403 research outputs found

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Hardware-Assisted Dependable Systems

    Get PDF
    Unpredictable hardware faults and software bugs lead to application crashes, incorrect computations, unavailability of internet services, data losses, malfunctioning components, and consequently financial losses or even death of people. In particular, faults in microprocessors (CPUs) and memory corruption bugs are among the major unresolved issues of today. CPU faults may result in benign crashes and, more problematically, in silent data corruptions that can lead to catastrophic consequences, silently propagating from component to component and finally shutting down the whole system. Similarly, memory corruption bugs (memory-safety vulnerabilities) may result in a benign application crash but may also be exploited by a malicious hacker to gain control over the system or leak confidential data. Both these classes of errors are notoriously hard to detect and tolerate. Usual mitigation strategy is to apply ad-hoc local patches: checksums to protect specific computations against hardware faults and bug fixes to protect programs against known vulnerabilities. This strategy is unsatisfactory since it is prone to errors, requires significant manual effort, and protects only against anticipated faults. On the other extreme, Byzantine Fault Tolerance solutions defend against all kinds of hardware and software errors, but are inadequately expensive in terms of resources and performance overhead. In this thesis, we examine and propose five techniques to protect against hardware CPU faults and software memory-corruption bugs. All these techniques are hardware-assisted: they use recent advancements in CPU designs and modern CPU extensions. Three of these techniques target hardware CPU faults and rely on specific CPU features: ∆-encoding efficiently utilizes instruction-level parallelism of modern CPUs, Elzar re-purposes Intel AVX extensions, and HAFT builds on Intel TSX instructions. The rest two target software bugs: SGXBounds detects vulnerabilities inside Intel SGX enclaves, and “MPX Explained” analyzes the recent Intel MPX extension to protect against buffer overflow bugs. Our techniques achieve three goals: transparency, practicality, and efficiency. All our systems are implemented as compiler passes which transparently harden unmodified applications against hardware faults and software bugs. They are practical since they rely on commodity CPUs and require no specialized hardware or operating system support. Finally, they are efficient because they use hardware assistance in the form of CPU extensions to lower performance overhead

    Runtime Enforcement of Memory Safety for the C Programming Language

    Get PDF
    Memory access violations are a leading source of unreliability in C programs. Although the low-level features of the C programming language, like unchecked pointer arithmetic and explicit memory management, make it a desirable language for many programming tasks, their use often results in hard-to-detect memory errors. As evidence of this problem, a variety of methods exist for retrofitting C with software checks to detect memory errors at runtime. However, these techniques generally suffer from one or more practical drawbacks that have thus far limited their adoption. These weaknesses include the inability to detect all spatial and temporal violations, the use of incompatible metadata, the need for manual code modifications, and the tremendous runtime cost of providing complete safety. This dissertation introduces MemSafe, a compiler analysis and transformation for ensuring the memory safety of C programs at runtime while avoiding the above drawbacks. MemSafe makes several novel contributions that improve upon previous work and lower the runtime cost of achieving memory safety. These include (1) a method for modeling temporal errors as spatial errors, (2) a hybrid metadata representation that combines the most salient features of both object- and pointer-based approaches, and (3) a data-flow representation that simplifies optimizations for removing unneeded checks and unused metadata. Experimental results indicate that MemSafe is capable of detecting memory safety violations in real-world programs with lower runtime overhead than previous methods. Results show that MemSafe detects all known memory errors in multiple versions of two large and widely-used open source applications as well as six programs from a benchmark suite specifically designed for the evaluation of error detection tools. MemSafe enforces complete safety with an average overhead of 88% on 30 widely-used performance evaluation benchmarks. In comparison with previous work, MemSafe's average runtime overhead for one common benchmark suite (29%) is a fraction of that associated with the previous technique (133%) that, until now, had the lowest overhead among all existing complete and automatic methods that are capable of detecting both spatial and temporal violations

    Accelerating dynamic data race detection using static thread interference analysis

    Full text link
    Copyright © 2016 ACM. Precise dynamic race detectors report an error if and only if more than one thread concurrently exhibits conict on a memory access. They insert instrumentations at compiletime to perform runtime checks on all memory accesses to ensure that all races are captured and no spurious warnings are generated. However, a dynamic race check for a particular memory access statement is guaranteed to be redundant if the statement can be statically identified as thread interference-free. Despite significant recent advances in dynamic detection techniques, the redundant check remains a critical factor that leads to prohibitive overhead of dynamic race detection for multithreaded programs. In this paper, we present a new framework that eliminates redundant race check and boosts the dynamic race detection by performing static optimizations on top of a series of thread interference analysis phases. Our framework is implemented on top of LLVM 3.5.0 and evaluated with an industry dynamic race detector TSAN which is available as a part of LLVM tool chain. 11 benchmarks from SPLASH2 are used to evaluate the effectiveness of our approach in accelerating TSAN by eliminating redundant interference-free checks. The experimental result demonstrates our new approach achieves from 1.4x to 4.0x (2.4x on average) speedup over original TSAN under 4 threads setting, and achieves from 1.3x to 4.6x (2.6x on average) speedup under 16 threads setting

    Simplifying Embedded System Development Through Whole-Program Compilers

    Get PDF
    As embedded systems embrace ever more complicated microcontrollers, they present both new capability and new complexity. To simplify their development, some lessons of computer application development will translate with additional work. This thesis offers one such translation. It shows how whole-program compilers - those that broadly analyze a program\u27s entire source code - can achieve performance gains and remove faults in embedded system applications. In so doing, this yields a novel stackless threading system named UnStacked C. UnStacked C enables cooperative multithreading without the risk of stack overflows in embedded system applications. We also propose a novel preemption system called Lazy Preemption. Unstacked C with Lazy Preemption enables stackless preemptive multithreading in embedded systems. These remove the possibility of thread stack overflows, but also significantly reduces the memory required for multithreading in embedded system

    Multithreading opportunities for program optimizations

    Get PDF
    The introduction of Multiprocessor On Chip (CMP) led to a substantial reformulation of the Moore law stating that the number of cores in a single chip doubles every one year and a half. The tech boom related to CMP gave a strong impulse to parallel program design diminishing its ``gap'' with parallel architectures. Nowadays a leading trend related to high performance products is represented by CMP with multithreading CPU nodes. Basically the CPU multithreading feature tries to overcome the underutilization of superscalar processors, due to the lack of exploitable instruction level parallelism (ILP), allowing the simultaneous processing of different programs during the same time slot. In multithreading architectures a thread is a concurrent computational entity supported directly at firmware level (these threads are usually called hardware threads). Multithreading technology opens a broad range of possible optimizations that can be applied to improve the performance of sequential and parallel applications. This thesis treat four possible optimization targeted for multithreading architectures: Speculative Precomputation, Threaded Multipath Execution, Speculative Multithreading and Communication threads. L'introduzione dei Multiprocessor On Chip (CMP) ha portato ad una sostanziale riformulazione della legge di Moore la quale afferma che il numero di cores in un singolo chip raddoppia ogni anno e mezzo. Il boom tecnologico relativo ai CMP ha dato un grande impulso al design relativo alla programmazione parallela diminuendo il gap con le architetture parallele. Allo stato attuale delle cose, un trend prominente relativo ai prodotti di high performance computing Ăš rappresentato da CMP con nodi caratterizzati da hardware multithreading. Questa tecnologia prova a risolvere il sottoutilizzo di processori superscalari, dovuto alla mancanza di ILP (instruction level parallelism), permettendo la computazione simultanea di diversi programmi durante lo stesso time slot La tecnologia multithreading ha aperto un ampio spettro di possibili ottimizzazioni che possono essere utilizzate al fine di migliorare le performance di applicazioni sequenziali e parallele. Questa tesi tratta quattro possibili ottimizzazioni indirizzate per architetture multithreading: Speculative Precomputation (Helper Thread), Threaded Multipath Execution, Speculative Multithreading and Communication Threads
    • 

    corecore