265 research outputs found

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    Near-Field Depth Perception in See-Through Augmented Reality

    Get PDF
    This research studied egocentric depth perception in an augmented reality (AR) environment. Specifically, it involved measuring depth perception in the near visual field by using quantitative methods to measure the depth relationships between real and virtual objects. This research involved two goals; first, engineering a depth perception measurement apparatus and related calibration andmeasuring techniques for collecting depth judgments, and second, testing its effectiveness by conducting an experiment. The experiment compared two complimentary depth judgment protocols: perceptual matching (a closed-loop task) and blind reaching (an open-loop task). It also studied the effect of a highly salient occluding surface; this surface appeared behind, coincident with, and in front of virtual objects. Finally, the experiment studied the relationship between dark vergence and depth perception

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    Assessing Distance Perception In Virtual And Augmented Realities With Electroencephalography

    Get PDF
    A comfinding in spatial perception research is that subjects tend to underestimate distances in virtual reality compared to the real world. The degree and methods of measurement of underestimation vary between studies, but the trend of underestimation is consistent. This study uses electroencephalography as a neuroimaging technique to examine patterns of brain activity when fixating objects in near space and far space in the real world, in virtual reality, and in augmented reality. For the augmented reality condition, a custom optical see-through augmented reality head-mounted display (HMD) was built and calibrated. A calibration method was developed to correct the geometric distortion introduced by the HMD\u27s optical combiners. This method also calibrates a motion tracker mounted on the HMD to allow for tracking of head movements

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems

    Peripheral visual cues and their effect on the perception of egocentric depth in virtual and augmented environments

    Get PDF
    The underestimation of depth in virtual environments at mediumield distances is a well studied phenomenon. However, the degree by which underestimation occurs varies widely from one study to the next, with some studies reporting as much as 68% underestimation in distance and others with as little as 6% (Thompson et al. [38] and Jones et al. [14]). In particular, the study detailed in Jones et al. [14] found a surprisingly small underestimation effect in a virtual environment (VE) and no effect in an augmented environment (AE). These are highly unusual results when compared to the large body of existing work in virtual and augmented distance judgments [16, 31, 36–38, 40–43]. The series of experiments described in this document attempted to determine the cause of these unusual results. Specifically, Experiment I aimed to determine if the experimental design was a factor and also to determine if participants were improving their performance throughout the course of the experiment. Experiment II analyzed two possible sources of implicit feedback in the experimental procedures and identified visual information available in the lower periphery as a key source of feedback. Experiment III analyzed distance estimation when all peripheral visual information was eliminated. Experiment IV then illustrated that optical flow in a participant’s periphery is a key factor in facilitating improved depth judgments in both virtual and augmented environments. Experiment V attempted to further reduce cues in the periphery by removing a strongly contrasting white surveyor’s tape from the center of the hallway, and found that participants continued to significantly adapt even when given very sparse peripheral cues. The final experiment, Experiment VI, found that when participants’ views are restricted to the field-of-view of the screen area on the return walk, adaptation still occurs in both virtual and augmented environments

    Direct Manipulation Of Virtual Objects

    Get PDF
    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user\u27s real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities--proprioception, haptics, and audition--and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum--Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables

    Factors Affecting Spatial Awareness in Non- Stereo Visual Representations of Virtual, Real and Digital Image Environments

    Get PDF
    The increasing number of applications employing virtual environment (VE) technologies as a tool, particularly those that use VE as surrogates, makes it important to examine the ability of VE to provide realistic simulations to users. Accurate space and distance perceptions have been suggested as essential preconditions for the reliable use of VE technologies in various applications. However, space and distance perception in the VE has been reported by some investigators as being perceived differently from the real world. Thus, the overall aim of this thesis is to improve our understanding of factors affecting spatial awareness in the VE. The general approach is based on a strategy of conducting empirical investigations comparing tasks performed in the VE to similar tasks performed in the real world. This research has examined the effect of display related factors on users' spatial task performance in the context of static, dynamic and interactive presentations. Three sets of experiments in these respective contexts were conducted to explore the influence of image type, display size, viewing distance, physiological cues, interface device and travel modes on distance estimate and spatial memory tasks. For distance perception, results revealed that the effect of image type depends on the context of presentations, the type of asymmetrical distances and image resolution. The effect of display size in static and dynamic presentations is consistent with the results of previous investigations. However, results from evaluations conducted by the author have indicated that other factors such as viewing distance and physiological cues were also accountable. In interactive presentations, results indicated that display size had different effects on different users whereby familiarity with display size may influence user's performance. Similarly, it was shown that a commonly used interface device is more useful and beneficial for user's spatial memory performance in the VE than the less familiar ones. In terms of travel mode, the natural method of movement available in the real world may not necessary be better than the unnatural movement which is possible in the VE. The results of investigations reported in this thesis contribute towards knowledge and understanding on factors affecting spatial awareness in the real and VE. In particular, they highlight the influence of these factors in space and distance perception in different contexts of VE presentations which will serve as important scientifically based guidelines for designers and users ofVE applications
    • …
    corecore