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Kurzfassung

In den letzten zwei Jahrzehnten erhielten spärliche Darstellungen vermehrt Aufmerk-

samkeit in zahlreichen ingenieurswissenschaftlichen Anwednungen. Für eine spär-

liche (sparse) Darstellung eines Signals benötigt man ein Wörterbuch (dictionary)

aus Basiselementen, welche auffallende und diskriminative Merkmale des Signals

beschreiben. Wird das Wörterbuch durch ein analytisches Modell generiert, so hängt

seine Aussagekraft von der Qualität dieses Modells ab.

In der vorliegenden Dissertation wird das Problem der Schätzung von spärlichen

Darstellungen in der Gegenward von Fehlern und Unsicherheiten bezüglich des Wörter-

buchs behandelt. Im ersten Teil wird ein statistisches Rahmenwerk zur spärlichen

Regularisierung eingeführt. Der zweite Teil befasst sich mit der Entwicklung von

Methodiken zur Schätzung von spärlichen Darstellungen aus hoch-redundanten

Wörterbüchern mit unbekannten Wörterbuchparametern. Die vorgestellten Methoden

werden mit Hilfe von Anwendungen der Richtungsbestimmung und der faseroptischen

Abtastung ausgewertet. Diese dienen als illustrative Beispiele zur Erforschung der ab-

strakten Probleme in der Theorie der spärlichen Darstellungen.

Das Schtzen einer spärlichen Darstellung schließt oftmals die Lösung eines regular-

isierten Optimierungsproblems mit ein. Das vorgestellte Rahmenwerk zur Regular-

isierung bietet ein systematisches Verfahren zur Bestimmung eines Regularisierungspa-

rameters, welcher die Verbundseffekte von Modellfehlern und Messrauschen erfasst. Er

wird bestimmt durch eine obere Grenze für den mittleren quadratischen Fehler zwischen

den fehlerhaften Daten und dem idealen Modell. Trotz angemessener Regularisierung

bleibt die Qualität und die Genauigkeit der erhaltenen spärlichen Darstellung durch

die Modellfehler beeinträchtigt und ist durchaus empfindlich bezüglich Änderungen

des Regularisierungsparameters. Um dieses Problem zu erleichtern wird eine Wörter-

buchkalibrierung durchgeführt. Das Rahmenwerk wird für das Problem der Rich-

tungsschätzung angewendet.

Redundanz ermöglicht es mit dem Wörterbuch eine breitere Klasse von Beobachtun-

gen zu beschreiben. Jedoch wird dadurch auch die Ähnlichkeit zwischen den Einträgen

erhöht, was zu missverständlichen Darstellungen führt. Um das Problem der Redun-

danz und der zusätzlichen Unsicherheit im Wörterbuch zu behandeln werden zwei

Strategien verfolgt. Zunächst wird eine Methode der alternierenden Schätzung zur

iterativen Bestimmung der zugrundeliegenden spärlichen Darstellung und der Wörter-

buchparameter vorgestellt. Ferner werden theoretische Grenzen für den Schätzfehler

hergeleitet. Zweitens wird ein Bayes’sches Rahmenwerk zum Schätzen von spärlicher

Darstellungen und zum Lernen von Wörterbüchern entwickelt. Ein hierarchisches Mod-

ell wird betrachtet um Unsicherheiten in vorherigen Annahmen zu erfassen. Das betra-



IV

chtete Modell für die Koeffizienten der spärlichen Darstellung ist speziell für dem Um-

gang mit Redundanz im Wörterbuch konzipiert. Approximative Inferenz wird unter

Verwendung eines hybriden Markov Chain Monte Carlo Algorithmus durchgeführt.

Die Leistungsfähigkeit und die praktische Anwendbarkeit beider Methodiken wird für

ein Problem aus der faseroptischen Abtastung ausgewertet. Dabei wird ein analytis-

ches Modell für das Sensorsignal zusammengestellt, welches dann genutzt wird um ein

geeignetes Wörterbuch zu generieren.
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Abstract

In the last two decades, sparse representations have gained increasing attention in a

variety of engineering applications. A sparse representation of a signal requires a dic-

tionary of basic elements that describe salient and discriminant features of that signal.

When the dictionary is created from a mathematical model, its expressiveness depends

on the quality of this model.

In this dissertation, the problem of estimating sparse representations in the presence

of errors and uncertainty in the dictionary is addressed. In the first part, a statistical

framework for sparse regularization is introduced. The second part is concerned with

the development of methodologies for estimating sparse representations from highly

redundant dictionaries along with unknown dictionary parameters. The presented

methods are illustrated using applications in direction finding and fiber-optic sensing.

They serve as illustrative examples for investigating the abstract problems in the the-

ory of sparse representations.

Estimating a sparse representation often involves the solution of a regularized optimiza-

tion problem. The presented regularization framework offers a systematic procedure

for the determination of a regularization parameter that accounts for the joint effects

of model errors and measurement noise. It is determined as an upper bound of the

mean-squared error between the corrupted data and the ideal model. Despite proper

regularization, the quality and accuracy of the obtained sparse representation remains

affected by model errors and is indeed sensitive to changes in the regularization param-

eter. To alleviate this problem, dictionary calibration is performed. The framework is

applied to the problem of direction finding.

Redundancy enables the dictionary to describe a broader class of observations but

also increases the similarity between different entries, which leads to ambiguous rep-

resentations. To address the problem of redundancy and additional uncertainty in the

dictionary parameters, two strategies are pursued. Firstly, an alternating estimation

method for iteratively determining the underlying sparse representation and the dic-

tionary parameters is presented. Also, theoretical bounds for the estimation errors

are derived. Secondly, a Bayesian framework for estimating sparse representations and

dictionary learning is developed. A hierarchical structure is considered to account for

uncertainty in prior assumptions. The considered model for the coefficients of the

sparse representation is particularly designed to handle high redundancy in the dic-

tionary. Approximate inference is accomplished using a hybrid Markov Chain Monte

Carlo algorithm. The performance and practical applicability of both methodologies is

evaluated for a problem in fiber-optic sensing, where a mathematical model for the sen-

sor signal is compiled. This model is used to generate a suitable parametric dictionary.
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Chapter 1

Introduction

The choice of a suitable data representation is an integral aspect of signal processing

and machine learning. Depending on the problem at hand, different representations

can be used to efficiently describe the data in a compact form and to reveal and extract

particular discriminative features that might be hidden otherwise [1, 2].

Basic linear transformations have been widely used to obtain suitable representations.

In the 1980’s, a lot of research was designated to transformations that capture local-

ized or multiscale features [3]. This also led to the development of popular compression

algorithms such as the JPEG2000 algorithm for image compression [4]. In the 1990’s,

the concept of dictionaries emerged, where a representation (or approximation) is ob-

tained by choosing a subset of elements from a larger collection, called dictionary [3].

While dictionaries were initially based on existing transformations, the idea of sparsity

has initiated the development of more general and efficient dictionaries with strong

descriptive power [3]. They paved the way for high-accuracy feature estimation by

estimating the best underlying sparse representation with respect to the correspond-

ing dictionary [5]. Rather than using a fixed set of dictionary elements, the aim is to

incorporate the data itself to identify the best subset of elements, such that the er-

ror between the data and its representation (approximation) is minimized – a general

problem that belongs to the field of non-linear approximation theory [6]. This idea has

further driven the development of efficient sparse estimation algorithms [7–10].

A sparsity-promoting dictionary that reveals particular features can be created in dif-

ferent ways. It can be designed based on a mathematical model for the underlying phys-

ical processes generating the data or it can be learned directly from training data [3].

While both approaches have their advantages and limitations, this work is concerned

with the former case. Nevertheless, mathematical models are often used as an approxi-

mation to describe complicated natural phenomena. Therefore, they can be inaccurate

or contain unknown parameters due to imperfect prior knowledge. As a result, the

dictionary itself may contain various sources of uncertainty, which leads to inaccurate

sparse representations.

The field of estimating sparse representations covers many interdisciplinary topics in

mathematics, physics, and computer science. Therefore, it is highly versatile and has

accumulated a broad body of literature. Nevertheless, many questions still remain

unanswered. This dissertation addresses the problem of estimating sparse represen-

tations from dictionaries that are created from mathematical models, where potential

sources of uncertainty arise from idealized assumptions or imperfectly known model

parameters.



2 Chapter 1: Introduction

1.1 Motivation

Sparse representations have gained increasing importance and their ubiquitous exis-

tence is presumed in various applications such as source localization [5], laser rang-

ing [11], sparse coding [12–15] or imaging [16–19]. They also play a central role in

the advent of compressed sensing [20–22] – an efficient signal acquisition scheme that

has been widely studied with the aim to abate the sampling rate as well as to reduce

storage requirements and even hardware costs. The assumption (or the constraint)

of sparsity can be instrumental to obtain a unique solution of underdetermined linear

equation systems, which are omnipresent in general engineering applications [23]. It

has been shown that sparse representations are suitable to achieve super-resolution and

to estimate quantities at high accuracy [5]. Nevertheless, this property can only hold

under the premise that the model used to create the dictionary correctly describes the

observed physical processes that generate the data.

In many practical problems, the existence of unknown model parameters or model

errors is inevitable, e.g. due to a limited fabrication accuracy in the manufacturing

process of devices or due to external factors such as temperature fluctuations or erosion.

Estimating a meaningful sparse representation that correctly highlights the features of

interest becomes non-trivial in the presence of dictionary defects or uncertainty. Find-

ing and evaluating solutions for this problem is of general interest.

In order to obtain highly sparse representations, redundancy in the dictionary is imper-

ative [3]. It improves the descriptive power, such that complicated natural phenomena

can be described by a single dictionary [9,23,24]. However, a high level of redundancy

increases the similarity between different dictionary elements, which can cause prob-

lems in sparse estimation [25]. Methodologies for sparse estimation that are able to

obtain meaningful and accurate sparse representations from highly redundant dictio-

naries with uncertainty are strongly desirable and of broad practical interest.

The addressed research topics are initially motivated by application-specific problems

in direction finding and compressed fiber-optic sensing. Therefore, these applications

serve as illustrative examples and are representative for investigating the general and

rather abstract problems in the theory of sparse representations. In fact, the problem of

direction finding is fundamental and arises explicitly or implicitly in communications,

imaging and radar/sonar, just to name a few. For fiber sensing, there exist indeed

many sensing technologies. In the scope of this thesis, optical sensors with compressed

sensing-based signal acquisition are considered, where the main objective is to estimate

the reflection delays of the interrogating signal. This can be generalized to estimating

the translation coefficients of localized signals – a frequently encountered problem in

different applications, e.g. in laser ranging [11] or radar [19].
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1.2 Aims and Research Objectives

The aim of this dissertation is the design and development of systematic strategies

for estimating sparse representations in the presence of uncertainty or errors in the

underlying model that is used to generate the dictionary. The major research objectives

are concerned with two particular aspects of this problem as stated below. These are

meant to be investigated by means of applications that are representative for frequently

encountered problems in research and of broad interest in industry. In particular,

direction finding and fiber-optic sensing combined with compressed sensing are in the

focus of this work. The research objectives considered in this dissertation are:

1. Sparse regularization and dictionary calibration:

The objective is the development of a statistical framework for sparse regular-

ization in the presence of model errors. Estimating a sparse representation often

involves the solution of a regularized optimization problem. A suitable regular-

ization parameter, however, is usually non-trivial to obtain and often hard to

justify, especially when an idealized model is used to describe a complicated phe-

nomenon. A common approach is to repeatedly solve the optimization problem

for a large range of regularization parameter values at the cost of a high compu-

tational load. A statistical regularization framework, in contrast, is intended to

yield a suitable regularization parameter prior to sparse estimation, which can

be justified by statistical arguments. Since regularization alone can only adjust

the tolerance level, the sparse solution can still be inaccurate. Moreover, it is not

guaranteed that a solution obtained from an inaccurate model is also a desirable

solution. Therefore, in addition to regularization, dictionary calibration is inves-

tigated with the aim to improve the quality of the sparse representation and to

reduce the sensitivity to the regularization parameter.

2. Sparse estimation and dictionary learning with highly redundant

dictionaries:

The objective is to design sparse estimation and dictionary learning methods that

are able to accurately estimate an underlying sparse representation along with

uncertain dictionary parameters when the entries of the dictionary exhibit high

similarity and contain unknown parameters. Redundancy favors highly sparse

representations and, in principle, improves the accuracy at which quantities can

be estimated. However, the requirements for unique sparse estimation are no

longer fulfilled and a desired underlying representation cannot be retrieved using

common sparse estimation algorithms. The problem of sparse estimation and



4 Chapter 1: Introduction

dictionary learning is often addressed by methods that follow the alternating es-

timation paradigm or by developing a whole Bayesian framework. The goal is

to develop estimation frameworks for both methodologies that are designed to

estimate an underlying sparse representation from highly redundant dictionaries

along with unknown dictionary parameters. In particular, it is intended to inves-

tigate the quality and accuracy of the sparse representation and the dictionary

parameters when they are estimated based on a

(a) Deterministic sparse model

(b) Probabilistic sparse model.

1.3 Contributions

The main contributions of this thesis are listed below.

Contributions related to the first research objective:

• Statistical sparse regularization framework for direction finding:

A statistical sparse regularization framework for direction finding in the pres-

ence of model errors and measurement noise is developed. To this end, a direct

relationship between the model errors and the regularization parameter of the op-

timization problem is established. Following a chain of statistical arguments, the

regularization parameter is obtained as an upper bound of the mean-squared er-

ror between the corrupted data and the idealized model. Different from previous

approaches, regularization jointly accounts for measurement noise and particular

model errors with pre-specified statistics. Also, it is not necessary to repeatedly

solve the optimization problem for a range of parameters, which saves computa-

tional costs. It is further shown how dictionary calibration can yield an accurate

stable sparse representation with low sensitivity to the regularization parameter.

The performance and computational complexity is evaluated in comparison to

competing methods in various scenarios.
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Contributions related to the second research objective:

• Sparse estimation/dictionary learning framework for fiber sensing:

A versatile sparse estimation and dictionary learning framework for fiber-optic

sensing with compressed sensing-based acquisition is presented. The efficient

signal acquisition scheme reduces the average sampling rate and the number of

samples to be stored and processed. For the sensor signal, a generic model is

provided, which is adapted to match real sensor data for experimental valida-

tion. Based on this model, a suitable parametric dictionary for high-resolution

sensing is created. The ‘coherence distance’ is introduced as a measure of

redundancy for general dictionaries with comparable structure. Different from

conventional measures, it emphasizes the similarity of dictionary entries within

structured subsets for different parametrizations. Theoretical error bounds are

derived for jointly estimating deterministic sparse coefficients and dictionary

parameters. They are estimated based on alternating estimation in combination

with dictionary pre-processing to handle strong similarity between the entries

of the dictionary. The computational complexity of this method is analyzed.

The estimation performance is evaluated in simulations, while the practical

applicability is verified using real fiber sensing data.

• Probabilistic model for sparse estimation of localized signals:

A probabilistic model for the coefficients of the sparse representation and the

dictionary parameters is presented. It is specified for the application of com-

pressed fiber sensing but can be generally adopted for estimating the translation

coefficients of localized signals. A hierarchical model structure accounts for un-

certainty in prior assumptions. Instead of performing dictionary pre-processing,

the problem of redundancy is addressed by leveraging the dictionary structure

to promote additional collective shrinkage based on a local similarity model. An

alternative interpretation of the sparse model is provided in terms of non-convex

optimization. Approximate inference is accomplished using a hybrid Markov

Chain Monte Carlo algorithm. Dictionary learning is performed by (i) using

a variant of alternating estimation and (ii) sampling the posterior distribution

of the parameters. Simulations are used to provide a comparative performance

analysis between the probabilistic and the deterministic sparse model, and to

highlight advantages and limitations. The practical applicability is verified using

real fiber sensing data.
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• C. Weiss and A. M. Zoubir, “Fiber Sensing Using UFWT-Lasers and Sparse
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Image? Quality Assurance in Image Reconstruction Using the Bootstrap,” in

Proc. of the 38th IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Vancouver, Canada, May 2013.
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1.5 Overview

The organization of this thesis and a chapter outline are given below.

In Chapter 2, the relevant fundamentals of sparse estimation and dictionaries are

reviewed. Section 2.1 focuses on sparse representations. Besides common types of

dictionaries, the task of dictionary learning is introduced. In Section 2.2, theoret-

ical reconstruction guarantees for sparse estimation with redundant dictionaries are

introduced. Also, coherence measures for redundant dictionaries are presented. The

contribution of this chapter is the ’coherence distance’ for general translation-invariant

dictionaries.

In Chapter 3, the applications that are relevant in the scope of this thesis and the

concept of compressed sensing are introduced. Direction finding is explained in Section

3.1, while fiber-optic sensing is described in Section 3.2. Compressed sensing is intro-

duced in Section 3.3. The contribution of this chapter is the definition of a translation-

invariant dictionary for fiber-optic sensing along with a mathematical description of

the sensing process in the context of sparse estimation.

In Chapter 4, the statistical sparse regularization framework for direction finding is

introduced. While Section 4.1 introduces and motivates the topic of sparse regulariza-

tion, Section 4.2 offers an overview of relevant state-of-the-art methods and concepts.

In Section 4.3, the considered model errors are detailed and the regularization problem

is introduced in the context of constrained optimization. Section 4.4 and 4.5 introduce

the proposed regularization methods for two kinds of model errors. Dictionary cali-

bration is presented in Section 4.6. Section 4.7 analyzes the computational complexity

and the results and findings are discussed in Section 4.8. Some concluding remarks are

given in Section 4.9. The contribution of this chapter is the above-mentioned statistical

sparse regularization framework with dictionary calibration.

In Chapter 5, the sparse estimation and dictionary learning framework for fiber sens-

ing is presented. Section 5.1 introduces the task of parametric dictionary learning and

the concept of alternating estimation. In Section 5.2, related work and state-of-the-art

techniques are reviewed. Section 5.3 describes the considered problem. Theoretical

performance bounds for the particular problem at hand are derived in Section 5.4. In

Section 5.5, the unified framework for compressed fiber sensing and dictionary learn-

ing is introduced. It includes a description of the system architecture and provides a

detailed model for the received sensor signal from which the dictionary for sparse esti-

mation is created. In addition, a sparse estimation and dictionary learning algorithm
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for highly coherent dictionaries is presented along with an analysis of the computational

complexity. In Section 5.7, the performance is evaluated in simulations and experimen-

tal validation is provided using real data. A discussion of the results and findings is

given in Section 5.8, while Section 5.9 concludes this chapter. The contribution of this

chapter is the above-mentioned sparse estimation and dictionary learning framework

for fiber sensing using highly coherent dictionaries.

In Chapter 6, a probabilistic model for sparse estimation and dictionary learning with

localized signals is presented. Section 6.1 introduces the estimation task along with

related topics such as prior selection and approximate inference. Section 6.2 provides an

overview of state-of-the-art methods and related work. A description of the considered

problem is given in Section 6.3. Section 6.4 introduces a sparse model for estimating the

translation coefficients of localized signals, including a local covariance model to deal

with high redundancy in the dictionary. Also, a relation to non-convex optimization

with `p-norm constraints is established. Section 6.5 given an overview of the complete

hierarchical model and introduces the hybrid Markov Chain Monte Carlo method used

for inference in this model. Section 6.6 presents a hybrid and a full Bayesian strategy for

dictionary learning. In Section 6.7, the performance is evaluated using simulations and

real data. A comparison between the results obtained using the presented probabilistic

sparse model and the deterministic sparse model in Chapter 5 is provided. The results

and findings are discussed in Section 6.8 and Section 6.9 gives a conclusion for this

chapter. The contribution of this chapter is the above-mentioned probabilistic model

for sparse estimation of localized signals with highly coherent dictionaries.

Chapter 7 provides a summary and a conclusion for this dissertation along with an

outlook of some future research directions.
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Chapter 2

Primer on Sparse Estimation

Sparse signals have gained increasing attention in various signal processing and

machine learning applications. These include, for example, imaging applications

such as synthetic aperture radar imaging [18, 19] or medical imaging [16, 17], sparse

coding [12–15], source localization [5], direction-of-arrival estimation and laser

ranging [11]. Compressed sensing [20, 21, 26] is another popular application in sparse

signal processing, where the sparse structure of signals is exploited to alleviate the

constraints and requirements imposed on an acquisition system in terms of storage,

sampling rate, and hardware costs [20,22,26,27].

The assumption of sparsity can help to solve underdetermined linear equation systems,

which are of central importance and often found in engineering applications [23]. It

is well-known that most signals encountered in the wild are not exactly sparse but

contain only a few significant components. Such signals are called ‘compressible’ [20].

However, they are usually not directly sparse or compressible in the sensing domain.

The sparse structure is rather revealed in terms of an appropriate ‘dictionary’, which

can represent the signal using only a few non-zero coefficients. Hence, the dictionary

is a key component in sparse signal processing and composed of atomic elements that

efficiently capture the structure of a certain class of signals. Following the notion

in [8, 28], the entries of a dictionary are referred to as ‘atoms’. When a larger class

of signals is covered by a single dictionary, the resulting representations are surely

less sparse than in cases, where the dictionary is specifically designed for a certain

sub-class of signals (cf. redundant dictionaries in [29] and below).

The primary objective in sparse signal processing is the construction or identification

of suitable dictionaries as well as the development of intelligent algorithms, that can

efficiently exploit the sparse structure of the signal in order to extract the desired

information. There exist various ’off-the-shelf’-dictionaries that are applicable to a

wide class of signals, e.g. Fourier or wavelet dictionaries [26]. Identifying a dictionary

for a particular problem is not a trivial task and requires sufficient knowledge about

the signal structure and the physical processes generating the signals.

In this chapter, the foundations of sparse signals, different classes of dictionaries, sparse

inverse problems, sparse recovery algorithms as well as some popular reconstruction

guarantees and quality measures are briefly reviewed. They serve as prerequisites for

the ensuing chapters.
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The definition of the coherence distance in Section 2.2.1.4 is partly taken from [30]1.

Chapter Outline

Section 2.1 introduces the concept of sparse representations and describes the properties

of common types of dictionaries. Also, dictionary learning is introduced. In Section

2.2, the problem of sparse estimation from redundant dictionaries is discussed, along

with theoretical reconstruction guarantees and coherence measures.

2.1 Sparse Representation of Signals

The fundamental assumption in sparse signal processing is, that an observed or mea-

sured signal can be sparsely represented with respect to a certain dictionary. Sub-

sequently, a signal is described in terms of a generalized vector over the field of real

or complex numbers in a Hilbert space, endowed with an inner product. In partic-

ular, any observed analog signal is modeled as a member of the Hilbert space L2 of

square-integrable functions. The focus of this thesis is the analysis of discrete sig-

nals, that can be represented by finite-dimensional vectors, r ∈ CL, in the Euclidean

space. The signal r may represent the Nyquist samples of an observed analog signal.

In this context, a ‘dictionary’, D = [d1, . . . ,dN ], is a collection of vectors (atoms),

di ∈ CL, i = 1, . . . , N , that form a basis or represent a redundant set of vectors, such

that span(d1, . . . ,dN) = CL, N ≥ L.

In order to obtain a sparse representation, r is decomposed into a weighted sum of

dictionary atoms, that is

r =
N∑
i=1

xi di = Dx , (2.1)

where most of the coefficients in x = [x1, . . . , xN ]> are zero (or close to zero for com-

pressible signals). The set S is defined to contain the indices of the K non-zero elements

in x, i.e. the sparse support S = supp(x) (or the indices of the K most significant

components in x for compressible signals). Throughout this chapter, real-valued sig-

nals and dictionaries are considered. In the complex-valued case, the signals and the

dictionary can be split up into real and imaginary parts.

1C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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2.1.1 Classes and Properties of Dictionaries

There exist different classes of dictionaries with individual properties. The choice of

a certain dictionary usually depends on the application. Some important dictionaries

and selection criteria are listed below.

2.1.1.1 Orthogonal Dictionaries

Orthogonal dictionaries are convenient in that the coefficients of a sparse representation

can be obtained by a simple projection with the dictionary matrix, i.e. x = D>r. If the

dictionary atoms are also normalized, the dictionary itself describes a unitary trans-

formation. Despite the convenient analytical properties of orthogonal dictionaries, the

single atoms suffer from a limited descriptive power [3]. When specific characteristics

of the signal are taken into account during the dictionary design process, more efficient

sparse representation can be obtained.

2.1.1.2 Redundant Dictionaries

When the number of dictionary atoms is larger than the dimensionality of the observed

signal, i.e. N > L, the dictionary is called ’redundant’. Redundant dictionaries have

two major advantages. Firstly, they can yield much sparser representations than or-

thogonal dictionaries [3, 9, 12, 29, 31]. Secondly, redundancy allows for high-resolution

estimation of quantities directly in the sparse domain [5, 32]. However, a drawback of

redundant dictionaries is, that there may exist several ambiguous representations of

a signal with the same number of non-zero coefficients. Hence, due to the coherence

of the dictionary atoms, the requirements for stable and robust sparse reconstruction

may not be fulfilled [9, 25, 27].

In cases, where a signal emerges from different underlying physical processes, its com-

plexity can no longer be captured by a single transformation. Such signals, e.g. si-

nusoids and spikes, are more appropriately described in terms of mixtures of trans-

formations or dictionaries. Such compositions of different sub-dictionaries are called

‘composite dictionaries’ [9, 24,27,33].

2.1.1.3 Parametric Dictionaries

Parametric dictionaries are created using basic mathematical functions that are of-

ten motivated by a mathematical model to describe the underlying physical processes
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generating the signal. Therefore, the dictionary atoms are sometimes referred to as

’parametrized waveforms’ [8, 34]. Their analytical form allows for an efficient imple-

mentation and offers the possibility to obtain optimality proofs and error bounds [3].

Further advantages are storage-efficiency and scalability, since only the parameters

need to be stored rather than all samples of each atom. Hence, large-scale dictionaries

and arbitrarily-sized signals can be effectively represented [3, 35]. Popular parametric

dictionaries are based on linear transforms, e.g. the Fourier or Wavelet transform [26].

The physical motivation of a Fourier dictionary is to describe a signal in terms of its

frequency components, while a Wavelet dictionary can be used to describe the features

of an image over multiple scales. However, the performance of parametric dictionaries

is limited by the assumptions made in order to obtain a mathematical model for the

signal. This limitation becomes apparent when many simplifications are necessary to

describe a natural phenomenon in terms of a convenient mathematical model [3]. For

example, a Fourier dictionary is well suited for representing signals that are generated

by a finite sum of monochromatic signals. This is no longer true if the observed signal

also contains transient components. If an accurate generative signal model is available,

parametric dictionaries can efficiently match the structure of certain signals [35].

One important class of parametric dictionaries are ‘translation-invariant dictionaries’.

They are created from a parametric function and the dictionary atoms correspond to

distinct translations of that function. Such dictionaries are useful in estimating the

translation coefficients of localized signals [36–39].

2.1.1.4 Non-parametric Dictionaries

Some complicated natural phenomena cannot be described in terms of a convenient

mathematical model. This problem has motivated the idea of constructing the dic-

tionary directly from the data based on a training set. It has become a prominent

technique in the advent of Machine Learning. Dictionaries constructed in this way can

adapt better to specific realizations of the data [3, 40].

2.1.1.5 Dictionaries With Uncertainty

In many practical problems, there exist several sources of uncertainty. They may

arise from imperfections in the manufacturing process of devices, errors and incorrect

assumptions in the underlying model or incomplete knowledge of the observed signal.

Uncertainty can be incorporated in the dictionary in order to account for these effects.

When a parametric dictionary is employed, the basic signal structure is usually known
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and uncertainty is reflected in terms of unknown or imperfectly known parameters.

One major objective in the ensuing chapters is to estimate such parameters along with

a sparse representation of the signal.

2.1.2 Dictionary Learning

When a dictionary contains uncertainty, such as unknown parameters, or if the dic-

tionary is a priori unknown, the missing information can be extracted from the data

under appropriate assumptions and constraints. This particular problem is addressed

in Dictionary Learning (DL), although the term ’learning’ sometimes refers to creat-

ing non-parametric dictionaries purely from the data, rather than using the data to

estimate parameters of an analytical (parametric) dictionary [3].

Non-parametric DL methods do not make use of an analytic form. They cannot ex-

ploit available information about the dictionary structure and rely on general con-

straints such as the column norms and inter-atom correlation [35,41]. Moreover, purely

data-based dictionaries suffer from unknown inner structure and lack of interpretabil-

ity. Some popular non-parametric DL methods include the Method of Optimal Direc-

tions [42,43], the generalized principal component analysis [44], the family of iterative

least-squares DL algorithms [45], the K-SVD algorithm [46], and the Recursive Least-

Squares method [47]. In addition, there also exist robust approaches [48,49].

Parametric DL methods adapt the parameters of an analytic (parametric) dictionary

according to the acquired data. They benefit from the advantages of parametric dictio-

naries, such as scalability, efficient implementation and low storage costs, but the per-

formance also depends on the quality of the underlying physical model [3,35]. The class

of translation-invariant dictionaries is often considered in parametric DL [3,36,37,39].

In order to estimate the parameters of a dictionary given the acquired data, statis-

tical methods, such as maximum likelihood (ML) estimation [3, 50] or maximum a

posteriori (MAP) estimation [3, 51], can be applied.

In order to benefit from the advantages of both approaches, hybrid DL techniques

involve the data-driven training of structured parametric dictionaries. This has sev-

eral advantages in reducing the amount of training data, improving the convergence

speed, reducing the density of local minima and offering a more compact representa-

tion [3, 37,38,45].

Alternating estimation (AE) is a prominent heuristic for iteratively solving the result-

ing optimization problem in order to estimate both, the dictionary (parameters) and

the sparse representation of the signal [52, 53]. AE is also known as ’Block-nonlinear

Gauss-Seidel method’ or ’Block coordinate descent method’ [54]. The Expectation Max-

imization (EM) algorithm [3,55] is one variant of AE-based estimation, which is often
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used in a hybrid Bayesian setting to iteratively estimate unknown model parameters.

It represents an alternative to a full Bayesian formulation, in which the dictionary pa-

rameters are jointly estimated together with all other latent variables in the model [56].

In the ensuing chapters, AE-based and full Bayesian strategies for parametric DL are

pursued.

2.2 Sparse Estimation & Redundant Dictionaries

In the theory of sparse representations and redundant dictionaries, one distinguishes

two different concepts: ‘sparse analysis’ and ‘sparse synthesis’ [3,12,57]. Sparse analysis

attempts to represent the data in terms of a linear transformation, say T, such that the

outcome Tr is sparse. Therefore, T is also called the ‘synthesis operator’ [12]. When

the dictionary, D, forms a ‘tight frame’, such that r = DD>r (see e.g. [58]), then D

and T are related by D> = T and the data is represented by inner products with the

dictionary atoms [3]. The sparse synthesis approach, in turn, aims at representing r

in terms of a linear combination with the dictionary atoms, i.e. r = Dx as in (2.1).

Both representations are equivalent for orthogonal dictionaries but not for redundant

dictionaries [3].

In this thesis, the synthesis approach is addressed. It is further assumed, that the

signal of interest, r, can not be observed directly. Only a noisy version, y, is available,

which leads to the following general signal model:

y = r + n = Dx + n , (2.2)

where n is an additive noise component and D represents a redundant dictionary.

The goal is to estimate a sparse representation, x, that minimizes a certain cost func-

tion, C(x). Without the sparsity assumption, there exist infinitely many possible

representations x + ∆x, where ∆x lies in the null-space of D. Therefore, sparsity also

helps to obtain a unique representation. The problem of finding the sparsest solution

in (2.2) belongs to the field of ‘highly non-linear approximation theory’ [6].

A common choice for the cost function is the squared error, i.e. C(x) = ‖y−Dx‖2
2, and

sparsity can be enforced by minimizing the `0-norm 2. This leads to a combinatorical

problem, which is intractable for high-dimensional vectors, x. Under certain conditions

(discussed below), an equivalent sparse solution can be obtained using the `1-norm in-

stead [28,59]. Hence, since the `1-norm represents the tightest convex relaxation of the

2Strictly speaking, the term ’norm’ is reserved for operations that fulfill the original axioms of a
true norm. Therefore, operations such as ‖x‖0 should rather be called a ‘pseudo-norm’. However, due
to the relaxed usage of this term in the general literature of sparse estimation, it is adopted throughout
this thesis to describe the general class of operations ‖ · ‖p, with 0 ≤ p ≤ 2.
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`0-norm, the powerful machinery of convex optimization becomes available for solv-

ing the problem. Written in a parametric form, the resulting optimization problem

resembles the LASSO problem in [60], i.e.

arg min
x
‖y −Dx‖2

2 + λL‖x‖1 , (2.3)

where λL is a regularization parameter. The solution of this problem also corresponds

to an MAP estimation problem (c.f. e.g. [61]) with a Gaussian likelihood,

p(y |x) ∝ exp

(
− 1

2σ2
n

‖y −Dx‖2
2

)
, (2.4)

and i.i.d. zero-mean Laplace-distributed elements xi, i.e.

p(xi) ∝ exp(−λL|xi|) , i = 1, . . . , N. (2.5)

By maximizing the log-posterior, log(p(y |x)p(x)), one obtains (2.3).

Another formulation of the sparse estimation problem is that of ‘`1-minimization’

in [9, 25], which is also called ‘Basis Pursuit Denoising’ [8, 25]. It is given by

min
x
‖x‖1 s.t. ‖y −Dx‖2 ≤ βreg , (2.6)

where βreg is a hyperparameter to account for noise or model errors. Although

`1-minimization can obtain globally optimal solutions with robustness to measurement

errors and noise, the computational complexity of optimization-based methods is often

high [25]. Greedy methods, such as OMP [7] or CoSaMP [10], offer another possibility

to obtain a sparse solution in (2.2). They usually require lower computational costs

but are not guaranteed to obtain the globally optimal solution [25].

2.2.1 Reconstruction Guarantees and Coherence Measures

Whether or not the sparse coefficients can be successfully estimated depends on certain

joint conditions on the sparse signal, x, and the dictionary, D. Especially when D is

a redundant dictionary, there might exist several equivalent K-sparse representations

of the original signal, r, such that robust and stable reconstruction might no longer

be possible [9,27,31]. A popular reconstruction guarantee is provided by the restricted

isometry property (RIP) [13,25,62]. It is defined by

(1− δK)‖x‖2
2 ≤ ‖Dx‖2

2 ≤ (1 + δK)‖x‖2
2 , (2.7)

where δK ≥ 0 is called the ‘restricted isometry constant’. For a given dictionary, D, and

a certain sparsity level of the signal, K, the constant δK is computed in order to assess
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the conditions for sparse reconstruction. Intuitively, the RIP states that, if δK is suffi-

ciently small, every subset of s ≤ K columns approximately resembles an orthonormal

system [27]. In the presence of model errors, or if x is not ideally K-sparse, certain

stability and robustness conditions can be derived [25]. For many popular sparse esti-

mation algorithms, including `1-minimization and OMP, there exist upper bounds, δ∗,

that guarantee the success of sparse reconstruction. For OMP, the RIP of order (spar-

sity level) K + 1 must be fulfilled with isometry constant δK+1 < 1/(3K1/2) = δ∗ [63].

For `1-minimization, error bounds can be derived for the RIP of order 2K with isom-

etry constant δ2K < 4/
√

41 = δ∗ [25].

It can be shown that ‘sub-Gaussian random matrices’ fulfill the RIP at a given

sparsity level with high probability [20,25]. A sub-Gaussian random variable, Xsg,

is defined in terms of some constants, βsg, κsg > 0, such that the probability

Pr(|Xsg| ≥ t) ≤ βsge−κsgt, ∀ t > 0. Likewise, the entries of a sub-Gaussian random

matrix are i.i.d. zero-mean sub-Gaussian random variables with variance 1 and sub-

Gaussian parameters, βsg and κsg [25]. Examples are Gaussian matrices themselves,

Bernoulli- and Rademacher-matrices [25]. The entries of a Bernoulli matrix take the

values {0, 1} and those of a Rademacher matrix take values {1,−1}, both with equal

probabilities. A useful reconstruction guarantee for sub-Gaussian matrices is given

below:

Let SG ∈ RM×L be a sub-Gaussian matrix with sub-Gaussian parameters βsg, κsg, and

let δ∗ be a given RIP constant. If M fulfills the relation

M ≥ C

(
1

δ∗

)2 (
K log(eN/K) + log(2ε−1

SG )
)

(2.8)

for some constant Csg > 0, that depends only on βsg, κsg, then SG/
√
M satisfies δK ≤ δ∗

with probability at least 1− εSG, εSG � 1 [25].

For general dictionaries, however, verifying the RIP is NP-hard and there exist no

polynomial-time algorithms, to date, for explicitly constructing a dictionary that meets

the RIP requirements [25]. In order to overcome this problem, other computationally

tractable quality measures have been proposed. They often rely on the ‘coherence’

between the dictionary atoms, i.e. the level of similarity between dictionary columns.

In the case of redundant dictionaries, matrix pre-conditioning can be used to reduce

the dictionary coherence problem [27]. Some popular coherence measures are reviewed

below.
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2.2.1.1 The Mutual Coherence

The mutual coherence is a popular and widely used criterion to measure and quantify

the dictionary coherence between all pairs of atoms [12,25,28]. It is defined by

µMC(D) = max
j 6=i
|dH
j di| = max

j 6=i
|[D>D]ji| , j, i ∈ Ω , (2.9)

where Ω = { i ∈ N | 1 ≤ N } contains all column indices of the dictionary, D.

2.2.1.2 The Babel Function / `1-coherence

The Babel function, also known as `1-coherence [9, 12], takes into account the spe-

cific subset of s dictionary atoms with indices in ΛB ⊂ Ω, where ΛB has cardinality

|ΛB| = s. This subset shows the maximum cumulative correlation with all remaining

atoms di, i ∈ Ω \ ΛB. The Babel function is defined by

µB(D, s) = max
|ΛB |=s

max
i∈Ω\ΛB

∑
j∈ΛB

|dH
i dj| ≤ s µMC(D) . (2.10)

It is a non-decreasing function in s and related to the mutual coherence

by µB(D, 1) = µMC(D). If µB(D, s) increases ’slowly’ in s, then D is called

‘quasi-incoherent’ [12].

2.2.1.3 Spark of a Matrix

According to the definition in [9,12], the ‘spark’ of a matrix, spark(D), is the smallest

number of columns that form a linear dependent set. This is in contrast to the ‘rank’ of

a matrix, which is the largest number of linear independent columns [9,12]. The spark

can be used to ensure the uniqueness of a sparse representation. A representation over

K atoms of D is unique if and only if spark(D) < 1/2 [9, 12]. Lower bounds for the

spark can be obtained based on the Babel function, µB(D, s) [12].

2.2.1.4 The coherence distance for shift-invariant dictionaries

The presented material for describing the ‘coherence distance’ is partly taken from [30]3.

3C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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Shift-invariant dictionaries are created from a generating mathematical function, e.g. a

known signal, and the dictionary atoms represent distinct translations of that function.

Then, the dictionary is invariant to translations. Usually, it is also highly redundant.

These properties also enable the generation of large-scale dictionaries while keeping the

number of parameters small [36–39].

The coherence distance represents a measure to assess the level of difficulty in estimat-

ing a unique sparse representation for general translation-invariant dictionaries with

strong inter-atom coherence. Common coherence measures are often insufficient for

this purpose. For example, similar to the mutual coherence, the Babel function yields

the coherence level between the K most similar dictionary atoms. Nevertheless, when

K is small, the obtained value can be similar for two highly coherent dictionaries,

although their overall coherence level is very different. In addition, the structure of

the dictionary plays an important role. Translation invariant dictionaries are used to

estimate the translation coefficients of localized signals. In some applications, it is not

likely or even impossible that two localized signals appear very close to each another.

However, for such dictionaries, the K most similar atoms usually appear in a burst

very close to each other and are related by an incremental change in the translation

coefficient. The mutual coherence and the Babel function do not consider such struc-

tures. Therefore, they are not suitable to describe the difference between two highly

coherent translation invariant dictionaries, especially when K is small. The coherence

distance, in turn, is designed to emphasize small changes in the coherence level of

translation-invariant dictionaries. It is an appropriate measure for general dictionaries

of the form (5.1), where the similarity between atoms decreases with increasing index

difference. Yet, it is possible to establish a relationship between the two measures as

shown below.

A redundant, translation-invariant dictionary, D, is considered. The set of atom in-

dices is given by Ω = {1, . . . , N}. For some βd ∈ R with 0 < βd < 1, the coherence

distance is defined by

dc(D, βd) = max
i∈Ω

{
arg min
∆ij = |i−j|

|d>i dj| ≤ βd |d>i di| , j ∈ Ω

}
, (2.11)

where |d>i di| = 1 ∀ i ∈ Ω since the dictionary atoms are usually normalized. The

factor βd in (2.11), is a threshold for the similarity between subsequent atoms with

respect to the atom self-coherence. dc(D, βd) is the minimally required index distance

for which the atom similarity is reduced by βd. Intuitively, it determines the size of the

largest burst of coherent atoms in a translation-invariant dictionary, where the atom

coherence decreases with increasing index distance.

In order to establish a relationship between the coherence distance and the Babel func-

tion, µB(D, s+ 1) is calculated for an arbitrary sparsity level s ∈ N+. Let Λs be a set of
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Figure 2.1. Relationship between the Babel function, µB(D, s), and the coherence
distance, dc(D) with βd = 0.5, for high and low coherence levels.

s+1 adjacent indices, i.e. Λs = {q ∈ Ω | q0 ≤ q ≤ q0 + s} with q0 ∈ {2, . . . , N − s− 1},
and let ΛB = Λs in (2.10). Then, the inner maximum in (2.10) is attained by choosing

i∗ ∈ Ω\Λs directly adjacent to the indices in Λ, such that |i∗−q0| = 1 or |q0+s−i∗| = 1.

Subsequently, it is assumed that i∗ = q0 − 1. Next, µ̃B(D, s̃), s̃ ∈ R+ is defined to be

a continuous extension of µB(D, s), Using a Taylor series, a first-order approximation

can be obtained by

µB(D, s+ 1) =
s+1∑
j=1

|d>i∗di∗+j| ≈ µB(D, s) + κ(D, s)∆s , (2.12)

where

κ(D, s) =
dµ̃B
ds̃

(A, s̃)|s̃=s . (2.13)

Since µB(D, s) is a concave function, the relation κ(D, s)∆s ≥ |d>i∗di∗+s+1| holds.

Then, by setting ∆s = 1, the relationship between dc(D, βd) and µB(D, s + 1) is

established by

dc(D, βd) = arg min
d∈Ω

{
κ(D, d) ≤ βd |d>i∗di∗| , i∗ + dc ≤ N

}
. (2.14)

Thus, dc(D, βd) can be interpreted as the sparsity level, s, for which the Babel function,

µ̃B(D, s̃), grows at a rate κ(D, dc(D, βd)) ≤ βd |d>i∗di∗| < κ(D, dc−1). The relationship

between the slope of µ̃B(A, s̃) and dc(D, βd) for βd = 0.5 is depicted in Figure 2.1 for

a dictionary with high and low coherence, respectively. In the scope of this thesis, it

is assumed that βd = 0.5, such that dc corresponds to the index difference, where the

atom coherence is reduced by 3 dB with respect to the self-coherence, |d>i∗di∗ |, for any

i∗ ∈ {1, . . . , N − s − 2}. Therefore, the notation dc = dc(D, βd) is subsequently used

when dictionary is clearly specified. At low sparsity levels such as s̃ < 10, the slope
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of µ̃B(A, s̃) in Figure 2.1 can merely be distinguished. Thus, it yields no information

of the burst size of coherent atoms. However, dc takes very different values when s is

small and emphasizes the difference.
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Chapter 3

Applications and Signal Models

In this chapter, the relevant applications and corresponding basic signal models are

introduced. The applications are representative for frequently encountered estimation

problems. They are used to instanciate the abstract formulation of the considered

problems in sparse estimation and to evaluate different sparse estimation techniques.

In particular, direction finding, fiber-optic sensing and the concept of compressed

sensing are introduced.

Chapter Outline

Section 3.1 describes the application of direction finding and the considered signal

model. In Section 3.2, fiber-optic sensing is introduced, including the sensing principle

and a basic signal model. Section 3.3 details the concept of compressed sampling,

which can be combined with either application.

3.1 Direction Finding

Direction finding aims at localizing the source of a signal and has a wide range of

applications, e.g. in radar, sonar and communications [64, 65]. Direction-of-arrival

estimation is used to estimate the bearing of a source, while this information can be

further utilized to determine its actual location [64].

3.1.1 Signal Model

Parts of the presented signal model appear in [66]1, [67]2, [68]3. and are based on the

theoretical foundations in [64,65].

1C. Weiss A. M. Zoubir, “A Sparse Regularization Technique for Source Localization with Non-
uniform Sensor Gain,” in Proc. of the IEEE 8th Sensor Array and Multichannel Signal Processing
Workshop (SAM), A Coruña, Spain, June, 2014.

2C. Weiss and A. M. Zoubir, “DOA Estimation in the Presence of Array Imperfections: A Sparse
Regularization Parameter Selection Problem,” in Proc. of the IEEE Workshop on Statistical Signal
Processing (SSP), Gold Coast, Australia, June/July, 2014.

3C. Weiss and A. M. Zoubir, “Robust High-Resolution DOA Estimation with Array Pre-
Calibration,” in Proc. of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon,
Portugal, September, 2014.
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A uniform linear array of L sensors with sensor spacing ∆d is considered to es-

timate the incident direction of monochromatic signals. In order to avoid spatial

aliasing and to meet the spacial sampling requirements, the sensor spacing is set to

half of the signal wavelength, i.e. ∆d = λ0/2, where f0 = cp/λ0 is the frequency of

the signal and cp is the speed of propagation. It is further assumed, that the array

is aligned with the x-axis of a Cartesian coordinate system, according to Figure 3.1.

The total signal is modeled as a superposition of plane waves with zero-mean,

circular-symmetric complex Gaussian distributed amplitudes of variance σ2
u, i.e.

uk ∼ CN (0, σ2
u), k = 1, . . . , K. At the l-th sensor, the signal arrives with a delay that

depends on the sensor position: τl = (l − 1)∆d cos(ϑ)/cp, l = 1, . . . , L. The variable

ϑ ∈ [0, π] denotes the incident angle of the signal measured in terms of the azimuth

angle of the array (c.f. Figure 3.1). The phase-shifts induced by the different delays at

the individual sensors are expressed relative to the phase measured at the first sensor

with index l = 1, i.e.

φl(ϑ) = ω0τl = 2πf0τl =
2π

λ0

(l − 1)∆d cos(ϑ), l = 1, . . . , L . (3.1)

For a monochromatic source with a certain bearing, the array response is described in

terms of the ‘array steering vectors’, a(ϑ) = [a1(ϑ), . . . , aL(ϑ)]>. They are also called

‘array manifold vector’ and depend on the incident direction of the signal, ϑ. Their

entries are given by

al(ϑ) = exp
(
−φl(ϑ)

)
= exp

(
−2π

λ0

(l − 1)∆d cos(ϑ)

)
, l = 1, . . . , L . (3.2)

A ‘snapshot’ of the measurements from all sensors can be written by

y =
K∑
k=1

uk a(ϑk) + n , (3.3)

where n is a zero-mean, circular-symmetric complex Gaussian distributed Gaussian

noise vector with i.i.d. entries nl ∼ CN (0, σ2
n), l = 1, . . . , L.

In order obtain a sparse representation of this signal, the model in [5] is adopted, where

the dictionary represents a collection of closely spaced steering vectors, i.e.

D = [a(ϑ̃1), . . . , a(ϑ̃N)] . (3.4)

Assuming that the true DOAs coincide exactly with the angular grid specified in D,

one may equivalently write (3.3) in terms of a sparse signal, x, i.e

y = Dx + n . (3.5)
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Herein, the non-zero elements, xik = uk, appear at the positions ik ∈ S = supp{x},
that correspond to the true DOAs, ϑk, k = 1, . . . , K, according to (3.2).

λ0

∆d

x
l = Ll = 1

ϑ

Figure 3.1. Direction finding for monochromatic plane-wave signals based on a uniform
linear array.

3.2 Fiber-Optic Sensing

Fiber-optic sensors are versatile devices that can be used in a wide range of applications

such as structural health monitoring [69,70], chemical sensing [71], tomography [72] or

medical applications [73]. As compared to electrical sensors, fiber-optic sensors ben-

efit from different features of optical fibers, including low weight, broad bandwidth,

low sensitivity to electro-magnetic interference and robustness to rough environmental

conditions [74]. While various sensing technologies exist [75–81], Fiber Bragg grat-

ing (FBG) sensors have been extensively studied for high-resolution quasi-distributed

temperature or strain monitoring [82–85]. They are particularly useful in ‘smart struc-

tures’ [75, 77–80] for an early detection of structural flaws, which can help to prevent

accidents and to avoid high maintenance costs. Subsequently, FBG-based fiber optic

sensing based on wavelength-division multiplexing (WDM) is considered. As compared

to broadband light sources, wavelength-tunable lasers feature high local signal-to-noise

ratios (SNRs) [70,86].
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The sensing principle and the signal model below are partly taken from [87]4, [88]5, [30]6.

3.2.1 Sensing Principle

An FBG describes a local variation of the refractive index [89]. FBGs are trans-

parent to wavelengths except for a narrow region around the ‘Bragg wavelength’,

λB = 2neffΛFBG [90], where neff is the effective refractive index of the propagating mode

and ΛFBG is the grating period. If an FBG experiences a perturbation, typically strain

or temperature variation [74], the grating period is either compressed or stretched. A

uniform perturbation along the spatial extent of an FBG causes a total shift, δλB, of

the Bragg wavelength [76, 91]. By measuring this shift, one is able to retrieve infor-

mation about the perturbation acting at the FBG. An FBG-based fiber-optic sensor

constitutes different FBGs that are imprinted along the fiber core to realize quasi-

distributed sensing. In WDM-systems, their Bragg wavelengths are detuned, which

enables an individual interrogation of the FBGs at different wavelengths, using either

a broadband light source or a wavelength-tunable laser [86]. For an applied strain, εs,

or temperature change, ∆T , the wavelength-shift can be quantified by [92–94]

δλB
λB

= Peεs + [Pe(αs − αf ) + ηt]∆T, (3.6)

where Pe is the strain-optic coefficient, αs, αf are the thermal expansion coefficients of

the fiber bonding material and the fiber itself, respectively. The variable ηt denotes the

thermo-optic coefficient. Moreover, the two types of perturbation can be unambigu-

ously distinguished in the case where the temperature and strain coupling coefficients

of two adjacent gratings are known [94].

3.2.2 Signal Model

In the scope of this thesis, a wavelength-tunable laser operating in pulsed mode is con-

sidered. Due to a limited bandwidth of the photo-detector and the receiver circuitry,

individual short pulses are not resolved and only the pulse-envelope signal is available

4C. Weiss and A. M. Zoubir, “Fiber Sensing Using UFWT-Lasers and Sparse Acquisition,” in Proc.
of the 21st European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, Sep, 2013.

5C. Weiss and A. M. Zoubir, “Fiber Sensing Using Wavelength-Swept Lasers: A Compressed
Sampling Approach,” in Proc. of the 3rd International Workshop on Compressed Sensing Theory and
its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Pisa, Italy, June, 2015.

6C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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Figure 3.2. Schematic of a fiber sensing system for a suspension bridge: detection of
strain and vibrations caused by crossing cars. Reference for the picture of the car:
Artist: spadassin (created: Nov. 15, 2014) title: ”Car DS4” [online image], retrieved:
Aug. 8, 2016 from https://openclipart.org/detail/202079/car-ds4.

at the receiver. The perturbation profile is assumed to be stationary during the acquisi-

tion process. When the lasing wavelength is swept through the entire wavelength region

of the gain medium, Rsw, the signal is reflected if its spectral support overlaps with

the narrow reflection region around the Bragg wavelength of FBGk, k = 1, . . . , K.

It is assumed that, ∀ k = 1, . . . , K, the reflections are temporally sufficiently sepa-

rated and can be unambiguously assigned to the individual FBGs. This assumption

must be ensured by a proper system design. Further, the laser sweep rate, Sr, is as-

sumed to be constant, such that the nominal reflections in the unperturbed case are

observed at the receiver at well-defined delays, τk, k = 1, . . . , K. One of the FBGs,

say FBGj, j ∈ {1, . . . , K}, may act as a static reference point, which is located in a

controlled environment. Then, the delays of the reflections from all other FBGs can

be determined relative to this reference point. The differential delays are defined by

∆τjk = |(τk ± δτk)− τj| , k = 1, . . . , K, k 6= j. (3.7)

where δτk denotes the absolute delay-shift due to impairments at FBGk. In this setting,

the wavelength-shift, δλB,k, can be inferred from the time-delays, δτk (or ∆τjk), by [70]

δλB,k = δτk Sr Rsw, k = 1, . . . , K. (3.8)

Finally, the amount and/or the nature of impairments can be inferred from (3.6).

The total received signal, r(t), is described by the superposition of the reflections from

all FBGs. Let rk(t), k = 1, . . . , K, denote the reflections centered around zero. Then,

the actual reflections can be modeled by vectors rk, that contain samples of the correctly

delayed reflections, rk(t− τk), k = 1, . . . , K. When i.i.d. Gaussian measurement noise

with variance σ2
n is assumed, the noisy observations become

y =
K∑
i

rk + n , (3.9)

where nl ∼ N (0, σ2
n), l = 1, . . . , L. In order to obtain a sparse model for estimating

the reflection delays, a dictionary can be assembled by concatenating different sub-

dictionaries. Each sub-dictionary is associated with one of the FBGs and represents a
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grid of possible delays for the reflection from that FBG. This yields an overall ‘com-

posite shift-invariant dictionary’, which is created as follows:

For an initial time instant, t0, the total observation time interval of one laser sweep,

Iob = [t0, t0 + Tsw], is subdivided into K non-overlapping segments. These segments

are described by sets of delays, Tk, k = 1, . . . , K, where the k-th set represents the

considered range of possible delays for the reflections from the k-th FBG. When the

complete set of all dictionary indices is denoted by Ω = {1, . . . , N}, a subset

Ωk = {n ∈ Ω |Nk−1 ≤ n ≤ Nk}, k = 1, . . . , K, (3.10)

can be associated with the reflections that fall inside the k-th segment of Iob, where

Nk+1 > Nk with N0 = 1, NK = N = |Ω|. Then, also the dictionary, D, can be split

into K sub-dictionaries, Dk, k = 1, . . . , K, where Dk corresponds to the respective

index subset, Ωk. It is assumed that all sub-dictionaries contain the same number of

atoms, i.e. |Ωk| = (N/K) ∈ N+ ∀ k = 1, . . . , K. The atoms of the k-th sub-dictionary

can be formed by sampled and delayed versions of rk(t), k = 1, . . . , K, i.e.

[dn]l = rk(lTd − nδt) , n ∈ Ωk, l = 1, . . . , L. (3.11)

Herein, Td is the design sampling period. The granularity of the grid, hence, the

dictionary coherence, is determined by the time increments, δt > 0, provided that

Nδt ≤ LTd ≤ Tsw. Thus, a dictionary atom, dn, n ∈ Ωk, describes a reflection from the

k-th FBG with a delay τ ∈ Tk, where

Tk = {τ ∈ R+ | τ = (n− 1)δt, n ∈ Ωk}. (3.12)

When the sub-dictionaries are created in this way, D has a composite shift-invariant

structure and is given by

D = [D1, . . . ,Dk, . . . ,DK ] . (3.13)

When x is a sparse (or compressible) representation of the total received signal, then

the significant components in x, i.e. S, indicate the time delays τk ± δτk of the FBG

reflections with respect to the dictionary in (3.13). Then, the sparse signal model can

be written by

y = Dx + n . (3.14)

A detailed model for the reflections, rk(t), k = 1, . . . , K, is provided in Chapter 5 for

a specific system architecture .
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3.3 Compressed Sampling

Compressed sensing (CS) is an emerging technology that can lower the sampling

rate below Nyquist, thereby reducing the number of samples and, in certain cases,

even the hardware costs [20, 22, 26]. These properties make CS a favorable tool

in various applications such as radar, tomography, remote sensing, imaging or cod-

ing [5, 16–18, 22, 25, 95–97]. The CS samples are acquired in a periodic non-uniform

fashion [98, 99]. There exist digital and analog CS acquisition techniques. Digital CS

is concerned with an efficient encoding of the original data samples [100], while analog

CS focuses on the acquisition technique itself and how compression can be achieved

in the analog domain before sampling [22, 101]. For analog CS, serial and parallel

architectures have been developed. The inherent convolution operation in serial im-

plementations produces some redundancy and yields correlated samples. In parallel

architectures, a number of low-rate analog-to-digital converters (ADCs) are employed

in parallel branches [22,101–104]. When the sampling grid is uniform with a sampling

period Ts and a sampling rate 1/Ts, then M parallel ADCs can work at a reduced

sampling rate 1/(MTs) [102].

The task of sparse signal processing in the context of CS is to extract the desired infor-

mation based on the compressed measurements in an automated and efficient manner,

thereby exploiting the sparsity of the signal when represented by an appropriate dictio-

nary. The goal is to find a sparse representation using the compressed measurements

and the methods from sparse estimation theory [22,25].

3.3.1 Signal Model

CS-based acquisition can be described by M � L subsequent projections of the signal

with sampling vectors {φ>m}Mm=1, that form the rows of a sampling matrix, Φ ∈ RM×L.

Then, the noisy compressed measurements (CS samples) are given by [20]

y =
M∑
m=1

φ>mr + n = ΦDx + n , (3.15)

where B = ΦD ∈ RM×N is referred to as the ‘combined sensing matrix’. It can be

regarded as a general redundant dictionary. The noise components, nm, m = 1, . . . ,M ,

are often assumed to be i.i.d. zero-mean Gaussian distributed with variance σ2
n. How-

ever, the assumptions on the noise statistics depend on the considered application.

Since M � L, CS-based acquisition notably reduces the number of samples to be

stored and processed. Besides using parallel ADCs, it is possible to reduce the average
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sampling rate if Φ is a sparse matrix, as it is done e.g. in [30]7.

For a successful sparse reconstruction of the signal, B is required to show low atom

coherence, especially when the reconstruction algorithm relies on local optimality

criteria [29,105]. Similarly, the performance depends on the sparsity level of x. An

explicit construction of a deterministic CS sampling matrix for which these criteria

hold is intractable, since verifying the RIP is NP-hard [25]. Due to the favorable RIP

conditions of sub-Gaussian random matrices (c.f. Chapter 2), they are frequently ap-

plied in CS [20, 25]. It is commonly assumed, that the rows of Φ cannot sparsely

represent the columns of D, according to the incoherence property in [20]. However,

this may no longer be true when the dictionary is redundant, due to the correlation

between the columns of the resulting sensing matrix, B [27]. Successful reconstruction

can only be guaranteed when B fulfills the RIP conditions in Chapter 2.

In the ensuing chapters, three different CS sampling matrices are considered. Their

entries, φij, i, j = 1, . . . , N , are i.i.d. random variables, drawn from one of the distri-

butions below:

1. Gaussian distribution:

The entries are standard normally distributed random variables, i.e. φij ∼ N (0, 1).

2. Rademacher distribution:

The entries are binary random variables, i.e. φij ∈ {1,−1} with equal probabilities.

3. Database-friendly (DF) distribution [106]:

The entries take values φij ∈ {1, 0,−1} with probabilities {1/6, 2/3, 1/6}, respectively.

7C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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Chapter 4

Regularization and Dictionary Calibration
for Sparse Estimation

In this chapter, the problem of sparse regularization for `1-mnimization in the presence

of model errors is considered. Different techniques for sparse regularization as well as

a dictionary calibration method are presented. High-resolution sparse estimation is

performed using a redundant parametric dictionary with uncertainty. While different

techniques can be used to take uncertainty in the dictionary into account, the model

in this chapter considers an error term, ∆D, which is added to the ideal dictionary, D,

such that the true dictionary is given by D + ∆D. Regarding the aspect of sparse

estimation, it is assumed that the necessary RIP conditions for basic `1-minimization

are fulfilled. The general sparse estimation framework is specified for the application

of direction finding in Section 3.1.

The material presented in this chapter is partly taken from [67]1, [66]2, [68]3.

Chapter Outline

Section 4.1 gives an introduction and motivation to the considered problem, while

Section 4.2 provides an overview of state-of-the-art techniques and related work. In

Section 4.3, the problem statement and the considered probabilistic models for certain

model errors are introduced. In Section 4.4 and 4.5, regularization techniques for sensor

position errors and general phase/gain mismatches are presented. Next, in Section 4.6,

a dictionary calibration method is shown. Some statements about the computational

complexity are made in Section 4.7. Section 4.8 provides a discussion about the results

and findings and Section 4.9 concludes gives a conclusion for this chapter.

1C. Weiss and A. M. Zoubir, “DOA Estimation in the Presence of Array Imperfections: A Sparse
Regularization Parameter Selection Problem,” in Proc. of the IEEE Workshop on Statistical Signal
Processing (SSP), Gold Coast, Australia, June/July, 2014.

2C. Weiss A. M. Zoubir, “A Sparse Regularization Technique for Source Localization with Non-
uniform Sensor Gain,” in Proc. of the IEEE 8th Sensor Array and Multichannel Signal Processing
Workshop (SAM), A Coruña, Spain, June, 2014.

3C. Weiss and A. M. Zoubir, “Robust High-Resolution DOA Estimation with Array Pre-
Calibration,” in Proc. of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon,
Portugal, September, 2014.
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4.1 Introduction and Motivation

The performance of practical systems is often limited by different factors. Besides mea-

surement noise, also model errors or uncertainty in the underlying signal model play

an important role. Model errors and uncertainty may arise from a limited fabrication

accuracy in the manufacturing process and are also affected by external factors such

as temperature fluctuations or erosion. This leads to imperfect knowledge of particu-

lar system features such as the system geometry or the sensor characteristics. When

the sparsity-promoting dictionary is created from a physical model with uncertainty,

the achievable estimation performance is limited by the quality and correctness of the

model. For sparse estimation based on `1-minimization, the regularization parameter

of the optimization problem is an essential component. It adjusts the tolerance level

in order to achieve robustness and algorithmic stability. Therefore, a systematic strat-

egy to automatically determine a suitable regularization parameter is desirable, that

accounts for the joint effects of both model errors and noise. A statistical framework is

adopted to obtain an upper bound of the mean-squared error (MSE), that is used for

regularization. Herein, a direct relation between the physical system parameters and

the regularization parameter is established. This method achieves robustness to model

errors and a stable behavior of the sparse estimation algorithm. However, model errors

lower the quality of the dictionary and, hence, the estimation accuracy.

Improved accuracy and robustness against model uncertainties can be achieved using

dictionary calibration. While regularization techniques alone can only adjust the tol-

erance level to deal with certain types of model errors, dictionary calibration achieves

robustness by jointly taking different types of model errors and noise into account,

prior to sparse estimation. In contrast to creating the dictionary from an ideal model,

a properly calibrated dictionary significantly alleviates the problem of choosing the

regularization parameter. That is, the sensitivity of the sparse estimation algorithm

to the regularization parameter is strongly reduced. In turn, when the regularization

parameter is fixed, a calibrated dictionary yields robust sparse estimation performance

for a wide range of SNRs.

The presented techniques require a parametric signal model in order to create a

sparsity-promoting redundant dictionary and to incorporate application-specific model

errors in terms of uncertain dictionary parameters. In this chapter, the general and

abstract signal model for sparse estimation is specified for the application of direc-

tion finding, using the basic model in Chapter 3.1. Uncertainty is considered in the

individual sensor gains and in the sensor positions. Dictionary calibration is per-

formed by robust steering vector estimation, which yields a modified and calibrated

dictionary. The performance of the presented techniques is shown for various sce-

narios of different SNRs and model errors in comparison to existing robust methods,
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namely Robust Capon Beamforming (R-Capon) [107,108] and Weighted Multiple Signal

Classification (W-MUSIC) [109]. The results obtained by a standard delay-and-sum

beamformer (DSB) [64] serve as a non-robust reference.

4.2 State of the Art and Related Work

The problem of choosing the regularization parameter for sparse estimation is fre-

quently addressed in the literature [5, 110–113]. In the development of an automated

selection procedure, some authors exploit available knowledge of the noise statistics to

determine a suitable regularization parameter. For the case of additive white Gaussian

noise, a range of different regularization methods exists [5, 114,115]. In [5], the discrep-

ancy principle [116] is used to find a regularization parameter, such that the statistics

of the residual error between the data and the signal model match the assumed noise

statistics. In [114], a regularization parameter is obtained based on the square of the

Frobenius norm of the noise component. A transformation of the noise components

is performed in [115] to obtain an upper bound, that is used for regularization. In

an alternative approach, Liu and Zhou [117] present a unified Bayesian framework for

DOA estimation in the presence of array imperfections. When the noise statistics are

unknown, the regularization parameter can be chosen based on the ’L-curve’, which

trades off the size of the regularized solution with the size of the corresponding resid-

ual [118,119]. In contrast to that, the presented regularization methods in this chapter

assume knowledge of the noise statistics and represent an extension of the ideas in [5]

by incorporating different model errors in addition to the measurement noise.

Some related techniques, that take uncertainty in the dictionary into account, have

been reported: Chu et al. [120] address the problem of regularization under model

uncertainties for acoustic imaging. The authors in [121] consider diagonal loading to

reduce the sensitivity of the sparse solution to the regularization parameter. Addi-

tional constraints in the optimization problem are introduced by Shi et al. [122] in

order to handle model uncertainties. The above methods, however, consider a general

error term, that combines the contributions of several sources of uncertainty. Hence,

they are not able to react to particular sources of uncertainty or model errors in a

controlled way. The regularization methods presented in this chapter adopt a statis-

tical framework to estimate the regularization parameter of the resulting optimization

problem and establish a relationship to the physical parameters of interest, namely

sensor position errors and general gain and phase mismatches. When a priori infor-

mation is available, it can be effectively used to estimate a regularization parameter

that compensates for specific impairments.
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Rather than adjusting the tolerance level by choosing an appropriate regularization

parameter, calibration techniques have been proposed to handle model errors and to

determine the actual system parameters. For direction finding, a projection approach

for array calibration is presented in [123]. Moreover, the work in [124] considers a re-

cursive method to handle uncertainties in the array steering vectors for robust adaptive

beamforming. The dictionary calibration technique presented in this chapter relies on

these ideas to yield a modified and calibrated dictionary that incorporates model er-

rors and reduces the sensitivity of the sparse estimation algorithm to the regularization

parameter.

4.3 Problem Statement

In this chapter, the basic model for direction finding in Chapter 3.1 and in [5] is adopted

to describe the incoming signals, the array geometry and the redundant dictionary,

D ∈ CL×N , containing the L-dimensional (complex-valued) array steering vectors for

N specific angles. It is assumed that there exist K point-like sources in the farfield,

that emit monochromatic signals of wavelength λ0 and circular-symmetric complex

Gaussian distributed amplitudes with variance σ2
k, uk(t) ∼ CN (0, σ2

k), k = 1, . . . , K,

where t is the time index. A number of T snapshots are observed at time instances

tν , ν = 1, . . . , T , and collected in a matrix Y = [y(t1), . . . ,y(tT )]. For each snapshot, a

sparse vector, x(tν), and a noise vector, n(tν), are defined and collected in the matrices

X = [x(t1), . . . ,x(tT )] ∈ CN×T and N = [n(t1), . . . ,n(tT )] ∈ CL×T , respectively. The

noise components are assumed to be zero-mean, circular-symmetric complex Gaussian

distributed with variance σ2
n, i.e. nl(tν) ∼ CN (0, σ2

n), l = 1, ..., L, ν = 1, ..., T . Given

the dictionary, D, the true DOAs of the signals are assumed to appear at the same

dictionary indices for all snapshots. These indices are collected in the set of significant

sparse coefficients, S = {s1, . . . , sK}, with cardinality |S| = K. Ideally, the non-zero

components in x(tν) are equal to the signal amplitudes, i.e. xsk(tν) = uk ∀ ν = 1, . . . , T ,

k = 1, . . . , K. Model errors due to gain and phase mismatches are considered in terms

of uncertainty in the dictionary. The true (but unknown) dictionary is denoted by

D̃ = D + ∆D , (4.1)

where D is the dictionary derived under ideal conditions and ∆D is a correction term

due to model errors. The extended signal model for T snapshots, including uncertainty,

is given by

Y = D̃X + N = (D + ∆D)X + N . (4.2)
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It is assumed that the measurement noise, N, the source signals in X, and the model

errors, ∆D, are mutually independent. The goal is to estimate the DOAs of the incom-

ing signals at high resolution by solving a particular instance of the `1- minimization

problem [5], i.e.

x̂ = arg min
x∈CN

‖x(`2)‖1 s.t. ‖Y −DX‖2
2 ≤ βreg , (4.3)

where ∀ n = 1, . . . , N and ∀ ν = 1, . . . , T :

x(`2)
n = ‖ [xn(t1), . . . , xn(tT )]> ‖2 , (4.4)

|xn(tν)| =
√

Re{xn(tν)}2 + Im{xn(tν)}2 . (4.5)

Taking into account that the data is complex-valued, Equation (4.3) can be be re-

written as a second-order cone program [5]:

min qaux

s.t. 1>raux ≤ qaux ,∥∥∥∥ Y −DX

(βreg − 1)/2

∥∥∥∥
2

≤ (βreg − 1)/2 ,

x
(`2)
n ≤ rn,aux , n = 1, . . . , N, (4.6)

where qaux and raux are auxiliary parameters. Efficient solvers such as SeDuMi [125] can

be used to solve Problem (4.6). However, this solution is sensitive to the regularization

parameter, βreg, especially if the observed data cannot be exactly described by the

model due to model errors and uncertainty in the dictionary. Therefore, an appropriate

sparse regularization method has to account for these effects. Later on, dictionary

calibration is used to obtain a modified and calibrated dictionary, that better mimics

the observed data in order to alleviate the regularization problem.

4.3.1 Probabilistic Models for Array Imperfections

Typical problems in practical systems are errors in the sensor gains and in the phase

of the sensor signals. They may arise, for example, from inaccuracies in the fabrication

process or external effects such as temperature fluctuations or erosion. Figure 4.1 shows

a typical antenna pattern of an ideal and an impaired uniform linear array. It depicts

the sensitivity of the array in dependence of the azimuth angle, ϑ. Two particular

types of model errors are considered: sensor position errors and general gain and phase

errors. For each type, a probabilistic model is developed.
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The presented models have been previously published in [67]4, [66]5, [68]6.

4.3.1.1 Sensor Position Errors

Sensor position errors cause inaccuracies in the expected time delays, which leads to

mismatches in the signal phase. The uniform linear array is assumed to be aligned

with the x-axis and only errors in x-direction are considered. According to the model

in Chapter 3.1, the ideal sensor spacing is given by ∆d = λ0/2. The position error,

δd, should be smaller than half of the sensor spacing, i.e. δd ≤ ∆d/2. Using (3.2), the

corresponding absolute phase error at the l-th sensor, l = 1, . . . , L, for a signal with

DOA ϑ is given by

|∆φl(ϑ)| =

∣∣∣∣ ω0

cp
[ (l − 1)∆d+ δd ]cos(ϑ) − ω0

cp
[ (l − 1)∆d ]cos(ϑ)

∣∣∣∣
=

∣∣∣∣ ω0

cp
δd cos(ϑ)

∣∣∣∣ ≤ ω0

cp

∆d

2
=

ω0

cp

λ0

4
=

π

2
. (4.7)

For simplicity, it is assumed that all phase errors, ∆φl(ϑ), can be described by general

i.i.d. zero-mean, Gaussian distributed variables with variance σ2
φ, i.e. ∆φ ∼ N (0, σ2

φ)

for any DOA ϑ ∈ [0◦, 180◦] and any index l = 1, . . . , L. Given the relation in (4.7),

the standard deviation of the phase error can be defined by σφ = pφ
π
2
, where pφ is a

parameter that controls the error.

4.3.1.2 General Gain and Phase Errors

In order to model general gain and phase errors, a complex-valued gain variable can be

introduced for each sensor. It is assumed that mutual coupling between the sensors can

be neglected, and that the complex-valued gain errors can be modeled as i.i.d. zero-

mean, circular symmetric complex Gaussian random variables with variance σ2
g , i.e.

g̃l ∼ CN (0, σ2
g), l = 1, ..., L. For each sensor, the ideal gain value in absence of phase

errors is denoted by g0 ∈ R+. Similar to the case of sensor position errors, the standard

deviation can be defined by σg = pg σg,max, where it is assumed that 0 ≤ pg ≤ 1 and

σg,max = g0/2.

4C. Weiss and A. M. Zoubir, “DOA Estimation in the Presence of Array Imperfections: A Sparse
Regularization Parameter Selection Problem,” in Proc. of the IEEE Workshop on Statistical Signal
Processing (SSP), Gold Coast, Australia, June/July, 2014.

5C. Weiss A. M. Zoubir, “A Sparse Regularization Technique for Source Localization with Non-
uniform Sensor Gain,” in Proc. of the IEEE 8th Sensor Array and Multichannel Signal Processing
Workshop (SAM), A Coruña, Spain, June, 2014.

6C. Weiss and A. M. Zoubir, “Robust High-Resolution DOA Estimation with Array Pre-
Calibration,” in Proc. of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon,
Portugal, September, 2014.
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Ideal array

Array with
imperfections

90◦ DEG

180◦ DEG 0◦ DEG

Figure 4.1. Antenna pattern of an ideal and impaired uniform linear array in de-
pendence of the azimuth angle of the array, ϑ. The range of interest lies within
[0, 180]◦ DEG.

4.4 Sparse Regularization for Direction Finding

With Sensor Position Errors

The material presented in this section is partly taken from [67]7.

Sensor position errors can be included in the general model in (4.2), where ∆D contains

the model errors (delay/phase errors) induced by imperfectly known sensor positions.

The snapshots of the array become Y = (D̃X − DX) + DX + N. Following the

ideas in [5], the regularization parameter, βreg in (4.3), can be derived from an upper

bound for the mean-squared error (MSE) between the measured snapshots and those

theoretically obtained under ideal model assumptions, i.e.

EY ‖Y −DX‖2
f = EQ,N ‖Q + N‖2

f . (4.8)

7C. Weiss and A. M. Zoubir, “DOA Estimation in the Presence of Array Imperfections: A Sparse
Regularization Parameter Selection Problem,” in Proc. of the IEEE Workshop on Statistical Signal
Processing (SSP), Gold Coast, Australia, June/July, 2014.
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Herein, ‖ · ‖f signifies the Frobenius norm and Q = ∆D X = [q1, . . . ,qT ]> denotes

the error term due to imperfectly known sensor positions, where qν = (D̃ −D)x(tν),

ν = 1 . . . , T . When the measurement noise is assumed to be independent of the model

errors, ‘Minkowski’s inequality’ [126] can be applied to obtain

EY ‖Y −DX‖2
f ≤ (EQ ‖Q‖2

f ) + (EN ‖N‖2
f ) + 2 (EN ‖N‖f ) (EQ ‖Q‖f ). (4.9)

In order to find an expression for this upper bound, the single terms on the right-hand

side in (4.9) have to be evaluated.

For EN ‖N‖2
f , the authors in [5] obtain an upper limit by taking into account that

every entry in N is zero-mean, circular symmetric complex Gaussian distributed. In

particular [5],

[nν ]l
σn

∼ CN (0, 1), l = 1, . . . , L, ν = 1, . . . , T, (4.10)

with Re{[nν ]l} ∼ N (0, σ2
n/2) and Im{[nν ]l} ∼ N (0, σ2

n/2). Then, the total noise power

over all snapshots is Chi-square distributed with 2TL degrees of freedom [5], i.e.

2

σ2
n

‖N‖2
f ∼ X 2

2TL. (4.11)

The noise term can be confined within a confidence interval for the X 2
2TL-distribution

with confidence level αχ [5],

X 2
l,αχ ≤

2

σ2
n

‖N‖2
f ≤ X 2

u,αχ, (4.12)

where X 2
u,αχ and X 2

l,αχ are the upper and lower bounds, respectively. An upper bound

for the noise variance can be found by using (4.12) [5], i.e.

σ2
n ≤ 2

‖N‖2
f

X 2
l,αχ

. (4.13)

Ultimately, an upper bound for the noise term is found by using (4.12) [5], i.e.

EN ‖N‖2
f ≤ X 2

u,αχ

‖N‖2
f

X 2
l,αχ

≈ TLX 2
u,αχ

σ̂2
n

X 2
l,αχ

, n̂MSE , (4.14)

where σ̂2
n is the estimated noise power. The confidence level, αχ, controls the tightness

of this upper bound. For a given level, αχ ·100% of all noise realizations have a smaller

power than the upper bound in (4.14).
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For the term EN ‖N‖f in (4.9), a similar strategy is pursued. Since the square root of

the total noise power is Chi-distributed with 2TL degrees of freedom, i.e.

√
2
‖N‖f
σn

=

√√√√ L∑
l=1

T∑
ν=1

2

(
[nν ]l
σn

)2

∼ X2TL . (4.15)

Given a confidence level, α̃χ, the corresponding lower and upper confidence bounds,

Xl,α̃χ and Xu,α̃χ, respectively, can be obtained in the same way as above, by

EN ‖N‖f ≤ Xu,α̃χ
‖N‖2

f

X 2
l,α̃χ

≈ TLXu,α̃χ
σ̂2
n

X 2
l,α̃χ

, n̂RMSE . (4.16)

Next, an upper bound for EQ ‖Q‖2
f is derived. For all snapshots, ν = 1, ..., T , the

elements qν are functions of the columns of (D̃ − D), corresponding to the K non-

zero entries in x(tν). Let τl(ϑk) denote the ideal signal delays at all sensors and for

all sources, and let φl(ϑk) = ω0τl(ϑk) be the corresponding phase terms ∀ k ∈ S,

l = 1, . . . , L. Then, the l-th entry in qν , ν = 1, . . . , T , can be written by

[qν ]l =
∑
k∈S

xk(tν)
(

exp
(
−j[φl(ϑk) + ∆φl,k ]

)
− exp

(
−jφl(ϑk)

) )

=
∑
k∈S

xk(tν) exp

(
−j

[
φl(ϑk) +

∆φl,k
2

+
π

2

])
2 sin

(
∆φl,k

2

)
. (4.17)

The error model in Section 4.3 assumes that ∆φl,k, l = 1, . . . , L, k ∈ S are i.i.d. random

variables and that x(tν) and ∆φl,k are mutually independent ∀ l, k, and ∀ ν = 1, . . . , T .

Hence, using the abbreviation ψl,k = φl(ϑk) +
∆φl,k

2
, l = 1, . . . , L, k ∈ S, the (ν, r)-th

entry of EQ QHQ becomes

EQ qH
v qr =

L∑
l=1

∑
k∈S

∑
m∈S

( Ex x
∗
k(tv)xm(tr) )

× E∆φe
exp(−j[ψl,k − ψl,m]) 4 sin

(
∆φl,k

2

)
sin

(
∆φl,m

2

)
. (4.18)

Since the source signals are assumed to be zero-mean Gaussian variables with

variance σ2
u, one obtains Ex x

∗
k(tν)xm(tr) = σ2

uδkmδνr, where δa,b, a, b ∈ N, denotes

Kronecker’s delta function.
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Therefore, all elements with k 6= m and ν 6= r can be omitted and (4.18) can be

simplified as

EQ ‖Q‖2
f = σ2

u E∆φ

T∑
ν=1

L∑
l=1

∑
k∈S

4 sin2(∆φl,k)

= σ2
u E∆φ

T∑
ν=1

L∑
l=1

∑
k∈S

2(1− cos(∆φl,k )). (4.19)

Subsequently, the variables ∆φl,k, l = 1, . . . , L, k ∈ S, are addressed using a canonical

index z, i.e. ∆φz, z = 1, . . . , LK. Further, a variable transformation, gtr(·), yields

qφ = gtr(∆φ) = 2(1− cos(∆φ)). The probability density pqφ can be obtained from the

density p∆φ by [127]

pqφ(qφ) = p∆φ ( g−1
tr (qφ) )

∣∣g−1
tr (qφ)

∣∣
=

C−1
qφ√

8πσφ
exp

(
−[cos−1

(
1− qφ

2

)
]2

2σ2
φ

)(
1−

(
1− qφ

2

)2
)− 1

2

, (4.20)

where Cqφ is a normalization constant. The mean and the variance of qφ are denoted

by µqφ and σ2
qφ

, respectively. Using (4.19), one finds

EQ ‖Q‖2
f = σ2

u Eqφ

T∑
ν=1

LK∑
z=1

qφ,z = Tσ2
u (Eq̃φ q̃φ) , (4.21)

where q̃φ =
∑LK

z=1 qφ,z. By taking the limit LK → ∞, the ‘central-limit theorem’ can

be applied. Hence, q̃φ ∼ N (LKµqφ , LKσ
2
qφ

). An upper bound for EQ ‖Q‖2
f can be

obtained in a similar fashion as above in (4.14) and (4.16), using a confidence interval

for q̃φ with confidence level αφ and corresponding upper bound Nu,αφ :

EQ ‖Q‖2
f ≤ T σ̂2

uNu,αφ , q̂MSE , (4.22)

where σ̂2
u is an estimate of σ2

u.

Next, an upper bound for EQ ‖Q‖f = EQ

√
‖Q‖2

f is sought for. Keeping in mind

that the square-root is a concave function, ‘Jensen’s inequality’ [126] can be applied:

EQ

√
‖Q‖2

f ≤
√
EQ ‖Q‖2

f ≤
√
q̂MSE . (4.23)

Ultimately, using (4.14), (4.16), (4.22) and (4.23), an estimate for the regularization

parameter in (4.9) is obtained by

β̂reg = q̂MSE + n̂MSE + 2 n̂RMSE

√
q̂MSE . (4.24)
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4.4.1 Simulations

In subsequent simulations, the sparse estimation technique is referred to as ’SPARSE’

and the regularization parameter, βreg, is estimated according to Section 4.4. SPARSE

is compared to existing robust DOA estimation techniques, namely Robust Capon

Beamforming (R-Capon) [107, 108] and Weighted MUSIC (W-MUSIC) [109]. Also

the results of a standard delay-and-sum beamformer (DSB) [64] are shown and serve

as a non-robust reference method. In all simulations, the considered angular range is

rotated by −90◦, such that ϑ ∈ [−90◦, 90◦].

4.4.1.1 Setup

The simulations are conducted using a uniform linear array with L = 9 sensors and K =

2 sources with equal power. The dictionary contains N = 181 atoms corresponding

to 181 equidistant angles in the range [−90◦, 90◦] with an accuracy of δϑ = 1◦. The

sources are located at angles ϑ1 = −45◦ and ϑ2 = −35◦. This corresponds to a spacing

of 10◦ and falls inside the Rayleigh resolution limit, which defines a minimally resolvable

source separation [64] of

∆ϑRayl =
λ0

L∆d
. (4.25)

The correlation between the complex amplitudes of the source signals, uk, with powers

σk, k = 1, 2, is indicated by a correlation coefficient, ζc, 0 ≤ ζc ≤ 1. For zero-mean

amplitudes, it is defined by

ζc =
E (u1 u2)

σ1 σ2

. (4.26)

R-Capon and W-MUSIC require an estimate of the covariance matrix of the sensor

measurements. Therefore, T = 30 snapshots are used for all methods. It is assumed

that the number of sources, K, and the source power, σ2
u, are known. In order to

determine the regularization parameter, β̂reg, it is required to estimate the noise power,

σ2
n. In the presented simulations, it is assumed that pure noise samples are available

for this purpose. The confidence levels are equally chosen as αχ = α̃χ = αφ = 0.9. The

results are shown for different SNRs and different values of pφ and ζc. The mean and the

variance of qφ, i.e. µqφ and σ2
qφ

, are calculated numerically from (4.20). Empirically, it

can be observed that the probability density of q̃φ has an almost-Gaussian shape when

LK > 10, which shows that the central limit theorem applied in (4.21) is reasonable

for the considered scenarios.

4.4.1.2 DOA Spectra

Figure 4.2 shows some typical realizations of the DOA spectra for each method. Fig-

ures 4.2(a)-4.2(f) show the results for SNR= 15 dB. Without correlation (ζc = 0),
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W-MUSIC, R-Capon and SPARSE are able to resolve both sources in the presence

of sensor position errors up to pφ = 0.65. The best performance is achieved by

SPARSE. Using the presented regularization technique, it can even handle stronger

errors up to pφ = 0.85. However, without proper regularization, spurious peaks appear

in the spectrum, which falsely indicate additional sources as shown in Figure 4.2(c).

Figures 4.2(e)-4.2(f) show the impact of correlation on W-MUSIC and R-Capon. Since

SPARSE does not make any assumptions on correlation, it is still able to resolve both

sources even for ζc = 0.9, which is depicted in Figure 4.2(e). Nevertheless, source

correlation degrades the robustness of SPARSE to sensor position errors. In Figure

4.2(f) it is shown that, for ζc = 0.9, SPARSE can no longer resolve the sources in the

presence of smaller position errors with pφ = 0.3. Finally, Figures 4.2(g)-4.2(i) show

the results for SNR= 0 dB. Although both sources can be resolved by W-MUSIC, R-

Capon and SPARSE for pφ = 0.3, the accuracy of W-MUSIC and R-Capon is reduced,

while SPARSE is only slightly affected. However, for pφ = 0.65 in Figure 4.2(i), none

of the methods is able to resolve the two sources.

4.4.1.3 Performance Evaluation

The performance is evaluated using 500 Monte Carlo trials in Figure 4.3. The upper

parts of each figure show the angular error (in degrees) with respect to the grid accuracy,

δϑ = 1◦. The error is calculated based on the positions (indices) of the significant

elements in x, i.e the elements with the largest modulus contained in Ŝ. In particular,

the estimates in Ŝ with the smallest distance to the true source locations in S are used to

calculate the error. The lower parts of each figure show the success rates. In a successful

trial, the regularization is appropriately chosen. That is, the spectrum exhibits exactly

two peaks, corresponding to the two simulated sources (note that the number of sources

is assumed to be knwon for this evaluation). Figures 4.3(a)-4.3(c) show different results

for uncorrelated signals, i.e. ζc = 0. The success rate for SPARSE is always superior

to that of W-MUSIC and R-Capon. When the success rate is high, the angular error is

close to the grid accuracy for all methods. At high SNRs, SPARSE achieves high success

rates for sensor position errors up to pφ = 0.65 (Figures 4.3(a)-4.3(c)). At low SNRs and

pφ = 0.65 (Figure 4.3(c)), W-MUSIC and R-Capon yield higher success rates. Figures

4.3(d)-4.3(f) show the impact of correlation. W-MUSIC and R-Capon, are no longer

able to achieve good success rates even for low values of pφ. Also SPARSE is affected

by the joint impacts of noise, correlation, and sensor position errors. In Figure 4.3(e),

W-MUSIC achieves slightly better success rates and lower errors than SPARSE for

ζc = 0.5 and pφ = 0.3. In the absence of model errors, SPARSE can handle moderate

correlation levels up to ζc = 0.5 (Figure 4.3(d)), but strong correlation levels reduce the

success rate especially at low SNRs (Figure 4.3(f)). At low success rates, less Monte
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Carlo trials are available, since the error is only calculated in case of a successfull trial.

Therefore stronger fluctuations in the RMSE can be observed.

SNR= 15 dB

(a) (b) (c)

(d) (e) (f)

SNR= 0 dB

(g) (h) (i)

Figure 4.2. Comparison of the DOA spectra obtained by SPARSE, W-MUSIC and R-
Capon. The results of a DSB are shown as a reference. For SPARSE, β̂ was estimated
according to Section 4.4.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3. Performance of SPARSE, W-MUSIC and R-Capon: success rates (lower
subfigures) and angular errors relative to the grid accuracy, δϑ, (upper subfigures) vs.
different SNRs. For SPARSE, β̂ was estimated according to Section 4.4.
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4.5 Sparse Regularization for Direction Finding

With Gain/Phase Errors

The material presented in this section is partly taken from [66]8.

When gain and phase errors are considered, the general model in (4.2) can be written

by

Y = (G0 + G̃)AX + N , (4.27)

where D̃ = (G0 + G̃)A, D = G0A and ∆D = G̃A. The matrix A contains the

ideal steering vectors, G0 is the ideal sensor gain matrix and G̃ models gain and

phase errors. It is assumed that the sensors are not coupled, such that G0 = g0I and

G̃ = diag(g̃1, . . . , g̃L), where g0 ∈ R+ and g̃l ∼ CN (0, σ2
g), l = 1, . . . , L, according to

Section 4.3.1.2. When G̃ = 0, the general `1-minimization problem in (4.3) becomes

min ‖x(`2)‖1 s.t. ‖Y − g0AX‖2
f ≤ βreg . (4.28)

Herein, the hyperparameter βreg has to account for the joint effects of gain/phase errors

and noise. Similar to the case of non-ideal sensor positions, βreg is estimated as an

upper bound of the MSE between the true sensor measurements and those theoretically

obtained under ideal model assumptions, i.e.

EY ‖Y − g0AX‖2
f = EQ,N ‖Q + N‖2

f (4.29)

where Q = [q1, ..,qT ] = G̃AX. The error model in Section 4.3 assumes that the

measurement noise and the model errors are mutually independent. Then, using

‘Minkowski’s inequality’ [126], an upper bound for the MSE can be obtained by

EQ,N ‖Q + N‖2
f ≤

(
EQ ‖Q‖2

f

)
+
(
EN ‖N‖2

f

)
+ 2 (EQ ‖Q‖f ) (EN ‖N‖f ) . (4.30)

In order to obtain a useful expression for the right-hand side in (4.30), upper bounds

for the individual expected values are subsequently derived.

Following the ideas in [5], the terms EN ‖N‖2
f and EN ‖N‖f are evaluated as in

Section 4.4, using Equations (4.16) and (4.14). As in Section 4.4, the confidence levels

of the X 2
2TL and the X2TL distributions are denoted by αχ and α̃χ, respectively. Also,

the corresponding upper and lower bounds are equivalently defined by X 2

u,αχ,X
2

l,αχ and

Xu,α̃χ,Xl,α̃χ, respectively. Further, σ̂2
n represents an estimate for σ2

n.

8C. Weiss A. M. Zoubir, “A Sparse Regularization Technique for Source Localization with Non-
uniform Sensor Gain,” in Proc. of the IEEE 8th Sensor Array and Multichannel Signal Processing
Workshop (SAM), A Coruña, Spain, June, 2014.
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Regarding the term EQ ‖Q‖2
f in (4.30), the individual entries in Q can be written by

[qν ]l =
∑
k∈S

xk(tν) g̃l exp
(
−jφl(ϑk)

)
, ν = 1, ..., T, l = 1, . . . , L. (4.31)

It is assumed that the entries in X and G̃ are independent. Then, ∀ ν, r = 1, .., T , the

(ν, r)-th entry of EQ QHQ becomes

EQ qH
ν qr =

(
EG̃

L∑
l=1

g̃∗l g̃l

)∑
k∈S

∑
m∈S

exp
(
j[φl(ϑm)− φl(ϑk) ]

)
(Ex x

∗
k(tν)xm(tr)). (4.32)

Since the amplitudes of the source signals are assumed to be zero-mean Gaussian

variables with variance σ2
u, one obtains Ex x

∗
k(tν)xm(tr) = σ2

u δkm δνr, where σ2
u can

be replaced by an estimate of the source power, σ̂2
u. Herein, δab, a, b ∈ N, denotes

‘Kronecker’s delta function’. Thus, all terms with k 6= m or ν 6= r vanish, which yields

EQ ‖Q‖2
f =

T∑
ν=1

(EQ qH
ν qν) ≈ TKσ̂2

u

(
EG̃

L∑
l=1

g̃∗l g̃l

)
. (4.33)

According to the error model in Section 4.3.1.2, the complex gain errors are circular

symmetric complex Gaussian distributed with variance σ2
g . Hence,

g̃l
σg
∼ CN (0, 1), l = 1, . . . , L, (4.34)

and
2

σ2
g

L∑
l=1

g̃∗l g̃l ∼ X 2
2L. (4.35)

In analogy to the method in [5], a confidence level, αg, and a corresponding upper

confidence bound X̃ 2
u,αg , can be defined. Then, an upper bound can be obtained by

X̃ 2
u,αg σ̂

2
g , where σg = pg g0/2 is chosen according to Section 4.3.1.2. Hence,

EQ ‖Q‖2
f ≤ TK σ̂2

u X̃ 2
u,αg

σ2
g

2
, q̂MSE . (4.36)

For the remaining term, EQ ‖Q‖f in (4.30), an upper bound can be obtained by ap-

plying ‘Jensen’s inequality’ [126], i.e.

EQ

√
‖Q‖2

f ≤
√
EQ ‖Q‖2

f ≤
√
q̂MSE , q̂RMSE , (4.37)

since the square root is a concave function.



4.5 Sparse Regularization for Direction Finding With Gain/Phase Errors 45

Finally, using (4.14),(4.16) and (4.36)-(4.37), an expression for the right hand side in

(4.30) is obtained, yielding

β̂reg = q̂MSE + n̂MSE + 2 n̂RMSE q̂RMSE . (4.38)

This result is used for regularization.

4.5.1 Simulations

In subsequent simulations, ’SPARSE’ is compared to Robust Capon Beamforming

(R-Capon) [107,108] and Weighted MUSIC (W-MUSIC) [109]. The results of a stan-

dard delay-and-sum beamformer (DSB) [64] are shown as a reference for a non-robust

method. The regularization parameter, βreg, is estimated according to Section 4.5.

4.5.1.1 Setup

The simulation setup is almost the same as in Section 4.4.1.1.

However, a uniform linear array with L = 30 sensors is considered and the sources are

located at angles ϑ1 = −45◦ and ϑ2 = −42◦, which corresponds to a spacing of 3◦ and

falls inside the Rayleigh resolution limit in (4.25). The number of sources, K, and the

source power, σ2
u, are assumed to be known. Source correlation is indicated in terms

of the correlation coefficient, ζc, with 0 ≤ ζc ≤ 1 being defined as in (4.26). The noise

power, σ2
n, is estimated while no source is present. The nominal sensor gain is set to

g0 = 1 and the standard deviation of the gain errors is given by σg = pe
g0

2
, where

different values of pe, 0 ≤ pe ≤ 1, are considered. Using typical values in [128, 129],

the relative gain variance, σ2
g/g

2
0, is in the range [−42,−11] dB, which corresponds to

pe ∈ [0.02, 0.56]. The confidence levels are equally chosen to αχ = α̃χ = αg = 0.9.

4.5.1.2 DOA Spectra

In Figure 4.4, the DOA spectra obtained by the different methods are depicted. The

peaks of the spectral magnitude represent the estimated DOAs. Figures 4.4(a)-4.4(f)

show some scenarios for SNR = 15 dB. Figures 4.4(a)-4.4(c) depict the cases without

correlation (ζc = 0), where W-MUSIC and SPARSE are able to correctly estimate

the DOAs. R-Capon is sometimes unstable and yields incorrect peak amplitudes.
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Figure 4.4(c) shows an example for improper regularization, taking only noise but no

model errors into account. As a result, SPARSE shows several spurious peaks, which

misleadingly indicates additional sources. In Figures 4.4(d)-4.4(f), the two source sig-

nals are correlated. W-MUSIC and R-Capon suffer from correlation even without

model errors, while SPARSE can still resolve both sources for ζc = 1 if pe = 0. How-

ever, the joint impacts of correlation and model errors also lower the performance of

SPARSE. When ζc = 0.3 and pe = 0.3, SPARSE, W-MUSIC and R-Capon perform

fairly well. For larger values of ζc and pe, the two peaks in the spectrum of SPARSE

start to merge and only one source appears (Figure 4.4(f)). Figures 4.4(g)-4.4(i) show

results for SNR = 0 dB. At this level, only SPARSE can resolve the two sources for

pe = 0.65. However, the accuracy is reduced and the peaks start to merge when pe

further increases.

4.5.1.3 Performance Evaluation

The performance is evaluated in Figure 4.5, using 500 Monte Carlo trials. The upper

part of each sub-figure shows the approximate root mean-squared angular error (RMSE)

in degrees, relative to the grid accuracy, δϑ = 1◦. The error is calculated based

on the positions (indices) of the significant elements in x, i.e the elements with the

largest modulus contained in Ŝ. In particular, the estimates in Ŝ with the smallest

distance to the true source locations in S are used to calculate the error. The lower

parts of each figure show the success rates. In a successful trial, the regularization is

appropriately chosen. That is, the spectrum exhibits exactly two peaks, corresponding

to the two simulated sources (the number of sources is assumed to be knwon for this

evaluation). Generally, SPARSE performs better than R-Capon and W-MUSIC. For

uncorrelated signals, i.e. ζc = 0 (Figures 4.5(a)-4.5(c)), SPARSE works fairly reliable

up to gain/phase errors of pe = 0.65. The impact of correlation is shown in Figures

4.5(d)-4.5(f). While W-MUSIC and R-Capon become unstable, SPARSE is merely

affected by correlation alone but its robustness against gain/phase errors is reduced.

However, for the successful trials, the angular error is still small. At low success rates,

less Monte Carlo trials are available, since the error is only calculated in case of a

successfull trial. Therefore stronger fluctuations in the RMSE can be observed.
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SNR= 15 dB

(a) (b) (c)

(d) (e) (f)

SNR= 0 dB

(g) (h) (i)

Figure 4.4. Comparison of the DOA spectra obtained by SPARSE, W-MUSIC and R-
Capon. The results of a DSB are shown as a reference. For SPARSE, β̂ was estimated
according to Section 4.5.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5. Performance of SPARSE, W-MUSIC and R-Capon: success rates (lower
subfigures) and angular errors relative to the grid accuracy, δϑ, (upper subfigures) vs.
different SNRs. For SPARSE, β̂ was estimated according to Section 4.5.
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4.6 Dictionary Calibration for Direction Finding

The material presented in this section is partly taken from [68]9.

Dictionary calibration is performed by applying the robust steering vector estimation

methods in [124] to the individual dictionary atoms. Based on the general model

in (4.2), the aim is to estimate the perturbed dictionary, D̃ = D+ ∆D, which includes

any model errors. Each column (atom) of D contains the ideal steering vector for a

certain angle, i.e. di = d(ϑi), i = 1, . . . , N . For some element ϑ ∈ {ϑ1, . . . , ϑN}, let the

error term in the corresponding dictionary atom be denoted by ∆d. The perturbed

dictionary atoms (steering vectors) are obtained by estimating ∆d for each angle of

interest, i.e.

d̃(ϑ) = d(ϑ) + ∆d . (4.39)

According to [108], ∆d is confined within an ellipsoidal uncertainty set, such that

(d̃(ϑ)− d(ϑ))HC−1
∆ (d̃(ϑ)− d(ϑ)) ≤ 1 . (4.40)

The coefficients of the ellipsoid are contained in the matrix C∆. A linear transformation

can be used in (4.40) to obtain C∆ = ε∆I [108], such that (4.40) becomes

‖d̃(ϑ)− d(ϑ)‖2
2 = ‖∆d‖2

2 ≤ ε∆ . (4.41)

A priori knowledge of ε∆ is often not available. If the tolerance level is set too high,

closely-spaced sources cannot be resolved. The calibration method in [124] is able to

estimate the the perturbed steering vectors without requiring a specific value for ε∆.

This method can be adopted for dictionary calibration to estimate ∆d. Therefore, the

method in [124] and some concepts in [108] are briefly reviewed below.

At first, the covariance matrix of the sensor snapshots is modeled by [108]

R =
K∑
k=1

σ2
u,kd(ϑk)d

H(ϑk) + Zn , (4.42)

where σ2
u,k denotes the source power of the k-th source, k = 1, . . . , K, and Zn denotes

the noise covariance matrix. Using singular value decomposition on R, one obtains [108]

R = UR

(
ΣR[IK,0]> + ΣR[0, IL-K]>

)
VH

R . (4.43)

Herein, IJ is the J-dimensional identity matrix, UR and VR are unitary matrices, and

ΣR is the diagonal matrix of singular values, where the first K entries belong to the

9C. Weiss and A. M. Zoubir, “Robust High-Resolution DOA Estimation with Array Pre-
Calibration,” in Proc. of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon,
Portugal, September, 2014.
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source signals and the remaining L−K entries belong to the noise components. Then,

the signal subspace can be written by Us = URΣR[IK,0]>, and the noise subspace

becomes Un = URΣR[0, IL-K]>. Further, let Ûn be an estimate of Un, that is obtained

using the sample covariance, R̂ = 1
T
YYH, and knowledge of the dimensionality of the

noise subspace, L−K, where K number of sources and L is the number of sensors. Then,

following the notation in [124], the true noise subspace is given by Un = Ûn + δUn,

where δUn is a stochastic estimation error. As it is generally assumed in subspace

methods, the steering vectors corresponding to the source signals are orthogonal to the

noise subspace [124], i.e.

Und̃(ϑ) = (Ûn + δUn)H(d(ϑ) + ∆d) = 0 . (4.44)

When only an estimate, Ûn, is available, the MSE with respect to the stochastic

estimation error, δUn, can be approximated by [124]

EδUn
‖ÛH

n (d(ϑ) + ∆d)‖2
2 = (d(ϑ) + ∆d)H

(
EδUn

δUnδU
H
n

)
(d(ϑ) + ∆d)

≈ d(ϑ)H Zδ d(ϑ) , β2
δ . (4.45)

where Zδ = EδUn
δUnδU

H
n . The approximation in (4.45) is due to the assumption that

all products involving Zδ and ∆d are small, such that any terms involving their product

can be neglected and βδ depends only on the covariance of the estimation error, δUn.

Then, the calibrated dictionary atoms, d̃(ϑ) = (d(ϑ) + ∆d) can be estimated in terms

of a quadratic program with quadratic constraints [124],

min
∆d
‖∆d‖2

2 s.t. ‖ÛH
n (d(ϑ) + ∆d)‖2

2 ≤ β2
δ . (4.46)

Using Lagrange multipliers, a closed-form solution can be obtained [124]:

∆̂d =

(
βδ

(
d(ϑ)HÛH

n Ûnd(ϑ)
)− 1

2 − 1

)
ÛnÛ

H
nd(ϑ). (4.47)

When a good estimate of the covariance matrix is available, e.g. when T is large,

then δUn shrinks close to zero and also βδ tends to zero. It is stated in [124] that,

under these conditions, the final result for estimating the steering vectors equals the

one obtained by the projection approach in [123]. Using this result, the error in the

dictionary atoms, ∆d, and, hence, the true dictionary atoms, d̃i(ϑi), can be estimated

for all considered angles ϑ ∈ {ϑ1, . . . , ϑN}. Hence, the fully calibrated dictionary can

be calculated by

D̂ =
(
I− ÛnÛ

H
n

)
D, (4.48)

where D is the ideal dictionary without phase or gain errors. When K is known,

the calibrated dictionary, D̂, is only based on the subspace estimates. After dictionary

calibration, the regularization parameter for sparse estimation can be chosen to account

for noise only.
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4.6.1 Simulations

In subsequent simulations, the SPARSE method without dictionary calibration is com-

pared to the case where the calibrated dictionary is used. The latter method is referred

to as ’R-SPARSE’. In both cases, the regularization parameter takes only the measure-

ment noise into account.

4.6.1.1 Setup

The simulation setup resembles that of Section 4.4.1.1. However, SPARSE and R-

SPARSE use T = 10 snapshots for DOA estimation and T = 200 snapshots to estimate

the covariance matrix, R, which is used for dictionary calibration. Since the calibration

procedure within R-SPARSE relies on an accurate estimate of R, an insufficient number

of noise samples for its estimation would reduce the performance and robustness. For

all simulations, the gain and phase errors are equally set to pe = pφ = pg. In order

to determine the regularization parameter (regarding measurement noise only), the

confidence levels are equally set to αS = αX = α̃X = 0.996 for SPARSE, and αR =

αX = α̃X = 0.5 for R-SPARSE. Correlation between the complex amplitudes of the

source signals is indicated in terms of the correlation coefficient, ζc, where 0 ≤ ζc ≤ 1.

It is defined according to (4.26).

4.6.1.2 DOA Spectra

Figure 4.6 illustrates the DOA spectra obtained by both methods. Besides SPARSE

and R-SPARSE, the DSB spectra are shown as a reference. Generally, high robustness

against phase and gain errors can be observed for R-SPARSE in all scenarios with and

without correlation and even at low SNRs. Figures 4.6(a)-4.6(c) show the uncorrelated

case, i.e. ζc = 0. Both SPARSE and R-SPARSE can resolve the two sources but severe

phase and gain errors with pe = 0.9 can no longer be handled by SPARSE without

calibration. The spurious peaks in the spectrum in Figure 4.6(c) misleadingly indicate

additional sources. Also, SPARSE is more sensitive to the joint effects of correlation

and gain/phase errors than R-SPARSE. In Figure 4.6(d), it is shown that R-SPARSE

can deal with moderate correlation of ζ = 0.5 and phase/gain mismatches of pe = 0.65,

even at SNR= 5 dB. However, stronger correlation also degrades the performance of

R-SPARSE, especially at low SNRs, which is depicted in Figures 4.6(e)-4.6(f).
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(a) SNR = 10 dB (b) SNR = 5 dB (c) SNR = 5 dB

(d) SNR = 5 dB (e) SNR = 15 dB (f) SNR = 5 dB

Figure 4.6. Comparison of the DOA spectra obtained by SPARSE and R-SPARSE
for different values of pe and ζc. The results of a DSB are shown as a reference. For
R-SPARSE, dictionary calibration was performed according to Section 4.6.

4.6.1.3 Performance Evaluation

Figure 4.7 shows the performance of SPARSE and R-SPARSE in various scenarios of

different SNRs, correlation levels and gain/phase mismatches, averaged over 500 Monte

Carlo trials. The upper part of each figure depicts the angular error, relative to the

grid accuracy of δϑ = 1◦. The error is calculated based on the positions (indices) of the

significant elements in x, i.e the elements with the largest modulus contained in Ŝ. In

particular, the estimates in Ŝ with the smallest distance to the true source locations in

S are used to calculate the error. When the success rate is low, less Monte Carlo trials

are available. Therefore stronger fluctuations in the RMSE can be observed. The lower

parts of each figure show the success rates. In a successful trial, the regularization is

appropriately chosen. That is, the spectrum exhibits exactly two peaks, corresponding

to the two simulated sources (the number of sources is assumed to be knwon for this

evaluation).

For ζc = 0 (Figures 4.7(a)-4.7(c)), the performance of SPARSE is limited to a narrow

range of SNRs when the confidence level, αS, is fixed. At lower SNRs, one peak is



4.7 Computational Complexity 53

often suppressed and at high SNRs, the regularization is too weak, yielding various

spurious peaks in the spectrum. R-SPARSE, in contrast, yields higher success rates

and lower angular errors at all SNRs and for all considered values of pe. When the

source signals are correlated (Figures 4.7(d)-4.7(f)), the joint impact of gain/phase

errors and correlation reduce the performance of both methods. This effect is more

notable for SPARSE but R-SPARSE requires higher SNRs to achieve low angular errors

in the presence of correlation. The success rates are only affected at lower SNRs. For

SPARSE, the angular error increases significantly below a certain SNR threshold and

also the success rates are reduced.

In Figures 4.7(g)-4.7(i), a change in the confidence levels αS, αR is introduced in order

to show the robustness of R-SPARSE to the choice of the regularization parameter

over a wide range of SNRs. The new values are set to α̃S = αS + ∆αS = 0.91 and

α̃R = αR+∆αR = 0.8. They correspond to a small change of ∆αS = 0.086 for SPARSE,

and a larger change of ∆αR = 0.3 for R-SPARSE. The difference is more emphasized

by considering the ratio ∆αR/∆αS, which is around 11 dB. For a small change in αS,

SPARSE achieves good performance only within a narrow SNR region. This region

is significantly shifted as compared to that obtained by the original value of αS. For

R-SPARSE, in contrast, the confidence level is very different from the original value

but the performance is only slightly affected at low SNRs. At higher SNRs, R-SPARSE

works reliably in the presence of gain and phase errors at moderate correlation levels.

4.7 Computational Complexity

For regularization, the complexity of calculating β̂reg depends on how σ2
u and σ2

n are

estimated. Note that in many practical applications alsoK has to be estimated. For the

purpose of this analysis, however, it is assumed to be known. Regarding the problem

of dictionary calibration, the computational complexity is determined by the subspace

decomposition of R̂, which is O(L3) [5].

In both cases, the overall complexity is dominated by the sparse estimation method,

i.e. `1-minimization. Herein, the complexity increases linearly in T [5, 130]. However,

a more efficient algorithm is proposed in [5], where only O((KN)3) operations and at

least O((KN)0.5) iterations re required.

For W-MUSIC, the subspace decomposition of the correlation matrix is the dominating

factor with complexity O(L3) [5]. For R-Capon, an optimization problem of complexity

O(L3) needs to be solved [108]. This has to be done for each dictionary atom, which

results in a complexity of O(NL3). Nevertheless, the individual dictionary atoms can

be determined separately using parallel processing.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7. Performance of SPARSE and R-SPARSE: success rates (lower subfigures)
and angular errors relative to the grid accuracy, δϑ, (upper subfigures) vs. different
SNRs. For R-SPARSE, dictionary calibration was performed according to Section 4.6.
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4.8 Discussion and Findings

The presented regularization methods provide a statistical framework to select the reg-

ularization parameter, β̂reg, for `1-minimization. This can reduce the computational

costs compared to a blind search. The joint impacts of model errors and noise are

reflected in an inaccurate generative model for creating the sparsity-promoting dic-

tionary. Simulations show that proper regularization ensures stable operation of the

SPARSE algorithm under sensor position errors and general gain/phase mismatches.

The obtained estimates of βreg represent a suitable tolerance level to avoid spurious

peaks in the spectrum without suppressing the true sources. This kind of regulariza-

tion can also be used in different applications such as radar, sonar or communications,

where the problem of direction finding arises.

The parameters αχ, α̃χ, αφ and αg can be set in advance. Based on these choices, the

upper and lower confidence bounds Xu,αχ,Xl,αχ, Xu,α̃χ,Xu,α̃χ as well as Nu,αφ and X 2
u,αg

can be determined prior to system operation and stored in a database. The parameters

σφ and σg can be set by the user, based on available information of the system. For

example, this information can be based on the specifications of the sensors and the

surrounding circuitry, or it can be acquired from system monitoring (e.g. tempera-

ture). The variables σφ and σg are directly related to the system parameters, such that

regularization can be adapted to account for the specific impairments at hand. It is

also possible to incorporate other system-specific error terms in the presented frame-

work under the premise that their mutual independence with other model errors can

be assumed.

For W-MUSIC and R-Capon several snapshots are required to estimate the covariance

matrix, while SPARSE can operate with a single snapshot. Nevertheless, additional

snapshots improve the SNR conditions and, hence, the performance. Moreover, in

contrast to W-MUSIC and R-Capon, SPARSE does not make assumptions about the

correlation of the source signals. Therefore, the methods cannot be directly compared

when the source signals are correlated. Generally, SPARSE is more robust and accu-

rate than W-MUSIC and R-Capon in the presence of model errors, which comes at the

cost of a higher computational complexity. However, simulation show that the joint

impacts of model errors and correlation also degrade the performance of SPARSE at

low SNRs. Therefore, correlation impacts its robustness to model errors.

Drawback of the regularization methods is the need for estimating the source power,

σ2
s , the noise power, σ2

n, and the number of sources, K. Although robust methods for

the individual terms exist, they can still be inaccurate if all parameters have to be

jointly estimated. Also, regularization can only adapt the tolerance level to certain

impairments but the accuracy decreases when the model errors are too severe. This is

because the quality of the dictionary suffers from an inaccurate generating model.
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As a remedy, R-SPARSE uses dictionary calibration in a addition to regularization.

Simulations show that reliable results with high success rates over a wide range of

SNRs can be obtained using a properly calibrated dictionary. Also, the sparse solution

obtained by `1-minimization is more robust to the choice of the regularization parame-

ter and even large variations have only minor impact over a wide range of SNRs. This

can be ascribed to the fact that the calibration procedure mitigates most of the errors

introduced by noise and array imperfections, which is also the reason why R-SPARSE

is fairly robust when the source signals are correlated.

However, dictionary calibration requires a good estimate of the covariance matrix.

Another drawback is that R-SPARSE requires knowledge of the number of sources.

Similar to W-MUSIC and R-Capon, its performance strongly depends on the quality

of this estimate.

In an extension of this work, a systematic approach to determine the choice of the

confidence levels, αg, αX , αX , and αφ, can be developed. Also, off-grid sources can be

taken into account by an adaptive grid-refinement as proposed in [5].

4.9 Conclusion

A sparse regularization method for direction finding based on sparse estimation

(SPARSE) is presented. It accounts for sensor position errors and general phase/gain

mismatches in the generating model of the dictionary. Also, other model errors can be

incorporated in this framework if their mutual independence can be assumed. Since the

dictionary is derived from an ideal model, the regularization parameter of the sparse

estimation problem has to impose a suitable tolerance level to handle the joint impacts

of model errors and noise. This parameter is estimated as an upper bound of the MSE

between the perturbed model, including errors such as phase and gain mismatches, and

the ideal model. Moreover, it is directly connected to certain model errors, such that

available prior knowledge of the system can be used to achieve selective regularization

of specific errors. Hence, the regularization parameter can be adapted to the current

situation in an automated fashion. Also, major parts of its derivation can be done

offline and stored in a database.

The SPARSE method with proper regularization shows better robustness and higher

resolution in the presence of sensor position errors and noise than the compared robust

methods. However, its robustness to model errors is reduced when the source sig-

nals are correlated, especially at low SNRs. A drawback of this regularization method

is the need for estimating the source power, σ2
s , the noise power, σ2

n, and the num-

ber of sources, K. Also, the regularization parameter depends on the confidence lev-

els, αg, αφ, αX , and α̃X , which are empirically determined. As a remedy, a combined
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dictionary calibration and sparse estimation method, R-SPARSE, is presented. The

calibrated dictionary takes the joint impacts of model errors and noise into account

and provides stable and reliable sparse estimation results. Regularization alone can

only adjust the tolerance level but the accuracy is limited by an erroneous dictionary.

Therefore, dictionary calibration also improves the accuracy. Although regularization

is still required for `1-minimization, the problem of choosing the regularization param-

eter (i.e. the confidence levels) is significantly alleviated. In particular, the sparse

solution obtained by R-SPARSE is only marginally affected even by large variations of

the confidence level and high success rates achieved for a wide range of SNRs. How-

ever, the calibration performance depends on how good the covariance matrix and the

number of sources can be estimated. Therefore, dictionary calibration is applicable

when many snapshots and knowledge of the number of sources are available. It turns

out that the joint impacts of correlation and model errors degrade the performance

of both SPARSE and R-SPARSE. However, since R-SPARSE mitigates some model

errors by calibration prior to sparse estimation, it is more robust to these effects.

In a future research, a systematic approach to choosing to confidence levels for regular-

ization can be considered. In addition, other types of model errors and off-grid sources

can be taken into account. Also, uncertain dictionary parameters such a the speed

of propagation or the signal frequency can be estimated. Related dictionary learning

techniques are presented in the ensuing chapters.
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Chapter 5

Alternating Sparse Estimation and
Dictionary Learning

This chapter introduces a sparse estimation and dictionary learning framework based

on alternating estimation (AE). While a sparse representation in the previous chapters

is obtained based on a variant of `1-minimization, it is subsequently assumed that the

employed dictionary is highly redundant, such that the necessary RIP conditions are

no longer fulfilled. Therefore, a dictionary pre-processing routine is applied to yield a

modified dictionary with improved RIP conditions. Using the modified dictionary, a

sparse representation of the signal is estimated using a greedy OMP-based algorithm.

In Chapter 4, uncertainty in the dictionary is represented by a general error term, ∆D.

The true dictionary is given by D + ∆D, where D is the dictionary obtained under

ideal conditions. Different from this approach, this chapter considers uncertainty in

terms of imperfectly known global and local dictionary parameters, θ, that represent

particular global and local characteristics of the system. Hence, the dictionary can be

written as a function of these parameters, i.e. D(θ). It is found in Chapter 4, that

simply adjusting the tolerance level to account for uncertainty by regularization can

improve robustness to model errors but it cannot improve the estimation performance.

Therefore, in this chapter, AE-based estimation is used to iteratively estimate the

dictionary parameters along with a sparse representation of the signal. While dictionary

calibration in Chapter 4 is a static operation that is performed only once, the pre-

processing routine in this chapter is applied in each AE iteration and the estimate

of θ is successively improved. The generic sparse estimation and dictionary learning

framework is specified for the application of fiber-optic sensing in combination with

compressed sensing (CS) according to Chapter 3.2 and Chapter 3.3, respectively.

The material presented in this chapter is partly taken from [87]1, [88]2, [30]3 [131]4.

1C. Weiss and A. M. Zoubir, “Fiber Sensing Using UFWT-Lasers and Sparse Acquisition,” in Proc.
of the 21st European Signal Processing Conference (EUSIPCO), September, 2013.

2C. Weiss and A. M. Zoubir, “Fiber Sensing Using Wavelength-Swept Lasers: A Compressed
Sampling Approach,” in Proc. of the 3rd International Workshop on Compressed Sensing Theory and
its Applications to Radar, Sonar and Remote Sensing (CoSeRa), June, 2015.

3C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).

4C. Weiss and A. M. Zoubir, “Dictionary Learning Strategies for Compressed Fiber Sensing Using
a Probabilistic Sparse Model” submitted to IEEE Transactions on Signal Processing, 2016.
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Chapter Outline

Section 5.1 gives an introduction and motivation and Section 5.2 provides an overview

of state-of-the-art techniques and related work. In Section 5.3, the problem statement

is introduced. Section 5.4 provides theoretical limits for sparse estimation and dictio-

nary learning in terms of the Cramér-Rao bound. In Section 5.5, a unified framework

for compressed fiber sensing and dictionary learning is introduced. Statements about

the computational complexity of the presented estimation algorithms are made in Sec-

tion 5.6. Section 5.7 evaluates the applicability of the presented framework and the

performance of the estimation algorithms in various scenarios. A discussion of the

results and findings is provided in Section 5.8. Section 5.9 gives a conclusion for this

chapter.

5.1 Introduction and Motivation

Parametric dictionaries are created from a mathematical model for the signal of interest.

It is often encountered in practice that some model parameters are unknown. When

the dictionary contains uncertainty in terms of unknown parameters, they have to be

estimated along with the desired sparse representation. AE-based estimation [52,53] is

a frequently applied technique to achieve this goal. In an iterative process, it alternates

between estimating the sparse representation and the dictionary parameters, thereby

successively improving the obtained estimates. In the literature, AE is given different

names such as ‘block-nonlinear Gauss-Seidel method’ or ‘block coordinate descent’ [54].

The performance and reliability of sparse estimation algorithms is limited by the RIP

requirements with respect to the dictionary coherence and the sparsity of the signal.

Redundancy in the dictionary helps to obtain highly sparse representations but also

aggravates the RIP requirements for estimating a unique sparse representation. More-

over, verifying the RIP for a given dictionary is NP hard [25] and requires knowledge

of the expected sparsity level. Therefore, it is desirable to have a sparse estimation

and dictionary learning algorithm that can readily handle strong dictionary coherence

to estimate the desired sparse representation along with the unknown dictionary pa-

rameters.

In order to investigate this problem, the general and abstract signal model for sparse es-

timation is specified for the application of fiber-optic sensing, according to Chapter 3.2.

The aim is to obtain an estimate of the FBG reflection delays in an automated fashion.

They are used to infer the quantity and nature of perturbations at the FBGs. The

received sensor signal is acquired using CS, according to Chapter 3.3. To this end,
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a versatile and unified framework for compressed fiber sensing and dictionary learn-

ing (CFS-DL) is presented. It incorporates a detailed parametric signal model for a

common WDM-based quasi-distributed fiber-optic sensor. The model is compiled us-

ing existing physical models for the individual components. In particular, a modular

system architecture is assumed, where each subsystem can be described by a linear

time-invariant (LTI) component. Based on this model, a parametric shift-invariant

dictionary is created. It is composed of several sub-dictionaries corresponding to the

reflections from the individual FBGs. Hence, the indices of the significant components

in the sparse signal, S, can be directly used to estimate the reflection delays. Uncer-

tainty in the dictionary is considered in terms of unknown global and local dictionary

parameters. The dictionary itself is highly redundant. Compressed sensing-based sig-

nal acquisition further increases the redundancy of the combined sensing matrix and

aggravates the RIP requirements (see Appendix A.1). To estimate the sparse represen-

tation and the dictionary parameters in the presence of strong dictionary coherence,

CFS-DL employs an AE-based algorithm for parametric dictionary learning and OMP-

based sparse estimation with inter-atom interference mitigation, which is referred to

as PDL-OIAI. It is able to deal with strong dictionary coherence by incorporating an

inter-atom interference (IAI) mitigation sub-routine to yield a modified sensing dictio-

nary that features a significantly lower coherence level. After IAI mitigation, a simple

greedy OMP algorithm with low computational complexity can be used to estimate

the desired sparse representation. In order to emphasize the impact of dictionary co-

herence on the estimation performance, a reference method based on the standard

OMP algorithm without IAI mitigation, called PDL-OMP, is introduced. Moreover,

the Cramér-Rao bound for jointly estimating a sparse representation and a dictionary

parameter is derived. This bound is used to evaluate the estimation performance and

efficacy of both algorithms by simulations in various scenarios of different dictionary

coherence levels, CS matrices and signal-to-noise-ratios (SNRs). The parametric model

is adapted to match the experimental setup of a real fiber-sensor. Experimental data of

the same sensor is used to assess the practical applicability of the CFS-DL framework.

5.2 State of the Art and Related Work

The combination of CS and WDM-based quasi-distributed fiber-optic sensing has been

considered recently [30,87,88,131]. Analog and digital CS can be distinguished. While

the task in digital CS is to efficiently encode a given signal (or an image) [100], analog

CS attempts to achieve compression in the analog domain prior to sampling. Herein,

serial and parallel hardware architectures can be used [22]. The ‘Xampling’ frame-

work [22, 103, 132] describes the sampling process by unions of subspaces. The work
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in [103] investigates Xampling based on serial and parallel hardware architectures. The

authors in [101] attempt to reduce the number of branches in parallel architectures and

state problems related to high filter orders and correlation in serial architectures. In

this chapter, a parallel architecture is considered. It allows for a lower average sam-

pling rate and can help to reduce the hardware costs by employing several low-rate

analog-to-digital converters (ADCs) in parallel, rather than a single costly high-speed

ADC. There exist different models to describe the acquisition process using CS. Multi-

coset sampling, for example, decribes a periodic non-uniform sampling scheme [98,99].

In this chapter, sparse CS matrices based on the Database-Friendly (DF) distribu-

tion [106] are of particular interest. They describe a non-uniform sampling process,

which can be realized at low average sampling rates. Moreover, their sparse structure

makes them storage-efficient.

Various methods for designing a parametric dictionary have been proposed. The au-

thors in [35, 41] introduce coherence constraints to control the design process. In

[29,105], conventional coherence measures, such as the mutual coherence or the Babel

function (or `1-coherence), are considered to obtain an optimal sensing dictionary. The

performance of these methods can be improved when the measured data is taken into

account during the design process of the sensing dictionary [32,105].

One important class of dictionaries are the composite dictionaries [9, 24, 33]. In [24],

a theoretical analysis for pairs of orthonormal bases is provided. The works in [9, 33]

consider more general types of dictionaries and use the ‘spark’ of a matrix in relation

to other coherence measures. A later study in [27] investigates redundant dictionaries

for CS. The dictionary used in the CFS-DL framework is also composed of differ-

ent sub-dictionaries, corresponding to the reflections of the individual FBGs. Each

sub-dictionary has a translation-invariant structure, as in [36–38]. Similar to the dic-

tionaries in [133,134], the dictionary in CFS-DL is created from a mathematical signal

model, which is particularly designed for the application at hand. The parameters of

the model used to create the dictionary are adapted to match the experimental setup

in [70, 86]. Unlike the works in [133, 134], the composite structure of the dictionary in

CFS-DL allows for uncertainty in terms of global and also local dictionary parameters

for each sub-dictionary.

For dictionary learning (DL), different strategies have been proposed in the litera-

ture [45–50, 56, 135]. A Bayesian framework for joint sparse estimation and DL is

adopted in [56]. The work in [50] is one of the first sources that report the concept of

AE-based estimation. Provable recovery guarantees and convergence bounds have been

obtained [52,53]. Among the most popular AE variants for estimating a non-parametric

dictionary are the iterative least-squares DL algorithms [45], the K-SVD algorithm [46],

and a recursive least-squares algorithm [47]. Also, robust methods have been proposed,

e.g. in [48,49,135]. There also exist DL methods for parametric dictionaries. In [136],
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information criteria are used for jointly estimating the model order and the parameters.

A related work in [137] overcomes the problem of parameter quantization, which results

from a finite grid of dictionary atoms by using the measured data to adjust the dic-

tionary parameters. The authors follow the AE paradigm, using an `p-RLS algorithm

for estimating a sparse representation and least-squares optimization with coherence

constraints to estimate the dictionary parameters. The work in [39] applies a polar in-

terpolation between neighboring dictionary atoms to overcome the quantization effect

and to limit the dictionary coherence. Another work in [138] uses AE for paramet-

ric DL by solving an optimization problem in a distributed fashion over a network of

sensors. In this chapter, an AE-based algorithm, called PDL-OIAI, is introduced. It

estimates a sparse representation based on a greedy OMP algorithm, while parametric

DL is performed by minimizing a local cost function. PDL-OIAI is also equipped with

a data-based IAI mitigation sub-routine, according to [32], which enables the algorithm

to handle strong dictionary coherence. Instead of explicitly imposing restrictions on the

coherence level, the IAI mitigation procedure yields a modified dictionary of reduced

dictionary coherence.

5.3 Problem Statement

The abstract and general problem of sparse estimation is specified for the application

of fiber-optic sensing as described in Chapter 3.2, where a composite shift-invariant

dictionary is considered. It is created from K concatenated sub-dictionaries and the

atoms of the k-th sub-dictionary are associated with the delay of the reflection from the

k-th FBG, k = 1, . . . , K. Uncertainty in the dictionary is described by unknown dictio-

nary parameters, θ ∈ Θ, where Θ is the considered parameter space. There exist local

parameters, θLO,k, and/or global parameters, θG, such that θ = [θG,θLO,1, . . . ,θLO,K ]>

and θk = [θG,θLO,k]
>, k = 1, . . . , K. Local parameters can be related to the mathe-

matical models for the FBG reflections, rk(t), k = 1, . . . , K, while global parameters

represent rather general system parameters such as the receiver bandwidth. Using the

fiber sensing model in Chapter 3.2 with additional unknown dictionary parameters,

the redundant parametric shift-invariant dictionary is given by

D(θ) = [D1(θ1), . . . ,Dk(θk), . . . ,DK(θK)], (5.1)

where Dk(θk), corresponds to the reflection from the k-th FBG, k = 1, . . . , K. The

signal is acquired using CS, according to Chapter 3.3. To this end, the model for fiber-

optic sensing in Chapter 3.2 is refined to include CS-based acquisition. Let r ∈ RL

contain L samples of the received sensor signal, r(t). Then, the CS measurements
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become

y = Φr = ΦD(θ)x + n = B(θ)x + n , (5.2)

where Φ is the CS matrix, B(θ) = ΦD(θ) ∈ RM×N is the combined sensing matrix, r is

the observed sensor signal, and n is a zero mean Gaussian noise term with independent

and identically distributed entries, nl ∼ N (0, σ2
n), l = 1, . . . , L. Hence, the likelihood

function is given by

p(y |x,θ) =
(
2πσ2

n

)− 1
2 exp

(
− 1

2σ2
n

‖y −B(θ)x‖2
2

)
. (5.3)

Each row of Φ describes the measurements taken during one laser sweep. It is assumed

that the perturbation profile of the fiber is stationary for M sweeps (until the CS ac-

quisition process is completed). Denoting the laser sweep rate by Sr, the CS acquisition

time is given by M/Sr.

The ultimate goal is to estimate the dictionary parameters, θ, along with a sparse

representation, x, that correctly indicates the delays of the FBG reflections.

5.4 Theoretical Performance Limits: The Cramér-

Rao Bound

In this section, the theoretical limits of the achievable estimation performance are

discussed. To this end, the Cramér-Rao bound (CRB) is derived, which gives a lower

bound for the variance of any unbiased estimator and, hence, for the mean-squared

error (MSE). In the scope of this derivation, it is assumed that the dictionary contains

one unknown global parameter, θ ∈ Θ, such that dim(Θ) = 1.

First, the ‘constrained CRB’ is reviewed according to [139]. It gives a lower bound for

estimating the sparse coefficients, x, when θ is known. Next, the CRB for θ is derived

for a known x. Finally, the mutual information shared between x and θ is taken into

account and the CRB for jointly estimating the tuple (x, θ), is derived.

5.4.1 Estimating a Sparse Representation

This part is a review of the basic ideas and concepts used for the derivation in [139],

which also includes some necessary prerequisites for subsequent derivations.

The constrained CRB represents a lower bound for estimating the sparse vector x
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in (5.2), constrained to a certain class of valid estimators. It is assumed that the

dictionary parameter, θ, is known and only x has to be estimated. The constrained

CRB is a local bound that is only valid for estimating vectors in a certain neighborhood

of a target point, x0 ∈ RN . This neighborhood is specified by an ε-environment around

x0, i.e. Bε(x0) = {x ∈ RN | ‖x − x0‖2 < ε}, and by a ‘locally balanced’ constraint

set, Xc. According to [139], the constrained set in the sparse setting cannot be written

in the form used for the classical constrained CRB. Therefore, the locally balanced

constrained set is introduced. The term ‘locally balanced’ means that, for a certain

point x0 ∈ Xc, and another point x ∈ X̃c ⊂ Xc, this set is locally defined at x0, such

that

x′ = x0 + λ(x− x0) ∈ X̃c ∀ |λ| ≤ 1 . (5.4)

Herein, the vectors (x−x0)/‖(x−x0)‖2, x ∈ X̃c, belong to the set of ‘feasible directions’

at the point x0. These are the directions in which one can move without violating

the constraints. An estimator for which the constrained CRB is a valid bound must

satisfy unbiasedness within the neighborhood {x ∈ Xc | ‖x − x0‖2 < ε}, i.e. in the

ε-environment around x0 where the constraints Xc are fulfilled. Therefore, the bias

gradient has to vanish with respect to the feasible directions, where the constraints are

not violated.

The feasible directions are important for the concept of Xc-unbiasedness. It is shown in

[139] that Xc-unbiasedness is in fact a property of the subspace spanned by the feasible

directions. Any orthonormal basis can be chosen to describe this subspace but its

dimensionality may change for different points x0. It is convenient to use the canonical

basis in a finite-dimensional Euclidean space, defined by vectors {ed}Dd=1, which can be

collected in a matrix Uf = [e1, . . . , eD]. For notational convenience, the dependence of

Uf on x0 is not explicitly mentioned below. Then, for an estimator, x̂, with associated

bias function, b(x) = Ex̂ x̂ − x, x ∈ RN , the term ‘Xc-unbiasedness’ means that the

bias gradient vanishes with respect to the subspace spanned by the feasible directions,

i.e. Uf (
∂b(x)
∂x

) = 0 [139]. This is a requirement for all points x ∈ {Xc ∩ Bε(x0) }. In

other words, the class of valid estimators for which the constrained CRB applies is

required to have a vanishing bias gradient for all x ∈ {Xc ∩ Bε(x0) }. Such estimators

are called Xc-unbiased [139]. For a vanishing bias gradient, and for a K-sparse target

vector, x, the constraint CRB takes the form [139]

Cov(x̂) � Uf

(
U>f I(x)Uf

)−1
U>f = UfI−1

K (x)U>f , ‖x‖0 = K, (5.5)

where I(x) is the Fisher Information matrix (FIM), IK(x) = U>f I(x)Uf is the K-

reduced FIM, and Uf contains the directions corresponding to the non-zero entries in

x0 at the indices in S. A detailed derivation of I(x) can be found in Appendix A.2.

According to [139,140], the FIM and the K-reduced FIM are given by

I(x) =
1

σ2
n

B>B, and IK(x) =
1

σ2
n

B>SBS , (5.6)
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where σ2
n is the noise variance, B is the combined sensing matrix in (5.2), and BS is

a sub-matrix of B that is composed of the columns with indices in S. The dictionary

parameters, θ, are omitted, since they are assumed to be fixed in this context.

In the considered application of FBG-based fiber-optic sensing, it is assumed that the

sparsity level, K, is known. This is a valid assumption in the absence of noise, since

K is the number of reflections, i.e. the number of FBGs. When this assumption is

relaxed and the signal is allowed to be s-sparse with 0 ≤ s ≤ K, then the constrained

CRB is the same as in the unconstrained case [139]. This result is related to the fact

that inequality constraints do not alter the value of the CRB, as stated in [141].

Some properties of the constrained CRB are stated in [139] and summarized below:

(i) The constrained CRB can be lower than the unconstrained version, where the

bias gradient has to vanish for all possible directions. The latter is a stronger

requirement, imposing additional restrictions on the class of estimators.

(ii) A requirement for the existence of (5.5) is that the range space R(UfU
>
f )

has to be a subset of R(UfU
>
f I(x)UfU

>
f ). When spark(B) > 2K, then B

has unique reconstruction properties for any K-sparse vector and U>f I(x)Uf

is invertible [9, 139]. Hence, the range spaces are equal and the requirement is

fulfilled.

As stated in [139], the best achievable performance of Xc-unbiased estimators is that

of the oracle estimator, which has perfect knowledge of the support. Therefore, this

estimator would asymptotically achieve the variance proposed by the constrained CRB.

5.4.1.1 The constrained CRB for orthonormal sub-matrices

According to (5.5)-(5.6), the constrained CRB yields a lower bound for the MSE, given

by [139]

MSE(x̂,x) = E ‖x− x̂‖2
2 ≥ σ2

n Tr ((B>SBS)−1), ‖x‖0 = K, (5.7)

where ‘Tr’ is the trace-operator. When the columns of BS are orthogonal, the

constrained CRB takes the smallest value.

The proof of this statement is taken from [30]5 and given below.

5C. Weiss and A. M. Zoubir, “A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,” accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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Proof:

The eigenvalues of the positive semi-definite matrix H = B>SBS are denoted by

λk ≥ 0, k = 1, . . . , K. Then, using ‘Hadamard’s inequality’ (c.f. [142]),

det(H) =
K∏
k=1

λk ≤
K∏
k=1

hkk =
K∏
k=1

λ̃k = det( diag(λ̃1, . . . , λ̃K) ), (5.8)

where hkk are the diagonal entries of H and λ̃k are the eigenvalues of some diagonal

matrix, diag(λ̃1, . . . , λ̃K). The inverse of the matrix H fulfills the equation

det(H−1) =
K∏
k=1

1

λk
≥

K∏
k=1

1

λ̃k
= det( [diag(λ̃1, . . . , λ̃K)]−1 ) . (5.9)

Therefore, a lower bound is obtained when H is a diagonal, such that equality holds

in (5.8) and (5.9). This happens when the columns of B are orthogonal. �

Usually, the columns of B are normalized, i.e. ‖bk‖2
2 = λ̃k = 1. Then, a lower bound

for the MSE is found by

MSE(x̂,x) ≥ σ2
n

K∑
k=1

1

λ̃k
= K σ2

n, ‖x‖0 = K. (5.10)

5.4.2 Estimating a Dictionary Parameter

In this subsection, the CRB for estimating θ is derived. The sparse coefficients, x, are

assumed to be known.

The derivation below is partly taken from [131]6.

At first, the Fisher information, I(θ), is determined. To this end, the first and second

moments of the score function, ∆
(θ)
sc : R → R, are determined. It is given by the

partial derivative of the log-likelihood function in (5.3) with respect to the parameter

of interest, θ. For i.i.d. Gaussian measurements, ym, m = 1, . . . ,M , one obtains

∆(θ)
sc = − 1

2σ2
n

∂

∂θ

(
y>y − x>D(θ)>Φ>y − y>ΦD(θ)x + x>D(θ)>Φ>ΦD(θ)x

)
= − 1

2σ2
n

(
−2x>D′(θ)>Φ>y + x>D′(θ)>Φ>ΦD(θ)x + x>D(θ)>Φ>ΦD′(θ)x

)
= − 1

2σ2
n

(
−2x>D′(θ)>Φ>[ y −ΦD(θ)x ]

)
=

1

σ2
n

(
x>D′(θ)>Φ>[ y −ΦD(θ)x ]

)
, (5.11)

6C. Weiss and A. M. Zoubir, “Dictionary Learning Strategies for Compressed Fiber Sensing Using
a Probabilistic Sparse Model,” submitted to IEEE Transactions on Signal Processing, 2016.
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where D′(θ) is the element-wise derivative of D(θ) with respect to θ. Let p(y |x, θ)

denote the probability density of y given x and θ, and let Ey|x, θ denote the correspond-

ing conditional expectation operator. Then, Ey|x, θ y = ΦD(θ)x and the first moment

of the score function vanishes, since

Ey|x, θ ∆(θ)
sc =

∫
1

σ2
n

( y −ΦD(θ)x )>Φ D(θ) p(y |x, θ) dy

=
1

σ2
n

D(θ)>Φ>
[ (

Ey|x, θ y
)
− ΦD(θ)x

]
= 0 . (5.12)

The Fisher information is defined as the second moment of the score function, i.e.

Ey|x, θ (∆
(θ)
sc )2. Under certain regularity conditions (see Appendix A.2) and using (5.12),

it can be calculated by

I(θ) = Ey|x, θ
∂2

∂θ2
log p(y |x, θ) = Ey|x, θ

∂

∂θ
∆(θ)

sc

= Ey|x, θ
1

σ2
n

(
x>D′′(θ)>Φ>y − x>D′′(θ)>Φ>ΦD(θ)x + x>D′(θ)>Φ>ΦD′(θ)x

)
=

1

σ2
n

(
x>D′′(θ)>Φ>ΦD(θ)x− x>D′′(θ)>Φ>ΦD(θ)x + x>D′(θ)>Φ>ΦD′(θ)x

)
=

1

σ2
n

x>D′(θ)>Φ>ΦD′(θ)x, (5.13)

where D′′(θ) is the second (element-wise) derivative of D(θ) with respect to θ. Finally,

the variance of any unbiased estimator, θ̂, for estimating some parameter θ ∈ Θ given

x, is lower bounded by

Var(θ̂) ≤ I−1(θ) =
σ2
n

x>D′(θ)>Φ>ΦD′(θ)x
, θ ∈ Θ. (5.14)

Due to the unbiasedness, Equation (5.14) also represents a lower bound for the MSE

of θ̂, i.e. MSE(θ̂, θ) = Var(θ̂).

Yet, the obtained bounds for MSE(x̂,x) and MSE(θ̂, θ) do not consider the mutual

information shared between x and θ. Therefore, the CRB for jointly estimating (x, θ)

is derived in the next subsection.

5.4.3 Estimating a Sparse Representation and a Dictionary
Parameter

The previously obtained bounds are valid for estimating either x or θ, given full knowl-

edge of the other variable. They are based on the assumption that knowledge of x

does not reveal information of θ or vice versa. However, x and θ share some mutual
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information, such that the combined FIM is not diagonal.

The derivation below is partly taken from [131]7.

In order to incorporate an unknown parameter, θ, into the framework of the constrained

CRB for x, the combined parameter tuple, γ = (x>, θ) ∈ {RN
+ × Θ}, is considered.

The full FIM takes the form

I(γ) =

(
I(x) ŭ

v̆> I(θ)

)
, (5.15)

where

ŭ = −Ey|x, θ

[
∂2

∂x1∂θ
log p(y |x, θ) , . . . ,

∂2

∂xN∂θ
log p(y |x, θ)

]>
, (5.16)

v̆ = −Ey|x, θ

[
∂2

∂θ∂x1

log p(y |x, θ) , . . . ,
∂2

∂θ∂xN
log p(y |x, θ)

]>
. (5.17)

The i-th element of ŭ, i = 1, . . . , N , can be calculated by

−Ey|x, θ
∂2

∂xi∂θ
log p(y |x, θ)

= −Ey|x, θ
1

σ2
n

∂

∂xi

(
x>D′(θ)>Φ>[ y −ΦD(θ)x ]

)
= − 1

σ2
n

Ey|x, θ
(

[di
′(θ)]>Φ>y − [di

′(θ)]>Φ>ΦD(θ)x − x>D′(θ)>Φ>Φ di(θ)
)

=
1

σ2
n

x>D′(θ)>Φ>Φ di(θ). (5.18)

7C. Weiss and A. M. Zoubir, “Dictionary Learning Strategies for Compressed Fiber Sensing Using
a Probabilistic Sparse Model,” submitted to IEEE Transactions on Signal Processing, 2016.
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By symmetry, exchanging the order of the partial derivatives yields the same result for

the i-th element of v̆, i.e

−Ey|x, θ
∂2

∂θ∂xi
log p(y |x, θ)

= Ey|x, θ
∂2

∂θ∂xi

1

2σ2
n

(
y>y − 2y>Φ D(θ)x + x>D(θ)>Φ>Φ D(θ)x

)
= Ey|x, θ

∂

∂θ

1

2σ2
n

(
−2 y>Φ di(θ) + [di(θ)]

>Φ>Φ D(θ)x + x>D(θ)>Φ>Φ di(θ)
)

= Ey|x, θ
1

2σ2
n

(
−2 y>Φ d′

i(θ) + d′
i(θ)

>Φ>Φ D(θ)x + [di(θ)]
>Φ>Φ D′(θ)x

+x>D′(θ)>Φ>Φ di(θ) + x>D(θ)>Φ>Φ d′
i(θ)

)
=

1

2σ2
n

(
−2 x>D(θ)>Φ>Φ d′

i(θ) + 2 x>D(θ)>Φ>Φ d′
i(θ)

+[di(θ)]
>Φ>Φ D′(θ)x + x>D′(θ)>Φ>Φ di(θ)

)
=

1

σ2
n

x>D′(θ)>Φ>Φ di(θ) . (5.19)

Therefore, one obtains

Ey|x, θ ŭ = Ey|x, θ v̆ = − 1

σ2
n

(
x>D′(θ)>Φ>Φ D(θ)

)>
= − 1

σ2
n

D(θ) Φ>Φ D′(θ) x . (5.20)

In order to extend the notation of the constrained CRB for the tuple γ = (x, θ),

the set of feasible directions can be extended by one additional direction at index

(N+1), corresponding to θ. For any θ ∈ Θ, this direction is always feasible as it is not

constrained by the sparsity assumption for x. The extended projection matrix becomes

Ũf = [ ei1 , . . . , eiK , eN+1 ] and the reduced FIM is obtained by

IK+1(γ) = Ũ>f I(x, θ) Ũf (5.21)

In order to find the inverse of this matrix, the matrix inversion lemma in block

form [143] can be applied, i.e.

I−1
K+1(γ) =

(IK(x)− 1
I(θ)

v̆ v̆>
)−1

−1

b̆
I−1
K (x) v̆

−1

b̆
v̆> I−1

K (x) 1

b̆

 , (5.22)

with b̆ = I(θ) − v̆> I−1
K (x) v̆, and(

IK(x)− 1

I(θ)
v̆ v̆>

)−1

= I−1
K (x) +

1

b̆
I−1
K (x) v̆ v̆> I−1

K (x) . (5.23)
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Consequently, the constrained CRB for an unbiased estimator γ̂ = (x̂, θ̂) becomes

Cov(γ̂) � Ũf I−1
K+1(γ) Ũ>f , ‖x‖0 = K, θ ∈ Θ. (5.24)

Finally, the lower bounds for the MSE corresponding to the individual parameters can

be determined from the diagonal elements of I−1
K+1(γ) in (5.22).

Compared to the case where x or θ are individually estimated using IK(x) or I(θ),

the lower bound of the respective MSE can be obtained by adding a “correction term”

that accounts for the mutual information shared between these two variables, i.e.

MSE(x̂,x) ≥ Tr

(
I−1
K (x) +

1

b̆
I−1
K (x) v̆ v̆> I−1

K (x)

)
(5.25)

=
(

Tr I−1
K (x)

)
+

1

b̆
v̆> I−1

K (x)I−1
K (x) v̆︸ ︷︷ ︸

“correction”

(5.26)

and

MSE(θ̂, θ) ≥ 1

b̆
= I(θ)−1 +

v̆> I−1
K v̆

I(θ)
[
I(θ) − v̆> I−1

K v̆
]︸ ︷︷ ︸

“correction”

. (5.27)

The existence of these bounds is limited to the constraint b̆ = I(θ)− v̆> I−1
K (x) v̆ 6= 0.
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5.5 A Unified Framework for Compressed Fiber

Sensing With Uncertainty

In this section, a compressed fiber sensing and dictionary learning (CFS-DL) framework

is presented. It provides a parametric model to describe the observed sensor signal,

r, in (5.2), for a basic system architecture. This model is used to create a parametric

translation-invariant dictionary according to (5.1). The presented framework unifies

CS-based acquisition, sparse estimation and DL for general parametric dictionaries

with high coherence levels and uncertain parameters.

The material presented in this section is partly taken from [87]8, [88]9, [30]10.

5.5.1 System Architecture

The core architecture of the considered fiber sensing system is depicted in Figure 5.1.

This system is setup is based on the fiber sensor presented in [70, 86] and extended

by a CS acquisition module and a signal processing block for sparse estimation and

DL. The same setup is considered subsequently in Section 5.7 for simulations and for

experimental validation using real data from the fiber sensor in [70,86].

It is assumed that the system architecture has a modular structure based on linear

time-invariant (LTI) components, where additional LTI components may be added.

According to Figure 5.1, the emitted laser signal passes a single-mode fiber (SMF)

before entering the sensing fiber. When the signal wavelength falls inside the reflection

spectrum of an FBG, it is reflected back and redirected to the receiver. The optical

power is directly detected by a photodetector (PD). The electrical output signal is

acquired using CS. Finally, the desired information is extracted in the signal processing

block using the PDL-OIAI/OMP algorithms for sparse estimation and DL, introduced

in Section 5.5.4.

8C. Weiss and A. M. Zoubir, “Fiber Sensing Using UFWT-Lasers and Sparse Acquisition,” in Proc.
of the 21st European Signal Processing Conference (EUSIPCO), September, 2013.

9C. Weiss and A. M. Zoubir, “Fiber Sensing Using Wavelength-Swept Lasers: A Compressed
Sampling Approach,“ in Proc. of the 3rd International Workshop on Compressed Sensing Theory and
its Applications to Radar, Sonar and Remote Sensing (CoSeRa), June, 2015.

10C. Weiss and A. M. Zoubir, ”A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,“ accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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5.5.2 A Parametric Signal Model for Fiber-optic Sensing

In order to obtain a parametric signal model for the observed sensor signal, r, dif-

ferent existing physical models are compiled. Due to the modular architecture, each

subsystem can be described separately. The subsystems between the laser and the

photodetector are treated as LTI components with a well-defined input/output rela-

tion. Although the considered model is specified for the sensor architecture in Figure

5.1, it can be customized to describe various system configurations as long as the LTI

assumption holds. The models for the individual components are detailed below.

5.5.2.1 Laser Output:

Fiber interrogation is performed using a wavelength-tunable laser as in [70, 86]. It is

an actively mode-locked fiber laser, which yields a pulsed output signal. A wideband

semiconductor optical amplifier (SOA) is used as a gain medium and a dispersion-

compensating fiber (DCF) forms the laser cavity. The mode-locking condition states,

that the frequency of the SOA injection current, fm, has to match the mode spacing

of the laser cavity, which is given by the free spectral range. However, since the cavity

is highly dispersive, the free spectral range depends on the lasing frequency and this

condition is only fulfilled within a small spectral region. Thus, a change in fm also

causes a shift in the frequency region where mode-locking is achieved. As a result

the lasing frequency can be swept by changing fm, which is referred to as ‘dispersion

tuning’ [86].

When the wavelength is swept, each laser pulse is generated by the superimposed cav-

ity modes around the instantaneous center wavelength, λi, where i is the pulse index.

The instantaneous pulse repetition rate can be described by the actual modulation

frequency, τrep,i = 1/fm,i. Thus, the output signal is a non-uniform pulse train with

varying pulse repetition rate and pulse width.

This kind of lasers has several advantages for quasi-distributed fiber sensing [70, 86].

First, the absence of mechanical components, such as tunable filters in the laser cav-

ity, reduces hardware costs and allows for high sweep rates. Thus, also time-varying

perturbations can be monitored. Second, their wide tuning range can be used to inter-

rogate a large number of FBGs, which enables sensing over long distances.

at high precision.

In the baseband frequency domain, the emitted laser pules of an actively mode-locked

fiber laser with center wavelength λ can be described by chirped Gaussian pulses,

i.e. [70, 86,144]

A(λ)(ω) ∼ exp

(
− ω2

2 (δω(λ))2

)
, (5.28)
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where the pulse bandwidth, δω(λ), is given by [70]

δω(λ) =

√
π
fm
λ

(
8π c0 Γa

|D(λ)

DCF|LDCF

) 1
4

. (5.29)

Herein, c0 is the speed of light, LDCF is the length of the DCF, Γa denotes the amplitude

modulation index of the light within the DCF (laser cavity), and D(λ)

DCF is the first order

dispersion parameter. The gain profile of the SOA at wavelength λ can be described

by [145,146]

g (λ) =
a1(Nc −N0)− a2(λ− λNc)2 + a3(λ− λNc)3

1 + εcPav

. (5.30)

Herein, Pav denotes the average output power over the length of the SOA, εc is a

compression factor, Nc is the actual carrier density and N0 is the carrier density at

the transparency point (no-gain wavelength). For Nc and N0, the maximum gain

wavelengths are denoted by λN and λ0, respectively. Further, a1 is the coefficient of

the carrier difference, a2 scales the spectral width of the gain profile, and a3 accounts

for any asymmetry of the gain profile. A third-order fit to the measured SOA gain can

be used to find the coefficients a1, a2, a3. Some typical values are listed in [145,146]. A

steady state numerical SOA model can be found in [147].

5.5.2.2 Fiber Transmission:

The laser pulses travel through an SMF to the FBGs. The pulses are reflected if

the wavelength matches the reflection spectrum of an FBG Therefore, the travel

distance, L(λ)

SMF, changes for different wavelengths. It is assumed that non-linear ef-

fects can be neglected and that chromatic dispersion is the dominating effect.

The transfer function of the fiber can be derived from a Taylor expansion of the prop-

agation constant, i.e. β (λ)(ω) =
∑∞

j=0 β
(λ)
j (∆ω)j, where β2

(λ) and β3
(λ), describe the

first and second order dispersion, respectively. The fiber damping is denoted by α
(λ)
d .

Then, the baseband transfer function is given by [148–150]

H(λ)
(
ω, L

(λ)
SMF

)
= exp

(
−

(
α

(λ)
d + j

β
(λ)
2

2
ω2 + j

β
(λ)
3

6
ω3

)
L

(λ)
SMF

)
. (5.31)

where β2
(λ) and β3

(λ) are related to the dispersion, D(λ)

SMF, and to the dispersion slope,

S(λ)

SMF = (d/dλ)D(λ)

SMF, respectively. In particular, [149]

β
(λ)
2 = −D(λ)

SMF

λ2

2πc0

(5.32)

β
(λ)
3 =

(
S(λ)

SMF

λ3

4πc0

− β2
(λ)

)
λ

πc0

. (5.33)
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The damping can be modeled by [79]

α
(λ)
d = AR

1

λ4
+Bα + C(λ)

α . (5.34)

Herein, AR denotes the Rayleigh scattering coefficient, Bα stands for wavelength-

independent losses, e.g. microbending or waveguide imperfections, and C
(λ)
α describes

other wavelength-dependent losses such as OH− absorption peaks. Again, a least-

squared fitting to the measured fiber damping can be used to determine these coeffi-

cients. Moreover, a detailed model for C
(λ)
α can be found in [79].

5.5.2.3 FBG Reflection:

In the considered FBG model, the fiber axis is assumed to be in parallel to the z-axis

of a Cartesian coordinate system. A uniform (non-chirped) FBG can be described by

a periodic variation of the refractive index in the fiber core [93,151], i.e.

nc(z) = n0 + ∆nc cos

(
2π(z − z0)

ΛFBG

)
, z ∈ [z0, z0 + LG] , (5.35)

where z0 is the location of the FBG, LG is the grating length, n0 is the average refrac-

tive index, and ∆nc is the amplitude of the index variation. The spectrum of an FBG

can be derived using coupled-mode theory [93,151–153]. Herein, one derives the field

amplitudes of a mode in +z-direction and an identical counter-propagating mode in

−z-direction, S(z), R(z), respectively. Their coupling is based on the dielectric per-

turbation. When the grating is uniform, S(z) and R(z) are determined by solving two

coupled 1st-order ordinary differential equations with constant coefficients [89]:

dR

dz
= j σcR(z) + j κcS(z) and

dS

dz
= −j σcS(z) + j κ∗cR(z), (5.36)

where j is the imaginary unit and (·)∗ denotes the complex conjugate. The parameters

σc and κc are proportional to the refractive index. They are called the DC-/AC-

coupling coefficients. Using suitable boundary conditions, a closed-form solution for

S(z) and R(z) can be obtained. The ratio between the field amplitudes at z = z0 is

defined as the (wavelength-dependent) reflection coefficient of the field amplitudes [89]:

ρ(λ) =
S(z = z0)

R(z = z0)

∣∣∣∣
λ

=
−κc sinh(γc LG)

σc sinh(γc LG) + j γc cosh(γc LG)
, (5.37)

where γc = (κ2
c − σ2

c )
1/2. Non-uniform gratings with apodization or chirp can be

modeled by assuming that the grating is piece-wise uniform, Hence, the FBG is sub-

divided into MG uniform segments in z-direction. For each segment, the correspond-

ing field amplitudes, Rq, Sq, q = 0, . . . ,MG, have to be calculated. The amplitudes
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at the beginning and at the end of the grating are related by a transition matrix,

F = FMG
· FMG−1 · · ·F1, where Fq , q = 1, . . . ,MG, are the transition matrices of the

individual segments. Hence, (
RMG

SMG

)
= F

(
R0

S0

)
. (5.38)

5.5.2.4 Received Sensor Signal:

At the last stage, the reflected signal travels back to the receiver, where it is con-

verted to the electrical domain by the photodetector. Since the signal passes the fiber

twice, the fiber transfer function, H(λ)(ω, L(λ)

SMF), has to be applied twice as well. Let

Ω0 = c0/λ0 be the optical frequency at the center of the sweep range. Then, for

the i-th pulse, the instantaneous center frequency is given by Ωi = Ω0 −∆Ωi, where

∆Ωi = c0(λi − λ0)/(λiλ0).

Combining the models in (5.28, 5.30, 5.31, 5.37), an expression for the signal reflected

from an FBG at distance z = Lz can be obtained in the baseband frequency domain:

Er(ω) =
∑
i

g(λi) ρ(λi) A(λi)(ω −∆Ωi)H
(λi)(ω −∆Ωi, Lz)

2 e−jωτrep,i . (5.39)

Taking the inverse Fourier transform, the time-domain signal, Er(t, λ(t)), can be deter-

mined. The dependency on λ(t) emphasizes the change of the wavelength with time.

Next, the received signal is detected by the photodetector. It is assumed that the light

intensity is uniformly distributed over the sensitive area of the PD, APD. Based on the

optical intensity, I(t), the detected optical power at time instant t can be calculated

by [154]

P̄r(t) =

∫
APD

I(t) dAPD =

∣∣∣∣Er(t, λ(t))E∗r (t, λ(t))

ZW

∣∣∣∣ , (5.40)

where ZW is the wave impedance of the medium. Then, the output current of the

photodetector is given by [154]

iPD(t) = R(λ)

PD P̄r(t) =
qe λ(t) η(λ(t))

PD

h c0

∣∣∣∣Er(t, λ(t))E∗r (t, λ(t))

ZW

∣∣∣∣ , (5.41)

where h is Planck’s constant, qe is the elementary charge, and η(λ)

PD is the quantum

efficiency of the active material.

When the photodetector has a slow response time, the envelope signal that modulates

the pulse train can be extracted. The overall bandwidth of the photodetector and the
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receiver circuitry is modeled by a lowpass filter with transfer function H (∆f)

LP (ω) and an

effective receiver bandwidth, ∆f , i.e.

r(t,∆f) =
1

2π

∫ ∞
−∞

ejωtH (∆f)

LP (ω) iPD(ω) dω , (5.42)

where iPD(ω) is the Fourier transform of iPD(t).

Subsequently imperfect knowledge of ∆f is assumed. Since r(t,∆f) is the generating

function of the translation-invariant dictionary in (5.1), this assumption translates to

uncertainty in the dictionary in terms of a dictionary parameter, θ, which depends

on ∆f . It is a global parameter, because it jointly affects the temporal width of all

FBG reflections.

5.5.3 Alternating Sparse Estimation and Dictionary Learning
With Highly Coherent Dictionaries

In order to estimate a set of dictionary parameters, θ, and a sparse representation, x,

AE algorithms can be used The basic concept of AE is described below:

First, an initial estimate of θ is used to obtain an estimate of the desired sparse

representation, x. In subsequent iterations, the current estimate of θ is obtained based

on the previous estimate of x. The current estimate of θ is then used to yield an

improved estimate of x, etc. The flow diagram in Figure 5.2 visualizes this process. It

is detailed in Section 5.5.4.

In this chapter, sparse estimation is performed using a greedy OMP algorithm [7],

although other algorithms can be similarly employed. The reasons for this choice are

threefold:

(i) OMP offers a simple and fast implementation. Usually, it has a lower computa-

tional complexity than optimization-based methods [25].

(ii) OMP requires an estimate of the sparsity level to determine a stopping rule. In

FBG-based fiber-optic sensing, the sparsity level is equivalent to the number of

FBGs, which is exactly known.

(iii) Greedy methods are more robust to off-grid problems than optimization-based

methods: OMP iteratively estimates one atom by considering the maximum cor-

relation between all atoms and the residual signal. Therefore, it is guaranteed to

yield a K-sparse representation after K iterations. Optimization-based methods,

in contrast, are likely to simultaneously select two adjacent atoms with reduced

amplitudes when the true value falls in between the two grid points.
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The translation-invariant dictionary used in CFS-DL can be highly coherent, such that

the RIP conditions for the considered sparse estimation algorithm do not hold. More-

over, sparse estimation is performed based on the compressed measurements, y, using

the combined sensing matrix, B(θ) = ΦD(θ), where Φ is a sub-Gaussian sampling

matrix. Since B(θ) represents the projection of D(θ) onto a lower-dimensional sub-

space, the coherence level of B(θ) is even higher. Besides, the standard RIP results

for CS matrices are no longer applicable when a redundant dictionary is used (see

Appendix A.1). Hence, standard OMP fails if the dictionary coherence is too strong,

since the required RIP conditions for unique sparse reconstruction are violated [29,32].

In order to alleviate this problem, the coherence level is reduced by applying a dictio-

nary pre-processing routine for inter-atom interference mitigation, as proposed in [32].

When IAI mitigation is applied, the desired sparse representations can be iteratively

estimated along with the unknown dictionary parameters using AE. Although the RIP

conditions for OMP are more stringent than for `1-minimization [25], dictionary pre-

processing is necessary in both cases if the coherence level is too high. The coherence

distance, introduced in Chapter 2, Equation (2.11), is subsequently used to assess the

difficulty in estimating the desired sparse representation and to distinguish the coher-

ence level of dictionaries with different parametrizations.

5.5.4 The PDL-OIAI/OMP algorithms

The PDL-OIAI algorithm performs iterative OMP-based sparse estimation and DL

using highly coherent parametric dictionaries. The inter-atom-interference (IAI) mit-

igation method in [32] is incorporated as a sub-routine to handle strong coherence

distance. The PDL-OMP algorithm represents a reference method without IAI miti-

gation. It is introduced to emphasize the importance of IAI mitigation for alternating

sparse estimation and DL when the dictionary is highly coherent. The flow diagram

in Figure 5.2 depicts the full processing chain of both algorithms, including CS-based

signal acquisition. Input for both algorithms are the CS samples, y, a maximum num-

ber of AE-iterations, D, an initial guess for the dictionary parameters, θ̂ (0), and the

corresponding combined sensing matrix, B(θ̂ (0)) = ΦD(θ̂ (0)).

In each AE iteration, the IAI mitigation sub-routine yields a data-dependent modi-

fied sensing dictionary, W. Since the dictionary parameters are fixed during the IAI

mitigation process, the dependency of D,B and W on θ can be omitted. Figure 5.3

depicts the reduced dictionary coherence of W for different initial coherence levels

of D. The number of measurements, M , (i.e. the number of rows in B) is chosen to be

large, such that B exhibits a similar coherence distance as D. It can be seen that the

coherence distance, dc(W) in Figure 5.3, is much smaller than dc(B) and dc(D), which
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significantly alleviates the problem of sparse estimation. One major advantage is that

the physical interpretation of the sparse support is not altered by the IAI mitigation

procedure. In particular, the sparse representation, x̂, obtained with respect to W,

can be used to reconstruct the original sensor signal by r̂ = Dx̂. Hence, the significant

elements in x̂, indicated by the indices in Ŝ = supp{x̂}, can be used to estimate the

sparse representation with respect to D.

Following the AE paradigm in Figure 5.2, an initial sparse representation, x̂(0), is esti-

mated based on W and based on the initial dictionary parameter, θ̂ (0). Then, a locally

optimal estimate of θ is obtained by minimizing a residual, res(θ). In the d-th iteration,

an improved sparse representation, x̂ (d+1), is estimated based on the current parame-

ter estimates, θ̂ (d). Then, x̂ (d+1) is used to improve the estimates of the parameters,

yielding θ̂ (d+1), and so on. A suitable stopping rule can be defined by a lower thresh-

old for res(d)(θ), or by a maximum number of AE-iterations, D. The PDL-OIAI and

PDL-OMP algorithms stop after d = D iterations or if res(d)(θ̂(d)) ≤ βres = (1 + εr)Pn,

for εr > 0. Herein, Pn is an estimate of the total noise power. The algorithms return

the AE-iteration index, d = d∗, for which the smallest residual is obtained. It is used

to determine the corresponding outputs, x̂ (d∗), θ̂ (d∗) and Ŝ(d∗) = supp{x̂(d∗)}.
In Figure 5.2 the residual is calculated based on the `2-norm of the difference between

the measurements, y, and the model, using the current estimates of x and θ. However,

other cost functions can be used, dependent on the application. Generally, AE-based

estimation is only locally optimal. Nevertheless, when the parameter space forms a

convex set and also the objective function of the residual is jointly convex in all param-

eters, convex optimization methods can be readily applied to yield a globally optimal

solution. When the dictionary is not a simple function of the parameters, it can be

derived for a set of discrete values, such that the residual is minimized by comparing

its value for all considered parameter values. The range of parameters can be lim-

ited by physical restrictions or based on a priori available information of the system.

For example, a Fisher-information-based criterion can be used to determine a grid of

parameter points with constant inter-atom coherence [155].
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CS-based acquisition

M sweeps: y = Φr

Sparse estimation

IAI: Sensing dictionary: W(θ̂(d))

OMP: Delay estimation: x̂(d)

Parametric dictionary learning

res(d)(θ) = ‖y − B(θ̂(d−1)) x̂(d) ‖22
θ̂(d) = arg minθ res(d)(θ)

res(d)(θ̂(d)) < βreg

or

d ≥ D

r(t)

Φ

{
θ̂(0), D, B(θ̂(0))

}
PDL-OIAI /

PDL-OMP

d
:=

d
+

1

no

{
x̂(d∗), θ̂(d∗), d = d∗, res(d∗)(θ), Ŝ(d∗) = supp(x̂(d∗))

}yes

Figure 5.2. Structure diagram of the CFS-DL framework: CS-based acquisition is
followed by PDL-OIAI/OMP for AM-based sparse estimation and parametric DL. The
reference method, PDL-OMP, does not perform IAI mitigation.
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5.5.4.1 IAI mitigation

This subsection introduces the concept of IAI mitigation. It represents a short review

of the method proposed in [32].

IAI mitigation alleviates the problem of high dictionary coherence, especially when

greedy methods such as OMP are used. In contrast to related static preprocessing

methods, e.g. in [29,105], the data itself is taken into account to reduce the coherence

level of the dictionary. Since the joint problem of CS with redundant dictionaries is

considered, IAI mitigation is applied to the combined matrix, B = ΦD.

In order to analyze the problem of IAI, it is advantageous to understand the underlying

concept of the OMP algorithm. OMP pursues an iterative search for the dictionary

atoms in B = [b1, . . . ,bN ], based on their correlation with the measured signal, y. It

stops after a maximum number of iterations has been carried out. Let Ω = {1, . . . , N}
denote the set of dictionary indices, such that the index of the atom selected in the

first (k = 1) OMP iteration is found by [32]

arg max
i∈Ω
|b>i y| = arg max

i∈Ω

∣∣∣∣∣ ∑
q∈S

b>i bqxq + b>i n

∣∣∣∣∣ . (5.43)

The sum-term in (5.43) highlights the interference due to other atoms with indices

in S. Interference occurs when the inner product between different atoms is large,

i.e. when bibq is large for i 6= q. This can lead to an incorrect selection of atoms

and, hence, yield incorrect sparse representations. In order to reduce the coher-

ence level, the problem (5.43) can be solved using a modified sensing dictionary,

W = [w1, . . . ,wN ] [32], i.e.

arg max
i∈Ω

∣∣∣∣∣ ∑
j∈S

w>i bjxj + w>i n

∣∣∣∣∣ . (5.44)

The atoms of W have to be designed to minimize the IAI terms with other correct

atoms, i.e. w>j bi, j, i ∈ S, i 6= j. Nevertheless, in order to maintain the physical

interpretation of the atom indices with respect to the original dictionary, B (or D),

strong correlation between wi and the corresponding original atoms, bi, i ∈ S, has to

be enforced. Hence, when x̂ is a sparse representation of y = Wx, then r̂ = Dx̂ is

an approximation of the original signal, r. The modified dictionary, W, is found by

calculating the Minimum Interference Distortionless Response [32]:

wi = arg min
w̃i

∣∣ w̃>i BS B>S w̃i

∣∣ s.t. w̃>i bi = 1 , i = 1, . . . , N , (5.45)

where BS is a sub-matrix of B that consists of the columns with indices in S = supp{x}.
Since S is unknown, an iterative algorithm is used to approximate BSB

>
S by
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BU(j)B>, j = 1, . . . JU , where U(j) = diag(|(W(j−1))>y|ρu). Herein, JU denotes the

number of iterations and ρu > 0 is a regularization parameter. Subsequent iterations

with index j, j = 1, . . . , JU , yield an improved solution for the modified dictionary

atoms, w
(j)
i , i = 1, . . . N , which can be calculated in closed-form according to [32].

Figure 5.3 shows the difference in the coherence levels of W as compared to the co-

herence of D and B. The coherence is measured in terms of the coherence distance,

dc, introduced in Chapter 2, Equation 2.11. It can be seen that dc(W) � dc(B) and

dc(W)� dc(D).

Figure 5.3. The coherence distance, dc, as a measure of the coherence level for different
matrices: The original coherent dictionary, D, the combined sensing dictionary, B,
and the modified sensing dictionary, W. The latter achieves the lowest values of the
coherence distance due to IAI mitigation.
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5.6 Computational Complexity

The material presented in this section is partly taken from [30]11.

The computational complexity is determined for both PDL-OIAI and PDL-OMP, as-

suming that D AE iterations are performed. An AE iterations is subdivided into two

steps, one for sparse estimation and the other for DL. In each AE iteration, both

algorithms run K iterations of the OMP algorithm to estimate the K significant com-

ponents in S.

One OMP iteration has complexity O(NM), where M is the number of CS measure-

ments and N is the dimensionality of the sparse coefficients. Hence, regarding the task

of sparse estimation, PDL-OMP performs O(KMN) operations in the d-th AE itera-

tion. For PDL-OIAI the task of sparse estimation is governed by IAI mitigation, i.e. by

calculating the modified dictionary atoms wi in (5.45) ∀ i = 1, . . . , N . The overall IAI

mitigation procedure requires JU internal iterations to yield a modified sensing dictio-

nary, W, with sufficiently low coherence. Each internal iteration of the IAI mitigation

sub-routine has complexity O(N2M + NM2 + M3). Therefore, PDL-OIAI requires a

total of O(KJU(N2M +NM2 +M3)) operations in the d-th AM iteration. Trading-off

performance and computational complexity, W can be fixed after the first OMP iter-

ation and calculated only for k = 1. In addition, the atoms, wi, i = 1, . . . , N , can be

independently calculated in parallel to speed up computations.

It is assumed that the dictionary is not a simple function of θ. Hence, it can only be

calculated at discrete parameter points. Accordingly, the residual is calculated for a

number of Rθ values of the parameter θ. The complexity of computing the residual

for one parameter point is O(NM2). Finally, in the d-th AE iteration, the DL step

requires O((RθNM
2)) operations for both PDL-OIAI and PDL-OMP.

The total computational complexity of PDL-OIAI and PDL-OMP is summarized in

Table 5.1. For PDL-OIAI, the cases where W is fixed or re-calculated in each OMP

iteration are explicitly distinguished.

Table 5.1. Computational complexity of PDL-OMP and of PDL-OIAI when W is
determined ∀ k = 1, . . . , K, or only for k = 1, keeping it fixed for k > 1.

PDL-OMP: O(D[KNM + (RθNM
2) ] )

PDL-OIAI: O(D[KJU(N3M +N2M2 +NM3) + (RθNM
2) ] )

→W fixed: O(D[JU(N3M+N2M2+NM3)+KNM+(RθNM
2)])

11C. Weiss and A. M. Zoubir, ”A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,“ accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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5.7 Simulations and Experimental Validation

In this section, the applicability of the presented CFS-DL framework is evaluated based

on simulations and real data. First, the parametric signal model in Section 5.5.2 is

adopted. The parameters are adjusted to simulate the sensor system in [70, 86]. The

parametrized model is used to generate the parametric dictionary in (5.1). Subse-

quently, this dictionary is used to evaluate the performance of PDL-OIAI/OMP for

simulated data in various scenarios of different CS matrices, dictionary parameter val-

ues and SNRs. Finally, real data taken from the system in [70, 86] is used for experi-

mental validation.

The experimental data was acquired at the Yamashita laboratory of photonic com-

munication devices, The University of Tokyo, Japan. It was kindly provided by the

authors Yamashita et al. in [86].

The material presented in this section is partly taken from [87]12, [88]13, [30]14.

5.7.1 Fiber-Optic Sensor Simulation

In order to create a suitable dictionary for sparse estimation, the sensor system in

Figure 5.1 is simulated to obtain the received filtered sensor signal, r(t,∆f), where

∆f is the filter bandwidth. This signal is used to generate the dictionary. Later

on, the same dictionary is employed in simulations and for experimental validation

using real data from the fiber sensor in [70, 86]. Therefore, the model parameters are

adapted to match the system setup in [70,86]. In this setup, the sensing fiber contains

K = 4 FBGs, such that K = 4 reflections are observed at the receiver. Figure 5.4 (a)

shows the total laser output (pulse train) of one sweep. The single pulses are closely

spaced and not resolved in this plot. The shape of the envelope is mainly determined

by the SOA gain profile. It is in good agreement with the experimental measurements

in [70,86]. In Figure 5.4 (b), the FBG reflection spectrum is depicted. When the model

parameters are correctly adjusted, the simulated reflection spectra are close to the

reflection spectra of the FBGs in the sensing fiber in [70,86]. Figure 5.4 (c) depicts the

12C. Weiss and A. M. Zoubir, “Fiber Sensing Using UFWT-Lasers and Sparse Acquisition,” in Proc.
of the 21st European Signal Processing Conference (EUSIPCO), September, 2013.

13C. Weiss and A. M. Zoubir, “Fiber Sensing Using Wavelength-Swept Lasers: A Compressed
Sampling Approach,“ in Proc. of the 3rd International Workshop on Compressed Sensing Theory and
its Applications to Radar, Sonar and Remote Sensing (CoSeRa), June, 2015.

14C. Weiss and A. M. Zoubir, ”A Compressed Sampling and Dictionary Learning Framework for
Wavelength-Division-Multiplexing-Based Distributed Fiber Sensing,“ accepted for publication in Jour-
nal of the Optical Society of America A, 2017 (assigned issue: vol. 34, no. 5).
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reflections, r(t,∆f), from K = 4 FBGs. Herein, ∆f is chosen to extract the envelope

signals without distorting their shape. The temporal width of the reflection envelopes

is much smaller than the ones measured in [70, 86]. According to the authors in [70],

the strong broadening of the experimentally measured reflections is caused by a limited

bandwidth of the analog-to-digital converter and by an extended laser linewidth at high

scan rates. Based on this observation, ∆f can be seen as an auxiliary parameter that

accounts for all indistinguishable parameters that jointly contribute to the temporal

width of the reflections. In order to estimate the underlying sparse representation, ∆f

is estimated in terms of the global dictionary parameter, θ.

(a) (b) (c)

Figure 5.4. Fiber-optic sensor simulation. Left: laser output at sweep rate Sr = 40 kHz.
Center: simulated and measured FBG reflectivity. Right: FBG reflection envelopes.

5.7.2 Setup and Basic Settings

In the subsequent simulations, K = 3 uniform FBGs are considered. Two reflections

are closely spaced and all reflections have the same amplitude, Ax. The dictionary

is based on the model in Section 5.5.2, where the N = 2L dictionary atoms are cre-

ated from L = 134 samples of r(t,∆f). According to this model, the effective receiver

bandwidth, ∆f , determines the temporal width of the reflections. Since K is small,

the conventional coherence measures, µB(D(θ), K) and µMC(D(θ)), are very similar

and vary only slightly for small changes in the parameters δt, θ. Therefore, the coher-

ence distance, dc(D), introduced in Chapter 2, is used to distinguish between different

coherence levels. The granularity of the delay grid is fixed to δt = 50 ns. Therefore,
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a change in the coherence level corresponds to a change in ∆f . It can be estimated

in terms of a global dictionary parameter relative to the true value, yielding estimates

θ̂ = ∆̂f/∆f . An initial estimate of θ is chosen at random, such that θ̂ (0) ∈ [1.2, 5].

The total parameter range is subdivided in Rθ ≈ 100 discrete parameter values.

CS is performed based on three types of sub-Gaussian sampling matrices, Φ. The

entries of the matrices are i.i.d. and drawn from the distributions below:

(I) Gauss : N (0, 1)

(II) Rademacher : {±1} with equal probability

(III) DF [106]: {−1, 0, 1} with probabilities {1
6
, 2

3
, 1

6
} .

The maximum number of AE iterations is set to D = 8. Based on the number of FBGs

(i.e. the number of reflections), the PDL-OIAI/OMP algorithms perform K = 3 OMP

iterations. For PDL-OIAI, the modified sensing dictionary, W, is estimated using

JU = 10 iterations for IAI mitigation, where W is fixed after the first OMP iteration.

The root mean-squared error (RMSE) is considered to evaluate the estimation perfor-

mance. Given a vector v and an estimator v̂, the RMSE is defined by

RMSE(v, v̂) =
√
Ev̂ ‖v − v̂‖2

2 . (5.46)

Herein, the sample mean over the estimates of all Monte Carlo trials is used to approx-

imate the expected value. The resulting average error is denoted by RMSE(v, v̂).

5.7.3 Visualization of the PDL-OIAI/OMP Algorithms

The simulations in this subsection show the evolution of the PDL-OIAI and the PDL-

OMP algorithms for different AE-iterations. If not stated differently, all simulations

are carried out with an SNR of 10 dB. The dictionary has a coherence distance of

dc = 14. For CS, M = 94 Gaussian measurements (sampling matrix (I)) are taken,

which reduces the data to be stored and processed by (L−M)/L = 30 %.

Figure 5.5(a) shows the simulated received sensor signal, r (noiseless), along with

the estimates obtained by PDL-OIAI and PDL-OMP. Due to a small value of the

effective receiver bandwidth (i.e. θ), the reflections are broadened and overlap. Figure

5.5(b) depicts the original sparse signal, x. The estimate, x̂, obtained by PDL-OIAI

accurately identifies the original sparse support, S. PDL-OMP cannot identify the

correct support set due to strong IAI. Therefore, only Ŝ obtained by PDL-OIAI can

be used to estimate the reflection delays. Figure 5.5(c) illustrates the evolution of
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the PDL-OIAI algorithm over several AE-iterations with indices d, d = 1, . . . , d∗. It

is zoomed on the closely-spaced sources on the left side and shows how the temporal

sparse solutions approach the original sparse signal, x. Finally, Figure 5.5(d) shows the

temporal solution of the estimated dictionary parameter, θ̂ (d), d = 1, . . . , d∗, compared

with the true value, θ = 1. The linear decrease for d < 5 is due to a limited step size,

which is introduced to improve the stability of the algorithms. After d∗ = 6 iterations,

PDL-OIAI estimates the dictionary parameter with high accuracy, while PDL-OMP

converges to a stationary value with a small offset from the true value.

(a) (b)

(c) (d)

Figure 5.5. Visualization of the PDL-OIAI/OMP algorithms: (a) Simulated sensor sig-
nal (noiseless) and estimated sensor signal obtained by sparse reconstruction. (b) Orig-
inal sparse signal (black bullets) and estimated sparse signal. (c) Temporal estimates
of the sparse signal (zoomed on the closely-spaced reflections on the left side) for dif-
ferent AE-iterations. (d) Evolution of the dictionary parameter estimates for different
AE iterations in comparison to th true value.
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5.7.4 Performance Evaluation

The performance of the algorithms is evaluated in various scenarios of different SNRs,

CS matrices, and coherence levels. The true sparse support is denoted by S = supp{x}
and Ŝ is an estimate. The vector s and its estimate, ŝ, are defined to contain the support

indices in increasing order. The algorithms are initialized by θ̂ (0) > θ, such that

dc(D(θ̂ (0))) < dc(D(θ)). Two values of the effective receiver bandwidth are considered.

The coherence distance of the corresponding dictionaries is dc = 14 and dc = 49,

respectively. For IAI mitigation, PDL-OIAI performs JU = 10 internal iterations when

dc = 14, and to JU = 18 when dc = 49. All results are averaged over 500 Monte Carlo

trials. In order to compare the estimation performance, the RMSE is calculated. The

results are compared to the CRB in Section 5.4.3, which is calculated for a Gaussian

CS matrix. The value of the CRB depends on the actual realization of the random

matrix, Φ. Therefore, it is averaged over 1000 Monte Carlo trials.

It is to note that the CRB obtained this way is not the “true” CRB but the “averaged

CRB”, which is sometimes called the Miller and Chang bound (MCB) [156]. This

bound only applies to locally unbiased estimators that are unbiased for all values of

the random matrix (which is treated as a nuisance parameter). A detailed discussion

can be found in [157].

The CRB also requires the derivative of r(t, θ) with respect to θ. Since the dictionary

is not a simple function of θ, the derivative is approximated for a certain value, θ0.

The (l,i)-th element in D′(θ) is obtained by

∂

∂θ
[di(θ)]l

∣∣∣∣
θ0

≈ r(lTd − iδt, θ0)− r(lTd − iδt, θ0 −∆θ)

∆θ
. (5.47)

At first, the RMSE(s, ŝ) for the support indices is calculated, yielding the average

number of grid points between the true and the estimated support indices. Next, the

RMSE(θ, θ̂) is computed for the estimated dictionary parameter and compared to the

CRB. Finally, the vectors xS and x̂S are defined. They contain the coefficients in x

and x̂, corresponding to the indices in S and Ŝ, respectively. Then, the RMSE(xS , x̂S)

is computed relative to the common amplitude, Ax, and compared with the CRB in

Section 5.4.3. The comparison between the RMSE(xS , x̂S) and the CRB is valid, since

the constrained CRB equals the CRB of the ‘oracle estimator’, where of S is known.

In Figure 5.6, a Gaussian CS matrix is used and the performance is compared for

the two dictionaries with coherence distances dc = 14 and dc = 49, respectively. Ac-

cording to Figure 5.6(a), PDL-OIAI estimates the reflection delays (i.e. S) more ac-

curately than PDL-OMP. It yields smaller values of RMSE(s, ŝ) for both dictionaries

with dc = 14 and dc = 49, and for all SNRs. However, both algorithms are inaccurate

when dc is too high. In Figure 5.6(b), the RMSE(θ, θ̂) of PDL-OIAI and PDL-OMP are

similarly small for dc = 14. They are both close to the CRB even at lower SNRs. For
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dc = 49, however, the dictionary coherence limits the performance of PDL-OMP. The

performance gain due to IAI mitigation in PDL-OIAI is most significant at high SNRs.

Figure 5.6(c) shows the RMSE(xS , x̂Ŝ), normalized by the common amplitude Ax. For

dc = 14, the performance of PDL-OIAI and PDL-OMP is comparable. For dc = 49,

PDL-OIAI is only slightly better than PDL-OMP.

Finally, in Figure 5.7 and Figure 5.8, the performance of the different CS

matrices (I)-(III) is evaluated for dc = 14, with M/L = 50% and M/L = 20%, re-

spectively. It is important to notice that the performance is similar for all CS ma-

trices, although a (sparse) DF matrix discards 2/3 of all samples in every projection

step. PDL-OIAI achieves the greatest improvement over PDL-OMP in estimating S,

yielding a significantly smaller value of the RMSE(s, ŝ). Regarding θ and xS , an im-

provement over PDL-OMP can be observed only at higher SNRs. At lower SNRs, noise

is the dominating factor. Generally, when the SNR is high, PDL-OIAI obtains accurate

estimates of s, θ and xS , even though the number of CS measurements is small. For

example, in Figure 5.8(a), the sample ratio is M/L = 20% and the RMSE(s, ŝ) is as

small as 4 bins at SNR= 20 dB. Also, the RMSE(θ, θ̂) in Figure 5.8(b) is close to the

CRB. Nevertheless, it can be generally observed that RMSE(xS , x̂Ŝ) does not improve

significantly at higher SNRs, leaving a constant gap to the CRB.

5.7.5 Experimental Validation Using Real Data

For an experimental validation, the performance of the CFS-DL framework is evaluated

based on real data taken from the fiber sensing system in [70,86]. It was acquired at the

Yamashita laboratory of photonic communication devices at the University of Tokyo,

Japan. The core architecture follows the schematic in Figure 5.1. Further details of the

experimental setup are given in [70,86]. The parameters of the model in Section 5.5.2

are adjusted to match this reference system according to Section 5.7.1. The measured

reflections are broadened due to a limited ADC bandwidth and due to an extended laser

linewidth at high scan rates [70]. This broadening is taken into account by the effective

receiver bandwidth, which is estimated in terms of the unknown dictionary parameter,

θ = ∆f . In addition, there are a few distortions that are not explicitly modeled such

as the signal-dependent noise amplitude and the skew shape of the reflections. The

latter is caused by different rise and fall times in the temporal response of the PD.

The sensor signal, r, consists of L = 134 samples of the measured sensor signal. CS is

performed with a sampling ratio of M/L = 40%. For the correct value of the dictionary

parameter, the coherence distance is in the range 12 ≤ dc ≤ 30, while the considered

range of dictionary parameters yields coherence distances dc ∈ [9, 89]. The PDL-OIAI

algorithm runs JU ≤ 8 iterations for IAI mitigation. The sensing fiber contains 4 FBGs,

leading to K = 4 reflections with approximate delays of [7.79, 9.05, 10.27, 12.30] µs.
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Based on the delay grid of the dictionary, i.e. δt = 50 ns, the reflections are potentially

off-grid. Each reflection is assumed to appear within a well-defined delay region.

(a)

(b)

(c)

Figure 5.6. Performance of PDL-OIAI and PDL-OMP for different dictionaries with
coherence levels dc = 14 and dc = 49, respectively.
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(a)

(b)

(c)

Figure 5.7. Performance of the PDL-OIAI/OMP algorithms using 50% of the original
samples and sampling matrices (I)-(III).
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(a)

(b)

(c)

Figure 5.8. Performance of PDL-OIAI/OMP algorithms using 20% of the original
samples and sampling matrices (I)-(III).
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The randomness of the CS matrix and noise is taken into account by averaging the

results of 500 Monte Carlo trials. Outliers may arise from numerical instabilities in

the algorithms, e.g. due to a badly conditioned CS matrix. Therefore, the median of

the estimates is shown along with the 85%-confidence intervals for S,xS , and for the

estimated reflection signal.

Figure 5.9 shows the results obtained by PDL-OIAI and PDL-OMP. Each row cor-

responds to a different CS matrix (I)-(III). The left column of Figure 5.9 shows the

measured sensor signal, r. Also, the estimated reflection from the second FBG is shown

in terms of the median over all Monte Carlo trials (solid and dashed line). The shaded

areas depict the 85%-confidence interval. In the right column of Figure 5.9, the median

of the estimates of the sparse coefficients, x, is shown. The shaded areas signify the

85%-confidence intervals for the support, s, while the vertical error bars signify the

85%-confidence intervals for the amplitudes of the significant coefficients, xS .

Generally, PDL-OIAI and PDL-OMP show a comparable performance. This can be

ascribed to a relatively high SNR and a small coherence distance of the correctly

parametrized dictionary. However, the reflection delays, s, and the reflection am-

plitudes, xS , are slightly more accurate for PDL-OIAI. Both algorithms show some

robustness to perturbations that are not explicitly modeled, as mentioned above. Yet,

the confidence intervals imply a higher variance in the results obtained by PDL-OMP.

Table 5.2 details the medians and the 85% confidence intervals for θ obtained by PDL-

OIAI and PDL-OMP using the different CS matrices (I)-(III).

Table 5.2. Medians and 85%-confidence intervals for the effective receiver bandwidth,
∆̂f (in MHz), using the CS matrices (I)-(III). The ratio between the number of CS
samples and the number of original samples is M/L = 40%.

Algorithm Measure Gaussian Radem. DF

PDL-OIAI
Median

∆85%

1.6560

0.2565

1.6555

0.2397

1.6458

0.3727

PDL-OMP
Median

∆85%

1.6545

0.8139

1.6574

0.8115

1.6371

0.7745



5.7 Simulations and Experimental Validation 95

(a) (b)

(c) (d)

(e) (f)

Figure 5.9. Experimental validation using real data. Left column: the received sensor
signal (real data) and the median over all estimates of the second atom. The shaded
areas denote the 85% confidence intervals. Right column: the median of the estimated
support and amplitudes of x̂. The shaded areas and the vertical error bars indicate
the 85% confidence intervals for estimating S and xS , respectively. (a)-(b) Results
obtained by a Gaussian CS matrix. (c)-(d) Rademacher CS matrix. (e)-(f) Database-
friendly (DF) CS matrix.
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5.8 Discussion and Findings

The CFS-DL framework is adopted for WDM-based quasi-distributed fiber-optic sens-

ing. It is verified by experimental data that the considered signal model adequately

describes the received signal of the system in [70,86]. Therefore, the model is suitable

to create a redundant translation-invariant dictionary for this application. In fact, the

presented framework can be used for a wide range of applications, where the aim is

to estimate the delay coefficients of localized signals, e.g. in laser ranging [11] or to-

mography [134]. A fundamental assumption of the considered model is the modular

architecture, where the core system can be described by an LTI model. Based on this

assumption, the model is generic and can be adapted to match different system setups

as long as every component can be described by an LTI model.

Using CS, the number of samples to be stored and processed can be significantly re-

duced, according to the ratio M/L. In simulations and for experimental data, different

CS matrices perform similarly well. A possible explaination for this observation is the

high sparsity level of the signal with respect to the considered dictionary. Compared

with Gaussian matrices, binary CS matrices such as Rademacher matrices offer a sim-

pler hardware implementation. When the CS matrix is also sparse, a non-uniform

sampling scheme can be adopted, such that the average sampling rate required to real-

ize the CS projections is significantly reduced. In particular, DF matrices [106] lower

the average sampling rate by ≈ 66% and can be more efficiently stored than full sam-

pling matrices. In addition, a number of QA low-rate ADCs can be used in parallel.

Then, a target sampling rate, fs, can be realized when each ADC works at a constant

rate, fs/QA [102]. As compared to other related AE-based sparse estimation and DL

methods in [137,138,158], the additional IAI mitigation procedure in [32] enables PDL-

OIAI to handle strong dictionary coherence. In each AE iteration, it allows for sparse

estimation using a simple greedy OMP algorithm of low computational complexity,

rather than using an optimization-based method. Moreover, a comparison to the refer-

ence method, PDL-OMP, emphasizes that IAI mitigation is essential in order to obtain

reliable estimates of the dictionary parameter and for the sparse representation. It is

shown that IAI mitigation yields significantly lower coherence distances, which eases

the task of sparse estimation and, therefore, supports the work in [32]. In addition,

the IAI mitigation process maintains the correspondence to the physical parameters

of interest. That is, the sparse support (i.e. the reflection delays) estimated from

the modified sensing dictionary, W, can be used to estimate the FBG reflections with

respect to the original dictionary, D. In simulations and for experimental data, PDL-

OIAI obtains reliable estimates of the sparse support, S, the amplitudes of the sparse

coefficients, xS , and the dictionary parameter, θ. The estimation performance for θ is

even close to the CRB. Regarding the real data example, PDL-OIAI and PDL-OMP
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show some robustness to model errors and work stably in the presence of certain non-

modeled perturbations, e.g. the signal-dependent noise amplitude or the skew shape

of the FBG reflections. Since OMP-based algorithms select only one atom per itera-

tion, they are guaranteed to yield a K-sparse representation after K iterations. Hence,

PDL-OIAI and PDL-OMP are hardly affected when the underlying sparse signal is

off-grid.

Similar to the works in [9, 24, 27], a composite parametric dictionary is considered. In

CFS-DL, however, each sub-dictionary corresponds to the reflection from one FBG.

Since only one reflection per FBG is expected, the composite dictionary yields a highly

sparse representation of the signal, where the reflection delays are directly related to

the sparse support, S. Another general advantage of parametric shift-invariant dic-

tionaries is that only the atom-generating function has to be stored. However, due

to the IAI mitigation sub-routine in each AE iteration, also the full modified sensing

dictionary, W, needs to be stored.

A limitation of PDL-OIAI is the restriction to local optima in estimating the dictionary

parameter. Also parameter identifiability can be a problem when different parameters

are indistinguishable and cannot be individually estimated. However, it is sometimes

useful to define auxiliary parameters that represent a common feature to which several

indistinguishable parameters contribute. For example, the effective receiver bandwidth

represents the broadening of the temporal reflections, which can be related to various

parameters in the considered model. The high computational complexity of PDL-OIAI

is mainly due to the IAI mitigation sub-routine. The modified sensing dictionary, W,

has to be computed in each AE iteration and also an initial regularization parameter

is required. Nevertheless, it is shown that IAI mitigation is essential to handle strong

dictionary coherence. In order to lower the computational complexity, the modified

sensing dictionary, W, can be calculated only once in the first OMP iteration. More-

over, the atoms of W can be calculated in parallel to achieve an additional speed-up.

In order to improve the estimation performance, some extensions of the PDL-OIAI can

be considered. Higher SNRs can be achieved by jointly taking multiple CS measure-

ment vectors into account and by applying the concept of group sparsity [159]. Sparsity

over multiple measurements was previously used for sparse estimation in source local-

ization problems [5]. It is also adopted for the direction finding problem in Chapter 4.

Finally, the works in [5, 160] suggest to iteratively improve the grid accuracy using an

initial coarse grid and, then, refining the grid in subsequent iterations.
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5.9 Conclusion

An alternating sparse estimation and dictionary learning framework for highly coherent

dictionaries is presented. The framework is adopted for the application of WDM-based

quasi-distributed fiber-optic sensing with compressed sensing-based signal acquisition.

A comparison between different CS matrices shows that the performance of a sparse

Database-friendly (DF) sampling matrix is similar to that of a Gaussian sampling ma-

trix. Sparse sampling matrices can be more efficiently stored and reduce the average

sampling rate.

A parametric signal model is compiled to describe the sensor signal of a fiber sensor with

a common core architecture. This model is used to generate the sparsity-promoting

dictionary with translation-invariant structure. It is assumed that the system between

the interrogating laser and the photodetector has a modular structure and that every

component can be described by a linear time-invariant subsystem. Under this assump-

tion, the model is generic and can be customized to describe a particular system setup.

It is applicable to a wider class of applications besides fiber sensing.

Uncertainty in the dictionary is considered in terms of unknown global and local pa-

rameters. When different parameters are indistinguishable, an auxiliary parameter can

be defined to describe the joint contribution of these parameters to a certain effect.

In the context of fiber-optic sensing, the effective receiver bandwidth is defined as an

auxiliary dictionary parameter that describes the broadening of the reflections in the

temporal domain. The atoms of the dictionary are associated with the delays of the

individual FBG reflections. Hence, the reflection delays can be determined by esti-

mating the sparse support. A dense grid of delays is used to achieve high accuracy at

the cost of a high dictionary coherence. When the number of non-zero entries in the

sparse representation is small, conventional coherence measures, such as the mutual

coherence [28] or the Babel function [9,12] (see Chapter 2.2.1.2), do not vary much for

changes in the dictionary parameter or in the grid granularity of the dictionary atoms.

Therefore, the coherence distance is used to emphasize the difference in the coherence

level of the dictionary for different parametrizations.

The PDL-OIAI algorithm is introduced to accomplish alternating sparse estimation and

dictionary learning in the presence of strong dictionary coherence. It is based on the al-

ternating estimation (AE) paradigm and incorporates an inter-atom-interference (IAI)

mitigation procedure to obtain a modified sensing dictionary with reduced coherence

distance. In simulations and by experimental data, the performance of PDL-OIAI

is evaluated in different scenarios. A comparison to a reference method without IAI

mitigation, called PDL-OMP, shows that IAI mitigation is essential in the presence

of strong dictionary coherence. As an AE-based algorithm, the dictionary parameters

obtained by PDL-OIAI are locally optimal. Nevertheless, the estimation performance
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for the considered dictionary parameter is close to the Cramér-Rao bound.

The problem of high computational complexity for IAI mitigation can be alleviated by

parallel processing and by fixing the modified sensing dictionary after the first OMP

iteration in each AE iteration.

Future work can be carried out to develop fast updating methods for the sparse solution,

such that subsequent CS measurements can be efficiently incorporated. This enables

the system to monitor non-stationary scenes such as time-varying perturbations. Also,

the amplitudes of the sparse coefficients can be included in the estimation process.

They contain information of the traveling distance based on the signal attenuation.
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Chapter 6

Dictionary Learning Strategies Using a
Probabilistic Sparse Model

In this chapter, hybrid and full Bayesian estimation strategies for sparse estimation

and dictionary learning using highly redundant dictionaries are investigated. Due to

high redundancy in the dictionary, it is assumed that the RIP conditions for basic

`1-minimization are not fulfilled.

In the preceding chapters, a deterministic model for the coefficients of the sparse

representation is considered and the dictionary is modified in order to deal with

redundancy. In this chapter, the structure of the dictionary is leveraged to design a

probabilistic sparse model that allows for estimating a desired sparse representation

from highly redundant dictionaries without modifying the dictionary itself. The

sparse model developed in this chapter promotes selective shrinkage due to a suitably

chosen prior density and achieves augmented sparsity by exploiting the structure of

the dictionary. The resulting problem can be related to non-convex optimization with

`p-norm constraints, 0< p< 1, for which relaxed RIP requirements apply [161], such

that the task of sparse estimation is alleviated albeit high dictionary redundancy.

Similar to the PDL-OIAI algorithm in Chapter 5, the presented hybrid Bayesian

strategy follows the alternating estimation (AE) paradigm and employs a Monte

Carlo Expectation Maximization algorithm to iteratively estimating the sparse

representation and the dictionary parameters. The full Bayesian strategy, in contrast,

is used to jointly estimate the dictionary parameters and the sparse representation.

The presented sparse estimation and dictionary learning methods are applied to the

fiber sensing problem in Chapter 5. Moreover, the results are compared with those

obtained by a deterministic sparse model using the PDL-OIAI algorithm in Chapter 5.

The material presented in this chapter is partly taken from [131]1.

Chapter Outline

Section 6.1 gives an introduction and a motivation. Section 6.2 provides an overview of

state-of-the-art methods and related work. In Section 6.3, the general problem is stated.

In Section 6.4 the sparse model is developed and a relation to non-convex optimization

is established. The complete hierarchical structure of the model and a hybrid Markov

1C. Weiss and A. M. Zoubir, “Dictionary Learning Strategies for Compressed Fiber Sensing Using
a Probabilistic Sparse Model,” submitted to IEEE Transactions on Signal Processing, 2016.
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Chain Monte Carlo method for inference in this model are described in Section 6.5. The

hybrid and full Bayesian dictionary learning strategies are introduced in Section 6.6.

Section 6.7, evaluates the performance based on the problem of fiber sensing using

simulations and real fiber sensing data. In order to compare the performance achieved

by a probabilistic and a deterministic sparse model, the results are compared to those

obtained by the PDL-OIAI algorithm in Chapter 5. Section 6.8 gives a discussion of

the results and findings and Section 6.9 concludes this chapter.

6.1 Introduction and Motivation

There exist different approaches to estimating the parameters of a dictionary in a sparse

estimation framework. Common statistical methods are maximum likelihood (ML) or

maximum a posteriori (MAP) estimation [3]. The AE paradigm [53,54,162] (c.f. Chap-

ter 5) is often considered for solving the resulting optimization problems. It is based on

iteratively optimizing a local objective function and, therefore, yields locally optimal

estimates. The Expectation Maximization (EM) algorithm [163] represents one variant

of AE, which is often often employed to estimate unknown model parameters in hybrid

Bayesian settings [3, 164,165].

In sparse estimation, a deterministic or probabilistic model for the coefficients of the

sparse representation can be considered. While the deterministic case is frequently

encountered in the sparse estimation literature [9, 27], the flexibility of a probabilistic

model can be advantageous, e.g. for the modeling of measurement errors and/or model

errors. In addition, a hierarchical structure is useful when only vague prior knowledge

is available. A comparative analysis between deterministic and probabilistic sparse

models for a particular problem or application can support the selection process of a

suitable model.

General advantages and disadvantages of hybrid and full Bayesian strategies are stated,

e.g., in [164, 165]. Bayesian methods can yield better results if the introduced prior

knowledge is sufficient and adequate [164]. Insufficient knowledge can lead to a small-

sample bias [164]. Also, the computational complexity can be high.

In the problem of fiber sensing, only few samples are acquired due to the CS-based

acquisition scheme. While no prior knowledge of θ is available, strong sparsity-related

prior knowledge is incorporated.

Different probabilistic models have been proposed to promote sparsity. In principle,

weakly sparse and strongly sparse models (discrete mixtures) can be distinguished [162].

One important class of strongly sparse models is the family of ‘Spike & Slab’ mod-

els [166]. However, practical signals are typically corrupted by measurement errors or
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noise, such that the underlying signal is not exactly sparse. When these effects are

neglected, they can affect the quality of the sparse representation by introducing a

bias. This effect can be observed when sparse regularization is used to suppress the

contributions of measurement errors or noise in the obtained sparse representation (c.f.

Chapter 4). Therefore, a weakly sparse model is considered in this chapter. Weakly

sparse models are based on continuous distributions that are peaked around zero with

heavy tails such as Gaussian or double-exponential (Laplace) distributions [162]. They

favor small values but do not prevent selected elements from becoming sufficiently

large [162, 167]. Nonetheless, when the dictionary is highly coherent, the selective

shrinkage induced by the sparsity prior alone might not yield a sufficiently sparse rep-

resentation. Additional knowledge of the data or the dictionary structure, such as

correlation, can help to obtain a desired sparse representation [168,169].

In complicated probabilistic models, it can be unfeasible to evaluate the posterior dis-

tribution. Yet, approximate inference is possible using Markov Chain Monte Carlo

(MCMC) or variational Bayes methods [163,170,171]. Variational methods are advan-

tageous in terms of scalability and computational complexity. They attempt to ap-

proximate the posterior distribution by simple analytic functions, thereby introducing

a deterministic approximation error [163, 171]. MCMC methods generate samples of

the posterior distribution, where the samples form a Markov chain [163]. Although

MCMC can be costly when the sample space is high-dimensional, there do exist ef-

ficient sampling algorithms such as the Hamilton Monte Carlo (HMC) method. The

quality of an approximation obtained by sampling methods increases with the allowed

run-time, which leads to a stochastic approximation error [163].

One of the aims in this chapter is to provide a comparative analysis between the sparse

representations obtained by a deterministic and a probabilistic sparse model. There-

fore, the developed estimation methods in this chapter are applied to the problem of

compressed fiber sensing in Chapter 5, using the corresponding translation-invariant

dictionary in Equation 5.1. The signal model in Chapter 5 is modified by introducing

a probabilistic hierarchical (weakly sparse) model for the coefficients of the sparse rep-

resentation. It is shown that the considered sparse model can be related to non-convex

optimization with `p-norm constraints, where 0<p<1. In addition, the structure of the

data and the dictionary is leveraged to achieve augmented sparsity. In particular, a

Markov Random Field model is used to describe the dependency between the coeffi-

cients of the sparse representation, which induces additional collective shrinkage effects.

According to the fiber sensing problem in Chapter 5, an unknown global parameter is

used to describe uncertainty in the dictionary. Two strategies are presented to esti-

mate this parameter. The first strategy, referred to as S1 , considers a deterministic

parameter model and employs a Monte Carlo EM algorithm to estimate the dictionary

parameter. The second strategy is referred to as S2 and considers a probabilistic hier-
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archical model for the dictionary parameter. This leads to a fully probabilistic model,

where the sparse representation and the dictionary parameter are jointly estimated.

Since the dimensionality of the sparse representation can be high, HMC and Gibbs

sampling are used to accomplish approximate inference. Using simulations and exper-

imental data, the results are compared to those obtained based on the deterministic

sparse model in Chapter 5. The Cramér-Rao bound (CRB) derived in Chapter 5 serves

as a benchmark to assess whether or not a performance gain is achieved by using the

probabilistic sparse model presented in this chapter.

6.2 State of the Art and Related Work

Different probabilistic sparsity-promoting models have been discussed in the literature.

A comprehensive overview and an analysis of different sparse prior models with hier-

archical structure are provided in [172]. Hierarchical sparse models have been used in

various applications such as direction-of-arrival estimation [173] or compressed sens-

ing (CS) [174,175]. Among the sparsity-promoting models, weakly sparse and strongly

sparse models can be distinguished. The ‘Spike & Slab’ model is a prominent variant

of a strongly sparse model, which has been investigated, e.g., in [166, 176, 177]. Also

weakly sparse models have been widely studied, e.g., in [167, 171]. In [174, 175], a

Bayesian framework for CS with Laplace prior is proposed, and the work in [178] fo-

cuses on CS with unknown noise level and Gaussian sparsity prior. The authors in [167]

address the general problem of selecting an appropriate prior for sparse regression and

shrinkage, including an overview of the properties of different priors. They point out

that the problem can be viewed in terms of choosing a prior distribution or a penalty

function. An analysis of various Bayesian models and a comparison to `1-minimization

is provided in [162]. Seeger [171] observed favorable shrinkage properties of certain pri-

ors, e.g. the Laplace prior, where small components are strongly favored but selected

components happened to be significantly larger. The authors in [177] call this property

‘selective shrinkage’. It can be generally observed for heavy-tailed priors such as the

‘horseshoe’ prior in [167,179] or the Student’s t-prior in [171]. It is shown in [180] that,

compared to a Gaussian or Laplace prior, the horseshoe prior shrinks significant sparse

coefficients less and small coefficients stronger to zero. These findings build the basis

for the sparsity model in this chapter, where the shape of the considered sparsity prior

is close to that of the horseshoe prior.

Instead of selecting sparsity priors, other works focus on the perspective of penalized

regression. In [181], higher sparsity levels have been reported by imposing a penalty

on the `p-norm for 0 < p < 1, rather than penalizing the `1-norm. It has been shown
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in [161] that the RIP requirements can be relaxed in the case of `p-norm penalization.

Also, the authors in [161, 182] found that non-convex CS based on `p-norm penaliza-

tion requires less measurements than standard CS based on the `1-norm. Inspired by

these results, a relationship between the sparse model presented in this chapter and

non-convex optimization with `p-norm constraints is established.

In addition to selecting a sparsity prior, the structure of the signal and the dictionary

can be leveraged. The concept of ‘block sparsity’ [168] is a popular example. It has

been applied for Bayesian learning, e.g. in [169]. A related concept of ‘joint sparsity’ is

used by Wakin et al. in [183]. The correlation between the underlying sparse signal of

subsequent CS measurements is exploited in [5], with the aim to improving the signal-

to-noise ratio. Correlation structures can also be used to achieve smoothness [184]

or to describe the relation between adjacent pixels in image processing [185]. Other

works consider sparsity directly in the correlation domain [186, 187]. In this chapter,

correlation between the sparse coefficients is modeled in terms of Markov Random

Fields [188], which yields additional collective shrinkage effects.

The work in [162] emphasizes that MCMC methods are powerful for inference in sparse

models. The Hamilton Monte Carlo (HMC) method [189] is shown to be efficient in

high dimensional spaces and in the presence of correlation. A combination of HMC

and Gibbs sampling is suggested by the author in [189]. This technique is applied

for inference in the hierarchical sparse model presented in this chapter. In order to

estimate dictionary parameters along with a sparse representation, AE is frequently

employed [138, 158]. The presented dictionary learning strategy, S1 , also represents

one AE variant. Different from AE-based estimation, a full Bayesian framework for

sparse estimation and dictionary learning is proposed in [56]. This framework can be

related to the presented method, S2 , but it does not consider correlation among the

sparse coefficients.

6.3 Problem Statement

The problem of estimating the reflection coefficient of localized signals is addressed. It

is cast as a sparse estimation and dictionary learning problem according to Chapter 5,

Section 5.3. A parametric translation-invariant dictionary, D(θ), with high redundancy

and an unknown scalar parameter, θ, is considered. It is assumed that θ describes the

localization of the modeled signals, such that it impacts the the width of the region

to which the modeled signals are confined. The i-th dictionary atom is created from

shifted versions of a generating function, r(t, θ), which is sampled at a design sampling

rate, Td, i.e.

[di]l(θ) = r(lTd − i δt, θ), l = 1, . . . , L, i=1, . . . ,N, (6.1)
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where δt denotes the spacing between subsequent translation coefficients. It determines

the granularity of the dictionary grid, hence, the redundancy of the dictionary. Note

that the relation between θ and D is the same as described in detail in Chapter 5.5.2.

CS is used to acquire the observed signal. The sampling process is described by a CS

sampling matrix, Φ, and the signal model for the CS measurements, ym, m = 1, . . . ,M ,

is given by

y = ΦD(θ)x + n = B(θ)x + n . (6.2)

Herein, B(θ) denotes the combined sensing dictionary and x ∈ RN is a sparse vector

with K significant components at the index positions in S = {i1, . . . , iK}. The vector

n ∈ RM represents a Gaussian noise component with independent and identically

distributed entries, nm ∼ N (0, σ2
n), m = 1, . . . ,M . The likelihood function can be

written by

p(y |x, θ) = (
√

2πσn)−Mexp

(
− 1

2σ2
n

‖y −ΦD(θ)x‖2
2

)
. (6.3)

In the context of the considered problem in fiber-optic sensing (c.f. Chapter 5), r(t, θ)

describes the portion of the interrogating signal that is reflected from a fiber Bragg

grating (FBG). The parameter θ ∈ R+ describes the effective receiver bandwidth.

It is defined as an auxiliary parameter to describe the temporal broadening of the

received reflections. For a fixed spacing, δt, the parameter θ directly impacts the

similarity between adjacent dictionary elements. A small value of θ corresponds to

broad reflections and high similarity.

The overall task is to estimate the dictionary parameter, θ, along with the underlying

sparse representation, x, that correctly describes the FBG reflections.

6.4 Probabilistic Sparse Model for Localized

Signals

In order to correctly estimate the translation coefficients of localized signals, the lo-

calization, i.e. the width of the region to which the signals are confined, has to be

correctly described by the generating function of the translation-invariant dictionary.

Without prior assumptions, there exist indeed many valid explanations of the observed

data based on the general model in (6.2), and the dependency of the sparse represen-

tation, x, on the localization of the signal, θ, (and vice versa) introduces additional

ambiguity.

This dependency can be illustrated for the problem of fiber sensing: a large value of

the dictionary parameter, θ, corresponds to a large receiver bandwidth, such that the
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dictionary models highly confined and sharp reflections peaks. However, when the ob-

served data is generated by a number of K physical reflections that are significantly

broader, then K̃ � K non-zero coefficients in x are necessary to fit the data based on

this dictionary. In this case, the interpretation with respect to the considered model

is misleading, since the individual peaks are no longer related to the physical reflec-

tions. Therefore, a suitable parametrization of the dictionary requires a smaller value

of θ, yielding a sparse representation with exactly K significant non-zero coefficients.

In this setting, the delays of the FBG reflections (i.e. the translation coefficients of

the observed localized signals) can be correctly estimated from the positions of the

non-zero coefficients in x, i.e. from the elements in S. This example shows that, when

both x and θ are unknown, the translation coefficients can only be estimated when the

sparsity assumption is properly incorporated in terms of a suitable prior.

Measurement errors, noise or other distortions can cause artifacts in the sparse repre-

sentation. A ‘strongly sparse’ model (discrete mixture) enforces a truly sparse repre-

sentation by completely ignoring these effects. This can lead to a biased representation

that does not correctly indicate the translation coefficients (i.e. the reflection delays in

the fiber sensing problem). A ‘weakly sparse’ model, in turn, yields a representation

in which most coefficients are close to but not exactly zero. Then, the translation

coefficients more accurately indicated by the most significant components, since their

positions are less affected by distortions. Nevertheless, high redundancy and coherence

in the dictionary complicates the task of sparse estimation based on a weakly sparse

model. In a translation-invariant dictionary, directly adjacent elements exhibit the

highest similarity. Therefore, bursts of larger coefficients in x appear around the true

translation coefficients if the prior does not induce sufficient selective shrinkage. This

is indeed the case for commonly used priors, e.g. Laplace priors, leading to ambiguous

representations.

A possible explanation of this observation can be found by considering the dual inter-

pretation of classical `1-minimization and maximum a posteriori (MAP) estimation.

In order to estimate a sparse representation in (6.2) using `1-minimization, the corre-

sponding optimization problem has to be solved. However, for a likelihood function

as in (6.3), the same optimization problem has to be solved to determine the MAP

solution of x, given that the entries in x are independent and each element is assigned

a Laplace prior [162]. In the scope of this analogy, it can be argued that the ambi-

guity in the sparse representation is due to the fact that the RIP requirements for

`1-minimization are not fulfilled for highly coherent dictionaries [13, 62]. It has been

shown in [161, 182], that the RIP requirements for `p-minimization can be relaxed if

0 < p < 1, which results in a non-convex optimization problem. This result suggests

that a sparsity prior for which the MAP problem can be related to non-convex `p-

minimization is more suitable to deal with high dictionary coherence.



108 Chapter 6: Dictionary Learning Strategies Using a Probabilistic Sparse Model

The choice of a suitable prior may also depend on application-specific restrictions. In

the problem of fiber sensing, the observed reflections are proportional to the optical

power. Since the considered dictionary models these reflections, the coefficients of the

sparse representation are constrained to be non-negative. Based on these requirements,

an appropriately parametrized Weibull prior that resembles a positive version of the

horseshoe prior in [167] is considered ∀ i = 1, . . . , N :

xi ∼ p(xi) = W(xi |λw, kw ) =

(
kw
λkww

)
xkw−1
i exp

(
−
(
xi
λw

)kw)
, xi ≥ 0 , (6.4)

whereλw, kw are the scale and shape parameters, respectively. The joint prior density

of x is given by

p(x |kw, λw ) =
N∏
i=1

W(xi |λw, kw ) =

(
kw
λkww

)N( N∏
i=1

xkw−1
i

)
exp

(
−λ−kww

N∑
i=1

xkwi

)
(6.5)

with x � 0. A qualitative sketch of this prior in the bivariate case is shown in

Fig. 6.1(a).

On the basis of (6.3) and (6.5), the problem of sparse estimation can be related to a

constrained ML estimation problem. This can be seen by first formulating the MAP

estimation problem, i.e.

x̂MAP = arg max
x�0

log( p(y |x, θ) p(x |kw, λw ))

= arg min
x�0

− log( p(y |x, θ) p(x |kw, λw ))

∝ arg min
x�0

‖y −ΦD(θ)x‖2
2 + µ̆1

N∑
i=1

log(xi) + µ̆2

N∑
i=1

xkwi , (6.6)

where µ̆1 = (1 − kw), µ̆2 = λ−kww with 0 < kw < 1, and µ̆1, µ̆2 > 0. The coefficients

µ̆1, µ̆2 can be interpreted as regularization parameters.

Using (6.6), a related constrained ML problem can be formulated by defining two

functions,

g1 =
N∑
i=1

xkwi − λkw1 and g2 =
N∑
i=1

log(xi) − λ2 . (6.7)

These functions can be used to define inequality constraints of the form g1 ≤ 0 and

g2 ≤ 0, where λ1, λ2 ∈ R+ are hyperparameters that can be related to the regularization

parameters µ̆1 and µ̆2, respectively. Their purpose is to restrict the search space of the

solution in order to account for the shrinkage effects of the considered prior in the

unconstrained formulation in (6.6).
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(a) (b)

(c) (d)

Figure 6.1. Bivariate examples. (a) Weibull prior p(x |λw, kw), (b) search space
of the constrained non-convex optimization problem, (c) local similarity function
K(x1, x2|λ∆), (d) modified joint density p̃(x|kw, λw, λ∆) with x = [x1, x2]> and
fK(x1, x2) =

√
x1 + x2.

On this basis, a related constrained version of the ML problem can be formulated by

arg min
x�0

‖y −ΦA(θ)x‖2
2 (6.8)

s.t. ‖x‖kw ≤ λ1 (6.9)

and
∑N

i=1 log(xi) ≤ λ2 , (6.10)

where ‖x‖p = (
∑N

i=1 |xi|p)1/p denotes the `p-norm with p = kw < 1. This problem

is non-convex due to the non-convex constraint set and the sparsity of the solution is

controlled by the hyperparameters, λ1 and λ2. The search space in the bivariate case,

restricted by the constraints (6.9)-(6.10), is depicted in Fig. 6.1(b) for fixed values of

λ1 and λ2.
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6.4.1 Local Covariance Model for Augmented Sparsity

The problem of high dictionary coherence is addressed by exploiting the specific struc-

ture of the shift-invariant dictionary and the signal. Inspired by the concept of block

sparsity [168], the aim is to promote sparsity among groups of variables, such that the

positions of the translation coefficients of the signals can be correctly identified. It is

assumed that the K non-zero coefficients corresponding to the observed reflections are

well-separated. Consequently, the significant components in x are surrounded by larger

groups of non-significant coefficients. It is further assumed that all non-significant co-

efficients are similarly small as compared to the significant components. This local

similarity property between adjacent elements can be described in terms of a Markov

Random Field model [188]. To this end, a prior can be assigned to the differential

coefficients, ∆xi = xi+1 − xi, i = 1, . . . , N − 1, in order to suppress large changes in

the amplitudes of adjacent coefficients in x. Since most non-significant coefficients are

small, occasionally appearing larger amplitudes among the non-significant coefficients

are equalized. This effect is referred to as ‘collective shrinkage’. However, without fur-

ther modifications, also significant coefficients are suppressed in this model. Therefore,

a restriction for the change in the amplitudes has to be locally specified by incorporat-

ing the amplitudes themselves.

With this in mind, a kernel function can be specified for all adjacent pairs of coefficients

in x, i.e. for all xi, xi+1, i = 1, . . . , N − 1:

K(xi, xi+1 |λ∆) = exp

(
−λ∆

|xi+1 − xi|
fK(xi, xi+1)

)
, (6.11)

The bivariate functions,fK, depend directly on the amplitudes of the sparse coefficients.

Together with λ∆, these functions control the allowed amplitude variation between ad-

jacent coefficients. Subsequently, it is assumed that fK(xi, xi+1) = (xi + xi+1)r/Nx,

i = 1, . . . , N − 1, where r ≤ 1 and Nx <∞ are positive constants.

When this model is incorporated, the modified joint prior density of the sparse coeffi-

cients becomes

p̃(x | kw, λw, λ∆) =
1

ZK
W(xN |kw, λw )×

N−1∏
i=1

K(xi, xi+1 |λ∆)W(xi |kw, λw ), (6.12)

where ZK is a normalization constant. To verify that p̃(x | kw, λw, λ∆) can be normal-

ized, consider some positive variables α, β ∈ R+. Then, it follows from (6.11) and from

the definition of fK(xi, xi+1) that K(xi, xi+1 |λ∆) is bounded, i.e.

0 < K(α, β |λ∆) = K(β, α |λ∆) ≤ 1 . (6.13)

Hence, there exists a positive constant ZK < ∞ for which p̃(x | kw, λw, λ∆) can be

normalized. In Figures 6.1(c)-6.1(d), the kernel function, K(xi, xi+1 |λ∆), and the

modified joint prior density of x (bivariate case) are depicted , respectively.
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A relation between the modified prior density of x and the constrained optimization

problem in (6.8)-(6.10) can be established by considering an additional constraint:

|xi+1 − xi| ≤ µi, i = 1, . . . , N − 1 , (6.14)

where µi depends on fK(xi, xi+1) and λ∆. A bivariate example of the restricted search

space for fixed values of µ1 is depicted in Figure 6.1(b).

The relation of this sparse model to Markov Random Fields can be illustrated in terms

of the conditional densities for the coefficients xi, i = 1, . . . , N . In order to simplify

notations, let p(xi |x\i) = p(xi |x1, . . . , xi−1, xi+1, . . . , xN ). Then, the conditional prior

densities are given by

p̃(xi |x\i, kw, λw, λ∆) = p̃(xi |xi−1, xi+1, kw, λw, λ∆)

∝ W(xi |kw, λw )K(xi−1, xi |λ∆)K(xi, xi+1 |λ∆) , (6.15)

p̃(x1 |x\1, kw, λw, λ∆) ∝ W(x1 |kw, λw )K(x1, x2 |λ∆), (6.16)

p̃(xN |x\N , kw, λw, λ∆) ∝ W(xN |kw, λw )K(xN−1, xN |λ∆) . (6.17)

It can be seen that dependencies appear only between directly adjacent coefficients.

In order to complete the sparse model, a hierarchical structure is considered to account

for uncertainty in prior assumptions. To this end, (conjugate) inverse Gamma (Inv-Γ)

priors are assigned to the randomized scale parameters, λw and λ∆. Given λw, the

prior of the shape parameter, kw > 0, is chosen as in [190], i.e.

p(kw |a′, b′, (d ′)kw , λw ) =
ka
′
w

Zkw
exp

(
−b′kw −

(d ′)kw

λw

)
, (6.18)

where Zkw is a normalization constant. Figure 6.2 shows a factor graph that visualizes

the complete structure of the sparse model.
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Figure 6.2. Factor graph of the model for the sparse coefficients with local similarity
kernels.

6.5 Hybrid Markov Chain Monte Carlo Algorithm

Inference in the proposed model is accomplished using a hybrid MCMC technique that

combines HMC and Gibbs sampling. The advantages of HMC are (i) it requires only

an analytic expression for the posterior density to be sampled and (ii) it is efficient for

sampling high-dimensional spaces in the presence of correlation [189]. Nevertheless, it

is stated in [189] that the performance is limited when hyperparameters are included in

the sampling process. They often have a sharply peaked posterior distribution, which

requires small step sizes in the HMC algorithm. Therefore, following the suggestions

in [189], Gibbs sampling is used to sample the hyperparameters separately. In addition,

the noise variance, σ2
n, is inferred. It is assigned an inverse Gamma (Inv-Γ) prior and

included in the Gibbs sampling procedure. The joint density of the sparse coefficients,

p̃(x |λw, kw, λ∆), is sampled using HMC, keeping all other variables fixed. The overall

model is stated below:

x | kw, λw, λ∆ ∼ p̃(x | kw, λw, λ∆) in (6.12),

λw ∼ Inv-Γ(λw | a, b),
kw |λw ∼ p(kw |a′, b′, (d ′)kw , λw ) in (6.18),

λ∆ ∼ Inv-Γ(λ∆ | a′′, b′′)
σ2
n ∼ Inv-Γ(λ∆ | aσ, bσ) . (6.19)
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Figure 6.3. Graphical representation of the latent variable model.

Herein, it is assumed that the variables x, σ2
n and θ are mutually independent. Fig-

ure 6.3 illustrates this setting in terms of a graphical model, where θ and Ξ appear

only in strategy S2 of Section 6.6.

For a more compact notation, a representative variable, ζ ∈ C = {kw, λw, λ∆, σ
2
n}, is

defined along with positive real-valued parameters, aζ ∈ {a, a′′, aσ} and bζ ∈ {a, a′′, aσ},
that belong to the corresponding density functions in (6.19). Related to the set C, a

reduced set C\ζ ⊂ C is defined, which excludes the respective variable ζ.

For Gibbs sampling, the full conditional distributions for each parameter have to be

derived. Since x, σ2
n and θ are assumed to be independent, one obtains

p(ζ |y,x, C\ζ ) ∝ p(y |x, C ) p(ζ |x, C\ζ ) (6.20)

∝ p(y |x, C ) p(ζ |C\ζ ) p̃(x | C) . (6.21)

The Inv-Γ priors of the variables in C\kw are conjugate to the Gaussian likelihood

function in (6.3). Hence, the posterior distributions of any ζ ∈ C\kw can be conveniently

determined by

ζ |y,x, C\ζ ∼ Inv-Γ(ζ | aζ + M

2
, bζ + 1

2
) p̃(x | C), (6.22)

The posterior distribution of kw is given by

kw |y,x, C\kw ∼ p(kw | ã ′, b̃ ′, c̃ ′) p̃(x | C), (6.23)

where ã ′ = a ′ + N , b̃ ′ = b ′ +
∑N

i=1 log(xi), and c̃ ′ = (d ′)kw +
∑N

i=1 x
kw
i [190].

Samples of the posterior distributions can be obtained, for example, using HMC for

each variable separately.
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6.5.1 The Hamilton Monte Carlo Method

This subsection is a review of the HMC method adapted to the problem of drawing

samples from p̃(x |y, C).

The ideas and concepts of HMC are taken from [189].

HMC is inspired by Hamiltonian dynamics, which is a concept known from classical

mechanics. It is used to describe the trajectory of a physical system in a phase space

of generalized coordinates and conjugate momenta. This concept is adopted in HMC,

where the sparse coefficients, xi, i = 1, . . . , N , represent the coordinates.

In order to describe the dynamics of the sampling process, the potential and kinetic

energy of the ‘system’ have to be defined. To this end, each coordinate is assigned a

corresponding conjugate (auxiliary) momentum variable, ξi, i = 1, . . . , N . The kinetic

energy, K(ξ), is a function of the variables ξ = [ξ1, . . . , ξN]. It is often defined as the

kinetic energy of independent particles with mass mi moving in free space [189]:

K(ξ) =
N∑
i=1

ξ2
i

2mi

. (6.24)

The potential energy is related to the posterior density to be sampled. It is defined

by [189]

U(x |y, C) = − log p̃(x |y, C)− log(Zu) (6.25)

with normalization constant Zu. To simplify notations, the variables y and C are not

explicitly written (they are fixed during the sampling process of x). The sampling

dynamics are controlled by the ‘Hamiltonian function’, which is given by [189]

H(x, ξ) = U(x) + K(ξ) . (6.26)

The temporal evolution of of a physical system governed by Hamiltonian dynamics can

be determined by solving Hamilton’s equation of motion [189]:

dxi
dt

=
∂

∂ξi
H(ξ,x) =

ξi
mi

, (6.27)

dξi
dt

= − ∂

∂xi
H(ξ,x) = −

∂
∂xi
p̃(x |y, C)

p̃(x |y, C) . (6.28)

In every HMC iteration, a proposal for a new sample is obtained by the final points

of a finite trajectory, denoted by (x∗i , ξ
∗
i ). The obtained sample is accepted or rejected

based on a Metropolis update with acceptance probability [189]

P(accept) = min ( 1, exp( −H(x∗i , ξ
∗
i ) + H(xi, ξi) ) ) . (6.29)
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In analogy to classical physics, the canonical joint density of the variables (x, ξ) is

given by [189]

p(x, ξ) =
1

Zc
exp

(
−H(x, ξ)

Tsys

)
, (6.30)

where Tsys is called the ‘system temperature’ and Zc is a normalization constant.

In order to obtain a useful expression in HMC, Equation (6.30) can be adapted by

conveniently setting Tsys = 1 and Zc = Zu, i.e.

p(x, ξ) = p̃(x |y, C)
N∏
i=1

N ( ξi | 0,mi ) . (6.31)

The Gaussian density of ξi, i = 1, . . . , N , is due to the choice of K(ξ) in (6.24).

The factorized form implies independence of x and ξ, such that the desired marginal

posterior density of x can be conveniently approximated using only the samples of

x and discarding the samples of the auxiliary momentum variables, ξ. Algorithmic

details and extensions of the HMC method are provided in [189].

6.6 Parametric Dictionary Learning Strategies

In this section, two parametric dictionary learning strategies are presented. Both are

based on the sparse model in Section 6.4. The dependency of the latent variables is

shown in Figure 6.3.

The first strategy, referred to as S1 , represents one variant of AE-based (iterative)

sparse estimation and dictionary learning [54]. It employs a Monte Carlo EM

algorithm [163] and is based on the ideas of hybrid Bayesian inference [164,165], where

the dictionary parameter is assumed to be deterministic. In the second strategy, S2 ,

a full Bayesian approach is pursued to jointly estimate the sparse representation, x,

the dictionary parameter, θ, and the noise variance, σ2
n. Therefore, θ is incorporated

in the Gibbs sampling procedure of Section 6.5. The computational costs of both

strategies are governed by drawing samples of the high-dimensional vector x in each

Gibbs sampling iteration. A summary of the corresponding algorithms is provided at

the end of this subsection.

6.6.1 Hybrid Bayesian Dictionary Learning (S1 )

In strategy S1 , the dictionary parameters are iteratively estimated using a Monte Carlo

EM algorithm, where d= 1, . . . , dmax, denotes the iteration index. To begin, an initial
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value of the dictionary parameter, θ(0), is chosen. In each iteration, the joint samples

of {xl, Cl}(d), l = 1, . . . , LMC, are drawn using HMC within Gibbs sampling, according

to Section 6.5. Based on the previous value of the dictionary parameter, θ(d−1), the

posterior expectation for all ζ ∈ C is calculated by

ζ̂(d) =

∫
dom(ζ)

ζ p(ζ |y, θ̂(d−1)) dζ ≈ 1

LMC

LMC∑
l=1

ζ
(d)
l p(ζ

(d)
l |y, θ̂(d−1)) , (6.32)

where dom(ζ) is the domain of ζ. Next, the posterior mean of the sparse coeffi-

cients, x̂(d), is computed by

x̂(d) =

∫
RN+

x p(x |y, θ̂(d−1)) dx ≈ 1

LMC

LMC∑
l=1

x
(d)
l p(x

(d)
l |y, θ̂(d−1)) . (6.33)

The positions of the K largest elements in x̂(d) indicate the current estimates of the

translation coefficients, which are denoted by Ŝ(d). For the amplitudes of the significant

components, the MAP solution is determined, since their posterior distribution has two

modes, one around zero and another dominant mode around some larger value. The

approximate MAP solution is calculated by

{x̂, Ĉ }(d)
MAP = arg max

x,C
log p(x, C |y, θ̂(d−1)) (6.34)

≈ arg max
{xj ,Cj}∈{xl, Cl}

(d)
l=1,..,LMC

log p({xj, Cj}(d) |y, θ̂(d−1)). (6.35)

Finally, the current estimate of the dictionary parameter, θ̂(d), is computed. In the

E-step of the Monte Carlo EM algorithm, the expected value over x, C is determined:

Ex, C |y, θ log p(y,x, C |θ) =

∫
RN+

∫
Ψ

log p(y,x, C |θ) p(x, C |y, θ) dC dx (6.36)

≈ 1

LMC

LMC∑
l=1

log p(y, {xl, Cl}(d−1) |θ) , Q( θ | θ̂(d−1)) , (6.37)

where Ψ is the product space formed by the domains of all variables in C. Finally, the

function Q( θ | θ̂(d−1)) is maximized with respect to all values of θ in Θ, yielding the

current estimate of the dictionary parameter:

θ̂(d) = arg max
θ∈Θ

Q( θ | θ(d−1) ) . (6.38)

6.6.1.1 Initialization of θ via bisectional search

In order to obtain a proper initial value, θ(0), a bisectional search is carried out. This

can help to avoid local optima in the EM algorithm. Since the sparsity level, K, of
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the desired representation is assumed to be known, a proper initial value is expected

to yield a solution with exactly K significant coefficients. At first, an arbitrary value

of θ(0) can be randomly selected. Then, the set of possible values, Θ, is split into two

parts. One part contains all values that are larger than the currently selected one. The

other part contains the values that are smaller. Next, a solution for x is determined

and the number of significant components, s, is compared to K. Since θ describes

the level of localization of the signals, the sparse representation exhibits more than K

peaks if θ is chosen too high. Therefore, if s > K, the median of the lower division

becomes the next trial of θ(0). If s < K, the median of the upper division is selected.

This process continues until a proper value of θ(0) is found, such that s = K. A good

initialization leads to a faster convergence of the EM algorithm and reduces the chance

of getting stuck in local optima.

6.6.2 Bayesian Dictionary Learning (S2 )

In the strategy S2 , θ is treated as a random variable. To this end, each element

θr ∈ Θ is assigned a corresponding probability mass, pr = p(θr) , r = 1, . . . , RΘ, such

that
∑RΘ

r=1 p(θr) = 1. Hence, θ follows a categorical (Cat) distribution over the set Θ.

The set of corresponding probability masses is denoted by Ξ = {p1, . . . , pRΘ
}.

In order to account for uncertainty in the prior assumptions for the probability masses,

a conjugate Dirichlet (Dir) prior with parameters ν = [ν1, . . . , νRΘ
]> is assigned to Ξ.

The prior probability density of Ξ is given by

p(Ξ) =
1

B(ν)

RΘ∏
r=1

pνrr , (6.39)

where the variables νr, r = 1, . . . , RΘ, are the number of occurrences of the elements in

Θ, and B(ν) signifies the Beta-function. After sampling a certain element θq ∈ Θ, one

count is assigned to that element. When another element is sampled, this count is re-

assigned to the newly sampled element. A vector c̆ = [c1, . . . , cRΘ
]> ∈ NRΘ is defined to

indicate the current sample. Its elements are all zero except for the one corresponding

to the currently sampled element in Θ. For example, when some θq, q ∈ {1, . . . , RΘ},
is sampled, then cq = 1 and cr = 0 ∀ r ∈ {1, . . . , RΘ} \ q.
Without prior knowledge, all elements in Θ are assumed to be equally likely, i.e.

pr = 1/RΘ ∀ r = 1, . . . , RΘ. When each element is assigned a single prior count, i.e.

νr = 1 ∀ r = 1, . . . , RΘ, a new sample can significantly change the posterior distribu-

tion. However, the posterior remains almost invariant when a larger number of prior

counts is assigned, e.g. νr = 100 ∀ r = 1, . . . , RΘ.
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The complete model for strategy S2 is obtained by adding the variables θ and Ξ to

the model in (6.19), i.e.

Ξ ∼ Dir( Ξ |ν ) (6.40)

θ |Ξ ∼ Cat(θ |RΘ,Ξ) . (6.41)

They are also included in the Gibbs sampling procedure of Section 6.5. The posterior

distributions can be determined by considering the dependencies in Figure 6.3, keep-

ing in mind that x, σ2
n and θ are assumed to be mutually independent, according to

Section 6.5. Hence,

Ξ | θ = Ξ̃ ∼ Dir( Ξ |ν + c̆ ), (6.42)

θ |y, Ξ̃ ∼ Cat( θ |RΘ, Ξ̃ ). (6.43)
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Algorithm: Sparse estimation and dictionary learning strategies S1 & S2

Input: y,M,Φ, N, L, Td, δt, r(t, θ), K, LMC, dmax

Output: Ŝ, x̂, θ̂, σ̂n, d, ee

Parameters: a, a′, a′′, aσ, b, b
′, b′′, bσ, d

′,ν, RΘ, {θr}RΘ
r=1,

internal HMC parameters (c.f. [189,191]).

0. Initialize: θ at random → θ̂(0) via bisectional search,

A(θ̂(0)), {x̂(0), Ĉ(0)} as in (6.19), (S2 ): dmax=1

1. for d = 1 to dmax do

2. for l = 1 to LMC do

3. Gibbs sampling: (i) C(d)
l using (6.22) and (6.23),

(ii) x
(d)
l via HMC.

(S2 :) (iii) θ
(d)
l , Ξ

(d)
l using (6.42) and (6.43)

4. end for

5. Estimate: Ŝ(d) from x̂(d) in (6.33),

Ĉ(d) from (6.32),

x̂
(d)
MAP from (6.35),

5.a (S1 :) θ̂(d) = arg maxθ∈Θ Q(θ | θ̂(d−1)).

5.b (S2 :) θ̂(d) from (6.32) with ζ
(d)
l → θ

(d)
l .

6. if θ̂(d) == θ̂(d−1) or d == dmax

7. return Ŝ(d), x̂
(d)
MAP, Ĉ(d), θ̂(d), ee=‖y−ΦA(θ̂(d))‖2

2.

8. end if

9. end for
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6.7 Simulations and Experimental Validation

In this section, the presented sparse estimation and dictionary learning strategies are

evaluated in terms of performance and practical applicability for the fiber sensing

problem in Chapter 5. To begin, a visualization of the algorithms is provided, showing

their qualitative behavior. Next, simulations are used for a quantitative performance

analysis, where various scenarios of different SNRs, CS sampling matrices and sample

sizes are considered. The results obtained by the presented probabilistic sparse model

are compared with those obtained by a deterministic sparse model, using the PDL-

OIAI algorithm in Chapter 5. Finally, the strategies S1 and S2 are applied to real

fiber sensor data.

6.7.1 Simulation Setup

The simulation setup is specified for the fiber sensing problem in Chapter 5.

In this setting, the received localized signals are the temporal reflections from K = 3

uniform FBGs. Two reflections are closely spaced and all reflections are modeled with

the same amplitude, Ax. The task is to determine the delays of the reflections, i.e. the

translation coefficients, which are indicated by the index positions of the K most sig-

nificant components in x. These coefficients are contained in the set S. The dictionary

parameter, θ describes the temporal localization of the received signals in terms of the

effective receiver bandwidth. Since this quantity is non-negative, it is assumed that

0 < θmin and θmax < ∞. In particular, a number of RΘ = 100 equally spaced discrete

parameter values between 30% and 150% of the true value are considered in the set Θ.

For the simulations in this subsection, the dictionary parameter is re-defined relative to

its true value, i.e. θ̂ → θ̂/θ. Using this notation, it is easier to see the relative deviation

from the true value, which is highly system-specific. A number of N = 264 dictionary

atoms are generated from L = 134 samples of the generating function, r(t, θ). The

delay spacing of the dictionary grid is set to δt = 50 ns.

The received signal is acquired using CS with two types of sampling matrices, Φ. Their

independent and identically distributed entries are drawn from the following distribu-

tions:

(a) Gaussian: N (0, 1),

(b) Database Friendly (DF) [106]: {−1, 0, 1} with probabilities {1
6
, 2

3
, 1

6
}.

Approximate inference is accomplished according to Section 6.5. For HMC, the software

package Stan [192] is used. It provides an efficient implementation of the ’No-U-Turn’
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variant of the HMC algorithm [191]. In S1 , a proper initialization of θ is obtained

using a bisectional search, according to Section 6.6.1.1. A maximum of dmax = 35 EM

iterations is considered. In S2 , a non-informative prior for θ is considered, setting

p(θr) = 1/RΘ and νr = 1 ∀ r = 1, . . . , RΘ.

6.7.2 Visualization and Working Principle

In this subsection, the working principle and qualitative behavior of the algorithms is

visualized using an SNR of 20 dB. CS is performed using a Gaussian sampling matrix

and only 50% of the original samples. The results are depicted in Figure 6.4.

The MAP solution for x is depicted in Figure 6.4 (a). The computation is done accord-

ing to Section 6.5, based on the true value of θ. It can be observed that augmented

sparsity is achieved by using the local covariance model in Section 6.4.1. Without this

model, bursts of adjacent coefficients with lower amplitudes are selected due to the

high dictionary coherence.

Figure 6.4 (b) shows the posterior density of one coefficient in x, which exhibits a

sharp peak around zero for a non-significant coefficient. For a significant coefficient,

the distribution is multimodal with a small mode around zero and a dominating mode

at some larger value.

In the second row of Figure 6.4, the evolution of the Monte Carlo EM algorithm in

strategy S1 is illustrated for different EM iterations. Figure 6.4 (c) shows the MAP

solutions for x, i.e. x̂
(d)
MAP. It is zoomed on the two peaks on the left side to provide

a better visualization. For this simulation, an improper choice for the initial value

of θ leads to more than K significant components in the sparse representation. Nev-

ertheless, the underlying sparse representation (black bullets) is gradually identified

in subsequent iterations. It can be seen from Figure 6.4 (d), that also the dictionary

parameter, θ, approaches the true value after some iterations.

In Figure 6.4 (e), the function Q(θ | θ̂(d−1)) of the first iteration in strategy S1 is plotted

for a good and bad initial value of θ. For a bad initialization, the peak of Q(θ | θ̂(d−1))

appears far from the true value (black line), while it is close for a properly chosen initial

value. This observation indicated that a good initialization can improve the conver-

gence speed of the algorithm and reduce the chance of getting stuck in local optima.

Figure 6.4 (f) depicts the prior and a typical posterior distribution of the parameter θ

in strategy S2 . Since the prior is non-informative, all values are equally likely but

the posterior distribution is highly peaked around the true value. In this plot, the

hyperparameters of the Dirichlet distribution for Ξ are set to νr = 1 ∀ r = 1, . . . , RΘ.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4. Visualization. (a) empirical MAP solution for x and impact of collective
shrinkage, (b) empirical posterior density of a non-/significant entry in x, (c) temporal
solution for θ after the M-step in S1 , (d) shape of the Q-function in S1 for a good
and bad initial value θ(0), (e) prior and posterior distribution of θ for p(θr)=1/RΘ and
νr=1, r=1, . . . ,RΘ for S2 .
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6.7.3 Performance Evaluation

In this subsection, the performance is evaluated based on simulation. To this end, the

root mean-squared error (RMSE) is calculated. Given a vector v and an estimator v̂,

the RMSE is defined by

RMSE(v, v̂) =
√
Ev̂ ‖v − v̂‖2

2 . (6.44)

The expectation is approximated by averaging the results over 100 Monte Carlo runs.

The result is denoted by RMSE. The strategies S1 , S2 are compared to the PDL-

OIAI algorithm in Chapter 5, where a deterministic sparse model is assumed. Also,

the CRB of Chapter 5 is computed, which is valid for jointly estimating deterministic

parameters (xS , θ). It is shown in order to assess a possible performance gain achieved

by a probabilistic model. The lower bound of the RMSE induced by the CRB is denoted

by ’RCRB’. The results are depicted in Figures 6.5 - 6.7.

The vector s ∈ NK is defined to contain all elements in S, while xS ∈ RK
+ is defined

to contain the coefficients of x at the index positions in S. Based on these definitions,

RMSE(xS , x̂S) is the error between the estimated amplitudes in x̂S at the positions

in Ŝ and the true amplitudes in xS at the true positions in S, which are equally set to

the value Ax.

The results of strategy S1 for M/L = 50% of the original samples are shown in

Figure 6.5. Figures 6.6 - 6.7, show the results of S2 , using 50% and 30% of the original

samples, respectively. It should be mentioned that the Monte Carlo EM algorithm

in S1 becomes unstable when the ratio M/L is smaller than 50%. Therefore, only

this case is shown for S1 . Based on this observation, S2 seems more robust against

small sample sizes and missing data than S1 . For both strategies, and similar as for the

PDL-OIAI algorithm in Chapter 5, the choice of the CS sampling matrix, i.e. Gaussian

or DF, does not significantly affect the errors. In all scenarios, S1 and S2 are able

to estimate s with significantly higher accuracy than PDL-OIAI. However, PDL-OIAI

achieves slightly higher accuracy in estimating the parameter θ for M/L = 50%, where

the error is close to the RCRB. At high SNRs, the performance of S2 is better than

that of S1 , while S1 is slightly better at lower SNRs. All methods show similar

performance for estimating the amplitudes of the sparse coefficients, xS , where the

distance to the RCRB is almost constant at all SNRs. For the noise variance, σ2
n, S1

achieves a slightly smaller estimation error as compared to S2 . In the case of S1 in

Figure 6.5, the RMSE for σ2
n is unstable between SNRs of 15 and 17.5 dB, which might

be due to an insufficient number of samples or due to a bad initialization, causing a

longer convergence time of the MCMC algorithm to the stationary distribution. In

PDL-OIAI, the noise variance cannot be directly estimated.
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(a)

(b)

(c)

(d)

Figure 6.5. Performance of S1 in terms of the RMSE using M/L = 50% of the original
samples in comparison with PDL-OIAI of Chapter 5 and with the lower bound of the
RMSE imposed by the CRB (RCRB).
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(a)

(b)

(c)

(d)

Figure 6.6. Performance of S2 in terms of the RMSE using M/L = 50% of the original
samples in comparison with PDL-OIAI of Chapter 5 and with the lower bound of the
RMSE imposed by the CRB (RCRB).
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(a)

(b)

(c)

(d)

Figure 6.7. Performance of S2 in terms of the RMSE using M/L = 30% of the original
samples in comparison with PDL-OIAI of Chapter 5 and with the lower bound of the
RMSE imposed by the CRB (RCRB).
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6.7.4 Experimental Validation Using Real Data

In this subsection, S1 and S2 are applied to real fiber sensing data taken from the

fiber sensor in [70,86]. The data was acquired at the Yamashita laboratory of photonic

communication devices at The University of Tokyo, Japan.

A number of L = 134 original samples of the received sensor signal are used, where only

M/L = 50% samples are acquired using CS. The dictionary contains N = 2L elements

and the spacing of the delays described by adjacent dictionary atoms is δt ≈ 50 ns.

In the experimental setup, the sensing fiber contains K = 4 FBGs. The received

reflections are potentially off-grid. By eye inspection of the raw data, their delays

are approximately found at [7.79, 9.05, 10.27, 12.30] µs. The variables {S,xS , θ} are

estimated in 100 Monte Carlo trials.

Figure 6.8 (a) depicts the sensor signal and an estimated reflection from the third

FBG. The shaded area signifies the standard deviation of θ. The estimated reflections

obtained by S2 are slightly broader, which also results in slightly different estimates

of S. Figure 6.8 (b) depicts the estimated sparse representation, i.e. x̂Ŝ evaluated at the

estimated positions in Ŝ. The standard deviation of the amplitudes of the significant

components in xS is indicated by vertical error bars, while the standard deviation of S
is illustrated by the shaded areas.

Both strategies, S1 and S2, yield comparable results in this example, although the

standard deviation of S is slightly smaller in the case of S2. Similar performance can

be observed for the PDL-OIAI algorithm (c.f. Chapter 5).

(a) (b)

Figure 6.8. Real data example for S1 and S2 : (a) sensor signal with estimated
reflections. The shaded regions indicate the standard deviation of θ, (b) estimated
sparse signal, where the shaded areas show the standard deviation in estimating the
reflection delays, indicated by S. The vertical error bars show the standard deviation
of xS .
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6.8 Discussion and Findings

Based on simulations and real data, it has been shown that the translation coefficients

of localized signals can be accurately estimated using the proposed sparse model in

combination with the dictionary learning strategies S1 and S2 . The performance

is comparable to that of the PDL-OIAI algorithm in Chapter 5, where a determin-

istic sparse model is considered. Also, the limits imposed by the non-Bayesian CRB

for estimating the sparse coefficients, xS , and the dictionary parameter, θ, are not

exceeded. For the task of dictionary learning, all compared methods seem similarly

suitable, although S2 and PDL-OIAI are more stable when the sample size is small.

However, the primary objective is to estimate the translation coefficients in s (i.e. the

positions of the significant components in x). In fact, the estimation error for s is sig-

nificantly lower using the presented probabilistic model, which is a major advantage of

this approach. In the problem of fiber sensing, the translation coefficients indicate the

reflection delays, which are used to infer the quantity or nature of impairments at the

FBGs. The dictionary parameter is estimated to improve the accuracy of the estimates

of s, and the amplitudes in xS can be used to determine the amount of optical power

reflected from the FBGs. In the real data example of this chapter and of Chapter 5,

S1 , S2 and PDL-OIAI work reliably although some signal features are not captured

by the model used to create the dictionary, e.g. the skew shape of the reflections or

the signal-dependent noise amplitude.

The results suggest that strong dictionary coherence can be better handled by using a

suitable sparse model rather than a dictionary pre-processing routine as in PDL-OIAI.

The selective shrinkage properties of the presented sparse model are supported by the

local covariance model, which promotes additional collective shrinkage effects. Based

on the relation of this model to non-convex optimization with `p-norm constraints

(0 < p < 1), the results further support the findings in [161, 182], which report that,

compared to `1-minimization, the RIP conditions can be relaxed when non-convex op-

timization methods are used.

It is further shown that the type of the CS sampling matrix does not significantly im-

pact the results. However, DF matrices [106] are advantageous due to the low storage

requirements and the possibility to reduce the average sampling rate.

The computational complexity of S1 and S2 is dominated by drawing samples from

the posterior of x using HMC. Also, their performance depends on the MCMC run-

time. For S1 , local optima are an additional problem, which can be alleviated using

a proper initialization based on a bisectional search, according to Section 6.6.1.1. A

good initialization also speeds up the convergence time. Although HMC is highly ef-

ficient in sampling high-dimensional parameter spaces in the presence of correlation,

MCMC methods are often slower than optimization-based methods [162]. However,
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optimization-based methods usually require a regularization parameter to be deter-

mined beforehand (e.g. `1-minimization) [162]. Greedy methods such as ‘Orthogonal

Matching Pursuit’ [7], in turn, are usually faster than optimization-based methods [25].

Although PDL-OIAI is based on a greedy algorithm, the complexity is dominated by

the dictionary pre-processing routine, which is necessary in order to deal with high

dictionary coherence. Yet, it can be implemented using parallel processing to speed up

computations.

In an extension of this work, multiple CS measurements can be jointly taken into ac-

count in order to improve the signal-to-noise ratio and the accuracy. This concept has

been used in previous work, e.g. in [5]. Regarding real fiber sensing data, for exam-

ple, the reflections of the different FBGs are not uniform. Therefore, additional local

dictionary parameters can be taken into account to describe particular features of the

individual localized signals.

6.9 Conclusion

In this chapter, a sparse estimation and dictionary learning framework based on a

probabilistic hierarchical sparse model is presented. The results obtained using the

probabilistic sparse model are also compared to the results obtained by the PDL-OIAI

algorithm in Chapter 5, where a deterministic sparse model is considered. This anal-

ysis highlights advantages, disadvantages and limitations of both approaches in order

to provide a practical guide to choosing an appropriate model for a specific problem.

In addition, the presented framework is applied to the problem of compressed fiber

sensing, where real fiber sensing data is used to verify the practical applicability.

In the sparse model, selective shrinkage is achieved using a Weibull prior. This choice

is related to non-convex optimization with `p-norm constraints. The problem of high

dictionary coherence is addressed by leveraging the structure of the dictionary and the

signal. To this end, a local covariance model for the sparse coefficients is developed,

such that their relation can be described in terms of Markov Random Fields. Based on

this model, additional collective shrinkage and augmented sparsity is achieved. This

model can be generally used for estimating the translation coefficients of localized sig-

nals from highly redundant dictionaries without dictionary pre-processing.

For parametric dictionary learning, a hybrid (S1 ) and a full Bayesian strategy (S2 )

are presented. They are based on either a deterministic or a probabilistic model for

the dictionary parameter, respectively. In the deterministic case, a Monte Carlo EM

algorithm is used to iteratively estimate this parameter. In the probabilistic case, it is

jointly estimated along with the sparse coefficients. Approximate inference is accom-

plished using a hybrid Markov Chain Monte Carlo method that combines Hamilton
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Monte Carlo and Gibbs sampling.

A limitation of the presented framework is the computation time of the employed sam-

pling methods for approximate inference and the difficulty in the diagnosis of Markov

Chain convergence and sample independence. The problem of local optima in the it-

erative estimation strategy, S1 , can be alleviated by choosing a proper initial value

based on a bisectional search.

In a future analysis, the joint treatment of multiple CS sample vectors can be investi-

gated and additional local dictionary parameters can be taken into account. To reduce

the computational complexity, variational Bayes methods can be developed.
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Chapter 7

Conclusion and Future Directions

In this dissertation, the problem of estimating sparse representations in the presence

of uncertainty and errors in the underlying model of the dictionary is addressed. The

abstract problems in the theory of sparse representations are analyzed for two represen-

tative applications, namely direction finding and compressed fiber-optic sensing. This

chapter provides a summary of the developed methodologies and highlights the main

conclusions. On this basis, some future research directions are identified and outlined.

7.1 Summary and Conclusions

In the first part, a statistical sparse regularization framework for optimization-based

sparse estimation is developed. Based on statistical arguments, it offers a systematic

strategy for determining a suitable regularization parameter in the presence of model

errors and measurement noise. Improved accuracy and stability of the sparse repre-

sentation as well as robustness against variations in the regularization parameter are

achieved by dictionary calibration, which is performed prior to sparse estimation. The

presented methods are applied to the problem of direction finding. Simulations are

used to evaluate their performance in comparison with existing methods.

In the second part, two methodologies for estimating sparse representations from highly

redundant dictionaries are investigated, namely alternating estimation (AE) and full

Bayesian inference. Uncertainty is considered in terms of unknown dictionary parame-

ters, which are estimated along with the sparse representation. The presented methods

differ in the assumption of either a deterministic or a probabilistic sparse model, in the

pursued estimation strategies, and in the approaches of dealing with redundancy. In

the AE-based methods, the dictionary parameters and the sparse representation are

iteratively estimated, where a local cost function is minimized in order to successively

improve the estimates. The presented Bayesian framework allows for jointly estimating

both quantities. In the case of a deterministic model for the sparse coefficients, the

problem of redundancy is addressed by directly modifying the dictionary in order to

reduce the similarity between its elements and to avoid ambiguous sparse representa-

tions. In the probabilistic case, no prior modification of the dictionary is performed.

Instead, a particular sparse model is developed to deal with high redundancy in the

dictionary. Both methodologies are applied to a problem in compressed fiber-optic
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sensing. Based on simulations, their performance is compared to each other and to

theoretical performance bounds. Finally, their practical applicability is validated using

real data.

7.1.1 Statistical Sparse Regularization Framework

The presented sparse estimation framework yields a suitable regularization parameter

for sparse estimation in the presence of model errors. This parameter is estimated as

an upper bound of the mean-squared error between the corrupted data and the ideal

model. Model errors are considered in terms of a general additive error term that has

to be evaluated for the application at hand. Using the direct relation to the considered

model error statistics, the regularization parameter can be controlled to account for

the specific impairments at hand. In the literature, a good value of the regulariza-

tion parameter is often determined based on the discrepancy principle, i.e. calculating

the sparse solution for a large range of parameters and choosing the one that yields a

best-match solution to the observed data. The presented framework yields a suitable

and statistically justified regularization parameter prior to sparse estimation, which

can reduce the computational complexity. It is applied to the problem of direction

finding, where model errors arise as general phase and gain mismatches in the analytic

model used to generate the sparsity-promoting dictionary. Simulations show that the

tolerance level can be correctly adjusted to allow for model mismatches due to the joint

effects of measurement noise and model errors.

A drawback is the the sensitivity of the sparse representation to changes in the regular-

ization parameter and the need for estimating the number of sources, the noise variance

and the source power. Also, the choice of the confidence levels for noise and model

errors impacts the sparse representation. In order alleviate this problem, dictionary

calibration is performed to account for model errors prior to sparse estimation. It only

requires a good estimate of the noise subspace. Then, the obtained sparse representa-

tion is more accurate and stable, even for large changes of the regularization parameter

due to different confidence levels, which is validated using simulations.

7.1.2 Sparse Estimation and Dictionary Learning Framework
for Fiber-Optic Sensing

A compressed sensing and dictionary learning framework for WDM-based quasi-

distributed fiber-optic sensing is presented. Fiber interrogation is performed using

a wavelength-tunable laser and the task is to estimated the delays of the reflections.
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It is shown that the average sampling rate and the number of samples to be stored

and processed can be significantly reduced using compressed sensing-based signal ac-

quisition. Also, it is outlined how a parallel architecture can be used to practically

realize the non-uniform sampling scheme described by efficient discrete-valued sparse

sampling matrices such as the Database-Friendly (DF) matrix.

In order to create a parametric dictionary for estimating the reflection delays, a generic

mathematical model for the received sensor signal is compiled and validated using real

sensor data. This model can be customized to match different system configurations.

For high-accuracy sensing, the dictionary is designed to contain a dense grid of delays,

which results in strong similarity, hence, high redundancy. Uncertainty is considered

in terms of global and local parameters and reflects imperfect prior knowledge of the

signal. In the context of quasi-distributed fiber sensing, local parameters can account

for the local characteristics of the fiber Bragg gratings, where the interrogation signal

is reflected. Global parameters can account for general characteristics of the system

that have common impact on all reflections, e.g. the overall receiver bandwidth.

In order to measure the redundancy level of the employed translation-invariant dictio-

nary the coherence distance is introduced. This measure is sensitive to variations in

the overall coherence for small sparsity levels. It is a suitable measure for structured

dictionaries in which directly adjacent elements exhibit the highest similarity. This is

usually the case for translation-invariant dictionaries, where the elements are created

from shifted versions of a generating function. Therefore, the coherence distance can

be used for general translation-invariant dictionaries. Also, a relation to common co-

herence measures is established.

For sparse estimation, a deterministic model for the dictionary parameters and the

coefficients of the sparse representation is considered. Based on the general formula-

tion of the considered sparse estimation problem, the Cramér-Rao bound for jointly

estimating the underlying sparse representation along with the dictionary parameter

is derived.

Sparse estimation is performed using an AE-based algorithm, called PDL-OIAI. The

problem of redundancy in the dictionary is addressed by adopting a dictionary pre-

processing sub-routine that yields a modified sensing dictionary with lower coherence

distance. Using this dictionary, a simple greedy algorithm can be used for sparse

estimation rather than solving a convex optimization problem. This reduces the com-

putational costs, since sparse estimation has to be performed in each AE iteration.

Despite this advantage, it is still costly to calculate the modified sensing dictionary.

As a remedy, it can be calculated only once in each AE iteration. The total computa-

tional complexity is analyzed for both variants of this method. An additional speed-up

can be achieved by parallel computing. Notably, the presented algorithm has broader

applicability for general AE-based sparse estimation and dictionary learning problems
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with highly redundant dictionaries.

The performance of the presented method is evaluated using simulations, where the

estimation error is also compared to the derived Cramér-Rao bound. In comparison

to a reference method without dictionary pre-processing (PDL-OMP), it is pointed

out that the pre-processing sub-routine in AE-based sparse estimation and dictionary

learning is indeed necessary when the dictionary is highly redundant. It is shown that

the presented algorithm can accurately estimate the reflection delays and dictionary

parameter for moderate coherence levels. The practical applicability is validated using

real sensor data.

A general limitation of AE-based estimation is the restriction to local optima in each

AE iteration. Also, the computational complexity can be high when many AE itera-

tions have to be carried out.

7.1.3 Probabilistic Model for Sparse Estimation of Localized
Signals

A Bayesian framework for sparse estimation and dictionary learning with highly redun-

dant translation-invariant dictionaries is developed. The translation-invariant structure

of the dictionary is used to estimate localized signals. In order to deal with high re-

dundancy, a probabilistic model for the coefficients of the sparse representation is

presented. Besides using a sparsity-promoting prior with favorable selective shrinkage

effects, the translation-invariant structure of the dictionary is exploited to achieve aug-

mented sparsity. To this end, a kernel function is introduced, such that the dependency

of the sparse coefficients can be described by a Markov Random Field model. Using

this model, additional collective shrinkage is achieved, while significant coefficients are

allowed to become sufficiently large. Also, a connection between the developed sparse

model and non-convex optimization based on the `p-norm, 0 < p < 1, is provided. Pre-

vious work has shown that non-convex optimization methods can be superior to convex

optimization when the dictionary is highly redundant [161,182]. The presented sparse

model is applied to the fiber sensing problem in Section 7.1.2 but it has broader ap-

plicability to the general problem of estimating the translation coefficients of localized

signals from highly redundant translation-invariant dictionaries. Notably, redundancy

is completely handled by the sparse model and there is no need for any dictionary

pre-processing.

For dictionary learning, two strategies are pursued. In the first strategy, a deterministic

model for the dictionary parameters is considered. They are estimated using a Monte

Carlo Expectation Maximization algorithm as one variant of alternating estimation. A

bisectional search is proposed to initialize the algorithm. The second strategy considers
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a probabilistic model for the dictionary parameters, yielding a full Bayesian framework.

In order to account for uncertainty in prior assumptions, a hierarchical model structure

for the sparse coefficients, the dictionary parameters, and the noise variance is consid-

ered. A hybrid Markov Chain Monte Carlo (MCMC) algorithm is used to accomplish

approximate inference in this model. It combines the Hamilton Monte Carlo (HMC)

method and Gibbs sampling. HMC is highly efficient in high-dimensional spaces and

in the presence of correlation. Therefore, it is used to infer the coefficients of the sparse

representation. Gibbs sampling is used for all other variables.

The performance is evaluated for the fiber-optic sensing in comparison with the PDL-

OIAI method in Section 7.1.2, where a deterministic sparse model is assumed. This

comparative analysis can serve as a practical guideline for choosing an appropriate

model. Simulations show that the support of the sparse coefficients is more accurately

estimated using the Bayesian framework, while the performance for the amplitudes of

the coefficients and the dictionary parameters are similar. The Bayesian framework

also allows for estimating the noise variance. Its practical applicability is validated

using real fiber sensing data. Herein, the Bayesian framework and PDL-OIAI show

comparable results. Since MCMC is usually slower than optimization-based or greedy

methods, it is also slower than PDL-OIAI. Nevertheless, due to the higher accuracy in

estimating the sparse support, the Bayesian framework can be advantageous e.g. for

system calibration. Therefore, a combination of both methods is promising.

A drawback of the Bayesian framework is the lack of an analytic solution, such that

approximate inference methods have to be applied. Common problems of MCMC

methods are the diagnosis of Markov Chain convergence, the sample correlation, and

the run-time / computational costs. When the dictionary parameters are estimated us-

ing AE-based estimation, the problem of local optima arises. To alleviate this problem,

the bisectional search method is used to obtain a good initialization of the algorithm.

7.2 Future Research Directions

On the basis of this work, some open problems have been identified, which are stated

below.

7.2.1 Sparse regularization and dictionary calibration

• Sparse estimation methods can be inaccurate when the magnitudes of the sparse

coefficients vary significantly. In the context of sparse regularization, this can

lead to non-sparse representations (over-fitting) or suppression of certain features
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(under-fitting). Sparse estimation methods that deal with this problem would be

of high interest in practice.

• Sparse regularization requires an estimate of the number of sources, the noise

power, and also the source power. A detailed analysis on how inaccuracies in

these estimates affect the performance can be carried out.

• The presented dictionary calibration method for direction finding requires an

estimate of the noise subspace, hence, an estimate of the number of sources.

Therefore, robust estimation of the number of sources can be incorporated to

improve the calibration procedure for practical systems.

• The presented regularization framework can be extended to deal with off-grid

sources. Multi-resolution grid refinement according to [5] can be implemented

in order to increase the accuracy and to reduce the negative effects of a limited

dictionary grid. Also, it can be analyzed if the framework can be extened to

include mutual coupling effects.

• The assumption of uncorrelated Gaussian noise is often too strong in many ap-

plications. In particular, R-Capon and W-MUSIC are adaptive algorithms that

are able to handle colored noise. Therefore, the impact of the violation of this

assumption can be investigated and some simulations with colored noise can be

included.

7.2.2 Sparse estimation and dictionary learning with highly
redundant dictionaries

• The presented sparse estimation and dictionary learning methods use a single set

of compressed measurements. Multiple measurements of a stationary scene can

be considered to improve the signal-to-noise ratio, the estimation performance,

and the stability of the sparse representation. This can be achieved by exploiting

goup sparsity among all measurements according to [159].

• In order to monitor a non-stationary scene, efficient algorithms for updating the

sparse solution have to be developed or adopted, such that subsequent measure-

ments can be efficiently incorporated.

• In the application of fiber-optic sensing, the signal is acquired using compres-

sive sensing. A direct hardware implementation of this sampling scheme can be

considered. The resulting fiber sensing system can be used to provide a more

comprehensive experimental validation of the proposed sparse estimation and

dictionary learning methods.
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• An investigation of the convergence properties of the “Alternating Sparse Esti-

mation” algorithm can be carried out.

• When MCMC methods are used for approximate inference, the computational

load can be high. As an alternative, variational Bayes methods can be investi-

gated for the considered problem in order to speed up computations.

• The presented weakly sparse model for the coefficients of the sparse represen-

tation favors small entries but does not enforce true sparsity. This model can

be compared to a strongly sparse model, e.g. a spike-and-slab model according

to [162]. A comprehensive comparison can reveal advantages and disadvantages

for the considered application and contribute to the general understanding of

both approaches.

• It can be analyzed how the various parameters of the setup, i.e. L, N , δt, etc.

affect the performance of the different methods.

• A comparison to a conventional filter-bank approach can be performed, where

the filters are tuned to each possible value of θ and the delays are estimated

by identifying the peaks in the output of the matched filter. However, it would

require perfect knowledge of the shape of the reflections to “match” the filter to

the signal.

• Redundancy and incoherence of the dictionary are conflicting requirements. A re-

dundant dictionary offers high-resolution estimates and incoherence is required to

ensure the succes of sparse estimation. It can be investigated if and how reducing

the dictionary coherence by IAI-mitigation affects the estimation accuracy.





139

Appendix

A.1 Compressed Sampling Using Redundant

Dictionaries

When redundant dictionaries are used in compressed sensing (CS), the correlations

between the row-elements in the combined sensing matrix may lead to problems in

sparse estimation [27]. This section reviews some details of this problem and provides

an explicit calculation for a Gaussian CS matrix and a general redundant dictionary.

Let Φ = [φ1, . . . ,φM ]> be a Gaussian random matrix with independent and identically

distributed (i.i.d.) zero-mean entries of variance σ2 for which the RIP requirements

are fulfilled. Further, let D = [d1, . . . ,dN ] ∈ RL×N , L < N be a redundant dictionary.

The combined sensing matrix can be written by

B = ΦD =

φ
>
1 d1 φ>1 d2 . . . φ>1 dN
...

...
...

...
φ>Md1 φ>Md2 . . . φ>MdN

 =

b>1
...

b>M

 , (1)

where b>m = φ>mD, m = 1, . . . ,M . Different rows of B are independent, since

EΦ bmb>l = EΦ (φ>mD)>(φ>l D) = D>
(
EΦ φmφ

>
l

)
D = D>

(
σ2I δml

)
D . (2)

Herein, EΦ bmb>l = 0 for m 6= l. However, the correlations between the entries of a

certain row do not vanish in case of a redundant dictionary. Their covariance matrix

can be calculated by

Σ = EΦ bmb>m = σ2 D>D ∀ m = 1, . . . ,M. (3)

Hence, the off-diagonal elements of Σ are determined by the inter-atom coherence of

the dictionary. Hence, the vectors b>m, m = 1, . . . ,M , are samples drawn from the

distribution N (0,Σ) and the correlation between the elements of one row is described

by the covariance matrix, Σ. Therefore, B is different from the common type of

random matrices used in CS and the RIP results for standard random CS matrices

are not applicable. In particular, different K-sparse representations, x, may yield the

same measurements, y = Bx. This owes to the fact that the amount of information

obtained by a projection with one row of B is less than that obtained by a random

projection with independent and identically distributed Gaussian entries [27]. In other

words, even though Φ fulfills the RIP requirements, this statement need not be true

for B.



140 Appendix

A.2 The Fisher Information: Estimating Parame-

ters in Gaussian Noise

The Fisher information matrix is derived for the case when the parameters, θ, of

the dictionary, D(θ), are perfectly known. For convenience, the dependence on θ is

dropped in D(θ) and in the likelihood function, p(y |x,θ). Similar derivations for a

Gaussian likelihood can also be found elsewhere, for example in [140].

Let φm denote the m-the column of a CS matrix, Φ>. For independent and identically

distributed Gaussian measurements, ym, m = 1, . . . ,M , let [∆
(x)
sc ]i, i = 1, . . . , N , denote

the i-the element of the score function with respect to (w.r.t.) x. It is given by

∆(x)
sc = ∇x log p(y |x) =

1

p(y |x)
∇x p(y |x)

= − 1

2σ2
n

∇x

(
y>y − x>D>Φ>y − y>ΦDx + x>D>Φ>ΦDx

)
= − 1

2σ2
n

(
−2 D>Φ>y + D>Φ>ΦDx + (D>Φ>ΦD)>x

)
= − 1

2σ2
n

(
−2 D>Φ>[y −ΦDx]

)
=

1

σ2
n

D>Φ>(y −ΦDx) . (4)

The first moment of the score function is obtained by

Ey|x ∆(x)
sc =

∫
(∇x log p(y |x) ) p(y |x) dy =

∫
∇x p(y |x) dy. (5)

One usually assumes that integration and differentiation can be exchanged. This as-

sumption holds under some ’weak’ regularity conditions, involving the existence and

continuity of the partial derivatives w.r.t x, the existence of the integral of p(x |y)

w.r.t. y, and the bounded integrability of the partial derivatives w.r.t. y. Then, the

first moment of the score function vanishes, since Ey|x y = ΦDx:

Ey|x ∆(x)
sc =

∫
1

σ2
n

D>Φ>(y −ΦDx) p(y |x) dy

=
1

σ2
n

D>Φ>( (Ey|x y )−ΦDx ) = 0. (6)
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The second moment can be written in terms of the the score function’s Hessian matrix,

where ∇2
x := ∂

∂x
∇x yields a matrix. Using the product and the chain rule, one obtains

∇2
x log p(y |x) =

∂

∂x

(
[∇x p(y |x)]

1

p(y |x)

)

=
∇2

x p(y |x)

p(y |x)
− [∇x p(y |x)] · [∇x p(y |x)]>

p(y |x)2

=
∇2

x p(y |x)

p(y |x)
−∆(x)

sc (∆(x)
sc )> , (7)

where it is assumed that p(y |x) and ∇x p(y |x) are continuous functions in x. Hence,

the Fisher information matrix becomes

I(x) = Ey|x ∆(x)
sc (∆(x)

sc )>

= −
(
Ey|x ∇2

x log p(y |x)
)

+

∫
∇2

x p(y |x)

p(y |x)
p(y |x)dy

= −
(
Ey|x ∇2

x log p(y |x)
)

+ ∇2
x

∫
p(y |x)dy︸ ︷︷ ︸

=1

(8)

= −Ey|x
1

σ2
n

D>Φ>
∂

∂x
(y −ΦDx) =

1

σ2
n

(ΦD)>ΦD =
1

σ2
n

B>B . (9)

The final result can also be found, for example, in [139,140]
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List of Acronyms

AE Alternating Estimation

ADC Analog-to-Digital Converter

CFS-DL Compressed Fiber Sensing and Dictionary Learning

CRB Cramér-Rao Bound

CS Compressed Sensing

DCF Dispersion Compensating Fiber

DF Database Friendly

DL Dictionary Learning

DOA Direction-of-Arrival

DSB Delay-and-Sum Beamforming

EM Expectation Maximization

FBG Fiber Bragg Grating

FIM Fisher Information Matrix

HMC Hamilton Monte Carlo

IAI Inter-Atom-Interference

i.i.d. independent and identically distributed

LTI Linear Time-Invariant

MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo

MIDR Minimum-Interference Distortionless Response

ML Maximum Likelihood

MSE Mean-Squared Error

OMP Orthogonal Matching Pursuit

PD Photodetector
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PDL-OIAI Parametric DL and OMP-Based Sparse Estimation With IAI

Mitigation

PDL-OMP Parametric DL and OMP-Based Sparse Estimation

R-CAPON Robust Capon Beamforming

RIP Restricted Isometry Property

RMSE Root Mean-Squared Error

R-SPARSE Robust Sparse Regularization Technique

SMF Single-Mode Fiber

SNR Signal-to-Noise Ratio

SOA Semiconductor Optical Amplifier

SPARSE Sparse Regularization Technique

WDM Wavelength Division Multiplexing

W-MUSIC Weighted MUSIC
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List of Symbols

0 Zero-vector

A Matrix of array steering vectors

a Steering vector

Bε(x0) ε-ball around some point x0

B, b Combined sensing dictionary, one atom of B

BS Sub-matrix of B, created from columns with indices in S

C Complex numbers

C Set of variables

c̆, cr Indicator vector, r-th entry of c̆

cp Speed of propagation

D, d Dictionary, one atom of D

D̂, ∆̂d Calibrated dictionary, estimated error term

D
′
, d

′
element-wise derivatives of D, d

D̃, d̃ Distorted dictionary, one atom of D̃

∆D, ∆d Error terms corresponding to D, d

∆d, δd Sensor spacing, spacing error

ed d-th element in Uf

f, f0 Signal frequencies

fK Internal function in K

∆f , ∆̂f Effective receiver bandwidth, estimate of ∆f

G0, G̃ Ideal sensor gain matrix, distored gain matrix

g0 Ideal sensor gain

g̃l Gain error of the l-th sensor

I Identity matrix

Iob Observation time interval in fiber sensing
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I, I Fisher information (matrix and scalar version)

Inv-Γ Inverse Gamma distribution

JU Number of internal iteration in PDL-OIAI

K Sparsity level / Number of non-zero elements in x
/ Cardinality of S / Kinetic energy in HMC

K(·) Kernel function

kw Shape parameter of the Weibull distribution

L2 Hilbert space of square-integrable functions

L Number of elements in r / Number of sensors of an array

LMC Number of samples in MCMC

M Number of compressed sensing measurements

N, n, nl Matrix of noise snapshots, noise vector, l-th element of n

N, N+ Natural numbers, non-negative natural numbers

N Number of elements in x / Number of atoms in D, B, W

n̂MSE, n̂RMSE, q̂MSE Upper bounds for sparse regularization

pg, pφ, pe Parameters to control gain and phase errors

Q, q Error matrix and error vector due to model errors

q̃φ, q̃φ Auxiliary random variables

R, R̂ Covariance matrix of sensor snapshots, estimate of R

R, R+ Real numbers, non-negative real numbers

RΘ Number of parameter values in Θ

r Observed or measured signal vector

r(t), r(t,θ) Analog sensor signal, dictionary-generating function with
parameters θ

S, Ŝ Support / set of significant elements in x, estimate of S

s Vector of elements in S

T Linear transformation / Sparse synthesis operator

T Number of snapshots



147

Tsw Laser sweep duration

Td Design sampling rate

Ts Sampling rate

t Time variable

Uf Matrix of feasible directions

Un, Ûn Noise subspace, estimate of Un

UR Left-singular vectors with respect to R

U Potential energy in HMC

u Signal amplitude

VR Right-singular vectors with respect to R

W, w Modified sensing dictionary, one atom in W

X, x, xi Sparse matrix, sparse vector, i-th element of x

x̂ Estimate of x / Estimator for x

x̂MAP Maximum a posteriori estimate of x

xS Sub-vector of x, created from entries with indices in S

x(`2) `2-norm of one row in X

Y, y, ym CS measurement matrix, one vector in Y, m-th entry of y

Z Covariance matrix of sensor noise

αX , α̃X , αφ Confidence levels

βd Argument of the coherence distance, dc(·, ·)

βreg, β̂reg Regularization- / Hyper-parameter, estimate of βreg

δK Restricted isometry constant

ζ Representative variable in the probabilistic sparse model

ζc Correlation coefficient

η, η Auxiliary momentum variables in HMC, one element of η

Θ Parameter space
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θ, θG, θL, θ Dictionary parameter vector, global and local version,
one element in θ

θ̂, θ̂ Estimates of θ̂, θ̂ / Estimators for θ̂, θ̂

ϑ, δϑ Angular direction, angular accuracy

ΛB Subset of Ω

λB, δλB Bragg wavelength, incremental change of λB

λ, λ0 Signal wavelengths

λ1, λ2 Hyperparameters for constrained ML estimation

λ∆ Regularization parameter in K(·)

λw Scale parameter of the Weibull distribution

µ̆1, µ̆2 Regularization parameters for MAP estimation

ν, νr Dirichlet parameters, r-th element of ν

Ξ Set of probability masses for the elements in Θ

ΣR Diagonal matrix of singular values of R

σg Sensor gain error variance

σn, σ̂n Noise standard deviation, an estimate of σn

σ2
s Signal power

σ2
φ, σ2

g Phase and gain error variances

τ Signal delay

Φ, φ Sampling matrix and measurement vector for CS

φ̄, ∆φ̄ Measured phase, error in φ̄

X 2
u,(·), X 2

l,(·) Upper / lower confidence bounds of the X 2-distribution

Xu,(·), Xl,(·) Upper / lower confidence bounds of the X -distribution

Nu,αφ Upper confidence bound of the Gaussian distribution

Xc Locally balanced set

Ω Index set of dictionary elements

ω, ω0 Angular frequencies
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Functions and Operators

(·)> Matrix transposition

(·)H Hermitian matrix transposition

(·)−1 Matrix inversion

(·)∗ Complex conjugation

‖ · ‖p `p-norm

‖ · ‖F Frobenius norm

Tr Trace operator

∂f
∂x

Partial derivative of f with respect to x

∇(·) Gradient

∆
(·)
sc Score function∏
,
∑

,
∫

Product, sum, integral

arg max (·) Arguments of the Maxima

arg min (·) Arguments of the Minima

exp(·) Exponential function

b(·) Bias function

C(·) Cost function

Cat(·, ·) Categorical probability distribution

CN (·, ·) Complex Gaussian probability density function

cos(·) Cosine

det(·) Determinant of a matrix

diag(·) Diagonal matrix of the arguments

dim(·) Dimension of a vector space

Dir(·, ·) Dirichlet probability distribution

dom(·) Domain of a variable

dc(·, ·) Coherence distance of a dictionary
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Ey, Ey|x Expectation with respect to y, conditional expectation
given x

H(·, ·) Hamiltonian function

Im{·} Imaginary part

log(·) Natural logarithm

log p(·) Log-probability density function

N (·, ·) Gaussian probability density function

max (·), min (·) Maxima, minima

MSE(·, ·) Mean-squared error

O(·) Big O notation (Bachmann-Landau notation)

P(·) Probability of the argument

Var(·) Variance of an estimator

p(·), p( · | · ) Probability density, conditional probability density

p̃(·), p̃( · | · ) Modified (conditional) probability density

RMSE(·, ·) Root mean-squared error

Q(·, ·) Q-function in the Monte Carlo EM algorithm

R(·) Range space of a matrix

rank(·) Rank of a matrix

Re{·} Real part

sin(·) Sine

span(·) Span of a set of vectors

spark(·) Spark of a matrix

supp(·) Support set of a vector

W(·, ·) Weibull probability density function

δ(·,·) Kronecker’s delta function

µMC(·), µB(·) Mutual coherence, `1-coherence / Babel function

X , X 2 X -distribution, X 2-distribution
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