a certain problem size the overhead introduced by the GPU is compensated
for. – Comparison of the matrix-free projection to the standard matrix-vector
product not exploiting any structure inH . �

domain sampling", the model formulation can be carried out without the
necessity for FFT operations.

Compared to this model, the complexity of system (II) is higher by
a factor of O( Nt

kO
log(Ny) log(Nx)). In the case of system (III), ΦH is

applied twice in each FISTA iteration, increasing the computation effort
by another factor of 2kF as kF denotes the number of iterations of FISTA.
In exchange, system (III) actually tackles the inverse problem, as opposed
to the other systems that solely perform projections.

In total, Table 4.2 reports the total computation complexity to be ≈ 103

times higher for (II) and ≈ 105 times higher for (III) compared to simple
oversampling SAFT for the example scenario. However, this comes along
with a significant reduction of total collected raw data amount and an
improvement of reconstruction quality (see e.g. Figure 4.11).

Remark 4.5. For the example setting, Table 4.2 reports a data reduction
of ≈99 % when compared against system (II) and ≈99.90 % when com-
pared against system (I), solely from reducing spatial redundancy by
implementing (III).

When applying the physically motivated forward modelH , it is possi-
ble to choose the depth-axis resolution ∆z independent of the particular
sampling rate fS. This is opposed to the state-of-the-art oversampling
SAFT system, where a high fS is required to achieve small ∆z, and as a
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consequence, measurement data must be reacquired.
The implementation of the strategies Φnrg and Φmax is slightly easier

compared to Φrnd, especially in terms of hardware components in the
analog domain, since they do not require the additional element-wise
multiplication due to Σ = I .

The benefits of the proposed CS-architecture (III), among which is
that it actually approximates a sparse solution of the inverse problem,
appear to justify the large computation complexity, considering the recent
advances in CPU and GPU performance. �

4.1.7 Numerical Simulations

In the following, we will present several reconstructions using FISTA. The
regularization parameter λ is chosen as

λ = µ‖βΦH(y)‖∞,

with 0 < µ < 1. The optimal choice of the parameter λ is still an open
question to research. However, our experience has shown that small vari-
ations of µ do not significantly change the result FISTA converges to and
hence they have been set manually based on a priori knowledge on the
measurement scenario and assuming that sparser scenarios require µ→ 1,
since µ allows to balance the trade-off between sparsity and least squares
fit. To give a concrete example: The results of the comparison based
on measurement data in Figure 4.11 do not change substantially by e.g.
choosing µ = 0.3 or µ = 0.5 instead of the given µ = 0.4. The main goal
of this section is to compare the different proposed sampling strategies
in different scenarios. It can be generally noted that in the uncompressed
case FISTA converges to the correct solution in every presented scenario.
Further, we note that when using subsampling, the expected imaging per-
formance becomes visible after less than 10 iterations and adding further
steps does not add significant changes to that trend. Hence, all compar-
isons are made using a constant amount of iterations for each scenario.
This comes with the additional benefit that all comparisons are made for
equal computational effort. The largest singular value is computed using
ARPACK.

In addition to the different sampling strategies, different versions of
the model matrix H can be used for reconstruction: (i) H represents
the complex analytic model as defined in Section 4.1.2, (ii) Re{H} is
equivalent to modeling p(t) as a Gaussian windowed cosine, cf. [115].
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Further, with respect to (ii) we can choose Snx ,ny either symmetrized or
one-sided as outlined in Section 4.1.3.2.

The 3-D results are plotted as 2-D images by taking the maximum
absolute value of an axis along the two remaining axes. For the x − y
plane this is called a C-scan image and for the x − z plane it is called
B-mode image. In the complex-valued case, this calculates the envelope.

4.1.7.1 Experiments using Synthetic Data

We first consider reconstructions of synthetic data sets to showcase the
performance of the different sampling strategies, where simulate a shoe-
box steel specimen. The parameters used for the simulation are listed in
Table 4.3 and the model for the pulse shape and transducer directivity
are the same as in Section 4.1.5. The imaging region starts at a depth of
zd = 29.60 mm. All data sets presented in this section have been simu-
lated noise free by simply evaluatingHa for a previously defined a as the
goal is to compare only the performance of the different sampling strate-
gies. The ground truth a is designed by setting [a]d = eπ/4, d ∈ [D] and
zero otherwise, whereD is the set of indices forming the defect as a sum of
point sources. The amplitude is chosen since it represents the largest pos-
sible phase offset that can arise from a scatterer actually lying “between”
two grid points. It is therefore also the most challenging scenario for the
popular choice of Re{H} as a forward model. As scatterers we consider
two types of defects. In the first scenario, the specimen contains a straight
line simulating a defect at depth 25z/∆z. In the second scenario, the
specimen contains a rectangle of size 40

√
(z/∆z)2 + (x/∆x)2 × 40y/∆y

diagonally placed along the z-x-plane as a defect. The resulting datasets
can be compressed by applying different incarnations of Φ to Ha. The
compressed datasets are then reconstructed using FISTA and the largest
singular value is computed using ARPACK if not explicitly stated other-
wise. The results are plotted using a so-called C-scan image, i.e. we plot
the maximum amplitude of an axis along the two remaining axes.

As a first scenario, we compare the reconstructions using different
subsampling strategies sampling only n f = 1 coefficient per A-scan. In
addition to the different sampling strategies, different versions of the
model matrixH can be used for reconstruction: (i)H represents the com-
plex analytic model as defined in Section 4.1.2, (ii) Re{H} is equivalent
to modeling h(t) as a Gaussian windowed cosine, cf. [O8, 115]. The lat-
ter is only able to reconstruct a real-valued version of a. Further, with
respect to (ii), there exist two approaches on how to define Snx ,ny for the
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Figure 4.7 The proposed Fourier subsampling mostly influences depth resolution. –
Reconstruction results from simulated data for n f = 1 using FISTA with µ = 0.6
stopped after 80 iterations. �

reconstruction: ΦmaxRe{H} inputs only the n f coefficients at one half of
the symmetric spectrum into the reconstruction algorithm, “ΦmaxRe{H}
mirrored” mirrors these coefficients to the other half. By this, essentially
2n f coefficients are input but only n f coefficients need to be measured at
each scan. The latter reproduces the setup as presented in [O8].

The results are depicted in Figure 4.7. All strategies correctly recon-
struct the shape of the target in the x-y plane since the lateral focusing is
not deteriorated (which is also in accordance with the asymptotic results
in Section 4.1.5). Note that the difference between the second column of
Figure 4.7 (a) and the second column of Figure 4.7 (b) is that in (a) only

Nx Ny fs ∆x ∆y c0

50 50 20 MHz 0.50 mm 0.50 mm 5920 m/s

θ Nz fc t0 zd ξ

30◦ 50 3.20 MHz 10 µs 29.60 mm (0.65 fc)2

Table 4.3 Simulation parameters for Section 4.1.7.1 �
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Figure 4.8 The strategy Φnrg, f allows to exploit the spatial correlation across A-scans by
varying the sampled frequencies randomly. – Left to right: n f = 1, 2, 5, 10, except for
the figure entitled Ground Truth. Top to bottom: Φmax, Φrnd, Φnrg, f . Note that the
missing result for Φnrg, f with n f = 10 is visually equivalent to the reconstruction
for Φnrg, f with n f = 5. Reconstructed using FISTA with µ = 0.1, stopped after 80
iterations. �

one half of the spectrum is sampled although a real-valued matrix H
is used. Using a real-valued model as well as a constant Φ for all scan
positions results in the worst localization in depth. In addition, the peak
along z in the reconstruction is at a wrong position due to the defect being
off-grid (phase offset) (cf. Figure 4.7 (b), second column). In contrast, as
expected from the CRB, using distinct subsampling patterns restores the
localization accuracy along the z-axis. Further, it can be seen that in the
case of random uniform subsampling, it is equivalent to vary the mixing
pattern or the set of Fourier coefficients per A-scan. Note that Φrnd, fH

and Φnrg, fH perform equivalently in this scenario, which is why the lat-
ter is not depicted. Finally, it can be noted that usingH instead of Re{H}
leads to a slightly sparser solution.
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As another scenario, we compare the subsampling schemes for varying
n f in a more complex scenario. The results are depicted in Figure 4.8 (the
bottom right figure shows the side view of the square as ground truth).
The chosen scenario results in a measurement, where every A-scan sees
echoes from almost all point sources. The ramifications of this are as
follows: Choosing a constant subsampling pattern for all A-scans leads
to a failed reconstruction for n f too small (see the first and second row
of Figure 4.8). This is basically also what our findings about the CRB
already infer analytically. On the other hand, varying the pattern (third
row) strongly improves the reconstructed image. This again emphasizes
that the large number of (necessary) spatial scanning positions reduces
the number of required temporal measurements. The spatial grid spacing
needs to be small enough to ensure that defects with a given minimum
size are still detected. However, due to this small spatial grid spacing, the
scan at position (x, y) also yields a certain amount of information about
(x± ∆x, y± ∆y).

4.1.7.2 Synthetic Aperture Measurements

Next, we conduct numerical experiments based on measurement data
of a steel specimen that was constructed for testing different ultrasonic
imaging approaches. To this end it contains predefined and precisely
known defects of various sizes, shapes, depths and distances.

Reconstructions from Compressed Data using OMP

In order to compare the imaging quality of OMP given in Algorithm 3.1
and FISTA as given in Algorithm 3.2 we execute them for data that is un-
compressed, hence Φ = INt Nx Ny , hence we attain results that are not
affected by the compression scheme. The data was acquired for a steel
specimen containing two oblong holes that are 3 mm wide and 17 mm
long, two smaller oblong holes with 4 mm length, and two flat bottom
holes with 5 mm, 3 mm and 2 mm diameter, respectively. The measure-
ment was performed using a transducer with fc = 4 MHz. However, due
to the attenuation of high frequency components within the propagation
medium, the parameters listed in the table in Figure 4.9 where chosen to
modelH . The effective center frequency fc was manually extracted from
the measurement data.

Figure 4.9 shows the reconstruction results of the specimen sketched
in the top figure using SAFT, FISTA after 50 steps with µ = 0.2 and OMP
after 150 steps. It can be seen how FISTA reconstructs the defects at their
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Figure 4.9 OMP is not well suited for estimating the size and shape of defects realiably –
Top to bottom: Sketch of the specimen, FISTA reconstrution after 50 steps with
µ = 0.2, OMP reconstruction after 150 steps, 3D SAFT image. �

exact sizes with relatively sharp edges. In contrast while the additional
blur in the SAFT image impedes exact sizing. OMP, due to its greedy and
thus local strategy, creates sparser solutions than FISTA, which makes
the reconstruction result harder to interpret, since the contours of the
defects are hard to determine. Especially, when using the same amount of
calls to fH and bH as for the execution of FISTA, i.e. spending the same
computational effort in both algorithms.
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Figure 4.10 A few steps of FISTA suffice to accurately locate defect positions and size,
even for strongly overlapping echoes. – Top and center plot: Top and side view of a
FISTA reconstruction using n f = 1 and Φrnd,m, fH . Here, FISTA was run for 20
steps with µ = 0.4. Bottom plot: B-scan slice through the actual measurement
data showing the strongly overlapping echoes. �

Reconstructions from Compressed Data using FISTA

In the following, we compare the different approaches defined in Sec-
tion 4.1.3 based on synthetic aperture measurements of a steel specimen.
The specimen contains several flat bottom holes with diameters ∅2 mm,
∅3 mm and ∅5 mm, representing artificial flaws. The measurements were
taken using time domain sampling at a sampling rate of fs = 20 MHz.
Fourier subsampling was simulated by calculating an FFT and keeping
only n f Fourier coefficients per A-scan based on the chosen strategy. To
calculate H the same Gaussian pulse model and transducer directivity
as in Section 4.1.7.1 is used. The center frequency of the transducer
is at ωc = 2π fc and ξ = (0.8 fc)2. The specimen was scanned with
∆x = ∆y = 0.50 mm. The opening angle of the transducer is set to
θ = 30◦. The speed of sound in this steel is assumed to be c0 = 5920 m/s.
For the reconstruction, FISTA is used with µ = 0.4 and stopped after 20
iterations.

Figure 4.10 shows the result using Φrnd,m, f using n f = 1 per A-scan.
The top figure shows a C-scan view from the top. The bottom image
shows the projection onto the y-axis. In both cases a ground truth sketch
is superimposed onto the image. It clearly shows that the reconstruction
reproduces the positions of the defects accurately in all three dimensions
as well as their extent in x-y-direction.

Figure 4.11 shows a zoomed in comparison of all investigated sub-
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Figure 4.11 If compression is done random enough, one Fourier coefficient is sufficient. –
The second figure from the top left shows the standard uncompressed SAFT
reconstruction. The six remaining figures show the reconstructions based on the
different sampling schemes indicted by the different Φ. The reconstructions are
computed using FISTA with µ = 0.4, stopped after 20 iterations. �
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sampling strategies as well as the conventional uncompressed SAFT re-
construction. Comparing the top row with the bottom row reveals the
advantage of varying the mixing pattern and/or the measured Fourier
coefficient, since the edges of the defect are much more pronounced.

Remark 4.6. Varying the sample patterns for each A-scan provides a sig-
nificant gain compared to only using a single constant pattern. With this
improvement, n f = 1 can already be enough to obtain high resolution re-
constructions and Re{H} performs worse since it is incapable of dealing
with off-grid contributions.

The inclusion of the symmetric counterparts of the Fourier coefficients
of the (real-valued) measurements into the reconstruction leads to a dete-
rioration of the reconstruction.

The CRB is a valid proxy to evaluate the performance of the different
subsampling strategies, since at least qualitatively the CRB is able to
predict the differences in the various approaches. So, the improvement
when varying the sampling or mixing patterns is well predicted.

Both the CRB and the reconstruction show how the proposed subsam-
pling mainly affects the performance along the depth axis: the depth
resolution can be deteriorated substantially while still maintaining a high
quality C-scan image along the x-y plane. �

4.1.8 Conclusion

In this chapter, we developed and analyzed a novel CS-based ultrasound
acquisition framework for synthetic aperture NDT. The proposed new
strategies Φ..., f and Φ...,m are superior to existing state of the art strategies.
However, this is only true, if we consider a forward model that exploits the
high correlation between adjacent scans such as the employed 3-D model
for the reconstruction. By doing so, the number of necessary Fourier coef-
ficients per scan can even be reduced to the absolute minimum of a single
coefficient even in realistic scenarios. Hence, we directly see the relation
of AOI-C and AOI-M, since in the spirit of Remark 2.3 an improved data
model allows more aggressive compression. In total, Φnrg, f provides the
superior choice, since it provides the best imaging performance (together
with Φrnd,m and Φrnd, f ) but allows for a simpler hardware architecture.

The employed matrix-free implementations by means of fastmat as
outlined in Section 3.4 represent a practical approach for this even if
the chosen reconstruction algorithm requires additional quantities of the
underlying matrix, as illustrated for the approximation of the largest
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singular value necessary in FISTA. Additionally these computational
advantages can even be improved by moving the calculations to a GPU.

In terms of modeling, it is beneficial to use the analytic signal instead of
the widely used real-valued model of the RF signal originating from [104].
The increasing demands in computation complexity are compensated by
the improved imaging quality by actually approximating a solution to
the inverse problem compared to only calculating an image based on a
simple heuristic.

The numerical simulations are in agreement with the theoretical ob-
servations. This demonstrates that the question of which and how many
Fourier coefficients are needed can be directly answered by evaluating
the CRB, which greatly simplifies the parameter specification for a given
target scenario. To conclude, the presented results indicate that the use of
CS is beneficial in the context of synthetic aperture ultrasound NDT.

4.1.9 Outlook

The fact that for the reconstruction the model for the sampling kernel and
the propagation are separable allows to easily tailor the imaging pipeline
to the requirements of different scenarios and independently optimize
the respective implementations.

Finally, the proposed sampling strategies can also be straightforwardly
included into a multi-channel setup and combined with additional spatial
sub-sampling as presented in [O16].
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4.2 Compressed Sensing for an Ultra Wide-Band
Radar

In this chapter, we propose a compact hardware architecture for measur-
ing sparse channel IRs by combining the M-Sequence UWB measurement
principle with the concept of CS. A channel is excited with a periodic
M-sequence and its response signal is observed using a RD, which cap-
tures pseudo-random linear functionals of the response signal at a rate
significantly lower than the measurement bandwidth. By doing so we di-
rectly implement Equation (2.1) directly in the analog domain, hence we
simultaneously address AOI-C and AOI-H. The excitation signal and the
RD mixing signal are generated from compactly implementable Linear
Feedback Shift Register (LFSR) and operated from a common clock. A
linear observation model is derived that allows reconstructing the sparse
Impulse Response (IR) from a set of observations using SSR. For the SSR
stage we employ a matrix-free model as in Chapter 3 where we exploit the
choice of synchronous LFSRs as signal generators, resulting in low com-
putational complexity by means of OMP, which contributes to AOI-R. For
validation, real measurement data of a time-variant channel containing
multipath components is processed by synthetic models of our proposed
architecture and the classic M-Sequence method. We show successful IR
recovery using our architecture based on SSR, outperforming the classic
method significantly in terms of IR measurement rate. Compared to the
state of the art, the proposed architecture allows faster measurements
of sparse time-varying channels, resulting in higher Doppler tolerance
without increasing hardware or data stream complexity. Note that the
ideas in this section lead to the submission of a patent application [P1].

4.2.1 Introduction

Estimating the IR of a linear system is a core task in many engineering
applications, including system identification, channel sounding, radar,
localization and others [133, 134, 135, 50, O10]. The knowledge of the
respective IR often allows to infer further information about the system of
interest. More often than not, these IRs are not entirely static but (slowly)
changing in time, e.g. due to motion of scattering objects in wireless
propagation conditions, which in turn give rise to Doppler shifts. In such
scenarios, the IR needs to be measured repeatedly and the repetition rate
we can sustain determines the Doppler range we can support [136].
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A wide variety of principles exists to measure IRs, including impulse
methods, Frequency-Modulated Continuous-Wave (FMCW) or methods
based on Pseudo-Noise (PN) sequences [137]. Due to their advantages
in implementation complexity and the low achievable crest-factor, here
we focus on the latter category. For PN methods, it is common to ex-
cite the linear system with a periodic PN signal of high bandwidth. The
trade-off between hardware complexity and achievable Doppler range
is then controlled by subsampling the received signal and varying the
subsampling factor, capitalizing on the fact that the periodic signal can
be recovered from samples taken in subsequent periods after proper re-
arrangement [138]. Here by subsampling we mean that we are actually
dropping, hence not using samples. So naturally, a drawback of sub-
sampling is that most of the receive signal remains unused and measure-
ment time is increased considerably, drastically reducing IR measurement
speed and tolerable Doppler range.

Measuring sparse IRs of linear systems or channels based on CS the-
ory has been demonstrated using different concepts. The work on sub-
Nyquist radar [139] and the Modulated Wideband Converter (MWC) [140]
perform multiple observations in parallel and sample in the Fourier do-
main, which becomes increasingly infeasible at higher operating frequen-
cies. In [141] the RD concept was applied to pulse-based UWB IR mea-
surements observing from a single channel over multiple excitations. Al-
though the concept can be implemented for very high operating frequen-
cies, generating the RD mixing signal efficiently is not addressed in [141]
and the signal basis is highly susceptible to interference.

In this work we propose an extension to the M-Sequence Method
(MSM) of [138] that uses the CS principles outlined in Chapter 2 and
Chapter 3 to significantly reduce the measurement time, yet maintaining
the low hardware implementation complexity known from the MSM. Ap-
plying the RD concept [142, 143], we obtain sufficient information about
the IR from only a few observations of pseudo random linear projections.
Assuming the IR is sparse, in Section 2.2 we have argued that it can be
recovered via `0- or `1-minimization techniques efficiently. The linear sys-
tem model of this architecture is composed of structured matrices, which
when exploited during implementation, yield substantial benefits in com-
putation efficiency by exploiting the methods introduced in Chapter 3.
The proposed architecture is targeted for very high operating frequencies
well exceeding 10 GHz and specifically considers aspects of hardware
implementation feasibility.
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4.2.2 Measuring Impulse Responses

We start by describing a well established method in order to acquire
suitable samples of a band-limited IR. The IR h : R → C with h 7→ h(t)
of a linear system can be measured by exciting its input port with an
impulse x : R→ C x 7→ x(t) resembling the (Dirac) δ-function as closely
as possible. Then, the IR can be directly observed at its output signal y
which satisfies y = x ∗ h, yielding y ≈ h. Here, ∗ denotes the convolution
operation. In practice, h can be assumed to be band-limited, exhibiting a
maximum frequency component fmax as introduced in Section 2.1.1. It is
then sufficient to use an equally band-limited approximation of the Dirac
impulse δ as excitation signal. Additionally, we assume that y is sparse in
the sense that h only exhibits a few spikes, such that the convolution of x
with h is well approximated by

y =
S

∑
i=1
Sτi x, (4.16)

where Sτi : {x : R→ R} → {x : R→ R} is the periodic shift-operator of
functions. So we have that x(t) = {Sτx}(t− τ) for all x, t and τ.

Additionally, in many applications, h is not static but actually slowly
varying over time. Furthermore, h is usually also only non-zero up to τmax

in time-domain, so he have |h(t)| ≈ 0 for all t > τmax. Measuring the IR
can then be repeated periodically at a rate of up to fIRF = τ−1

max, allowing
to also measure time-variant systems as long as they can be assumed to
be stationary within the observation time frame τmax = f−1

IRF.
Obtaining the IR as described using impulse excitation, the generation

of sharply peaked, steep impulses x is required in order to achieve a large
measurement bandwidth. For good dynamic range in the presence of
noise, pulses of large amplitude must be generated. The Crest factor (CF)
of the input signal x defined as

x 7→ CF(x) =
‖x‖∞
‖x‖2

=
supt |x(t)|√
+∞∫
−∞
|x(t)|2 dt

is commonly used as a metric for characterizing a signal’s peak-to-root
mean squared (RMS) dynamic. This method imposes severe demands on
the circuit capturing the output y, since frequency components of up to
fmax must be preserved with both, high linearity and high dynamic range.
Furthermore, direct coupling of the excitation pulse into the capturing
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circuitry is usually quite strong and must be tolerated without damage or
impeding performance.

Due to the severity of these constraints for demanding measurement
applications, more advanced methods have been presented to measure
the IR, especially for UWB systems or channels. Some of them focus on
optimizing the excitation signal x, some target the linearity or the CF and
again others leverage on the dynamic range by applying additional signal
processing on the collected data stream. But also the implementation
effort can motivate to go for alternative approaches. For example, the
FMCW method employs a narrowband continuous-wave signal as excita-
tion signal x, which is swept through the frequency band over time. This
greatly reduces hardware complexity, and also improves linearity and
reduces coupling due to the low instantaneous bandwidth of x. However,
in these cases, the attainable measurement rate is rather low, since the
sweeping is rather time-consuming. Hence, in time-varying scenarios the
resulting clutter must be handled.

Selecting the excitation signal x as a sum of carefully chosen, periodic
narrowband signal components (“multi-tone”), achieves high instanta-
neous bandwidth and reduces measurement time. The IR is then retrieved
by decorrelating y with x. Optimizing x such that x~ x ≈ δ can be as-
sumed, the computationally expensive decorrelation operation may be
replaced by y~ x, where ~ represents cyclic convolution carried out on
the periodic signals with period τ−1

max. As a side effect, this also suppresses
noise and interfering signal components, increasing dynamic range. A
thorough review of the mentioned methods in the context of UWB sys-
tems can be found in [137].

4.2.3 Signal Model of the M-Sequence Method

In this section we first present the classical signal model of the MSM
and then readily extend it to the proposed signal model that employs the
RD-based compression step.
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Figure 4.13 We remove the need for a T & H by using an RD – The architecture
proposed in this work. �

4.2.3.1 State-of-the-Art M-Sequence Method (MSM) Model

In this work, we further promote the choice for x as a periodic Maximum
Length Binary Sequence (MLBS) of order k, exhibiting a period of N =

2k − 1. The advantages are that these signals have a low CF close to 1 and
the desirable auto-correlation properties, as introduced in Section 4.2.2.
Such a signal can be generated efficiently from the system clock f0 using a
LFSR, as presented in [138], requiring only a few standard digital gates to
generate x[n], which denotes a sampled version of x as already motivated
by means of Theorem 2.2. Figure 4.12 shows the block diagram of a
measurement device employing the MSM.

The periodic excitation sequence x[n] = x[n + k · N] for k ∈ N is also
referred to as the vector x ∈ {+1,−1}N . Here, N ∈ N denotes the
period length, i.e. the minimal N such that the periodicity requirement
is fulfilled. Similarly, we describe the periodic system response signal
y via y = x~ h ∈ RN . As we have already noticed in Section 3.3, the
cyclic convolution operator can be defined as a circulant matrix D ∈
{+1,−1}N×N = Γ(x), such that

y = D · h, (4.17)

which is simply the discretized version of (4.16) and a specific version of
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(2.2). The circulant operator Γ is introduced in Section 3.3.2.1. The cyclic
discretized auto-correlation function of a periodic MLBS is almost equal
to a scaled version of en except for a small constant offset [144], so that
we have

x~x = N · e1 − 1N , (4.18)

where e1 is the first canonical unit-vector and 1N is a vector with all N
entries equal to 1. It is now possible to estimate the IR from the system
response y via

h̃ = DT · y = DT · (x~h) = x~x~h ≈ N · h. (4.19)

Note that Equation (4.19) claims a correlation gain of factor ≈ N, which
allows the use of significantly smaller excitation signal amplitudes to
achieve a certain level of SNR.

To reduce hardware complexity in the receive path induced by the high
operating bandwidth, [138] proposes to employ subsampling as depicted
in Figure 4.12. Using a fast T&H circuit, any time sample of y can be
stored sufficiently long to convert the sample using slow, low-cost ADC
circuits. A sampling clock f̂s = f0/C controls the conversion rate, which
is derived from the system clock f0 by means of an integer divide-by-C
clock divider circuit. Due to subsampling, y can be collected over the
course of C excitation signal periods. This effectively allows trading IR
measurement rate f̂IRF = f0/(C ·N) against ADC conversion rate, greatly
reducing hardware component requirements.

Especially when measuring radio channels, which is a popular ap-
plication of the MSM, moving objects cause the system response to be
clinched/stretched in time domain. This effect, also known as the Doppler
effect is tolerable, as long as the total absolute time distortion does not ex-
ceed the amount of one half sample duration Tmax = 1/2 f−1

0 . This upper
limit can also be derived from a frequency domain perspective, where an
object moving through the channel at speed v relative to transmitter and
receiver causes a Doppler shift in the signal spectrum. Since we need to
sample the Impulse Response Function (IRF) with at least twice the rate
of the maximum Doppler shift to avoid degradation of the estimate h̃ in
moving scenarios, the respective limit can be derived as

ν =
2 f0 · v
cprop

and fIRFmin =
vmax · f0

cprop
, (4.20)

where cprop is the relative propagation speed in the medium (usually the
speed of light, when we are concerned with common radio channel) and
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fIRFmin is the minimum IR measurement rate, for which moving objects
of relative speeds up to vmax can be tolerated. If the motion limit of (4.20)
is exceeded, coherent sampling is lost and the correlation gain of (4.18)
diminishes by leaking to other taps of h̃. As we see later, Figure 4.16 (b)
in Section 4.2.5 exhibits this degradation strongly as soon as the motion
limit is exceeded.

If we want to derive the sampling as in (2.1) for the T&H based IR
acquisition, we need to derive the structure of the measurement matrix
Φ0, which in our case can be described as a permutation operator Φ0 ∈
{0, 1}N×N , defined as

Φ0
ij =

{
1 for j = (i · C)Mod N,

0 else .
(4.21)

Since the track and hold only allows us to sample every C-th sample
we have to measure so many repetitions of y such that we have collected
each sample of y exactly once. However these samples occur in a different
ordering such that we end up with Φ0. Then, in the presence of additive
noise n̂ ∈ RN , the linear model for our observation completes to

b0 = Φ0 · y = Φ0 ·D · h+ n̂ (4.22)

and to ensure full rank of Φ0, C must not be a factor of N. Note that again
we have derived a special version of (2.3) presented in Section 2.1.3.

Since as a permutation matrix P = Φ0 is trivial to invert by means of
P−1 = P T, (4.19) applies for estimating h̃ from b0 ∈ RN . If this kind of
subsampling is employed, it is self-evident that the MSM is not efficient in
terms of signal energy utilization, since only one in C samples is actually
used and we wish to improve upon this with our architecture.

Hence, to further improve robustness against noise, multiple observa-
tion vectors b0 can and often should be averaged, which in turn further
trades dynamic range against measurement speed.

4.2.3.2 Proposed Compressive Architecture

The proposed hardware architecture, as depicted in Figure 4.13 (b), ad-
dresses the problem of low system signal energy usage by applying a
more efficient sampling scheme. This is a similar idea to the single-pixel
camera presented in Example 2.1, where we presented a sensor that in-
corporates spatially distributed information into a single sample. In the
following we propose a similar idea, by accumulating whole time spans
of y into single samples.
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Under the assumption of sparsity in the IR and hence also of h only
a few degrees of freedom must be determined in order to retrieve the
IR [145], for which according to the theory developed in Chapter 2 al-
ready a small number of carefully designed observations is sufficient in
to recover h and hence y.

To accomplish this, we replace the T&H circuit by a RD structure as
in [142, 141], comprised of a second LFSR sequence generator, a multipli-
cation circuit and a short-time integrator. Note that the RD is strictly syn-
chronous to the excitation signal generator. This way, instead of observing
one entry of y once every C system clocks, a pseudo-random linear combi-
nation of C successive elements in y is measured. These pseudo-random
linear samples form the observation vector b ∈ RM. The random pro-
jection kernels are defined by the RD mixing signal m ∈ {−1,+1}C·M,
generated by the second LFSR generator as depicted in Figure 4.13 (b).
Similar to (4.21) for the MSM case, the Sampling operation of the proposed
architecture can be defined as

Φi Mod N,b i
C c = m[i] for i = 0 . . . (C ·M). (4.23)

Since we now utilize large portions of the signal y in the projections to
acquire b, after just a few observations (M � N), y is already captured
multiple times in b and reconstructing the IR is possible from these obser-
vations.

Controlling the number of observations per b, gives the flexibility to
adaptively set fIRF independent of fs or f0 and thus trade measurement
rate which influences the Doppler sensitivity against the treatable sparsity
of the channel’s IR. This dependency is a direct consequence of statements
in the flavor of Remark 2.4, since there sparsity directly influences the
number of necessary measurements.

4.2.4 Sparse Recovery

Under the assumption that the linear system’s IR h is sparse when us-
ing D to represent y, we can now for instance use the following `0-
minimization problem for reconstructing h as

argmin
h

‖h‖0 s.t. ‖Φ ·D · h− b‖2
2 6 η, (4.24)

for some suitably chosen η > 0, which is a specific version of (2.12) as in-
troduced in Section 2.2.4. Now we aim at solving (4.24) approximately by
the means outlined in Section 2.3.1 for which in Section 3.2.1 we presented
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an efficient version of Algorithm 3.1 utilizing the matrix-free representa-
tion φΦ·D . However we note that also FISTA could be employed here.

Similarly to the non-linear reconstruction proposed in Section 4.1, re-
trieving the IR from b requires significantly more computational resources
than the simple correlation post-processing employed by the MSM [138].
Since the model (4.24) consists of highly structured linear mappings, sig-
nificant improvements in both memory footprint and run time perfor-
mance may be achieved by exploiting structure realized by the architec-
ture from Section 3.4. Additionally, recently an implementation of OMP
has been demonstrated in silicon [146], giving way to realizing the pro-
posed architecture as high-performance system-on-chip including SSR
processing.

4.2.5 Measurement Setup

In the following sections we evaluate the performance of our proposed
method based on real measurements of a moving UWB radio channel. We
measure the channel IRs with a radar device employing the MSM, the IS-
HAD12HS of Ilmsens GmbH, Germany and two wideband horn antennas,
featuring a −10 dB bandwidth of 3.11 GHz. The device features an MLBS
generator of order k = 12 and a fixed sampling clock divider of factor
S = 128. Providing a low-jitter stable clock source of f0 = 9.22 GHz we
obtain a sampling clock of fs = 72.03 MHz, thereby capable of measuring
≈ 17 590 IRF/s and able to resolve an IR spread of up to 444 ns.

In addition to subsampling, we add another subsampling factor of
Cadd = 32. This results in a total subsampling factor of Ctotal = C ·Cadd =

4096. Since the excitation signal period is N = 212 − 1 = 4095, we now
have the case that according to (4.21) the sampling matrix becomes the
identity matrix: Φ̂ = I4095. Then the data stream z[n] is sampled at a
virtual rate of fs = f0/4096 ≈ 2.25 MHz. However the sample stream is
now equivalent to sampling at f0, since the effective subsampling factor
is Ceff = Ctotal mod N = 1, and reordering the samples can be omitted.
The so produced data stream z[n] now serves as the virtual system re-
sponse signal y[n] for both methods, as shown in Figures 4.12 and 4.13
(see Section 4.2.3). This allows to evaluate the performance of both meth-
ods synthetically in software on a common realistic data stream z[n].
Choosing C for the proposed method such that it is a factor of N is highly
advisable, since it then allows to use the same Φ for every reconstruc-
tion of (4.24). This is crucial in maintaining comparable reconstruction
performance independent of currently measurement period. This also
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Tx Rx

x(t) y(t)s(t)

v(t)

LOS

Figure 4.14 We consider a non-static Single Input Single Output (SISO) measurement
setup. – Measurement scenario with a strong LOS and time variant receiver and
sender distance s and the respective rate of change v �

gives us the ability of sweeping Compression Ratio (CR), since for every
additional repetition of the excitation signal we then gather N

C additional
observations. Overall, this leaves us with the problem that we cannot use
the same C both for MSM and the proposed compressive scheme, since
the MSM requires that C must not be a factor of N in order to maintain
proper sampling.

To be comparable to the original IR measurement device, for the pro-
posed compression method we select C in the vicinity of 128, which yields
the choice of C = 117, giving an extra ∆M = 4095/117 = 35 observations
in b for every additional excitation signal repetition. This allows to sweep
the compression factor beginning from ≈ 2.56 %. Due to the constraint
of the MSM we decide to give the MSM a slight advantage by choosing
C = 116, hence collection marginally more samples.

4.2.5.1 Time-variant Line of Sight (LOS) Scenario with Multipath

Given these parameters, (4.20) yields a movement limit v̂max = 0.16 m/s
for the MSM. Setting the highest compression rate for the proposed archi-
tecture, yields vmax = 5.93 m/s. Figure 4.14 shows the measurement sce-
nario, where the RX antenna is moved back and forth from the TX antenna,
with |vmax| ≈ 1 m/s. The antenna distance s(t) corresponds directly to
the peak delay τLOS(t) in the channel IR h(τ) = ω0 · δ(t− τLOS(t)), where
ω0(t) denotes the LOS intensity.

The measurement was conducted in a laboratory room, filled with
large amounts of structures and objects, to produce uncontrolled multi-
path components, which can be seen in Figure 4.16(a). By also collecting
energy from the WiFi bands during the acquisition of the measurements
a slight model mismatch due to RF interference was introduced. How-
ever, we expect both methods to measure the channel IR properly during
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immobility and to see the MSM fail during phases of movement due to a
Doppler shift that exceeds the theoretical limit.

4.2.5.2 Matrix-free Representation

Essentially, one has two possibilities to implement D in a matrix-free
fashion. Both of these we compare to the conventional dense presentation
in Figure 4.15.

The first option is to calculate the sequence d ∈ CN that is generated
by the LFSR and then use (3.9) for the matrix D = Γ(d) to derive the
algorithm for φD and βD .

Alternatively, since we are employing an LFSR to generate x[n], this
allows to compute the convolution operatorD even more efficiently using
the Fast Hadamard Transform [76] as outlined in [147], which is exploited
in fastmat by the fastmat.LFSRCirculant class. The key idea is to factor
D as

D = Γ(d) = P1 ·H ·P2 (4.25)

for two permutation matrices P1 and P2 depending on d. Further H is
the so called Hadamard matrix introduced in Section 3.3.3, which has a
fast implementation for φH by means of the FHT. Naturally, P1 and P2
have efficient matrix-free implementations, since the input vectors only
have to be reordered in memory.

We compare both implementations based on (4.25) and (3.9) in Fig-
ure 4.15. Here, we can observe the usual behavior. The dense represen-
tation is very efficient for small system sizes, but already for moderates
sizes of N ≈ 28 the matrix-free implementations become more efficient.
Among these two, the FHT-based algorithm performs slightly better, but
both expose a similar asymptotic behavior.

4.2.5.3 Simulation and Measurement Results

We compare three systems defined according to Section 4.2.5, which are
parameterized such that their hardware implementation effort is compa-
rable:

systemA: Ground truth (according to MSM of Section 4.2.3.1) with
C = 1 ( f̂s = 2.25 MHz), yielding ≈ 550 IRF/s.

systemB: The conventional MSM with C = 116 ( f̂s = 19.40 kHz),
yielding approximately 4.74 IRF/s.
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Figure 4.15 Circulant Matrices originating from linear feedback shift registers
have a fast matrix-free representation – Comparison of the runtime between the
dense, thefastmat.Circulant-based matrix-free implementation and thefast-
mat.LFSRCirculant-based matrix-free implementation for x ∈ Cn×m. �

systemC: The proposed compressive architecture with C = 117 ( fs =

19.20 kHz), yielding ≈ 36.60 IRF/s for m = 525 such that we have a
compression rate of 12.82 %.

In the sparse recovery case, K = 41 components, which assumes
a sparsity ≈ 1 % as estimated from h̃ of systemA, were recovered us-
ing OMP. The columns of D are approximately linearly independent
(µ(D) ≈ 1

N ≈ 2.44× 10−4) and although the pseudo-random sampling
matrix Φ exhibits high sparsity, its mutual coherence was determined
as µ(Φ) ≈ 1.24× 10−2. However, motivated by Theorem 2.4, crucial to
successful recovery is the coherence of the linear system model matrix
Ψ = Φ ·D, which in our case was found to be µ(A) ≈ 2.10× 10−6.

Figure 4.16 shows results of this evaluation over measurement time t,
plotted along the x-axis of the graphs. In plot (a) the section up to 27.10 ns
of the ground-truth radargram of systemA is shown. Plots (b) and (c)
show the radargrams of systemB and systemC, which in our case are
setup such that both exhibit almost identical fs and hardware complexity.
Plot (e) depicts the total energy of the IR for any given time t for the
three systems. Once the relative motion v(t) exceeds vmax (i.e., during
the transitions), it can be seen that the IR collected by systemB possesses
much lower energy compared to systemA and systemC. Furthermore, the
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inspection of the radargram of systemB also shows the leakage of energy
into wrong delay times due to aliasing in time-domain. An expected
outcome of the loss of correlation coherence due to too high Doppler-shift.
Since systemC does not exceed vmax due to its compressive sampling
approach, plots (c) and (e) reveal that coherence is maintained.

Plot (d) shows the trajectory of the sender and receiver distance s(t)
of the measured LOS scenario and their relative movement speed v(t) =
ṡ(t), which determines the Doppler properties according to (4.20) for the
different systems. To derive s(t) directly from the measurement data, we
use the outputs of systemA where we determine the distance of sender
and receiver by means of a peak search at each observation time t. In
order to be less sensitive to local oscillations of these peak searches, we
low-pass filter these peak locations along t to yield a smooth estimate
of s(t) from the measured data of systemA. In a similar fashion to s(t)
the signal peak amplitude a(t) can be derived directly from the output of
systemA. Combining both it is possible to define a Reconstruction Error
Metric (REM) ε considering both delay- and amplitude errors:

εt = (sX(t)− s(t)) +
∣∣∣aX(t) · a(t)−1 − 1

∣∣∣ (4.26)

where X is to be replaced by the system indicator.
Plot (f) concludes with a phase diagram showing εt of (4.26) for sys-

temC at different choices of the compression factor. The best system was
identified by a total error metric argmincr

∫
εcr(t)dt, and defined as sys-

temC as well as indicated in the plot by the green dashed line. The solid
green line indicates the Doppler limit of (4.20) in relation to the chosen
compression factor. Once the Doppler limit is exceeded, the proposed
method also fails to correctly reconstruct the scenario. Also, the recon-
struction is more robust for higher signal strength as is indicated by plot
(f) around t = 4 s, where reliably a lower CR can be chosen than for the
borders of the plot.

4.2.6 Conclusion

Compared to previous architectures based on PN sequences, the proposed
architecture makes better use of the received signal’s energy, hence allows
reconstructing the channel IR from fewer observations. While maintain-
ing the low complexity of the MSM hardware frontends [138], adaptive
control of key measurement parameters is added, which allows to trade
IR measurement rate against supported Doppler range. Considering ad-
vances in integrated technology [146, 148], our proposed method presents
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the prospect of highly-integrated and -agile IR measurement systems of
manageable hardware complexity. This way we successfully addressed
AOI-H.

On the algorithmic side we have demonstrated that the employed
measurement setup allows for efficient signal recovery based on matrix-
free implementations, as it readily leverages the methods developed in
Chapter 3, hence we contributed to AOI-R.

Our simulative evaluation, which is based on real channel measure-
ment data, has shown that for improving the recovery performance ac-
cording to CS theory, good conditioning of the system matrix Ψ = Φ ·D
must be further investigated in the spirit of the results in Sections 2.2
and 2.4. Aside from integrated circuit demonstration of the architecture,
investigating methods for selecting the RD mixing signal and architec-
tural parameters m, S in correspondence to the excitation signal were
identified as important matters for further research.
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Figure 4.16 The proposed RD based UWB system can can capture more energy of the
impulse response h and is more robust against Doppler shifts. – The plots contain:
(a) systemA - Ground truth acc. to MSM (Section 4.2.3.1) with C = 1
(b) systemB - Results for the MSM (Section 4.2.3.1) with C = 116
(c) systemC - The proposed method (Section 4.2.3.2) with C = 117
(d) Trajectory of moving LOS scenario according to Section 4.2.5.1
(e) Signal energy in h for case (a), estimated h̃ for cases (b) and (c)
(f) REM ε for systemC at different CR choices in [dB].

Evalation results (a) to (e) show 27.10 ns of a total of 444 ns �
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4.3 Summary

Both of the previous sections show that CS can either help to reduce the
amount of collected data when applied carefully as we demonstrate in
the US-NDT application or the same amount of acquired data can lead to
substantial improvement in terms of stability and robustness as outlined
in the CS-UWB scenario. Hence, in both cases a suitable application of
the principles of CS allows a more flexible design of the sensing stage and
hence allows us to collect more information about the signals of interest.

In both cases the matrix-free representation allows significant improve-
ments in terms of computational efficiency. When confronted with the
high dimensionality of the data and the parameter space as in the US-
NDT scenario one cannot circumvent the application of these methods
without substantially degrading the amount of data that can be processed
or the attainable resolution for the parameter estimation task.

Finally, we have seen that classical analysis tools like the CRB, as
studied in Section 4.1, still allow to infer the performance of a CS sys-
tem. In this sense, CS pipelines still behave similarly to other system
employed for parameter estimation. The same holds true for the robust-
ness to Doppler-shifts in the previous Section 4.2, where the well known
physically motivated bounds on the non-stationarity can also be applied
to a CS system.

These two applications of the grid-based CS theory conclude our study
of this subject. In the next chapter we introduce an extension of CS, which
allows to apply compressive measurement in even more general and
hence more realistic estimation tasks.
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Chapter 5

Grid-Free Compressed
Sensing

“All we have to do is decide what to do with the time that is
given to us.”

Gandalf

Up until this point, we have treated the setting which originally was
introduced as CS in the form of (2.3). If framed correctly, this model for
compressive measurements can be used to rephrase parameter estimation
problems where we can expect sparsity in the parameter domain. In Ex-
ample 2.2 and Chapter 4 we have encountered several examples for this
sparsity-based parameter estimation. However, this compressive mod-
eling step forces us to assume a discretization in the parameter domain,
which imposes an unnatural and as we will see sometimes detrimental
restriction on the parameter space that can be used for estimation. The
following sections first outline the ramifications of this imposed grid on
the task of parameter estimation. Afterwards, we show how to circum-
vent this while still allowing the notion of sparsity to play a role during
the reconstruction step.
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Contributions

During the development of this chapter about grid-free CS we propose a
very general method for line-spectral estimation in Section 5.2.6, which is
able to cope with an arbitrary-dimensional parameter space, compressive
measurements and multiple snapshots. This way, we are contributing
to AOI-R. Additionally, in Section 5.2.3 we also show how to apply
this general sparse recovery scheme to the task of DoA estimation with
arbitrary and hence realistic antenna geometries, which addresses AOI-M
and AOI-R as well. Next, in Section 5.3 we propose a flexible optimization
strategy that is motivated by machine learning techniques that allows
to retrieve measurement matrices in the grid-free CS setting for very
general parametric models. By doing so, we address AOI-C. As such,
these contributions are based on the publications [O18, O5, O4]. Finally,
we show that both the measurement optimization procedure and the
reconstruction approach can be combined to result in a well performing
grid-free CS pipeline.

We start by presenting a simple motivating scenario in Example 5.1
and we outline some existing approaches to tackle the estimation process,
where not all of them treat sparsity as the driving factor.

5.1 Introduction and Motivation

Very soon after the advent of CS, research actively explored the possi-
bility to use this more general sampling theory to extract parameters of
interest from all sorts of different data [149, 150, 49]. If we reconsider
Equation (2.3), which reads as

z = Ψx = Φy ∈ Cm

we not only want to accurately reconstruct the signal y ∈ CN , but also
the correct sparse representation x ∈ CM, since in the parameter estima-
tion setting, the location of the non-zero entries encodes the information
of interest, see for instance Example 2.2. There, the non-zeros entries’
positions encode the estimated delay. However, due to the nature of
finite-dimensional vectors x, we can also only recover a finite number of
unknown parameter configurations. However, in reality the unknown
parameters usually occupy a continuous domain and we are merely sam-
pling this domain with a hopefully dense enough grid in order to capture
the behavior of our system of interest. But, however dense this sampling
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. . .
Ω

Figure 5.1 Schematic for the DoA estimation problem. – An array of antenna elements
where plane waves with unknown spherical angle Ω impinge from the antenna’s
far-field. �

might be, there will be an inherent estimation bias and even cases where
reconstruction fails completely.

To have a clearer image of the problem at hand, we introduce a typical
DoA estimation scenario in Example 5.1.

Example 5.1 (DoA Estimation). Much like sampling in the frequency
domain allows to infer the time shifts of a known waveform by means of
estimating linear-phase behavior in Example 2.2, one can also use spatial
sampling by means of an array of antenna elements to extract propagation
directions of electromagnetic plane waves. In Figure 5.1 we show a highly
simplified scenario where a Uniform Linear Array (ULA) is collecting
information about S = 4 impinging paths.

In order to derive a data model, we assume we have access to a func-
tion a : R2 → CP, which is called the array manifold, since a(ϑ, ϕ) ∈ CN

models the response of the P-element antenna array to a plane wave im-
pinging from elevation angle ϑ and azimuth angle ϕ with (for instance)
vertical polarization. Due to the superposition principle of electromag-
netic waves, we can assume that our observation that is output by the
antenna ports can be modeled as

y =
S

∑
s=1

γs · a(Ωs),

where Ωs = (ϑs, ϕs) are the unknown spherical angles and S is assumed
to be small enough such that the array with P elements is able to resolve
these sources. Hence, we model the number of impinging waves as the
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Figure 5.2 Grid mismatch introduces ghost sources. – OMP reconstruction (green)
to extract the true DoA (blue), which does not reside on the imposed parameter
grid. �

sparsity S in this scenario. Additionally, by following [151, 8, 7, 152, 150]
and [149] we employ an analog precoding network, which is represented
by the matrix Ξ ∈ Cm×P and we finally have

z = Ξy +n =
S

∑
s=1

γs · Ξa(Ωs) +n ∈ Cm

where n ∈ Cm represents additive measurement noise. This precoding is
applied to reduce the necessary effort in terms of hardware, since fewer
(now m compared to N) amplification and digitization chains are neces-
sary to process the incoming signals, while the promise of CS is that the
aperture and hence the hereby achievable resolution are not substantially
inflicted negatively by the reduction of data represented by Ξ.

The goal now is to estimate the unknown tuples (θs, ϕs) and the so-
called path-weights γs ∈ C from the observation z under the assumption
that the model we posed is valid and we have perfect knowledge of a. �

To solve this with the previously developed methods, in spirit of Ex-
ample 2.2, one again imposes a 2D grid for the unknown spherical angles
(θ, ϕ) and forms the matrix

A =
[
a(θ1, ϕ1), . . . ,a(θi, ϕj), . . . ,a(θG1 , ϕG2)

]
∈ CN×G1·G2

as the sparsifying dictionary and arrives again at a sparse model that
reads as

z = ΞAγ ∈ Cm,
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where γ ∈ CG1·G2 is assumed to be S-sparse. However, since in reality
the angles do not reside on this finite grid, and hence cannot be correctly
represented by A, one introduces an unavoidable model mismatch. To
demonstrate this effect, in Figure 5.2 we setup a DoA estimation scenario,
similar to [153], where we run OMP to recover a single source’s unknown
azimuth angle from which an antenna collects its signal. Here, the inci-
dence angle is not on the assumed grid and we notice the introduction
of an additional ghost source to compensate for the inherent model mis-
match.

This observation is still valid, even if one introduces a denser grid for
the azimuth angles. Additionally, one then has to cope with the higher
computational effort and more importantly, the effect can only be reduced,
but not mitigated completely.

This sparked the development of techniques, like those in presented in
[153], where first clustering of sources and then correction is performed
to estimate those sources not resided on the grid more reliably, where the
correction might estimate a source angle not on the original grid. How-
ever, this approach is still bound to a grid-based reconstruction scheme,
like `1-minimization or OMP and it assumes that the ghost sources only
appear close to the true source location. However, we see in Figure 5.2
that this does not need to be the case necessarily.

Hence, investigations started [154, 155] to develop approaches that
reconstruct unknown parameters in a continuous manner directly without
resorting to a grid in the first place, while still maintaining the notions of
sparsity and allowing for compressive observations.

5.1.1 Other Methods

The task to extract parameters from a given measurement has been ad-
dressed and considered from various perspectives [26]. Conventionally,
one coins these methods methods as High Resolution Parameter Esti-
mation (HRPE) methods, since usually one strives to beat some sort of
Rayleigh-limit as outlined in [156] for the DoA, i.e. array processing, case.
Often one invokes some kind of parametric model as we also did in Chap-
ter 4 in order to derive the nature of the dictionary A in (2.3). Then this
parametric model allows to infer on the underlying parameters of inter-
est by (approximately) solving a suitably regularized inverse problem or
exploiting other geometric properties of the scenario at hand.
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Other Grid-free Sparse Recovery Approaches

The research field that explores the possibility to use grid-free sparse
recovery methods for DoA estimation has recently gained a lot of interest.
In [157] the authors use a coprime array interpolation method to which
they adapt the framework of Atomic Norm Minimization (ANM), which
we introduce in Section 5.2.1. However, the case of non-uniform, hence
realistic antenna arrays is not considered there. Also no compression step
is employed to reduce the amount of data captured.

In [158] the authors propose a spatial sub-selection from data captured
by a ULA. However, the proposed method still heavily depends on the as-
sumed array geometry and it cannot deal with more realistic setups. Also,
the authors only propose simple sub-selection of the antennas’ output
instead of more involved compression schemes.

The authors of [159] consider the estimation of angles and receive
delays from spatial and frequency data. However, they separate the
parameter domain into distinct domains, hence the parameters are not
estimated jointly, which ultimately results in a pairing problem when
trying to correctly match the estimated quantities to the impinging waves.

In [158] a channel estimation technique based on ANM is proposed,
where the authors only treat the two dimensional DoA estimation case,
which is valid for two ULAs at the transmit and receive side.

The publication coming closest to our proposed methods is [160], where
the authors present a similar approach as we do in Section 5.2.2, where the
antennas beampattern is approximated by a finite Fourier series for the
one dimensional DoA estimation task from a single snaptshot. However,
in our developed theory, we present a more general setting, where an ar-
bitrary dimensional estimation task from multiple compressed snapshots
is treatable. �

Richter Maximization Approach

In [161] the authors propose the very flexible and highly optimized esti-
mation framework Richter Maximization Approach (RIMAX) that allows
to cope with measurements following a double directional radio-channel
model as in [162]. The approach taken by this framework is implementing
an approximate maximum-likelihood estimator that can incorporate arbi-
trary antenna geometries and also is able to estimate signal components
that are not represented by the signal model itself. Additionally, a heuris-
tic for model order selection is applied, in order to estimate the model
complexity. However, due to the nature of the algorithmic approach one
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cannot formulate any theoretical guarantees for the convergence and cor-
rectness of the algorithm. Also, no estimates about the statistical efficiency
of the algorithm can be derived. However, the practical performance of
this framework can be verified for a large number of empirical studies. Fi-
nally, one can easily extend the assumed model to the case where one uses
analog precoding as a compression step, as introduced in Example 5.1. �

Subspace Methods

Another set of well understood methods are so-called subspace meth-
ods [156] where the two most prominent members are Estimation of Sig-
nal Parameters via Rotational Invariance Techniques (ESPRIT) as initially
proposed in [163] and Multiple Signal Classification (MUSIC), originally
formulated in [164]. Both methods construct suitable subspaces which im-
plicitly classify the received signal into measurement noise and the actual
signal. Then, one can use geometric arguments to extract the parameters
of interest from the signal subspaces. In these cases one can even infer
the estimation performance [165], hence give some theoretical insight in
the behavior of the estimation process. Unfortunately, one has to assume
that some invariances are fulfilled, which often is the case only for very
regular and idealized array geometries and patterns, again leading to a
model-mismatch and hence an estimation bias. Also, these methods are
not directly applicable to compressed data as in Example 5.1. �

Sparse Bayesian Learning

As an extension to the well known Support Vector Machine (SVM) as de-
veloped by [166] the authors in [167] presented the Relevance Vector Ma-
chine (RVM), which naturally results in sparse representations based on
a given parametric model. This approach can also be implemented more
efficiently using the so-called Fast Relevance Vector Machine (FRVM) as
proposed by [168]. In [169] the authors use a first order Taylor approxi-
mation in order to estimate the grid-offset directly in a sparse parametric
model which is used in DoA estimation. These approaches allow to incor-
porate very general antenna models and can also cope with the analog
precoding in Example 5.1 while also allowing statements about the con-
vergence of some of the usually employed algorithms. �
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5.1.2 Generalized Line Spectral Estimation via ADMM

Despite all these already existing efforts, we are going to take a different
route and present the body work initially jump started by [154] and [155]
that present statements in the spirit of the previously developed grid-
based CS, but without the assumption of a fixed and discrete parameter
grid. Again, we ask the same questions and propose heavily intertwined
(partial) answers as before:

� How should we conduct the compression step?

� How should we recover the parameters of interest?

� Under which conditions can we guarantee unique solutions of the
estimation problem?

These problems are addressed in the following sections of this thesis and a
summarized answer is given Theorem 5.2. We first introduce the concept
of ANM in a very general setting in Section 5.2.1 as an abstract frame-
work for sparsity based estimation from compressed data. Afterwards,
we show how in the case of line spectral estimation the dual problem to
ANM can be used to get an optimization problem that can theoretically
be solved efficiently. For this highly structured optimization problem, we
present a specialized and iterative Alternating Directions of Multipliers
Method (ADMM) approach, which can deal with very general compres-
sion and reconstruction setups.

5.2 Reconstruction Methods

In the following, we present the theory of grid-free CS based on ANM as
an extension and generalization of grid-based CS based on `1-minimization.

5.2.1 Atomic Norm Minimization

For the introduction of ANM we mostly follow the story line of [170]. Let
A ⊂ CN be a subset of a finite dimensional complex valued vector space.
The model for the signal we are going to consider is of the form

y =
S

∑
s=1

cs · as ∈ CN , (5.1)

where the so-called amplitudes satisfy cs ∈ R+ and the atoms as ∈
A ⊂ CN . As such, we assume sparsity of y with respect to the set A,
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by assuming S to be relatively small compared to the dimension of the
space that A is embedded in. To see how this generalizes our previous
notion of sparsity, assume that E = {−e1,+e1, . . . ,−eM,+eM} and we
have a matrix A ∈ CN×M. If we now set A as the image of E under
A (A = A · E ), we directly recover the sparse representation as in (2.2).
Many variants of the set A have been studied so far, i.e. sparse or low-
rank matrices [171], permutation matrices [172] and many more, see again
[170] for an extensive list.

In order to proceed we need the notion of a convex combination. Let
a1, . . . ,an be a subset of CN . Then, a convex combination is defined as

y = c1 · a1 + · · ·+ cn · an,

where each ci > 0 and ∑i ci = 1 and n < ∞, which renders convex combi-
nations to be finite sums. Then, we define the convex hull conv(A) as the
set of all convex combinations that can be formed among elements in the
set A. Another definition of the convex hull is to set it as the intersections
of all convex sets that containA. This allows us to define the atomic norm
‖·‖A : CN → R+

0 such that

y 7→ ‖y‖A = inf
t>0
{y ∈ t · conv(A)}.

The intuition is that the atomic norm quantifies by how much we have to
inflate the convex set conv(A) such that y is contained in it. Interestingly,
we can alternatively calculate

‖y‖A = inf

®
∑
a∈A

ca : y = ∑
a∈A

ca · a, ca > 0, ∀a ∈ A
´

. (5.2)

Note that in this general case, the evaluation of ‖·‖A in itself already
requires the solution of an optimization problem. As in Section 2.1.2 in
(2.1), we assume we have access to y not directly but in the form of noisy
linear measurements

z = Φ · y +n ∈ Cm (5.3)

for the measurement matrix Φ ∈ Cm×N , where m < N such that we are
compressing the signal to fewer observations and vector n ∈ Cm represent-
ing additive noise.

As we see from (5.2), the less complex y is in terms of A, the smaller
‖y‖A is. Hence, in order to recover y from z we use the following opti-
mization problem [170]

min
y∈CN

‖y‖A s.t. ‖Φy − z‖2
2 6 η, (5.4)
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in order to find a simple representation of y in terms of A. This can be
regarded as a generalized version of (2.13). Since if we have a solution x to
(2.13) we can directly infer that ‖A · x‖A = ‖x‖1. Finally, the process of
solving the problem in (5.4) is what is called Atomic Norm Minimization.

Although we now already have theoretically derived (5.4) as a spar-
sity promoting reconstruction method, it is not as useful as (2.13), since
without specifying A, the specific methods for the optimization cannot
be constructed. For different sets of A the involved methods might turn
out to be very different. For example, if A is the set of unit norm one-
sparse vectors, we can make use of the FISTA algorithm presented in
Section 2.3.2. In the case when A is the set of rank-1 matrices, it corre-
sponds to nuclear norm minimization [173] for which efficient algorithms
exist as well. Hence, it is necessary to precisely specify the set A before
we are in the position to derive means of solving the problem in (5.4).

5.2.2 ANM for DoA Estimation

For DoA estimation, the array manifold a : R2 → CP is the key com-
ponent to derive a realistic data model for a P-element antenna array.
Here, we consider the narrow-band case, which means the waveforms
impinging on the array have a small relative bandwidth in terms of the
employed carrier frequency. This allows us to treat the array-manifold
as if it were frequency independent. Additionally, we only consider one
polarization for the sake of simplicity. Although note that the methods
can easily be extended to two polarizations.

The function amodels the far-field antenna arrays response depending
on the angle of incidence of the impinging wave. Interestingly, due to the
natural periodicity of antenna beampatterns, one can use the so-called
Effective Aperture Distribution Function (EADF) [174, O7] to express it
as a two-dimensional Fourier series, via

a(ϑ, ϕ)p ≈
L1

∑
`1=1

L1

∑
`2=1

g`1,`2,p · exp
[

2π
`1 − (L1 + 1)/2

(L1 + 1)/2
ϑ

]
· exp

[
2π

`2 − (L2 + 1)/2
(L2 + 1)/2

ϕ

]
,

for odd L1 and L2 to express the arrays response at the p-th port. This
holds true, since the antenna beampatterns are naturally band-limited.
The g`1,`2,p ∈ C are the so-called EADF (or aperture) coefficients and can
be computed efficiently from samples of the function a. A visualization
for a measured antenna is given in Figure 5.3.
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Figure 5.3 Fourier series of beampatterns allow efficient representations. – Measured
and periodified beampattern slice a(ϑ, ϕ)p of a patch antenna (left), the corre-
sponding 2D (61× 69) Fourier coefficients g`1,`2,p (right). �

In order to arrive at a model as in (5.1), we define the function fL :
R→ CL for odd L as

θ → fL(θ) =

[
exp

(
2π

`− (L + 1)/2
(L + 1)/2

θ

)]L

`=1
, (5.5)

and the matrix

Γ = [γ`1·L2+`2,p] = g`1,`2,p,

such that we have Γ ∈ CP×L1·L2 . Then, we can write

a(Ω) = a(ϑ, ϕ) = Γ · (fL1(ϑ) � fL2(ϕ)) ∈ CP,

where � denotes the Khatri-Rao (or columnwise Kronecker-product) prod-
uct. Hence, we can describe the antenna beampattern by a linear combi-
nation of sampled complex harmonic functions, whose frequency depend
on the incidence angles. Now, if we reconsider Example 5.1, we can finally
present the single-snapshot model for DoA estimation as

z = Ξ · Γ ·
S

∑
s=1

cs · (fL1(ϑs) � fL2(ϕs)), (5.6)

where Ξ ∈ Cm×P constitutes the part of Φ = Ξ · Γ ∈ Cm×N (with N = L1 ·
L2) that represents the analog precoding network and can be chosen freely.
The key observation here is that the extraction of the unknown angles
ϑs and ϕs constitutes a so-called generalized 2D line spectral estimation
problem as presented in [175].
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To reformulate it a little further, we reformulate (5.6) by means of the
definition

fL1,...,LR(θ1, . . . , θR) = fL1(θ1) � · · · � fLR(θR),

where we can reformulate this Khatri-Rao product to

[fL1(θ1) � · · · � fLR(θR)]`1,...,`R = exp

(
2π

R

∑
r=1

`r

Lr
θr

)
.

Then, (5.6) can be considered a special version of

z = Φ · y = Φ ·
S

∑
s=1

cs · fL1,...,LR(θ1,s, . . . , θR,s), (5.7)

if we set R = 2 and θ1 = ϑ and θ2 = ϕ. Estimating (θ1, . . . , θR) from z

with the model as in (5.7) constitutes an R-dimensional generalized line
spectral estimation problem. Here, generalized denotes the fact that we
do not observe the complex harmonic directly, but linear functionals of
these encoded by Φ. Finally, we can also rephrase (5.7) by means of an
atomic set, if we let

A =
{
fL1,...,LR(θ1, . . . , θR) for θ1, . . . , θR ∈ R

}
, (5.8)

which means we now have that (5.7) is of the form (5.3) based on (5.1).
The geometric idea behind this specific A is that we collect the image

of the atomic function f in A, since this corresponds to the set of all 1-
sparse uncompressed signals we know from the grid-based approach (up
to scalar rescaling). Additionally, in the specific case of DoA estimation
we have that the compression matrix Φ = ΞΓ is now structured, since it
depends on the matrix Γ which describes the angular dependency of the
antenna array.

However, we still are in lack of efficient means for recovery. Hence, the
goal of the next section is to derive a suitable optimization problem to
reformulate the general ANM approach in (5.4) to our special case, such
that we end up with an optimization problem that can be solved by a
specific algorithm.
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5.2.3 Semi-definite Programming for Line Spectral Estimation

In order to proceed, we first introduce a multiple-snapshots model based
on Equation (5.3) and we define the appropriate extension of the atomic
norm. To this end, let the atomic function for line spectral estimation
f : RR → CL1·····LR be defined as in (5.7) then the respective atomic set for
K snapshots denoted as AK is defined as

AK =
¶
fL1,...,LR(θ1, . . . , θR)b

H
∣∣∣ b ∈ CK, ‖b‖2 = 1, θ1, . . . , θR ∈ R

©
, (5.9)

such that AK ⊂ CL1 ...LR×K. Then we can also describe K snapshots of the
same parameter constellation as a sparse representation via

Z = Φ · ∑
as∈AK

cs · as = Φ · Y +N ,

which is the analogue to the single-snapshot case in Equation (5.3). Next,
one also has to extend the definition of the atomic norm itself to the MMV
version ‖·‖Ak

: CL×K → R defined as

‖Y ‖AK
= inf

®
S

∑
s=1
|cs|

∣∣∣∣∣ Y =
S

∑
s=1

csas where as ∈ Ak

´
, (5.10)

to account for the case when we have K observations of the signal. Now,
the set AK consists of outer products of the original atoms f with unit
norm vectors b ∈ CK, which forms differently scaled copies of f , where
the scalings satisfy an energy constraint by means of ‖b‖2 = 1.

Next, we need the notion of Hermitian multi-level Toeplitz matrices.
Based on the definition in Section 3.3.2.4 via (3.12), we define

TH
(n,R)(u) = T(n,R)(t(u)),

where the R-dimensional array t(u) satisfies

tn1,n2,...,nr =

{
un1,n2,...,nr for n1 6 L1

u2L1+1−n1,n2,...,nr for n1 > L1
,

in order to render TH
(n,R)(u) Hermitian by definition. First, note that

TH
(n,R)(u) is not the same as T(n,R)(u)

H and we have

TH
(n,R)(u) = (TH

(n,R)(u))
H

instead.
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Finally, we are in the position to present the statement that allows us
to calculate the atomic norm in the multiple snapshot case, if we adapted
AK specifically to the setting where we want to do line spectral estimation.

Theorem 5.1 ([154], [176]). With AK given as in Equation (5.9) we have that
‖Y ‖AK

= w, where w is the objective value of the solution to

min
W ,u

trTH
(n,R)(u) + trW s.t.

TH
(n,R)(u) Y

Y H W

 � 0,

which constitutes a semi-definite program, since the constraints involve require-
ments on the spectrum of a matrix that depends on the vector of interest. �

Once one has access to u and hence also TH
(n,R)(u), once can use R-

dimensional versions of ESPRIT or MUSIC to extract the unknown cs and
(θ1,s, . . . , θR,s) in Equation (5.7). This is based on the R-dimensional ver-
sion of the Vandermonde-decomposition [176, Lem. 2.2] and [177], which
in the single-dimensional case states that a positive definite Hermitian
Toeplitz matrix T with rank S can be factorized as

T = V ·D · V H,

where V ∈ CL×S is a Vandermonde matrix andD ∈ RS×S is a diagonal
matrix. The R-dimensional versions of the subspace algorithms ESPRIT
and MUSIC allow to estimate V as

V = [f (θ1,1, . . . , θR,1), . . . ,f (θ1,S, . . . , θR,S), ]

and hence they allow to extract the parameters of interest from knowledge
of TH

(n,R)(u).
As a last building block, we need to combine Theorem 5.1 with the

approach of Atomic Norm Minimization in order to retrieve the methods
for reconstruction of Y from Z. The equivalent optimization problem to
(5.4) is given in the case of generalized line spectral estimation as

min
W ,u

trTH
(n,R)(u) + trW (5.11)

s.t.

TH
(n,R)(u) Y

Y H W

 � 0, ‖Z −ΦY ‖2
2 6 η.

Since the number of dimensions R of the parameter space is equal to the
number of levels of the R-level Toeplitz matrix, this kind of optimization
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problem becomes increasingly high-dimensional and hard to solve. On
the one hand, general purpose solvers for semi-definite programs, like
[178, 179] are not able to account for the R-level Toeplitz structure for the
case R > 1. On the other hand, many variants of the algorithms proposed
to solve (5.11) do not estimate the parameters jointly [159] or assume
only simple compression strategies, like sub-selection [180]. Hence, the
problem in Equation (5.11) should be solved as is, but we might have to
be satisfied with an approximate solution.

5.2.4 Recovery Guarantees for Atomic Norm Minimization

One question that remains is the existence of a unique solution of the
ANM problem given in (5.4) or more specifically the problem of general-
ized line spectral estimation as in (5.11). In [175] the authors study the
guarantees that can be obtained from employing sub-Gaussian measure-
ments as we did for the grid-based setting in Section 2.2. In order to
present their main result, we first define sub-Gaussian matrices.

Definition 5.1. A matrix A ∈ CK×M is b-sub-Gaussian with population
covariance Σ if its rows are stochastically independent of each other and
for all k = 0, . . . , K− 1 the k-th row ak ∈ C1×M ofA satisfies

E{ak} = 0, E{akH
ak} = Σ (5.12)

for an invertible covariance matrix Σ ∈ CM×M and for any vector x ∈ CM

it holds that

P
(∣∣∣akx

∣∣∣ > t‖x‖2

)
6 exp

(
− t2

b2

)
. (5.13)

�

Examples for sub-Gaussian distributions are of course Gaussian distri-
butions or sums of Rademacher distributions. With this notion at hand,
we can present the result in [175, Thm. 2], where the authors state that
these matrices are good compression matrices in the sense stated below.

Theorem 5.2. Let Φ ∈ Cm×N be a b-sub-Gaussian matrix with population
covariance Σ and measurements given by z = Φy for y as in (5.7). Assume fur-
thermore that the unknown parameters satisfy a minimum separation condition

min
s1 6=s2∈[S]

min
r=1,...,R

|θr,s1 − θr,s2 | >
4

L1 · · · · · LR
.

Then as long as

m > c(R)S log(L)b−2κ(Σ)
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for a fixed constant c(R) depending on the dimension R of the frequencies, y is
the unique minimizer of (5.11) with probability at least 1− exp(−(K− 2)/8).
Here κ(Σ) is the condition number of Σ. �

If we remember Remarks 2.1 and 2.4 from the previous parts of the
thesis, we can see that above statement has the same flavor. It states under
which conditions a certain compressive measurement process is able to
efficiently recover the unknown frequencies. Again, it merely guarantees
this recovery with high probability. Interestingly, even in this seemingly
much more challenging setting where the frequencies that have to be
reconstructed do not reside on a grid, the scaling law is essentially the
same as the one provided by Equation (2.19) given that we obey a certain
minimum separation condition.

In the following, we use two prominent sub-Gaussian ensembles. First,
properly rescaled Gaussian matrices and second matrices whose entries
are drawn from a Rademacher distribution. It is easy to show for both
cases that they are instances of the sub-Gaussian ensemble.

By means of Theorem 5.2 we have also demonstrated that the approach
of ANM together with these random matrices is a viable method to extract
the spectral components from compressive measurements. And finally,
it motivates us in Sections 5.3 and 5.3.3 to use sub-Gaussian matrices as
initial guesses to initialize the proposed iterative method for measurement
matrix optimization.

The next section Section 5.2.5 puts the previously developed theoretic
results to a first test by conducting numerical experiments, which tackle
a one-dimensional version of the problem in Example 5.1.

5.2.5 Semi-definite Programming Simulations

To demonstrate the performance of the proposed estimator, which consists
of solving Equation (5.11) for the specific model as given in (5.6), we im-
plement it using the Convex Optimization toolboX (CVX) and the SDPT3
solver [178, 179] for the case R = 1 and K = 1, where the side-constraint
is that we have a block-matrix that contains an Hermitian Toeplitz block.
As such this scenario can still be handled by CVX.

For the first experiment, we use a Stacked Polarimetric Uniform Circu-
lar Patch Array (SPUCPA) which is depicted in Figure 5.4. It consists of
two stacked 12-element uniform circular patch arrays and an additional
cube of five patch elements on top. Each element has two ports for ver-
tical and horizontal polarization. For the simulations, we use only the
two rings of 12 elements and only the vertically polarized port so that
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M = 24 ports are available. Moreover, the EADF for the beam pattern
(which was measured in an anechoic chamber) contains L = 25 coeffi-
cients per antenna element. We would like to stress the fact that although
we use a special array, the simulations generalize to any array, where the
EADF coefficients are known and we merely incorporated the SPUCPA
array as an illustrative example. To quantify the performance of our es-
timator, we compare it to the deterministic CRB computed according to
Equation (2.25) in Section 2.4.4.

Figure 5.4 Stacked polarimet-
ric uniform circular patch array
with 58 ports. We have used only
the ports corresponding to the
two stacked circular arrays with
12 elements per ring. �

In Figure 5.5 we show the empirical
phase transition for the noiseless case
w = 0. We vary the number of sources
S and the number of measurements m
and draw the source positions randomly.
Moreover, the amplitudes c in (5.7) are
drawn randomly on the complex unit cir-
cle. We depict the empirical estimation
error defined as ∑S

s=1(θs − θ̂s)2 on a loga-
rithmic scale, i.e., values below −10 corre-
spond to an estimation error below 10−10

which can be considered to be rounding
errors of the floating point representa-
tion. Figure 5.5 considers a ±1 binary
iid Rademacher distribution and an iid
Gaussian distribution for the creation of
Φ, showing the best realization among
100 trials. We observe a quite sharp phase
transition that occurs between m = S and
m = 2S illustrated by the fact that left of
the cases corresponding to m = S the re-
construction error is constantly high, whereas right of the cases m = 2S
we only observe rounding errors.

To investigate the performance in the presence of noise with variance
σ2, the results depicted in Figure 5.6 show the empirical estimation error
of the proposed method vs. the CRB for the compressed and the uncom-
pressed cases, where the optimization in (5.11) was run with η = σ/m.
We compare the effect of using iid Gaussian and Rademacher distributed
compression matrices. For both we show the median and the 25/75 per-
centiles. Moreover, the corresponding CRBs are shown as well. In the top
of Figure 5.6 we consider S = 2 sources and m = 12 (i.e., a compression
rate of 50 %) whereas in bottom of Figure 5.6 we choose S = 3 sources
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Figure 5.5 As in the grid-based setting the phase transition in terms of measurements
vs. sparsity is very sharp. – Estimation error (logarithmic scale) vs. measurement
size m, and sparsity S for the noise-free case and Gaussian (top) and Rademacher
(bottom) distributed compression matrices. �

and m = 15 (i.e., a compression rate of 62.5 %). As before, the source
positions are drawn randomly. The results show the statistics over 2500
trials, where we also regenerate the compression matrices, and confirm
that both compression matrix distributions behave almost identically and
provide estimation errors that show some gap to the CRB, but behave
similarly to it.

In the last experiment we consider an array of M = 29 isotropic an-
tenna elements in a randomly generated array geometry, which is de-
picted in Figure 5.7 on the left. We generate S = 5 sources at random
positions in a manner similar to the previous experiment. The right plot
in Figure 5.7 shows the empirical estimation error vs. the CRB for the case
where no compression is applied (Φ = IM). The result demonstrates that
the proposed method enables grid-free sparsity-based DoA estimation
with arbitrary array geometries and that closely follows the CRB.

Finally, we would like to note that the simulations in Figure 5.5 are
conservative by design in terms of number of sources S. This is due to the

192



Chapter 5. Grid-Free Compressed Sensing

6 8 10 12 14 16 18 20

10
−

4
10
−

3
10
−

2
10
−

1

SNR[dB]

M
SE

MSE
.25 perc
.75 perc
CRB

6 8 10 12 14 16 18 20

10
−

3
10
−

2
10
−

1

SNR[dB]

M
SE

MSE
.25 perc
.75 perc
CRB

Figure 5.6 The proposed estimator is not able to achieve the CRB. – Estimation error
vs. SNR for S = 2 sources and m = 12 (top), Estimation error vs. SNR for S = 3
sources and m = 15 (bottom) �

fact that they have to be aligned with the minimum separation condition
in Theorem 5.2, which has to be fulfilled to make ANM a theoretically
viable approach. To this end, we have to keep the number of sources
significantly lower than M.

These nevertheless promising results for the case R = 1 motivate us
to extend this approach to arbitrary dimensions. Hence, in the following
section we present as a main result of this thesis a derivation of an algo-
rithm that is capable of approximating a solution to the problem in (5.11)
based on the so-called ADMM [181].
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Figure 5.7 The random geometry allows estimation closer to the CRB. – Randomly
drawn array geometry with M = 29 elements and the resulting estimation error
vs. SNR for S = 5 sources (no compression). �

5.2.6 ADMM for Semi-definite Programming

As we have seen in Equation (5.7), the data model for line spectral es-
timation can be formulated for arbitrary dimension R of the frequency
parameters. Also, the reconstruction method in Equation (5.11) can be
used for arbitrary R due to the recursive nature of the Hermitian R-level
Toeplitz matrices. Further, it is of high interest to derive efficient solvers
for the case R > 1, since the setting in Example 5.1 for DoA estimation
already requires R = 2. Another motivation for the case R > 1 is given in
[162], where essentially the case R = 6 has to be considered, if one would
like to treat the data model for multiple input multiple output (MIMO)
channel sounding considered there.

Given these motivations, as a main contribution of this thesis we would
like to replace the direct solvers as employed in the previous Section 5.2.5
with a more flexible and and the same time specialized algorithm by more
explicitly exploiting the inherent structure of the semi-definite program.
For this task, a specialized version of the ADMM [181] has been proposed
[182, 183].

We take these results as a starting point, to derive explicit closed form
formulations for the iterative update steps of the ADMM in order to
approximate a solution to (5.11). Consequently, following [181, 182, 183],
we first define the so-called augmented Lagrangian of the problem in
(5.11), which reads as

min
W ,u,Y

L(W ,u,Y ,V , Λ) s.t. V � 0, Λ � 0 (5.14)
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whereW ∈ CK×K,u ∈ CN1×2N2−1···×2Nd−1,Y ∈ CM×K,V ∈ CM+K×M+K

and Λ ∈ CM+K×M+K. The augmented Lagrangian function L is evalu-
ated as

L(W ,u,Y ,V , Λ) =

¥

Λ,V −
TH

(n,R)(u) Y

Y H W


︸ ︷︷ ︸

=T

æ

+
1
2
‖ΦY −Z‖2

F +
τ

2
(trW + trTH

(n,R)(u))

+
ρ

2

∥∥∥∥∥∥V −
TH

(n,d)(u) Y

Y H W

∥∥∥∥∥∥
2

F

,

where τ > 0 and ρ > 0 are suitably chosen constants. Here τ plays the
role of a regularizing parameter between data fitting and the magnitude
of the atomic norm of Y . And ρ tunes the influence of the convex term it
is multiplied with, which renders L a convex function for large enough
ρ. We also partition the matrices Λ and V such that they match the
partitioning of the blocks in T as

Λ =

 Λ̂ Λ1

Λ1 Λ0

 and V =

V̂ V1

V1 V0

 .

We now use the results of Appendix C.2 in order to calculate the partial
derivatives of L, which have to be handled carefully, since we have to
consider the fact that the variables L depends on are complex valued and
highly structured. To this end, we make use of the results in Appendix B.2,
which introduce the so-called Wirtinger calculus.

In general and according to [183] the iteration of ADMM in step k can
be expressed as

(W k+1,uk+1,Y k+1)← argmin
W ,u,Y

L(W ,u,Y ,V k, Λk)

V k+1 ← argmin
V �0

L(W k+1,uk+1,Y k+1,V , Λk)

and

Λk+1 = Λk + ρ(V k+1 − T k+1)

By using the derivatives of Appendix C.2 in (C.11), (C.12) and (C.13)
we can compute above updates in closed form by setting the respective
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derivatives to 0, thus satisfying the necessary conditions for local opti-
mality, and solving for the variable of interest. Note that here, 0 is the
neutral element with respect to addition in the respective vector space the
derivatives are resided in. Finally, they read as follows

uk+1 =
1

ρDn,d(1)

(
Dn,d(Λ̂

k − ρV̂ k)− τ

2
i1

)
(5.15)

W k+1 =
1
ρ

Λk
0 + V

k
0 − I

τ

2ρ
(5.16)

Zk+1 =
(

ΦHΦ− ρI
)−1
·
(

ΦY + Λk
1 + ρV k

1

)
, (5.17)

where
(

ΦHΦ− ρI
)−1

can be precomputed in advance to avoid repeat-
edly solving a linear system. See Appendix C.2 for the definition of Dn,d.
Furthermore we also update T iteratively from the current variables ac-
cording to

T k+1 =

TH
(n,R)(u

k+1) Y k+1

Y Hk+1
W k+1

 (5.18)

whereas we finally can also update V via

V k+1 = P�
(
T k+1 − ρΛk

)
, (5.19)

where P� is the orthogonal projection onto the positive cone of the pos-
itive semi-definite matrices, which can be realized numerically by an
eigen-decomposition and is the computationally most expensive step
during the iterate updates. With this we have completed the iterations
for ADMM which now only consists of initializing (W 0,Y 0,u0,V 0, Λ0)

and iteratively carrying out the steps in (5.15), (5.16), (5.17), (5.18) and
(5.19). With the operators TH and D defined as above, which can be
implemented recursively for arbitrary dimensionality R of the underly-
ing parameter space, one can create a very general implementation as
outlined in Algorithm 5.1.

The interpretation of Algorithm 5.1 is that it provides an estimator
for the signal covariance CovY by means of the assumption that it is a
Toeplitz matrix, since the signal Y originates from a superpositions of
complex sinusoidals. The proposed method allows to estimate the covari-
ance of Y directly from the compressed observations Z by making use
of the underlying sparsity of the representation of Y and the knowledge
how Z originates from Y . Hence, this allows the combination of ADMM
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Data: Set of observed measurement vectors Z; Sparsity order
Smax ∈N; Dimensionality of the underlying parameters R;
Regularization parameters ρ, τ; Steps T to run the iteration;

[1] Initialize (W 0,Y 0,u0,V 0, Λ0) randomly;
[2] k = 0;
[3] while k < T do
[4] uk+1 = 1

ρDn,d(1)

(
Dn,d(Λ̂

k − ρV̂ k)− τ
2 i1

)
;

[5] W k+1 = 1
ρ Λk

0 + V
k

0 − I τ
2ρ ;

[6] Zk+1 =
(

ΦHΦ− ρI
)−1
·
(

ΦY + Λk
1 + ρV k

1

)
;

[7] T k+1 =

TH
(n,R)(u

k+1) Y k+1

Y Hk+1
W k+1

;

[8] V k+1 = P�
(
T k+1 − ρΛk

)
;

[9] end
[10] run a variant of ESPRIT or MUSIC on TH

(n,R)(u
T−1) to estimate Smax

parameters of dimension R;
[11] run least-squares to estimate the complex amplitudes cs;

Algorithm 5.1: The resulting algorithm for R-dimensional generalized line spectral
estimation from multiple measurements. – The derived Alternating Directions of
Multipliers Method based on (5.15), (5.16), (5.17), (5.18) and (5.19).

with subspace methods that work with estimates of the covariance of
Y . Note that theoretically ADMM can even provide estimates for the
covariance of Y even in the single snapshot case K = 1.
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5.2.7 Simulations for ADMM

To quantify the performance of our estimator in Algorithm 5.1, we com-
pare its estimation error to the deterministic CRB. With the proposed
spatial compression, the deterministic CRB for the R-dimensional case
with K snapshots can be computed via (2.25) and in this case reads as

C(θ) =
σ2

2 · K tr
([
<(DHΠ⊥GD� (1R×R ⊗ R̂)T)

]−1
)

, (5.20)

with Π⊥G = I −G(GHG)−1GH and R̂ = 1/K · SSH being the sample
covariance and we have set

G = Φ[f (θ1), . . . ,f (θS)], Di =
∂

∂θi
G, D = [D1, . . . ,DR]

First, we carry out the atomic norm minimization for 3D line spectral
estimation with uncompressed measurements, so Φ = I in (5.11) and
also compressed measurements, where the entries of Φ are drawn iid
from a zero-mean Gaussian distribution and then we project the columns
to the complex unit sphere in Cm, thus normalizing the columns inde-
pendently. Here, we chose m = bρ · Nc according to some compression
rate ρ ∈ (0, 1]. In case of Φ = I , so ρ = 1, we also run 3D-Standard-
ESPRIT [163] directly on Y as a comparison, which is only applicable in
this case, since ESPRIT is not able to deal with compressive measurements
of the kind employed here. In any case, we choose τ = σ0.8 as a simple
heuristic and ρ = 0.05 to run the ADMM and we initialized the state
variables (W 0,u0,Z0,V 0, Λ0) by sampling the real and imaginary parts
from standard Gaussian distributions.

The results in Figure 5.8, where we plot the reconstruction error versus
the noise variance σ2, show that the derived ADMM approach is able to
replicate the performance predicted by the CRB for the case ρ = 1, thus
delivering the same performance as 3D-Standard-ESPRIT.

In the case ρ = 0.75 we see that the ADMM algorithm’s performance
highly depends on the number of steps T carried out to estimate the
covariance TH

(n,d)(u
T−1), since the error floor decreases when iterating

for 1000 steps instead of 100. In conclusion, this means that the ADMM
approach also achieves the CRB after a suitable amount of iterations.
However these many iterations are usually only necessary in the high-
SNR regime.

Moreover, we use the derived algorithm’s flexibility and apply it to
the 2D DoA estimation problem in Example 5.1 with a 12× 3, so P =
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Figure 5.8 For the line spectral estimation case, the ADMM attains the CRB. – ADMM
reconstruction performance for line spectral estimation of S = 3 sources and d = 3-
dimensional frequencies with k ∈ [3, 3, 3] in comparison to standard ESPRIT using
K = 100 snapshots. �
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Figure 5.9 In the case of DoA estimation, the reconstruction is also close to the ground
truth. – Simulation results from a 2D DoA estimation scenario using a stacked
uniform linear array with 3 stacks and 12 elements each with noise standard
deviation of σ = 0.01. �

36, stacked circular array, where the stacks are aligned in the x-y-plane
with distance dz = 0.375λ and diameter 12/16λ = 0.75λ and λ is the
wavelength of the impinging wave. We use the Fourier coefficients of
this (synthetic) array to formulate the DoA problem into a line spectral
estimation problem as in (5.6) for Ξ = IP, hence Φ = Γ in (5.7). A single
scenario is depicted in Figure 5.9 where the noise variance is σ2 = 0.001
and we recover these locations in the 2D angular domain from K = 100
snapshots. It is worth noting that these results can also be obtained from
realistic arrays described by measured data and also if Φ actually carries
out a compression step in the case Ξ 6= IP as we will see later.

As a final simulation, we strive for a comparison of a vanilla ANM
approach using CVX and the proposed ADMM. To this end we setup
a scenario with randomly subselected identity matrices as compression
matrices for a compression level of 75% with the rest of the properties as in
Figure 5.6 which we averaged over 50 trials per level of SNR. As expected,
we can see in Figure 5.10 that the CVX-based optimization is very closely
following the CRB and the proposed ADMM due to its approximate and
iterative nature is not exactly replicating the behavior of the CRB and
CVX, but instead requires an increasing amount of iterations for higher
SNR levels.

Summarizing, we have demonstrated that the derived ADMM iter-
ation scheme is capable of recovering the unknown multidimensional
frequencies using a very general model based on multiple snapshots and
how it can be applied to 2D DoA estimation using arbitrary antenna
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Figure 5.10 The proposed ADMM closely follows the CRB and CVX, especially in the
low-SNR regime. – Comparison of the exact solver for ANM by solving (5.11) using
CVX and the proposed approximate solver ADMM. �

arrays.
Now that we have contributed to AOI-M by rephrasing DoA estimation

as a generalized line spectral estimation problem and have shown how to
solve it by means of ADMM, hence addressing AOI-R, we turn to AOI-C.
To this end, we show how to construct measurement matrices Φ that are
better suited for parameter estimation than the random ensemble.
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5.3 Sensing Matrix Design using Stochastic Gra-
dient Descent

In this chapter, we propose an algorithm based on Stochastic Gradient
Descent with momentum to find well behaved measurement schemes
for arbitrary atomic sets, or alternatively: very general parametric data
models which are combined with a compression step. As such it operates
grid-free, so it does not impose sampling of the parameter space on a
finite set as in Section 2.4.3 and it can operate on arbitrary dimensional
parameter spaces, which in light of the previous Section 5.2.6 is a desired
property. Despite the fact that it is originally designed to be employed in
the grid-free setting, it can also be easily adapted to the grid-based setting
to solve problems like the one in Equation (2.21).

Furthermore, it allows for fine-grained tuning of the computational
complexity using the size of the used mini-batches and the number of
iterations that are carried out. As such, we are presenting a generalized
version of a variant already introduced in [O4] and by doing so we address
AOI-C.

5.3.1 Introduction and Motivation

Naturally, the generalized reconstruction method based on ANM sparks
the need for reconstruction guarantees similar to the ones presented in
Section 2.4. One would like to derive statements in the spirit of Theo-
rem 2.8 that specify under which conditions a certain measurement matrix
Φ ∈ Cm×M allows for efficient, robust and stable recovery using ANM.

Due to the success of the random Gaussian example in the grid-based
setting, publications like [170] and [175] study the ramifications of imple-
menting the sensing step with a Gaussian matrix when recovery happens
via ANM. In [170] the authors treat a very general setting, without the
need to specify the atomic set A, whereas in [175] the specific case of gen-
eralized line spectral estimation as in Section 5.2.3 is treated. In both cases,
the authors derive sufficient conditions for a unique solution of the prob-
lem in Equation (5.4) in terms of the necessary number of measurements
m. We present one of these results in Section 5.2.4

In the case when A is derived from a parametric model a, as for DoA
estimation or line spectral estimation, this random process of selecting
the sensing matrix introduces a randomness in the parameter space, since
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for random Φ the mapping b : Θ→ Cm defined as

b(θ) = Φ · a(θ)

is then random as well. Hence, for a fixed parameter θ the information
one can infer on θ from observing b(θ) can vary substantially, around
the expectation E(b(θ)), see Figure 5.15. This means that some parameter
configurations can be estimated better than others, which is not a good
feature of a compressive sensing system, when the estimation process
cannot provide uniform recovery precision over the whole parameter set
Θ.

This was also already observed in the grid-based setting, where the
theory dictates that random Gaussian matrices behave optimally in terms
of the needed number of measurements to guarantee exact and stable
recovery. Hence, interest quickly shifted to optimization methods that
improve upon the random ensemble.

In publications like [184, 185, 186, 187] the approach is to parametrize
a suitable optimization problem involving the sparsifying dictionaryA,
where the problem itself optimizes Φ when being solved numerically.
Often, these problems are convex and have convex side-constraints, hence
can be solved efficiently using (projected) gradient iterations or can be
even solved in closed form by exploiting the SVD of an appropriate matrix.
Usually, these methods optimize the coherence of the resulting matrix,
which is motivated by Theorem 2.4.

However, these methods are not directly applicable to the grid-free
setting, where the dimensionality of the parameter space is large (R >

1), since they heavily depend on the definition of the matrix A as the
dictionary. Hence, to have a meaningful result for the optimization the
dictionaryA has to be created as

A = [a(θ1), . . . ,a(θM)] ∈ CN×M,

where M usually has to be of the order O(∆−R) for some small ∆, to
achieve a coverage of the parameter space Θ with spacing ∆. To problems
arise. First, it is not clear how small ∆ has to be, second the magnitude of
R has a significant influence on the feasibility of the algorithms presented
in [184, 185, 186, 187], especially when one has to compute an SVD of a
matrix involving the dimensions of A. Lastly, it it not directly obvious
how the optimization of Φ based onA translates to parameters θ that are
not used to formA, i.e. the off-grid parameters.

Instead in [38], a low-complexity design approach based on the spatial
correlation function (SCF), see Equation (5.21), for 1D DoA estimation
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is proposed while its extension for 2D DoA estimation is investigated in
[188]. There, instead of taking the complete 4D-SCF to define the cost
function for optimization, only 2D subsets are used in order to maintain a
tractable computation path. A method to choose these 2D subsets, and an
evaluation of the DoA performance while achieving considerable reduc-
tion in computational requirements compared to a direct extension of the
approach in [38] is described in [188] as well. Despite the effectiveness of
the approach in [188], its computational requirements raise substantially
with increasing size, in terms of number of elements and aperture of the
antenna array.

Hence, in the following, we use the core idea of [188] and extend it with
respect to two important aspects. First, the extension can be applied to
the grid-free setting, where the optimization does not need the imposition
of a fixed grid in Θ. Second, it is not limited to the specific structure of a
as in the DoA setting, but can also readily be applied to any parametric
model.

5.3.2 The Algorithm

The following section aims at deriving a gradient based algorithm to
generate a well performing compression matrix Φ ∈ Cm×N for a general
atomic set A which is generated from a parametric model a : Θ → CN

via

A = {a(θ)|θ ∈ Θ},

as introduced in Section 5.2.1. For the parametric model a the spatial
correlation function ρ : Θ×Θ→ C is given by

(θ1,θ2) 7→ ρ(θ1,θ2) = aH(θ1)a(θ2), (5.21)

which can also be viewed as the auto-correlation function of the set A.
However, since our observations in Equation (5.3) do contain linear projec-
tions of the atoms in A by virtue of the matrix Φ, we additionally define
the effective SCF ρΦ : Θ×Θ→ C depending on the compression matrix
Φ via

(θ1,θ2) 7→ ρΦ(θ1,θ2) = aH(θ1)Φ
HΦa(θ2), (5.22)

The key idea in [188] is to measure how much the compression by means
of Φ affects the correlation function. To this end, we evaluate how much
ρ deviates from ρΦ by means of the function δ : Cm×N → R+

0 which is
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defined as

Φ 7→ δ(Φ) =
∫
Θ

∫
Θ

|ρ(θ1,θ2)− ρΦ(θ1,θ2)|2 dθ2 dθ1, (5.23)

where the integrations are carried out with respect to a suitable measure
on Θ. If we have δ(Φ1) 6 δ(Φ2), we can expect Φ1 to be the better
compression matrix than Ψ2, since the compressed correlation behavior
ρΦ more closely resembles the uncompressed ρ.

Hence, the function δ can be considered a valid proxy to evaluate the
performance of a given compression matrix, where small values of δ are
generally desirable. This is why we aim at solving

min
Φ

δ(Φ) (5.24)

in order to recover an optimal compression matrix in terms of the SCF.
However, already the evaluation of δ is computationally intractable, since
it involves numerical integration for non-trivial data models a, where
the complexity scales exponentially in the parameter space dimension R.
Hence, we need to formulate a suitable proxy objective function, which
we do via η : Cm×M ×AB → R+

0 defined as

(Φ,A) 7→ 1
B2

B

∑
i=1

B

∑
j=1

∣∣∣aH
i aj − aH

i ΦHΦaj

∣∣∣2, (5.25)

where B ∈N is the number of elements ai ∈ A we consider.
If we draw the columns inA = [a(θ1), . . . ,a(θB)] ∈ CN×B randomly

and iid according to the uniform measure on Θ we have that the then
random variable η(Φ, ·) converges in expectation and in L2 against δ(Φ)

for B→ ∞, which means we have that

lim
B→∞

E(|η(Φ,A)− δ(Φ)|) = 0 (5.26)

and

lim
B→∞

E
[
(η(Φ,A)− δ(Φ))2

]
= 0. (5.27)

As such, the function η poses a valid stochastic proxy for the calculation
of δ by randomly selecting from the atomic set A. Additionally, we notice
that for fixedA the function η(·,A) is smooth in its first argument, since
we can rewrite it to

η(Φ,A) =
1

B2

∥∥∥AHA−AHΦHΦA
∥∥∥2

F
. (5.28)
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Elaborating on this, we now formulate a Stochastic Gradient Descent
(SGD) with momentum, where the general idea is to considerA as the so-
called minibatch, which we generate randomly in each step as described
above.

Generally, gradient descent with momentum [189] is a popular and
simple first order technique to find local minima of smooth functions.
In its most simple form it minimizes a smooth function f : Cn → R by
iterating

vi+1 = βvi − α∇x f (xi) (5.29)

xi+1 = xi + vi (5.30)

for initial velocity and state variables v0,x0 ∈ Cn, a drag parameter β ∈
[0, 1) and a step size α > 0. Ideally, we would simply carry out the
optimization in (5.24) using the iteration above.

In order to render the iteration stochastic we use new realizations of
(5.28) in each step to formulate a randomized version of (5.29) and (5.30)
as

Vi+1 = βVi − α∇Φη(Φi,Ai) (5.31)

Φi+1 = Φi + Vi (5.32)

for initial velocity and state matrices V0, Φ0 ∈ Cm×M. Through the com-
bination of randomly varyingA in each step and using momentum with
drag, we always use a small proportion of the previous selectionsA for
the next search direction.

Clearly, we are still in need of an analytical expression of the gradient
of η(·,Ai), which is provided in the following result.

Lemma 5.1. For givenAi ∈ CM×B and Φ ∈ Cm×M it holds that

∇Φη(Φ,Ai) = c · (ΨAiA
H
i ΦHΦAiA

H
i −ΦAiA

H
i AiA

H
i )

for c = 4/B2. �

The proof can be found in Appendix A.3. This allows us now to carry
out measurement matrix optimization for any form of atomic set as sum-
marized in Algorithm 5.2.

It is worth noting that the proposed Algorithm 5.2 does not depend
on the specific structure of A. Hence, it can not only be applied to the
setting in Example 5.1, but to far more general atomic sets as long as
the measurement process is linear. Additionally, one can even define
areas of interest in Θ, by varying the distribution that generates the mini-
batches accordingly. Further, the definitions of ρ and ρΦ in (5.21), and
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Data: input: the mapping a, initial velocity V0, initial compression matrix
Φ0;

mini-batch size B ∈N, learning rate α, drag parameter β, K steps;
[1] while k < K do
[2] Draw θ1, . . . ,θB;
[3] Calculate A;
[4] Vi+1 = βVi − α∇Φη(Φi,Ai);
[5] Φi+1 = Φi + Vi;
[6] i = i + 1;
[7] end
[8] return ΦK;

Algorithm 5.2: The proposed sensing matrix design algorithm allows for an efficient
implementation independent of the specific structure of A. – Iteration procedure
for the proposed SGD-based algorithm to construct Φ.

(5.22) respectively, can be extended to more general inner-product spaces,
if for instance A is the set of rank-1 matrices. Last, the computational
effort can easily be tuned either by selecting the size of the mini-batches
B or the number of iterations K.

As a numerical sanity check, in Figure 5.11 we show that the proposed
algorithm converges reliably to an orthogonal matrix, when we set m =

M = 144, so we employ no compression and the optimal sensing matrix
is a matrix that satisfies ΦHΦ = IM. In the simulations we use a = f12,12
from Equation (5.7). We initialize Algorithm 5.2 with a random Gaussian
matrix and evaluate η(Φ,A) each 200 steps when running with β = 0.95
and α = 10−5. We use a mini-batch size of B = 25. We plot the values
of η versus the runtime up until this point for 25 trials. After a settling
phase the iterations quickly show an exponential convergence speed to 0,
which is the optimal value in this case.

Next, we study more closely what the algorithm can achieve for the
estimation performance in a DoA estimation setting as given in Exam-
ple 5.1.
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Figure 5.11 The proposed SGD converges to an orthogonal matrix up to the numerical
precision when possible. – Value of the objective function η(Φi,A) in iteration i
given in (5.28) for fixed and a sampled and fixed dictionaryA versus the runtime
of the iteration. �

5.3.3 Application to DoA Estimation

In this section, we assess the performance of the resulting compressive
antenna arrays when designed using our proposed SGD-based approach
in comparison with that of the uncompressed array, the spatially com-
pressed array obtained using the 2D SCF-based approach from [188] and
also the compressive array derived from a randomly drawn combining
matrix as motivated by Section 2.4.1.1. To put the approach in context, we
aim at optimizing the matrix Ξ ∈ Cm×P as introduced in (5.6).

Influence on the Correlation Function

In Figure 5.12 we show how the correlation function of an antenna
array changes due to the optimization process when initialized with
a random Gaussian matrix. We test the algorithm with an 8x8 Patch
Uniform Rectangular Array (PURA), which is modeled based on real
measurement data from an anechoic chamber and we use the EADF to
evaluate the beampattern for arbitrary angles. We let the SGD run for
104 steps with a learning rate of α = 10−5, β = 0.9 and mini-batch size
of 20. We compress the 64 ports down to 32. In Figure 5.12 we plot the
auto-correlation functions ρ(θ0, ·) and ρΦ(θ0, ·), where θ0 = [π/2, 0]T cor-
responds to the antenna’s main-beam direction. As we can see, although
we compress the antenna outputs to only half of the data, the correlation
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Figure 5.12 The proposed SGD-based approach can replicate the uncompressed auto-
correlation function and hence reduce sidelobes. – Auto-correlation function along the
co-elevation-π/2-cut (top) and the azimuth-0-cut (bottom). �
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function stays mainly intact after the optimization and compared to the
unoptimized random compression, the sidelobes both in azimuth and
elevation direction can be reduced substantially. In this case, we draw
the random matrix from a so-called complex Rademacher distribution,
where each entry’s real and imaginary part are drawn from a Rademacher
distribution.

In Figure 5.13 we evaluate the naturally 4D-SCF for the 2D slice where
co-elevation ϑ = π/2. Here, we use the same output matrices and settings
as in Figure 5.12. As one can see, the random compression deteriorates the
auto-correlation behavior of the antenna, whereas the optimized matrix
resulting from the proposed SGD does follow the original correlation
function very closely, especially around the first few sidelobes.

Based on both of these simulation results we can expect that the com-
pressed beampattern can indeed deliver similar performance to the un-
compressed one, which we will further verify below.

Influence on the Objective Function and Estimation Performance

After studying the effect of the SGD on the error-metrics we used to
serve as proxies for parameter estimation, we now turn to the assessment
of the estimation performance. This, we address by studying the result-
ing values of the objective function in (5.24) and the deterministic CRB
by means of numerical simulations. This is a suitable proxy for any esti-
mation algorithm, since we can assume that any viable estimator has to
behave asymptotically as the CRB.

To this end, we let SGD run for K = 5000 steps, with B = 250 angles
per step, step size α = 10−2 and drag parameter β = 0.1, where the
distribution of the Θk is the uniform distribution on (0, 2π]× [π/4, 3π/4].
Moreover, we always use normalized sensing matrices, which means
that the columns of any Φ considered are normalized to unit length. As
an antenna we consider a Stacked Uniform Circular Array (SUCA) of
(Σ× PS) isotropic elements, so it has Σ = 3 stacks of PS = 11 elements
each with the total number of elements denoted by P = Σ× PS. The array
response of the SUCA is given by aSUCA(θ, ϑ). We choose d = 0.5λ as the
distance between two consecutive stacks, r = 0.68λ as the radius of the
stacks, where λ = c/ f is the wave-length at frequency f with the speed
of light c ≈ 3 · 108 m/s.

For the SCF-based approach from [188], the number of grid points in
azimuth and elevation used for calculation of the SCF is Nθ = 121 and
Nϑ = 61, respectively over θ ∈ [−π, π] and ϑ ∈ [−π/2, π/2]. Also, the
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Figure 5.13 The proposed SGD-based approach can replicate the 2D auto-correlation
function. – The absolute values of 2D auto-correlation function for the co-elevation-
π/2-cut on a logarithmic scale for ∆θ = [π/2, ∆ϕ]T with ϕ ∈ []− π,+π]. �
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Figure 5.14 The presented SGD-based method reaches lower values for the objective
function – Distance of the SCFs generated by the different approaches for varying
levels of compression. �

number of reference points in elevation considered for optimization using
this approach is |N | = 3, see [188] for more details.

In Figure 5.14 we evaluate how the different approaches perform in
terms of the overall SCF-error. To approximate the overall error after
optimization, we evaluate the SCF on a regular 2D grid in azimuth and el-
evation and then sum the squared absolute values of these samples. This
is done for different levels of compression rate ρ. Clearly, the proposed
SGD-based method is capable of approximating the original antenna re-
sponse more closely than the previous approach and the conventional
combining matrices resulting from a zero-mean Gaussian ensemble.

To quantify the performance of the proposed design approach for the
case of 2D DoA estimation, we also evaluate the deterministic CRB in
Figure 5.15, since it serves as a proxy to assess the possible performance of
any unbiased estimator. For instance, the maximum likelihood estimator
always reaches this lower bound asymptotically in the effective SNR,
so one can expect that any well designed estimation procedure behaves
similarly in this regime. With spatial compression, the deterministic CRB
for the 2-dimensional case with S sources and 1 snapshot can be computed
via Equation (2.25) and reads as

C(θ) =
σ2

2
tr
([
<(DHΠ⊥GD� (12×2 ⊗ R̂)T)

]−1
)

, (5.33)
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with Π⊥G = I −G(GHG)−1GH, ⊗ denoting the Kronecker product, R̂ =

x · xH being the sample covariance and we have set

G = Φ[aSUCA(θ1, ϑ1), . . . ,aSUCA(θS, ϑS)],

Di =
∂

∂θi
G, D = [D1,D2] .

It is worth noting here that the analytical evaluation of theDi is enabled
by the EADF[174, O7].

The results in Figure 5.15 show for a fixed noise level σ2 = 1 how the
CRB changes for the four different sensing matrix designs depending on
the position of a single source (top), two sources separated in azimuth
(middle) and elevation (bottom). In the two sources case, the first source
is located at the position denoted in the plot and the second with angular
distance 2π/10 in azimuth or elevation respectively. As one can see, the
random combining matrix and the previous approach introduce a highly
varying sensitivity of the CRB with respect to azimuth and elevation, ren-
dering the resulting combining matrices unsuitable to be applied for DoA
estimation because of this non-uniformity in the angular domain. The
SGD-based approach results in a significantly smoother behavior of the
CRB with a uniform behavior across the whole azimuth and elevation
region. Thus, the compressed array resulting from SGD mimics the behav-
ior of the uncompressed array more closely in terms of the CRB, which
ultimately was the goal of the proposed design process, since this allows
a more predictable behavior of the system over the parameter domain Θ.

In the next and final analysis we are going to combine both the design
of the measurement matrices and the recovery algorithm to study the
performance of the resulting compressive processing pipeline.
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Figure 5.15 The SGD-based approach delivers a very uniform sensitivity pattern for
the compressed array – Magnitude of the deterministic CRB on a logarithmic scale
for fixed noise level σ2 = 1 dependent on azimuth and elevation. Top: single
source, Middle: two sources separated in azimuth by 2π/10, Bottom: two sources
separated in elevation by 2π/10. Notice the differing color bars for top, middle
and bottom. �
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Figure 5.16 The combination of SGD and ADMM enables a uniform and predictable
recovery behavior over the parameter space. – The mean squared error (MSE) on a
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5.3.4 Combination of SGD and ANM

Up until this point, we have presented an efficient algorithm for multi-
dimensional line spectral estimation in Section 5.2.6 and a versatile op-
timization algorithm to construct well behaved measurement matrices
in Section 5.3. So finally, we would like to combine both grid-free opti-
mization approaches for the measurement matrices and the one for the
sparse signal recovery. To this end, we carry out several empirical stud-
ies to study the effect of combining these two crucial steps of a grid-free
compressed sensing setup.

5.3.4.1 One-dimensional Line Spectral Estimation

As a first scenario, we consider a 2-sparse setup where we have N = 64 ob-
servations which we compress to m = 48 and we use K = 20 independent
snapshots. We compare the results of a fixed columns normalized com-
plex Rademacher matrix Φr ∈ Ca×b with entries in {+1,−1,+,−} and
the output Φs of Algorithm 5.2, where we use the given Rademacher ma-
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trix Φr as initialization. We keep the two sources at distance d = π · 8/5
and move them in parallel over the range [−π,+π] to cover the whole
normalized frequency range. At each source configuration, we average
the reconstruction error over T = 15 independent noise realizations and
run Algorithm 5.1 for S = 10 steps with ρ = 0.05 and τ = σ0.8, where σ2

is the noise variance of the current snapshot.
The MSE results depicted in Figure 5.16 suggest that the combination of

SGD and ADMM delivers a smoother and more predictable performance
over the parameter regime than the random ensemble. Additionally, we
see that the phase transition in terms of the SNR happens slightly sooner
for the optimized matrix. Hence, we can conclude that the combination
of the proposed SGD and ADMM can serve as a robust pipeline for this
parameter estimation task.

As a second line spectral estimation scenario, we consider a 2-sparse
setup where we have M = 64 observations which we compress to m = 56.
We compare the results of a fixed columns normalized complex binary
Rademacher matrix Φr ∈ Ca×b with entries in {+1,−1,+,−} and the
output Φs of Algorithm 5.2 where we use the given Rademacher matrix
Φr as initialization. Instead of moving the sources in a fixed distance, we
draw the first source’s position randomly from the uniform distribution
on [−π,+π] and then put the second source at distance d to it, which
is varied along the horizontal axis. At each source configuration, we
average over T = 20 noise realizations and run Algorithm 5.1 for 10 steps
with ρ = 0.05 and τ = σ0.8, where σ2 is the noise variance of the current
snapshot.

As the results for the estimation error in terms of the MSE in Figure 5.17
indicate, the optimization of Φr to Φs allows to resolve more closely
spaced sources, since the MSE stays lower for small source separations
and also the phase transition when the employed ADMM starts work-
ing for large separations is happening in a lower SNR regime. Finally,
the errors in terms of the MSE are considerably lower for the matrices
originating from the SGD-based method.
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Figure 5.17 The combination of SGD and ADMM enables to resolve more closely spaced
sources than ADMM with un-optimized matrices. – MSE on a logarithmic scale for
1-dimensional line spectral estimation for the two compression schemes when
compressing M = 64 samples to m = 56 averaged of 20 realizations per SNR and
distance of S = 2 sources. �
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5.3.4.2 Two-dimensional Line Spectral Estimation

As a straightforward consequence of the previous sections, we wish to
evaluate the performance of the matrix optimization with SGD and the
ADMM for the case R > 1, since technically, both methods can cope with
this case. To this end, be carry out similar simulations as in Section 5.3.4.1.

In Figure 5.18 we show simulation results for a 2-sparse scenario, where
we again vary the distance of the two sources and the SNR level. We let
the SGD run starting with the complex Rademacher matrix we used as
a comparison and optimize it with mini-batch sizes of B = 15 and let it
run for 1.5 · 104 steps with a learning rate of α = 10−6 and momentum
drag of β = 0.95. We average the results over 50 trials per combination
of distance and SNR, keeping the measurement matrices fixed, and each
snapshot consists of K = 50 observations. For these, we let the ADMM
run for 10 steps, where we use τ = σ0.8 and ρ = 0.05. Here, σ denotes the
respective noise variance.

As we can see, the optimized matrices have their SNR dependent
phase transition in the more noisy regime. Also, the achieved MSE is
lower as well in the region where both measurement matrices produce
meaningful results. Hence, one can claim that the combination of the
proposed SGD and the ADMM allows to decrease the reconstruction
error during parameter estimation also for the case when R = 2.

5.3.4.3 One-dimensional DoA Estimation

We carry on with the case, where we can only optimize Ξ of the measure-
ment matrix Φ = Ξ · Γ. We setup a 1-dimensional DoA estimation for
azimuth estimation with a synthetic 13× 13 Uniform Rectangular Array
(URA), where each element is a vertically polarized Hertzian dipole with
length λ/2 for a frequency f = 3.50 GHz. Also, the elements are spaced
at λ/2 distance such that the spatial sampling frequency does not violate
the Nyquist criterion to avoid any angular ambiguities.

As a first numerical study for DoA estimation, we consider a 2-sparse
scenario, where we again compare the two compression strategies in term
of the MSE but use the uncompressed antenna output as a benchmark. To
this end, we let the SGD run for 16 · 103 steps with minibatch size B = 15
and learning rate 10−7 and drag parameter β = 0.95. We compress the
P = 169 ports down to m = 81 measurements and run Algorithm 5.1 for
the three different compression strategies using just 5 steps of ADMM
to keep the simulations in a reasonable time frame. One can expect that
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Figure 5.18 The combination of SGD and ADMM enables to resolve more closely
spaced sources than ADMM with un-optimized matrices. – Comparison of MSE on a
logarithmic scale for the 2-dimensional line spectral estimation resulting from the
SGD-optimized compression matrices and the complex Rademacher ensemble. �

220



Chapter 5. Grid-Free Compressed Sensing

-3.14 -1.57 0.00 1.57 3.14

0.
0

5.
0

10
.0

15
.0

20
.0

position [rad]

SN
R

[d
B]

Uncompressed

-3.14 -1.57 0.00 1.57 3.14

0.
0

5.
0

10
.0

15
.0

20
.0

position [rad]

SN
R

[d
B]

Complex Rademacher

−4

−2

0

-3.14 -1.57 0.00 1.57 3.14

0.
0

5.
0

10
.0

15
.0

20
.0

position [rad]

SN
R

[d
B]

Stochastic Gradient

Figure 5.19 The sensing matrix optimization using SGD combined with ADMM allows
to reliably approximate the estimation performance of the uncompressed scenario. – Com-
parison of the MSE during azimuth estimation using a 13× 13 uniform rectangular
array on a logarithmic scale for the two compression strategies compared to the
uncompressed scenario. �
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similarly to before that more iterations slightly improve the resulting
estimation error even further.

In this scenario, we chose the ground truths such that the first sources’
positions cover the whole azimuth range and the second one is placed
at fixed distance π/16. For each position and level of SNR we average
the results over 25 noise realizations. As we can see in Figure 5.19 the
proposed SGD measurement matrices allow the ADMM to reduce the
MSE significantly, placing its performance between the results of the
Rademacher measurements and those of the uncompressed observations.
Hence, the results from Section 5.3.3 carry over to the estimation process
when we employ the proposed ADMM algorithm.

5.3.4.4 Combined Delay- and DoA-Estimation

As a final demonstration we are going to combine the setups in Exam-
ple 2.2 and Example 5.1 to a joint estimation of the delay and azimuth
parameters. As such, we consider a simplified version of the estimation
carried out in [161]. To this end, we assume that we have access to mea-
surements of an antenna array for a set of frequencies covering a certain
band [ f1, f2] ⊂ R+. We assume that the bandwidth f2 − f1 is low enough
compared to ( f2 − f1)/2 such that we can treat the array manifold fre-
quency independent. Hence, we have access to measurements of the form
H ∈ CN f×Na , where N f is the number of frequency samples we acquire
and Na is the number of individual elements the antenna is equipped
with.

In order to recover the underlying parameters of the channel impulse
responses one usually assumes a parametric model. In our case the model
originates from the assumption that we have multiple planar waves im-
pinging at the antenna, where each wave is parametrized by the delay
within a single impulse-response and an angle with respect to the antenna
coordinate system. Such a set of parameters is called a single specular
path, see [190]. Hence, following the channel model presented in [162],
where we make some simplifications we end up with a model forH as

vec(H) =
S

∑
s=1

cs

(
fN f (2πτs) � a(ϕs)

)
+N , (5.34)

where f is defined in (5.5). Here, cs denote the complex path weights, τs ∈
[0, 1] the normalized delays and ϕs the azimuth angles of the impinging
waves. Also,N ∈ CNa ·N f models additive measurement noise.
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Figure 5.20 The flexibility of the proposed ADMM allows to estimate delay shifts and
incidence angles from samples in the frequency and spatial domains. – Simulated and
estimated IR at 20 dB SNR using a synthetic 13× 13 URA. �

Interestingly, we can use the derivations about the antenna beampat-
terns in Equation (5.6) and the definition of f in (5.8) to reformulate (5.34)
to

vec(H) =
S

∑
s=1

cs(IN f ⊗ Γ)fN f ,Ne(2πτs, ϕs) +N , (5.35)

where Γ ∈ CNa×Ne is derived via the EADF of the receiving antenna.
Additionally, if we employ the same compression as in (5.6), we observe
a spatially compressed version of the channel impulse response as

vec(Hc) =
S

∑
s=1

cs(IN f ⊗ (Ξ · Γ))fN f ,Ne(2πτs, ϕs) +Nc,

This allows us to conclude that the observation model forHc essentially
corresponds to a special version of (5.7), where Φ = IN f ⊗ (Ξ · Γ). Hence
in principle, we can use a 2-dimensional version of ADMM to extract the
parameters ofHc.

Summarizing, the procedure during the numerical simulations is as
follows. We optimize Ξ using the presented SGD algorithm for the em-
ployed antenna array manifold a to get Ξ and then use Φ as above to run
the ADMM algorithm.

To produce the results in Figure 5.20 we use a synthetic 13x13 URA
with Hertzian dipole elements designed for an operating frequency f =

3.5 GHz and N f = 32 frequency bins in complex baseband. For the
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aperture of this antenna we use Ne = 83 Fourier coefficients to represent
the beampattern in azimuth for co-elevation ϑ = π/2. We simulate
measurements in frequency domain for an SNR of 20 dB and used K = 5
snapshots to estimate the normalized delay and angle parameters for
S = 3 paths. As compression matrix we choose Ξ ∈ C118×169, which
corresponds to a data reduction to about 70%.

We can see that by using the datamodel in (5.34) together with Algo-
rithm 5.1 it is indeed possible to recover sparse channel impulse responses
from spatially compressive and frequency measurements with non-trivial
array elements.

5.3.5 Summary

Motivated by the previous results, we can conclude that the proposed
SGD is capable of improving the measurement process for a wide variety
of parametric models while being a computationally attractive method.
The correlation behavior of compressed antenna arrays can be improved
by following the uncompressed correlation function very closely, hence
reducing sidelobes compared to the unguided compression using random
matrices. Also, for the simpler line spectral estimation case, one can infer
that the resulting compression matrices perform uniformly well over
the parameter space and hence yield more predictable reconstruction
behavior. We can conclude that we have successfully contributed to AOI-
C.

Both of these observations also hold true when we combine the pro-
posed SGD with the previously derived ADMM-based estimation routine
both for line spectral estimation as well as DoA estimation and joint de-
lay and DoA estimation. In these cases, the optimized matrices improve
upon the overall estimation performance as well as the predictability of
the estimation error, since the fluctuation of the estimation error follows
the error of the uncompressed case more closely.

As further investigations, one should study the effect of the choice for
the random distribution that generates the minibatchesA on the conver-
gence of the SGD and the resulting performance of the ADMM. Addition-
ally, we should be able to account for polarimetric antenna models during
the design of Ξ, which due to the flexibility of Algorithm 5.2 should be a
straightforward extension.
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5.4 Summary

As we show, the presented generalized line spectral estimation problem
can be solved by means of a general ADMM implementation that can
deal with arbitrary parameter space dimensions, measurement matrices
and number of snapshots. This can directly be used for DoA estimation.
In which case the compression matrix is structured, where the fixed part
is determined by the antenna’s array manifold. Hence, in this setting we
also demonstrate how to incorporate accurate antenna models into the
calculations and hence address AOI-M.

We see in the numerical simulations in Section 5.2.6 that the proposed
ADMM can achieve the CRB in certain scenarios and it is able to exploit
the properties of the improved measurement matrices we provide by
means of the SGD iteration. This way, we present a rather general frame-
work for measurement design and parameter estimation in this sparse
and grid-free setting by means of atomic norm minimization and directly
contribute to AOI-C and AOI-R.

The observant reader might have noticed that during the numerical
simulations we do not carry out comparisons to other sparsity-exploiting
algorithms except CVX in a simple 1D DoA setting from a single snapshot
in Figure 5.10. This is due to the fact that none of the existing sparsity
based approaches outlined in Section 5.1 does directly allow the incorpo-
ration of multiple snapshots and arbitrary compression matrices into the
reconstruction process. Moreover, it is sufficient to carry out comparisons
to the CRB, since it serves as a universal estimation algorithm benchmark.
Finally, the viability of the proposed SGD-based optimization schemes for
the measurement process can be inferred from the improved reconstruc-
tion performance using ADMM, since it is reasonable to expect that other
sparsity based algorithms are influenced the same way by the optimized
sensing matrices as the herein used ADMM is.

However, executing the whole processing pipeline is still a cumber-
some task, since the number of unknowns during the iteration scales
exponentially in the parameter space dimension R and hence, the projec-
tion step in Line 8 in the iteration of Algorithm 5.1 poses a bottleneck for
R � 1. For instance, if we were to apply this framework in the settings
discussed in Chapter 4 we would not be able to carry out the necessary
calculations on readily available computing hardware. Additionally, we
also notice in the numerical simulations that the first few iterations of the
ADMM in Algorithm 5.1 make substantial progress towards a suitable
covariance estimate in the sense that ESPRIT produces meaningful re-
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sults. Whereas the iterations > 10 only accomplish minor improvements
to the algorithms output. It would be interesting to derive more refined
results about the speed of convergence of ADMM in the spirit of (2.17).
Consequently, the search for efficient sparsity-based algorithms that also
perform well in the very challenging grid-free scenarios is not over yet.
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Conclusion

“Was this what we hoped for?
It’s not what we hoped for!
It’s not!”

George Pettit
Dallas Green

To conclude this thesis, we first revisit the four AOI we introduced
in Section 1.2 and summarize the previously presented contributions
with respect to these. Second, after having worked through the previous
material, we are able to phrase the interrelation of these four AOI, which
we tackle in Section 6.2. Finally, we give an outlook on future research
that could use the presented material as a motivation or starting point.

6.1 Addressing the AOI

In order to differentiate between the efforts made in the presented ma-
terial we introduced four distinct but highly interrelated AOI, namely
AOI-C, AOI-H, AOI-R and AOI-M. After churning through the topics
covered in the previous chapters we want to reiterate on these individu-
ally and evaluate the obtained results in this context.
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Compression (AOI-C)

In Section 2.5 we show that by employing appropriate sensing matrices
one can infer the sparsity order of a signal from a single snapshot prior
to reconstruction by means of rank estimation. We demonstrate that this
approach can also be improved further by optimizing the sensing matrices
that have to adhere a Vandermonde structure, for which we also derive
explicit bounds for the coherence.

Utilizing the results from Section 2.4.2.2 we can show in Section 4.1 that
for the task of ultrasound based non-destructive testing randomly sub-
selected Fourier matrices allow stark compression when utilized together
with an appropriate volumetric model and a matrix-free reconstruction
scheme. Additionally, this compression also adheres constraints posed by
hardware implementations.

As developed in Section 5.3, compression matrices employed in a pa-
rameter estimation setting can be tuned to deliver a uniform reconstruc-
tion performance over the whole parameter space by means of a stochastic
first order momentum method. As we show, this method can be applied
readily to very general parametric data models that go beyond the models
discussed in this work.

Hardware (AOI-H)

The Fourier measurements employed in Section 4.1 are directly motivated
by hardware considerations that allow to acquire samples immediately
in analogue domain before digitization. Since these proposed matrices
deliver good performance during reconstruction in terms of defect local-
ization and computational complexity, we can conclude that the proposed
Fourier measurements adhere to hardware constraints in terms of archi-
tecture complexity while still maintaining desirable properties for recon-
struction. This is backed up by the derived scaling laws for the number
of measurements and deterministic error estimates for the localization of
defects.

The RD-based measurement design proposed in Section 4.2 that allows
for a more efficient signal acquisition than the state of the art T&H-based
methods is also motivated by properties of the already existing hard-
ware platforms. This follows from the possibility to generate the mixing
sequences used by the RD from a linear feedback shift register and an
integrator completely in the analogue domain. Hence, this yields a com-
pressive sensor that can be realized entirely in the analog domain, since
the compression has to take place before digitization.
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Generally, one can see by the significantly different approaches for the
two applications that indeed individual care has to be taken in the devel-
opment of the specific sampling architecture. In other words, different
applications and different goals therein will ultimately lead to completely
different hardware realizations. However, both of which are motivated
and driven by the same compressive sampling paradigm.

Reconstruction (AOI-R)

We have shown in Chapter 3 that it is indeed beneficial to derive and then
exploit structure in the involved linear mappings to render the reconstruc-
tion stage as efficient as possible. To stress this even more, in Section 4.1
we show that this matrix-free view on linear mappings is crucial to ap-
ply CS in this specific application. However, the sections in Section 4.1
also show that this matrix-free representation needs additional attention
when employed in practice, since some methods for sparse reconstruction
require additional knowledge about the linear mappings.

Additionally, Section 4.1.7 shows that the choice of the employed SSR
algorithm makes a difference when it comes to imaging quality, since
the algorithms produce different sparse vectors as their solutions and
depending on the application’s intend either can be favorable.

In the grid-free CS setting, we show in Section 5.2.6 how to derive and
utilize a general purpose algorithm for R-dimensional line spectral esti-
mation from compressive measurement comprising of multiple snapshots.
Moreover, this algorithm can readily be combined with the proposed ma-
trix optimization routine presented in Section 5.3 resulting in a grid-free
sensing and reconstruction pipeline.

Models (AOI-M)

In Section 2.5, we show that the estimation of the unknown sparsity order
prior to reconstruction is not only possible but does also substantially
improve reconstruction accuracy when used appropriately together with
an algorithm that uses the sparsity of the signal as a hyper-parameter.

The well resolved defect positions in the results in Section 4.1.7 could
only be attained by utilizing a volumetric data model. As such, this 3D
description is crucial for the acquired measurements and their spatial
dependency accurately and this has a direct impact on the reconstruction
quality and the necessary number of compressive measurements.

Last, when the beampattern of an antenna is described as a Fourier
series one can rephrase the atomic norm minimization problem as a gen-
eralized line spectral estimation problem that can be solved efficiently.
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This in turn allows direction finding with realistic antenna arrays. Hence,
one can greatly extend the scenarios where grid-free CS can be applied.

6.2 Interrelation of the AOI

As in Section 1.2 as the main goal of this thesis that we wish to determine
the relation between AOI-R, AOI-C, AOI-H and AOI-M more accurately
for the applications that we study, we summarize the insights we make
throughout the presented material below.

A purely theoretic conclusion on the relation of AOI-C, AOI-M and
AOI-R is given by Remark 2.4. It specifically tells us how many and what
type of measurements (AOI-C) allow us to recover which sparsity levels
(AOI-M) with a certain type of algorithm (AOI-R).

In Section 4.1 we study the relation between AOI-C and AOI-H by
deriving scaling laws for randomly subsampled Fourier matrices and
these matrices structure is motivated by the comparably simple hard-
ware implementation. Moreover, we see that the 3D volumetric model
(AOI-M) has a direct influence on two things. First, the reconstruction
algorithm (AOI-R) can employ the imposed structure to derive matrix-
free and hence efficient means of estimating the sparse vector. Second,
the volumetric model allows for more aggressive compression (AOI-C) in
frequency domain.

In Section 4.2 we show how existing hardware concepts, namely creat-
ing pseudo random sequences from linear feedback shift registers, (AOI-
H) can be repurposed to generate pseudo random measurements (AOI-C).
Moreover, the creation of these pseudo random sequences as proposed
allows significant speedups during the reconstruction (AOI-R), since the
matrix-free representation can be adapted to account for the special type
of pseudo random sequence.

In Section 5.2.1 we see that correctly modeling AOI-M the beampattern
of an antenna array allows to reformulate the problem of DoA estima-
tion (AOI-R) into a line spectral estimation problem with a certain linear
structure defined by the aperture of the antenna. Second, in Section 5.2.3
we see that the data model (AOI-M), which consists of a superposition of
complex harmonics, allows to reformulate the problem of atomic norm
minimization into a semi-definite program, which then can be solved
efficiently (AOI-R).
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6.3 Outlook

In order to provide some points of attachment for further research we
take the results of this thesis and outline some aspects that connect to the
material presented here.

The methodology for estimating the sparsity order prior to reconstruc-
tion is only valid in the grid-based setting. With the rising interest in the
grid-free CS setting, one should also consider this scenario. The method
proposed in [58] uses the concept of entropy to infer the sparsity order,
which also has an equivalent in the grid-free setting. hence, it might
be possible to extend this both geometric and stochastic concept to the
grid-free setting.

We have presented a flexible and rather efficient ADMM algorithm
for line spectral estimation in Section 5.2.6, but the limiting factor in the
form of the projection onto the positive cone of matrices greatly limits
the complexity of the models that we can work with – both in terms of
dimensionality and resolution. Hence, the need for even more efficient
methods remains, since still the proposed algorithm cannot yet be used
directly for the settings as presented in Section 4.1 and Section 4.2.

In Section 5.3 we present a routine for the sensing matrix optimiza-
tion that does improve the matrices behavior, if the matrices’ elements
are resided in a continuous space. However, well suited compression
matrices from a hardware standpoint are usually from a discrete or even
finite set. Hence, the search for a good compression matrix gets turned
into a combinatorial optimization problem. For these type of problems
other solving methods need to be developed, since the gradient iteration
is not applicable anymore. One possible route would be to employ meth-
ods which are able to train (read: optimize) neural networks that contain
discrete values only, as in [191].

For the two proposed applications in Section 4.1 and Section 4.2, it
is still unclear how much various hardware imperfections during com-
pression and measurement contaminate the acquired samples. Hence,
one should evaluate theoretically, if this issue needs special attention by
studying the robustness to these possibly existing imperfections. Then,
those should be accounted for either in form of calibration or in form
of appropriate modeling for instance of the then possibly colored noise
statistics.

As a last aspect, with the rise of deep learning the use of GPUs has
become increasingly widespread and accessible in scientific computing
and thus also in signal processing. Hence, the proposed software archi-
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tecture from Chapter 3 should be extended to treat this heterogeneous
computing task more gracefully than we outlined in Section 4.1.
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Appendix A

Theorems and Proofs

A.1 Proof of Theorem 2.2

First, we see by linearity of the Fourier transform that the sum λ1 f1 + λ2 f2
for λ1,2 ∈ C and f1,2 ∈ S also is band-limited with band B. Additionally,
we have with the triangle inequality on C and the linearity of integration
that ∫

R

|λ1 f1 + λ2 f2|dt 6 |λ1|
∫
R

| f1|dt + |λ2|
∫
R

| f2|dt < ∞,

rendering S a subspace of L2(R). Further, using Theorem 2.1 together
with the periodicity of the signal we can choose a T0 < T such that there
is an integer N satisfying N · T0 = P. Then we see for an f ∈ S that

f (n · T0 + k · N · T0) = f (n · T0)

for any k ∈ Z and have that S is finite dimensional, since it is isomorphic
to the set CN by means of the mapping R : CN → L2 defined as

x 7→ (Rx)(t) =
N−1

∑
n=0

xn+1 sinc
(

t− nT0

T0

)
,

whose inverse R−1 is simply defined by the sampling operation with
sample distance T0.
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A.2 Proofs for Results in Section 2.5

A.2.1 Proof of Theorem 2.11

Assume 1 holds and consider an arbitrary but fixed 1-sparse x with
supp(x) = {q} for some q ∈ [N]. Now 1 implies that rkB = 1. On
the other hand, denoting the q-th column ofAi by ai,q yields

bi = Ai · x = ai,q · xq for i ∈ [k].

Because all bi must be linearly dependent, it follows that

ai,q = ϕi,q ·ψq for i ∈ [k],

for some non-zero ψq ∈ C` and some ϕi,q ∈ C. In terms of the columns of
A this means aq = vec(ψqϕ

T
q ) = ϕq ⊗ψq for ϕq = (ϕ1,q, . . . , ϕk,q)

T ∈ Ck.
Since q was arbitrary, conclude that A = Φ � Ψ, where Φ = (ϕi)i∈[N] ∈
Ck×N and Ψ = (ψi)i∈[N] ∈ C`×N .

Now consider any s-sparse x for s ≤ r. Then the structure ofA andB
yields

B = Ψ diag(x)ΦT, (A.1)

since p = `. This can also be restricted to S = supp(x) and then reads as

B = ΨS diag(xS)Φ
T
S .

Now seeking a contradiction to rk∗Φ > r, assume that rk∗Φ < r. This
means that there is a set T ⊂ [N] of size r such that ΦT is rank deficient,
since otherwise the kruskale rank would be at least r. Now setx = ∑i∈T ei
to construct a ground truth x which is less than s-sparse, which yields
B = ΨTΦT

T . The fact thatB has rank strictly smaller than r, because ΦT
has rank strictly smaller than r, implies the desired contradiction. An
analogue argument holds in case of rk∗ Ψ < r.

For the opposite direction, assume 2 and again consider (A.1) for some
s-sparse x with support S. Because Φ and Ψ have Kruskal rank at least
s, it holds that rk [ΨS diag(xS)] = s and rk ΦS = s. This implies that
rkB = s, because the two matrices are a rank factorization ofB.
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A.2.2 Proof of Theorem 2.12

Given 1, again consider some x ∈ CN with supp(x) = {q} such that

B = xq[a1,q, . . . ,ak,q].

SinceB has rank 1, its columns, which are also the columns of the blocks
Ai, fulfill

ai,q = zi,qai−1,q for i ∈ {2, . . . , k}, (A.2)

ai+1,q = zi+1,qai,q for i ∈ {1, . . . , k− 1}. (A.3)

for appropriate zi,q and still denoting the q-th column ofAi by ai,q. More-
over, the overlap yields

(ai,q)j = (ai−1,q)p+j for j ∈ [`− p] + 1 (A.4)

(ai+1,q)j = (ai,q)p+j for j ∈ [`− p] (A.5)

and i ∈ [k− 1]. Combining (A.2),(A.3) and (A.5) from above yields

zi+1,q
(
ai,q
)

j = zi,q
(
ai−1,q

)
p+j for j ∈ [`− p] (A.6)

and i ∈ [k − 1]. From (A.4) it follows that his has to be true for all j ∈
[`− p], so

zi,q = zi+1,q = zq for i ∈ [k− 1] (A.7)

for some zq independent of i. Summarizing, it holds that

ai,q = zqai−1,q = z2
qai−2,q = · · · = zi−1

q a1,q.

This means that one can only choose zq and because of the overlap the
first p elements of a1,q freely. Now setting

(
a1,q

)
[p] = ψq with ψq ∈ Cp

then implies the Khatri-Rao structure Â = V � Ψ, where the matrix A
is the restriction of Â to its first m rows and Ψ = [ψ1, . . . ,ψN ]. The
Vandermonde structure of the first factor reads as

V =


1 . . . 1

z1 . . . zN
...

. . .
...

zdm/pe−1
1 . . . zdm/pe−1

N

 ,

if one repeats the reasoning above for any q ∈ [N].
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For the Kruskal ranks of the involved matrices deduce from the Khatri-
Rao structure and the overlap that

B = Ψ̂ · diag(x) · V T
k ,

where Ψ̂ consists of the first ` rows of Vd`/pe �Ψ and Vd`/pe and Vk are the
restrictions of V to its first d`/pe and k rows respectively. Now consider
the above equation for any s-sparse x with support set S. As in the last
proof, one can argue that the factors involved in the Khatri-Rao product
must fulfill the Kruskal rank conditions imposed on them in the statement
of 2 forB to have rank s, since again the product of the restricted matrices
Ψ̂S and

(
VT

k
)

S is a rank factorization ofB.
Now given 2, proceed similarly to the proof of Theorem 2.11, but this

time, this yields for an s-sparse xwith s 6 r that

B = Ψ̂ · diag(x) · V T
k ,

where Vd`/pe and Vk are the restrictions of V to its first d`/pe and k rows
respectively. Because of the conditions on Ψ̂ and V deduce rkB = s.

A.2.3 Vandermonde Matrices

Further on the following lemma will be used a couple of times, which
calculates the value of the discontinued geometric series.

Lemma A.1. For any q ∈ C \ {1} it holds that

n

∑
k=1

qk =
q− qn+1

1− q
= Sn(q) (A.8)

In the case q = 1 the above formula yields

lim
q→1

Sn(q) = lim
q→1

q− qn+1

1− q
= lim

q→1

1− (n + 1)qn

−1
= n. (A.9)

�

Proof. This follows from a straightforward application of L’Hôpital’s rule.
�

The following theorem contains all information needed to derive an
algorithm for Vandermonde matrices with low coherence and bounds
thereof. Here the general case for two arbitrary Vandermonde columns
but also the special case where the first row of the matrix is a subset of
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the complex unit circle are considered. Furthermore it defines upper and
lower envelope functions (see Figure A.1) for the inner product of two
Vandermonde columns depending only on the phase shift between two
generating elements for fixed amplitudes.

Theorem A.1. Consider two vectors

z1 = (c1eiφ1 , . . . , cn
1 einφ1)T

and

z2 = (c2eiφ2 , . . . , cn
2 einφ2)T,

where c1, c2 are positive real numbers and φ1 6 φ2 with φ1, φ2 ∈ [0, 2π] and
define the function

λ(c1, c2, φ) =
|〈z1, z2〉|2

‖z1‖2‖z2‖2 (A.10)

with φ = φ2 − φ1, then the following statements hold.

1.

λ(c1, c2, φ) =

1 + c2n
1 c2n

2 − 2cn
1 cn

2 cos[nφ]

(1− c2n
1 )(1− c2n

2 )

1 + c2
1c2

2 − 2c1c2 cos φ

(1− c2
1)(1− c2

2)

.

2.

λ(1, 1, φ) =
sin2

(
1
2 nφ

)
n2 sin2

(
1
2 φ
) .

3. Observe symmetry along the unit circle in C. In other words

λ(c1, c2, φ) = λ(c−1
1 , c−1

2 , φ) = λ(c1, c2,−φ).

4. For c1 6= 1 and c2 6= 1 there is a bound for λ via

κ(c1, c2, φ) 6 λ(c1, c2, φ) 6 η(c1, c2, φ),

where κ and η are defined as

κ(c1, c2, φ) =

(1− cn
1 cn

2 )
2

(1− c2n
1 )(1− c2n

2 )

1 + c2
1c2

2 − 2c1c2 cos φ

(1− c2
1)(1− c2

2)

,
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and

η(c1, c2, φ) =



1

n2 sin2
(

1
2 φ
) for c1 = c2 = 1

(1− cn
1 cn

2 )
2

(1− c2n
1 )(1− c2n

2 )

1 + c2
1c2

2 − 2c1c2 cos φ

(1− c2
1)(1− c2

2)

otherwise.

Moreover, the bounds satisfy for c1, c2 ∈ (0, 1]

λ(c1, c2, φ) = κ(c1, c2, φ)

if and only if φ = k · (2π)/n

for some k ∈ {0, . . . , n},
λ(c1, c2, φ) = η(c1, c2, φ)

if and only if φ = π/n + k · (2π)/n

for some k ∈ {1, . . . , n− 1},
κ(c1, c2, φ) = κ(1/c1, 1/c2, φ)

for φ ∈ [0, 2π],

η(c1, c2, φ) = η(1/c1, 1/c2, φ)

for φ ∈ (0, 2π).

5. For any c > 0 and c1 > 0 it holds that

lim
c1→∞

λ(c/c1, c1, φ) = 0 for φ ∈ [0, 2π].

6. Roots of λ(c1, c2, ·) exist if and only if c1c2 = 1 and these roots are φ =

k · (2π/n) for k ∈ {1, . . . , n− 1}, i.e. there are exactly n− 1 roots.

�

Proof.

1. Calculate the inner product of z1 and z2 with the law of cosines and
the formula in (A.8), which yields

|〈z1, z2〉|2 =

∣∣∣∣∣ n

∑
k=1

ck
1eikφ1 · ck

2e−ikφ2

∣∣∣∣∣
2
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0 1 2 3 4 5 6

0.5

1

φ

lower envelope η upper envelope κ λ

Figure A.1 Envelopes for the correlation function of columns of Vandermonde matrices
can be calculated in closed form. – The envelope curves for λ(c1, c2, ·) for the case
c1 = c−1

2 = 1.15 and n = 5. �

=

∣∣∣∣∣ n

∑
k=1

(c1c2)
keikφ

∣∣∣∣∣
2

=

∣∣∣∣∣ c1c2eiφ − (c1c2)
n+1eiφ(n+1)

1− c1c2eiφ

∣∣∣∣∣
2

= c2
1c2

2
1 + c2n

1 c2n
2 − 2cn

1 cn
2 cos(nφ)

1 + c2
1c2

2 − 2c1c2 cos φ

In this case consider L’Hôpital’s rule for c1c2 = 1 and φ = 0, which
yields c1c2eiφ = 1 and thus |〈z1, z2〉|2 = n2. To derive an expression
for the coherence of a matrix, divide by the norm of the vectors z1
and z2. Now (A.8) yields

λ(c1, c2, φ) =
|〈z1, z2〉|2

‖z1‖2‖z2‖2

=

1 + c2n
1 c2n

2 − 2cn
1 cn

2 cos[nφ]

(1− c2n
1 )(1− c2n

2 )

1 + c2
1c2

2 − 2c1c2 cos φ

(1− c2
1)(1− c2

2)

,

where one has to consider L’Hôpital’s rule for c1 = 1 or c2 = 1 as
well. Then ‖z1‖2 = n or ‖z2‖2 = n respectively.
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2. Using 1 and taking the appropriate limits yields

λ(1, 1, φ) =
1− cos(nφ)

n2(1− cos φ)
=

sin2
(

1
2 nφ

)
n2 sin2

(
1
2 φ
) , (A.11)

3. Simply manipulate λ(c−1
1 , c−1

2 , φ) by factoring out the proper pow-
ers of c1 and c2 and derive λ(c1, c2, φ).

4. The statement follows from the fact that −1 6 cos x 6 1 for all
x ∈ R and the locations where |cos x| = 1.

5. Assume that c1 · c2 = c < 1 and without loss of generality suppose
that c1 6 c2. Then hold c fixed and rewrite λ as

λ(c1, c2, φ) = λ(c/c2, c2, φ) =

=
(cos(nφ)− cn)2 + sin2(nφ)

(cos φ− c)2 + sin2 φ

(1− (c/c2)
2)(1− c2

2)

(1− (c/c2)2n)(1− c2n
2 )

=

=
(cos(nφ)− cn)2 + sin2(nφ)

(cos φ− c)2 + sin2 φ

1 + c2
(

1− 1
c2

2

)
− c2

2

1 + c2n
(

1− 1
c2n

2

)
− c2n

2

.

Now take the limit for growing c2 and fixed φ, which yields

lim
c2→∞

λ(c/c2, c2, φ) = 0 (A.12)

for all φ ∈ [0, 2π] and c < 1.

6. First consider the case c1 · c2 < 1 and rewrite λ in another form with
the trigonometric identity sin2 x + cos2 x = 1 and obtain

λ(c1, c2, φ) =

(cos(nφ)− (c1c2)
n)2 + sin2(nφ)

(1− c2
1)(1− c2

2)

(cos φ− c1c2)
2 + sin2 φ

(1− c2n
1 )(1− c2n

2 )

. (A.13)

Equation (A.13) shows that λ is zero if and only if

sin(nφ) = cos(nφ)− (c1c2)
n = 0.

Let us assume that sin(nφ) = 0, which implies that φ = k · (π/n).
Now consider that |cos(kπ)| = 1 and the only case that cos(nφ)−
(c1c2)

n = 0 is when c1c2 = 1 what was excluded explicitly. In other
words for c1c2 different than 1, there are no two vectors z1 and z2
which are orthogonal to each other.
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�

Some results from above are visualized in Figure A.1.

A.2.3.1 Proof of Theorem 2.13

From Theorem A.1 notice know that λ(c1, c2, φ) > κ(c1, c2, φ) for all c1, c2
and φ. Algorithm 2.3 produces a matrix V so that the minimum angle
between two elements in its first row is 2π/m. Moreover those elements
are located either on the circle with radius c or the circle with radius
1/c. If two elements share the same circle, their minimum angle between
each other is 4π/m. If not they enclose the angle 2π/m. This yields the
estimate

µ(V )2 > max
{

κ(1/c, 1/c, 4π/m), κ(c, c, 4π/m),

κ(c, 1/c, 2π/m), κ(1/c, c, 2π/m)
}

, (A.14)

which, together with the symmetry of κ as stated in fact 4 in Theorem A.1
and that λ is the square of the inner product of two vectors with Vander-
monde structure, becomes what was asserted.

A.2.3.2 Proof of Theorem 2.14

Let V be the output of Algorithm 2.3 for given c, n and m, which implies
the first row of V is placed on two circles with radii c and 1/c. Then the
angle between two elements in the first row of V which are not on the
same circle is an integer multiple of 2π/m. Elements on the same circle
enclose an angle which is an integer multiple of 4π/m.
Case 1: Suppose that m < 2n. From the monotony of η and its symmetry

η(c1, c2, π − φ) = η(c1, c2, π + φ) for φ ∈ (0, π)

obtain

η(c, c, 4π/m) > η(c, c, k · 4π/m) > λ(c, c, k · 4π/m)

for k ∈ {1, . . . , bm/2c} and

η(1/c, c, 2π/m) > η(1/c, c, k2π/m)

for k ∈ {1, . . . , m}. Since the above estimates address all possible values
λ can take for V and the maximum over all values λ attains the square of
the coherence of V the proof for m < 2n is finished.
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Case 2: Suppose now that 4n > m > 2n. From the monotony of η it
follows that

λ(1/c, c, 2π/m) > η(1/c, c, π/n) > η(1/c, c, k · π/n)

> λ(1/c, c, k · 2π/m)

for k ∈ {2, . . . , m}. (A.15)

Moreover, 4n > m > 2n yields

π

n
<

4π

m
6

2π

n

and estimate

η(c, c, 4π/m) > η(c, c, k · 4π/m) > λ(c, c, k · 4π/m)

for k ∈ {1, . . . , bm/2c}. (A.16)

These estimates address all possible values for λ and so the statement
follows in this case.
Case 3: Suppose now that m > 4n. From the monotony of λ on [0, 2π/n]
and the fact that 4π/m and 2π/m are left of the first touching point of λ

and η, namely π/n, estimate

λ(c, c, 4π/m) > λ(c, c, k1 · 4π/m) > λ(c, c, π/n)

= η(c, c, π/n) > η(c, c, k2 · 4π/m)

> λ(c, c, k2 · 4π/m), (A.17)

for k1 ∈ {1, . . . , bm/(4n)c} and k2 ∈ {bm/(4n)c+ 1, . . . , bm/2c}. With a
similar argument estimate

λ(1/c, c, 2π/m) > λ(1/c, c, k3 · 2π/m) > λ(1/c, c, π/n)

= η(1/c, c, π/n) > η(1/c, c, k4 · 2π/m)

> λ(1/c, c, k4 · 4π/m),

for k1 ∈ {1, . . . , bm/(2n)c} and k2 ∈ {bm/(2n)c+ 1, . . . , m}. This again
estimates all values λ ever takes and it concludes the proof.
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A.3 Proof of Lemma 5.1

First, we use the facts ‖M‖2
F = tr(MHM ) and tr(XY ) = tr(Y X) to get

η(Φ,Ai) = tr
(
AH

i ΦHΦAiA
H
i ΦHΦAi

)
− 2 tr

(
AH

i AiA
H
i ΦHΦAi

)
+ tr

(
AH

i AiA
H
i A
)

= tr
(
AH

i ΦHΦAiA
H
i ΦHΦAi

)
− 2 tr

(
ΦAiA

H
i AiA

H
i ΦH

)
+ tr

(
AH

i AiA
H
i A
)

.

Now with two well known results from matrix calculus

∇X tr
(
MHXHXMMHXHXM

)
=

4XMMHXHXMMH

and ∇X tr
(
XMXH) = 2XM , we conclude the statement.
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Definitions and
Supplemental Material

B.1 Optimizing the Zero-Padding

To alleviate the drawback that the performance of the FFT depends on
the prime factors of the processed dimension, we combine zero-padding
with the FFT algorithm to increase the dimension n to a more feasible
dimension in terms of its prime factors. To this end we define the mapping
ϕ : N → N, where ϕ(n) is the number of multiply-and-accumulate
(MAC) operations necessary to calculate Fnx for x ∈ Cn. Moreover, we
define Φ : N → N as Φ(n) = min argminm>2n−1 ϕ(m) and γk : Cn →
C2n−1+k as

γk(c) = [c1, . . . , cn, 0T
k , c2, . . . , cn]

T.

The key idea is now to embed Γ(c) into a larger circulant matrix Cc(c) ∈
CN×N , such that the possible bottleneck when calculating Fn via an FFT
is replaced by the shorter execution time of the FFT for F k for some
k > 2n− 1.

Following the formulation of the Cooley-Tukey algorithm for comput-
ing the FFT as found in [192], an algebraic matrix representation can be
derived, which describes Fn as composition of F ν, with ν ∈ N being
a prime factor of n, and F p with p ∈ N = n/ν being the order of the
square remainder matrix

Fn = P
(ν)
n · (Iν ⊗F p) ·D(ν)

n · (F ν ⊗ Ip). (B.1)
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whereD(ν)
n is a diagonal matrix of size n holding the FFT twiddle factors

corresponding to ν and P (ν)
n being the stride permutation matrix which

can be defined according to its effect on a vector via

P
(ν)
n · [x0, x1, . . . , xn−1]

T = [y0, y1, . . . , yν−1]
T,

where yi = [xi, xi+p, xi+2p, . . . , xi+(ν−1)p]. Analyzing (B.1) we find a prod-

uct of four square matrices of size n× n each. P (ν)
n can be implemented

through clever memory access, requiring no additional ops, whereasD(ν)
n

requires n MAC operations. The anterior Kronecker product resembles
a block diagonal matrix with ν copies of the remainder matrix requiring
ν · ϕ(p) MAC ops and, given ν = n no operations at all, as it then equals
to the identity matrix. The posterior Kronecker product is a structured
sparse matrix, requiring p · ν2 = ν · n MAC ops. In total, (B.1) requires
ν · ϕ(p) + (ν + 1)n MAC ops. Defining ψn ∈ Nw as the prime factor
decomposition of n with w being the prime factor count, we recursively
apply (B.1) over all ψn,i resulting in a total complexity of

ϕ(n) = n · (1 + w +
w

∑
i=1
ψn,i). (B.2)

The special case ν = 4 needs to be considered carefully during the imple-
mentation of the aforementioned optimization problem. As all elements
in F 4 are drawn from the set (1,−1, i,−i) only simple additions are re-
quired in order to compute its action on a vector. Many current computing
platforms are capable of exploiting this, resulting in an additional gain
over the estimate ϕ(4). The implementation used in this work employs
a variant of Dijkstra’s algorithm [193] for the search and rewards prime
factors of four on grounds of the preceding consideration. To incorporate
above finding about φ in our procedure, we define

Cn(c) =

{
Γ(c), for ϕ(Φ(n)) > ϕ(n)

Γ(γΦ(n)−2n−1(c)) otherwise.

The case ϕ(Φ(n)) > ϕ(n) represents the fact that we cannot improve the
execution time needed to applyFn by expanding the circulant matrix. To
finalize the procedure note that for k ∈N and x ∈ Cn it holds thaty1

z

 = Γ(γk(c)) ·
 x

0n−1+k

 , where y1 = Γ(c) · x

with y1 ∈ Cn and z ∈ Cn−1+k. As such, the application of Γ(γk(c)) to a
vector can be carried out efficiently according to (3.8).
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B.2 Wirtinger Calculus

To calculate the partial derivatives of functions which depend on complex
variables and map to R we make use of the so called Wirtinger calculus.
To this end, let f be a function f : Cn 7→ R, then its Wirtinger derivative
is defined as

∂ f
∂x

=
1
2

(
∂ f
∂y
− 

∂ f
∂z

)
and

∂ f
∂x

=
1
2

(
∂ f
∂y

+ 
∂ f
∂z

)
,

where y = Re {x} and z = Im {x}. Note that for f (x) = x = y− z we
obtain

∂x
∂x

=
1
2

(
∂y− z

∂y
− 

∂y− z
∂z

)
=

1
2
(1− (−)) = 0. (B.3)

For this reason, in Wirtinger derivatives we can more or less treat x and x
as independent variables. Also, it is straightforward to derive the follow-
ing three simple rules

∂〈b,a〉
∂b

=
∂bHa

∂b
= a,

∂〈a, b〉
∂b

=
∂aHb

∂b
= 0 (B.4)

and
∂‖Ab− c‖2

∂b
= AH(Ab− c). (B.5)

All three of them can easily be extended to the case where a and b are
matrices, since both the inner product of matrices we use here and the
Frobenius norm induced by it treat matrices as if they were vectors re-
aligned into matrices.
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Appendix C

Derivations

C.1 Derivation of the CRB in Section 4.1.5

Let Ĥ(ω) = diag{e−ωτx,y(xd ,yd ,zd))}�H(ω). With this definition at hand,
the elements of the FIM can be computed by the blocks of Φ ∂b

∂uT given by

SiFΣiFH ∂bi
∂p

= a1SiFΣiFH (Ĥ(ω)� (C.1)(
∂g

∂p
− ω

∂τi(x1, y1, z1)

∂p

))
SiFΣiFH ∂bi

∂a
= SiFΣiFH bi

a
(C.2)

SiFΣiFH ∂bi
∂ϕ

= SiFΣiFHbi (C.3)

with

∂τi(x1, y1, z1)

∂x1
=

c0

2
(x1 − xi)»

(x1 − xi)2 + (y1 − yi)2 + z2
1

∂τi(x1, y1, z1)

∂z1
=

c0

2
z1»

(x1 − xi)2 + (y1 − yi)2 + z2
1

∂gix1, y1, z1

∂x1
= −2

x1 − xi
(z1 tan(θ))2 · gi(x1, y1, z1)

∂gix1, y1, z1

∂z1
= − (x1 − xi)

2 − (y1 − yi)
2

z3
1 tan(θ)2

· gi(x1, y1, z1).
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The derivatives with respect to y1 follow from the derivatives with respect
to x1 in a similar fashion as above. The FIM can be formulated as a block
matrix by separating the nuisance parameters, leading to

J =
2
σ2

n

 Jp Jp,(a,ϕ)

JT
p,(a,ϕ) Ja,ϕ

 . (C.4)

The CRB for the defect location is then given by

c = [Cx, Cy, Cz]
T = diag{Cp}, (C.5)

whereCp is the upper left 3× 3 block of J−1. Using the blocks defined in
Equation (C.4), Cp can be straightforwardly computed using the Schur
complement as

Q = Ja,ϕ − JT
p,(a,ϕ)J

−1
p Jp,(a,ϕ)

Cp =
σ2

n
2

(
J−1
p + J−1

p Jp,(a,ϕ)Q
−1JT

p,(a,ϕ)J
−1
p

)
.

C.2 Derivation of the ADMM in Section 5.2.6

Taking a close look at L in Equation (5.14) we see that the only derivatives
which are not straightforward to calculate are those with respect to u,
since it is the defining tensor of the multilevel Toeplitz structure. In this
case the expressions of interest are

∂

∂u
〈A,TH

(n,d)(u)〉 and
∂

∂ue
〈TH

(n,d)(u),T
H
(n,d)(u)〉

for a given Hermitian matrix A. To this end, for given n ∈ N and p ∈
[n] ∪−[n] ∪ {0}, we define Sp

n via[
S

p
n

]
(k,`)

= 1 for `− k = p− n.

Note that Sp
n has 1 only on a shifted diagonal and S0

n = In. Now, we can
rewrite

TH
(n,d)(u) = Tupper + Tlower (C.6)

where Tupper and Tlower are constructed by explicitly unraveling the re-
cursive definition of TH

(n,d)(u) while keeping the Hermitian symmetry in
mind. So they are defined as

Tupper = ∑
i∈N

(
S

i1−1
N1
⊗Si2−N2

N2
⊗ · · · ⊗Sid−Nd

Nd

)
ui (C.7)
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Appendix C. Derivations

Tlower = TH
upper, (C.8)

whereN = [N1, 2N2− 1, . . . , 2Nd − 1]. Next, we calculate for given multi-
index i ∈ N

∂

∂ui
〈A,TH

(n,d)(u)〉 = (C.9)

=
¨
A,Si1−1

N1
⊗Si2−N2

N2
⊗ · · · ⊗Sid−Nd

Nd

∂
. (C.10)

For a shorter notation we define the operator

Dn,d : CM×M → CN1×2N2−1···×2Nd−1

via

A 7→ Dn,d(A) =

(
∂

∂ui
〈A,Tn,d(u)〉

)
i∈N

=

=
(¨
A,Si1−1

N1
⊗Si2−N2

N2
⊗ · · · ⊗Sid−Nd

Nd

∂)
i∈N

.

This operator results in a tensor with the same dimensions as u and each
entry at position i ∈ N represents the sum of the elements in A which
occur at the same position as ui in TH

(n,d)(u).
Now for some i ∈ N and u = v + w we can also calculate (Note that

here we identify the multi-index i with the the tensor of order d which
has zeros everywhere except a single 1 at position i.):

∂

∂ui
〈TH

(n,d)(u),T
H
(n,d)(u)〉 =

∂

∂ui

∥∥∥TH
(n,d)(u)

∥∥∥2

F
=

=
∂

∂ui

(
∑
i′∈N

[∥∥∥TH
(n,d)(i

′)
∥∥∥2

F
v2
i′ −

∥∥∥TH
(n,d)(i

′)
∥∥∥2

F
w2
i′

])
=

= 2 fn(i)ui,

where fn(i) represents the number of occurrences of ui in the Hermitian
multilevel Toeplitz matrix TH

(n,d)(u).
With this intuition at hand, we can easily infer that ( fn(i))i∈N =

Dn,d(1), where 1 ∈ CM×m is a matrix with all entries equal to 1.
Now, these rules together with (B.4) and (B.5) can be used to establish

the following results about the partial derivatives of L which read as:

∂L
∂W

=
τ

2
IK −Λ0 − ρ(V0 −W ), (C.11)

∂L
∂u

=
τ

2
i1 −Dn,d(Λ̂) +

ρ

2
(
Dn,d(1)− 2Dn,d(V̂ )

)
, (C.12)
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C.2. Derivation of the ADMM in Section 5.2.6

∂L
∂Z

=
1
2
(ΦHΦZ −ΦHY )− Λ̂− ρ

(
V̂ −Z

)
, (C.13)

where i1 is the tensor of the same dimension as u with entries all equal
to 0 except at the position of u[1,...,1]. With these three derivatives at hand
we can proceed to formulate the explicit update steps for the ADMM
iteration.
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